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Abstract. Human land-use activities have resulted in large changes to the biogeochemical and biophysical properties 

of the Earth surface, with consequences for climate and other ecosystem services. In the future, land-use activities are 

likely to expand and/or intensify further to meet growing demands for food, fiber, and energy. As part of the World 

Climate Research Program Coupled Model Intercomparison Project (CMIP6), the international community has 45 
developed the next generation of advanced Earth System Models (ESMs) to estimate the combined effects of human 

activities (e.g. land use and fossil fuel emissions) on the carbon-climate system. A new set of historical data based on 

the History of the Global Environment database (HYDE), and multiple alternative scenarios of the future (2015-2100) 

from Integrated Assessment Model (IAM) teams, are required as input for these models. With most ESM simulations 

for CMIP6 now completed, it is important to document and the land use patterns used by those simulations. Here we 50 
present results from the Land-use Harmonization 2 (LUH2) project, which smoothly connects updated historical 

reconstructions of land-use with eight new future projections in the format required for ESMs. The harmonization 

strategy estimates the fractional land-use patterns, underlying land-use transitions, key agricultural management 

information, and resulting secondary lands annually, while minimizing the differences between the end of the 

historical reconstruction and IAM initial conditions and preserving changes depicted by the IAMs in the future. The 55 
new approach builds off a similar effort from CMIP5, and is now provided at higher resolution (0.25 x 0.25 degree), 

over a longer time domain (850-2100, with extensions to 2300), with more detail (including multiple crop and pasture 

types and associated management practices), using more input datasets (including Landsat remote sensing data), 

updated algorithms (wood harvest and shifting cultivation), and is assessed via a new diagnostic package. The new 

LUH2 products contain >50 times the information content of the datasets used in CMIP5, and are designed to enable 60 
new and improved estimates of the combined effects of land-use on the global carbon-climate system. 
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1. Introduction 

Over the past several centuries to millennia, human land-use activities have grown and intensified to provide food, 65 
feed, energy, and fiber to support an expanding human population.  These same land-use activities have also 

resulted in large changes to the underlying biogeophysical properties of the Earth surface, with impacts on climate, 

biogeochemical cycling, and habitat for biodiversity. In the future, land-use activities are likely to expand and/or 

intensify further to meet future demands for food, feed, energy, and fiber. What have been the effects of land-use 

activities on the climate system? What will be the impacts on climate of future land-use scenarios? Addressing 70 
these questions requires an integrated set of historical land-use data, integrated assessment models of the future, 

and climate models. To be most useful, requisite land-use data must be global, spatially and temporally and 

conceptually consistent from the past through to the future, and in a format that is usable by Earth System Models 

(ESMs). 

Previously, in preparation for the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate 75 
Change (IPCC) and as part of CMIP5, the Land-use Harmonization (LUH1) project provided harmonized land-

use data for the years 1500-2100, at 0.5° x 0.5° resolution (Hurtt et al., 2011). These data served as required land-

use forcing for CMIP5 climate model experiments and have been used in numerous related studies to assess the 

effects of land-use change on carbon and climate (Brovkin et al., 2013; Jones et al., 2011; Shevliakova et al., 2009; 

Shevliakova et al., 2013). They have also been extended for use in uncoupled DGVM modeling studies (e.g. 80 
TRENDY) and as input to the Global Carbon Project (Le Quéré et al., 2013; Le Quéré et al., 2014; Le Quéré et 

al., 2015) and other studies (Jones et al., 2013; Di Vittorio et al., 2014; Collins et al., 2015; Arneth et al., 2017; 

Thornton et al., 2017; Di Vittorio et al., 2018) 

Now, as part of the World Climate Research Program Coupled Model Intercomparison Project (CMIP6, Eyring et 

al., 2016), the international research community has developed the next generation of advanced ESMs able to 85 
estimate the combined effects of human activities (e.g. land use and fossil fuel emissions) on the carbon-climate 

system. In addition, a set of historical data based on the History of the Global Environment database (HYDE) 

(Klein Goldewijk et al. 2017), and multiple alternative scenarios of the future (2015-2100), developed by 

Integrated Assessment Model (IAM) teams (Riahi et al. 2017), including global land-use projections (Popp et al. 

2017), have been developed as drivers for these models. The goal of the Land-Use Harmonization (LUH2) project 90 
is to prepare a new harmonized set of land-use scenarios that smoothly connects the historical reconstructions of 

land-use with eight future projections in the format required for ESMs. This ambitious land-use harmonization 

strategy estimates the fractional land-use patterns, underlying land-use transitions, and key agricultural 

management information, annually for the time period 850-2100 at 0.25° x 0.25° resolution, while minimizing the 

differences at the transition between the historical reconstruction ending conditions and IAM initial conditions, 95 
and working to preserve changes depicted by the IAMs in the future to create a consistent set of IAM simulations 

specifically for this project. The resulting data products are a required input for multiple CMIP6 model 

experiments, including the historical all-forcing experiment, and related model intercomparison project 
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experiments including PaleoMIP (Junclaus et al., 2017), ScenarioMIP (O’Neill et al., 2016), LUMIP (Lawrence 

et al., 2016).   Extensions are also provided for 2100-2300 as input to climate stabilization experiments. To bracket 100 
the ranges of uncertainty in the historical reconstruction, two alternative scenarios (“low” and “high”) are provided 

in addition to the “baseline” historical scenario. 

2. Methods 

Like its predecessors, The Global Land Use Model (Hurtt et al., 2006; Hurtt et al., 2011), GLM2 (the model 

underlying the LUH2 dataset) computes subgrid-scale land-use states and corresponding transition rates using an 105 
accounting-based method that tracks the fractional state of the land surface in each grid cell as a function of the land 

surface at the previous time step, and a transition matrix. This can be represented using the following matrix 

equation: 

 

l(x,t+1) = A(x,t)l(x,t)       110 

                 x= (1,…,N), t= (t0,…,tf)      (1) 

 

where l(x,t) is a vector giving the fractions of grid cell area in each land-use category in a grid cell x and time t, and 

A(x,t) is a matrix giving the land-use transition rates between N land-use categories in grid cell x and time t. Each 

element, aij(x,t) of the matrix A(x,t) gives the rate at which land-use type j was converted to land-use type i between t 115 
and t+1. 

 

   (i,j=1…N)       (2) 

 

GLM2 was adapted and extended from GLM1 to track a larger list of 12 subgrid scale land-use types (4 “natural 120 
land” types, 5 crop types, 2 pasture types, and urban), and key management information (i.e. fraction irrigated, 

fraction flooded, fraction biofuel, and rate of industrial N fertilizer application) related to agriculture. The vector 

m(x,t) gives the cropland management information for grid cell x at time t, and the state of the full system is 

therefore described by both the vectors l(x,t) and m(x,t). 

 125 
GLM2 was used to solve Eq. 1 and associated values of A(x,t) and m(x,t) annually for every 0.25° x 0.25° terrestrial 

grid cell globally for 850-2100 (with extensions to 2300). In the process, the framework was used to determine on 

the order of 1010 unknowns. Since this was a large and underdetermined system, the approach was to solve the 

system for every grid cell at each time step by constraining with inputs including: (i) land-use maps, (ii) crop type 
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and rotation rates, (iii) shifting cultivation rates, (iv) agriculture management, (v) wood harvest,  (vi) forest 130 
transitions, and (vii) potential biomass and biomass recovery rates. Because these inputs do not uniquely constrain 

the system, additional assumptions were made including: (viii) the priority of primary (not harvested, cut or 

converted since 850 CE) or secondary land for wood harvesting and agricultural conversion, (ix) the inclusiveness in 

wood harvest statistics of wood cut in conversion of forest to agricultural use, and (x) the spatial pattern of wood 

harvest. These model inputs, constraints, and assumptions that are used to compute the state of the system and the 135 
associated values of A(x,t) are described in the following sections. The model input-output is illustrated in Fig. 1, 

and described below. 

2.1 Historical Maps of Land Use  

Historical maps of land use were based on the History of the Global Environment database (HYDE). HYDE 

provides long-term historical, spatially-explicit time series on a 5 arc minute resolution of population estimates as 140 
well as land use reconstructions covering the Holocene period, defined here as 10 000 BCE until the present (Table 

1). It is an effort to quantify the agricultural expansion of humankind over time. In principle, HYDE uses a simple 

approach of combining historical population estimates with assumptions on the trajectory of historical land use per 

capita. Allocation of land use patterns is steered at present day by satellite information and UN FAO agricultural 

data, and this is gradually replaced towards the past by a combination of spatially explicit maps such as climate, soil, 145 
slope, and neighborhood of rivers and lakes. The latest version (3.2; Klein Goldewijk et al., 2017) presents land use 

categories such as built-up area, managed pastures and more extensive rangelands, cropland excluding rice, and rice 

as a separate crop because of its relevancy for greenhouse gas emissions. A distinction was made between irrigated 

and rain-fed cropland (both for other crops and rice). Besides the baseline reconstruction, two alternative historical 

land-use reconstructions were provided based on uncertainties. For a full description of the methodology see Klein 150 
Goldewijk et al. (2017).  

The version of the HYDE 3.2 dataset used for the baseline LUH2 historical product was the “2016_beta_release” 

version, and the version used for the high and low scenarios was the “2017_beta_release_000” version. Data was 

provided at 5’ spatial resolution, every 100 years from 800 to 1700, every 10 years from 1700 to 2000, and then 

annually from 2000 to 2015. These data were aggregated to 0.25°×0.25° resolution and converted from absolute area 155 
of each grid cell to grid cell fractional area. Data were then linearly interpolated in time to produce annual maps of 

the fraction of each 0.25° grid-cell occupied by each of the following land-use types: cropland, grazing land, pasture, 

and urban. The ice and water fractions of each grid cell were also taken from the HYDE dataset and were assumed 

constant over time. By subtracting the land-use and ice and water fractions from each grid cell, the fractions of each 

grid cell occupied by natural vegetation (either primary or secondary forest or grassland) were also determined. The 160 
HYDE 3.2 dataset also includes a global map that assigns a country code to each terrestrial grid cell, at 5′ resolution. 

This map served as a basis to generate a similar map at 0.25° resolution, consistent with the 0.25° maps of land-use 

data. In this map every grid cell with ice/water fraction less than 1.0 was assigned a country code, resulting in a 

global map containing 199 countries.  
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2.2 Historical Maps of Crop types and Crop Rotations  165 

The cropland fraction of each grid-cell, along with transitions to/from cropland, are further sub-divided into five 

different crop functional types (CFTs): C3 annuals, C4 annuals, C3 perennials, C4 perennials, and C3 nitrogen 

fixers. For the years 850 to 2015 the CFT fractions of total cropland are primarily based on data from Monfreda et 

al. (2008), which provides global maps of harvested areas of 175 different crops, at 5-minute spatial resolution, for 

the year 2000. For use in the LUH2 methodology, these maps were aggregated into five CFT classes at 0.25° spatial 170 
resolution and then normalized so that all CFT fractions sum to 1 in each grid-cell. For grid cells that do not have 

crop-type data from Monfreda et al., national crop-type data from FAO (FAO 2016) is used instead (i.e. by 

aggregating the 169 FAO crop types into the 5 CFT classes represented in LUH, averaging over all years of FAO 

data from 1961 to 2013, then assigning the normalized national CFT fractions to any grid-cells within each country 

that did not have Monfreda data). The resulting map of CFT fractions is used for all years 850-2015 to sub-divide 175 
the gridded cropland fraction and cropland-related transitions into CFT fractions and CFT-related transitions, by 

multiplying the cropland fraction of each grid-cell (and the cropland-related transitions to/from each grid-cell) by the 

CFT fractions map. Note that this process includes the inherent assumption that the fraction of a grid cell that was 

harvested for a crop type (i.e. the Mondreda et al. data) was roughly correlated with the fraction of the total cropland 

area that was occupied by that crop type.  180 

For the years 2015-2100, we first identify one or two CFTs in the IAM data that have the greatest global area 

increase over the 85-year period. We then attempt to follow the gridded changes in fraction of cropland occupied by 

those CFTs, by first assigning as much of the cropland expansion transitions as possible to the expansion of those 

one or two CFTs, and then, when needed, by adding transitions between CFTs to re-assign area from CFTs with 

lower rates of increase (or even reductions) of area in the IAM data to the CFTs with large global increases in area. 185 
The result of this process is typically that the global area changes of CFTs in LUH2 tend to follow global area 

changes of CFTs in the IAM data, not just for the CFTs with the largest area changes, but for others as well. When 

there were no CFTs with significant changes over the 2015-2100 period, the contemporary CFT ratios were used to 

disaggregate total cropland area into CFT fractions for all years 2015-2100. 

Crop rotations or the practice of growing a sequence of crops on an agricultural field, within or across growing 190 
seasons, is a key component of agricultural management, and has impacts on overall crop yields, nutrient cycling, 

fertilizer and water usage, water quality and biodiversity (Bullock, 1992). An example of such a crop rotation is the 

corn-soybean-corn rotation practiced extensively in the U.S. Midwest. We generated a national scale crop rotation 

dataset for the U.S to quantify rates of transition from one crop functional type to another and applied those rates to 

the crop functional types in LUH2. We use the USDA Cropland Data Layer (CDL, Sahajpal et al., 2014) to quantify 195 
unique crop rotations for U.S from 2012 – 2014 (Sahajpal et al., 2014). Assuming a crop rotation span of 3 years, 

and nearly 100 unique crops in the CDL, we could potentially have 106 unique crop rotations. Empirically, there are 

close to 100,000 unique crop rotations in the U.S for that time-period. However, by aggregating different crop types 

to the crop functional types in LUH2 and merging similar rotations, we estimated transition rates between different 
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crop functional types in LUH2 and applied them after all other transitions between land-use types have been 200 
computed.   

2.3 Historical Data on Agriculture Management Activities 

Historical information on crop management activities included data on irrigation, flooded agriculture, and industrial 

nitrogen fertilizer application rates. Data on irrigated area, and area of flooded rice, were obtained from HYDE. The 

irrigated fraction of each crop type was computed during the historical period by dividing the HYDE 3.2 irrigated 205 
fraction of each grid-cell by the HYDE 3.2 cropland fraction of each grid-cell. This fraction is then used as the 

irrigated fraction of each crop sub-type. The fraction of C3 annuals that are flooded for rice is computed historically 

by dividing the HYDE 3.2 flooded fraction of each grid-cell by the C3 annual fraction of each grid-cell (rice is the 

only C3 annual considered to be flooded in our dataset. Non-flooded rice is not explicitly represented here, but 

would be included in the non-flooded C3 annual fraction). For industrial nitrogen fertilizers, we used a recent global 210 
compilation of N fertilizer use for 1961-2011 (Zhang et al., 2015) as our base data set. Countries without fertilizer 

data reported in Zhang et al. (2015) were assigned regional mean values, based on the regional grouping of countries 

defined in Zhang et al. (2015). Fertilizer use between 1915 and 1960 was hindcast using global synthetic N fertilizer 

use totals from Smil (2001), and was forecast from 2012 to 2015 using an estimate of global industrial N fertilizer 

use based on data from the International Fertilizer Association (IFA, 2015).  Decadal mean N-fertilizer rates by crop 215 
and country were computed from the Zhang et al. (2015) data and were assigned to mid-decade year (e.g., the 1961-

1970 mean was assigned to 1965).  To generate country fertilizer application rates for 2015, which we did not 

compute as a decadal mean, we assumed that the fertilization rate since 2005 has changed with a same scaling factor 

across all countries and crop types (as in Zhang et al., 2015). Using the harvested area in 2015 from HYDE 3.2 (see 

Section 2.1), the fertilization rate for country j and crop k in 2015 is determined by  220 

Rj,k,2015 = Rj,k,2005 · (F2015,IFA/A2015) ÷ (F2005/A2005), 

where Rj,k,t is the N-fertilization rate by crop type (j) by country (k) by year (t) [kg N ha-1 y-1], and At is the global 

total crop area in year t from HYDE 3.2, F2015,IFA is the global N fertilizer application in 2015, estimated by applying 

the trend in 2006-2012 from the IFA data to extrapolate to 2015 from 2012, yielding F2015,IFA = 115 Tg N y-1, and  

F2005 is the global total N fertilizer application estimated as the product of N fertilizer application rate in 2005 225 
computed from Zhang et al. (2015) and LUH2 cropland area (F2005 = 94 Tg N, the mean of 2001-2010, as above). 

Fertilizer application rates were hindcast from the 1960s to rates for 1950, 1930, and 1915. Synthetic N fertilizer 

rates in 1915 are set to 0.0 kg N km-2 for all countries and crop types, as this was when the Haber-Bosch industrial 

process was invented. Using global N consumption data from Smil (2001) for 1950 (F1950,Smil = 3.7 Tg N y-1) and 

1930  (F1930,Smil = 1.0 Tg N y-1), and crop area from LUH2 (Aj,k,t, see Section 2.1), the synthetic N rates by crop and 230 
country (Rj,k,t) were estimated for 1950, 1930, and 1915 as follows 

Rj,k,1950 = Rj,k,1965 · (F1950,Smil) ÷ S[Rj,k,1965 ·Aj,k,1950], 
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Rj,k,1930 = Rj,k,1965 · (F1930,Smil) ÷ S[Rj,k,1965 ·Aj,k,1930], 

Rj,k,1915 = 0. 

where the sum is over all countries (j index) and crops (k index). Finally, we generated annual synthetic N fertilizer 235 
rate values by country and crop functional type and year (Rj,k,t) by linearly interpolating between values for 1915, 

1930, 1950, 1965, 1975, 1985, 1995, 2005, 2015.  

2.4 Rates of Shifting Cultivation 

We considered shifting cultivation to be a specific land use sequence of clearing, agricultural use typically for one to 

several years, and subsequent abandonment of land to forest (or other natural vegetation) regeneration for three 240 
years to several decades (‘fallow’).  While likely widespread in the early millennia of agriculture (Olofsson & 

Hickler, 2007), more recently it has been restricted to the tropics (Ruthenberg, 1980).  We use the recent analysis of 

the past, present, and future extent of shifting cultivation (Heinimann et al., 2017) to constrain its occurrence in 

LUH2.  Heinimann et al. (2017) based their analysis on the early global map of the distribution of ‘primitive 

subsistence agriculture’ (Butler 1980), a visual inspection of the distribution of shifting cultivation based on the 245 
2000-2014 Global Forest Change (GFC) data set (Hansen et al., 2013) coupled with high-resolution satellite 

imagery, and an extensive expert survey on regional trends in shifting cultivation, querying lead authors of scientific 

publications on shifting cultivation over the past decade (Heinimann et al., 2017).   

Heinimann et al. (2017) estimated the current area under shifting cultivation (cultivated + fallow) to be about 280 

Mha, distributed extensively and heterogeneously across Central and tropical South America, tropical Africa, and 250 
tropical Southeast Asia (see Fig. 5 in Heinimann et al., 2017).  For each 1x1° grid cell with detected signs of shifting 

cultivation, they also estimated its level of occurrence, including both active cropland and fallows, aggregated into 

five classes of the total land area in each grid cell: none (<1%), very low (1-9%), low (10-19%), moderate (20-39%) 

or high (≥40%).  They project significant declines in shifting cultivation extent through the 21st century, with losses 

by the end of the century of more than 80% in Africa and Latin America, and 100% in Asia, and extent at 1x1° in 255 
remaining areas to be low or very low (see Fig. 7 in Heinimann et al., 2017). 

We created annual LUH2 shifting cultivation maps by linearly interpolating between the assumed shifting 

cultivation rates in 1850 and the expert opinion-based rates of 2010 (Heinimann et al., 2017). The 1850 shifting 

cultivation rates were assumed to fall in the ‘high’ category of 70%. The future shifting cultivation rates were 

similarly computed by linearly interpolating between the 2010 and the assumed 2100 rates from the expert opinion 260 
survey of Heinimann et al., 2017. For LUH2, shifting cultivation involved cropland only (grazing land was included 

as part of shifting cultivation in LUH1 but not in LUH2). For all grid cells, we used the mid-range of shifting 

cultivation occurrence (e.g., 5% for ‘very low’, 15% for ‘low’, 30% for ‘moderate’, and 70% for ‘high’), and 

assumed that these fractions also applied to the fraction of cropland involved in shifting cultivation. We also 

assumed that the residence time for a patch of cropland involved in shifting cultivation was only 1 year. At each 265 
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time-step in our model, we then abandoned the Heinimann et al. (2017) prescribed percentage of total cropland area 

in the grid cell (e.g. cropland to secondary land), and cleared the same area from natural vegetation (e.g. forest to 

cropland), with a prioritization of clearing secondary land first unless the available secondary land was less than 10 

times the cropland area involved in shifting cultivation (based on an assumption of a 10-year fallow period).  The 

global area of shifting cultivation activity tends to track global changes in cropland area from HYDE 3.2 (Klein 270 
Goldewijk et al., 2017, or see Section 2.1), and global future cropland area changes from IAMs, although this 

relationship between cropland area and shifting cultivation area declines over time due to the extent of shifting 

cultivation declining significantly, especially through the 21st century. 

2.5 Historical Statistics on Wood Harvest  

Historical wood harvest in LUH2 is based on national statistics, and partitioned into fuelwood and non-fuelwood, 275 
for 199 countries, based on a 1990 country list from HYDE 3.2 (Klein Goldewijk et al., 2017). These national wood 

harvest statistics are used to solve Equation 1 and assigned to individual grid-cells using the methodology described 

in Sections 2.10 and 2.11. For the years 1961-2015 the LUH2 wood harvest data is based on FAO national wood 

harvest volume data (FAO 2016) for both coniferous and non-coniferous round wood, which is combined with wood 

density values of 0.225 Mg C m-3 for coniferous wood and 0.325 Mg C m-3 for non-coniferous wood (Houghton and 280 
Hackler, 2000) to convert volume statistics to mass of carbon harvested. Harvest rates were hindcast to 1920 by 

interpolating from mean FAO per capita harvest rates from 1961-1965, using national population totals from HYDE 

3.2 (see section 2.1), and national per capita fuelwood (‘firewood’) and timber (‘sawtimber’) wood harvest totals 

from 1920 (Zon and Sparhawk 1923).  Note that Zon and Sparhawk totals for timber consumption include volume of 

wood for construction, industry, and pulp, and so, with firewood, should be roughly comparable to FAO ‘total 285 
roundwood’.  

For the years prior to 1920, national annual per capita wood harvest rates were computed in three different ways for 

low, baseline, and high LUH2 scenarios, and use the same national population data from HYDE 3.2 to compute the 

total national wood harvest (in Mg C) per year for each scenario. For the “low” wood harvest scenario, the national 

annual per capita wood harvest rates from Zon and Sparhawk (1923) were held constant for all years from 850 to 290 
1920. However, prior to the fossil fuel era, global mean per capita wood harvest was likely significantly higher than 

in 1920, so for the “high” scenario we used a national per capita wood harvest demand reconstruction for 

"fuelwood" and "durable wood" from Kaplan et al. (2017) for the period 850-1800. Per capita wood harvest rates 

then transitioned linearly from 1800 rates to the 1920 rates of Zon and Sparhawk (1923), to mimic the global shift in 

energy sources from biomass towards fossil fuels (Smil, 2003).  These high and low wood harvest scenarios 295 
represented two different extremes in terms of cumulative wood harvested and total area of forests removed. In 

addition, the high scenario is significantly higher than the LUH1 wood harvest reconstruction. To provide a scenario 

somewhere between these two extremes, we also generated a “baseline” wood harvest scenario in which we 

modified the Kaplan national wood harvest rates from 850 to 1800 by national scale factors. These scale factors are 

defined as twice the contemporary FAO national per capita wood harvest rates divided by the national per capita 300 
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wood harvest rates in 1800 from the Kaplan data, and this definition was determined from analysis of the global 

time-series figure of historical biofuels consumption (Smil 2003) which shows current global per capita biofuels 

consumption of around 6 GJ per capita and around 21 GJ per capita in 1800. Reducing the Kaplan wood harvest 

rates via these scale factors does not imply that the original Kaplan rates are too high, rather that the Kaplan data is 

likely to be capturing types of wood harvest and related processes that our model does not currently simulate. For 305 
years between 1800 and 1920 we linearly interpolate between the modified year 1800 rates from Kaplan and the Zon 

and Sparhawk (1923) rates in 1920. 

For the “low” and “baseline” scenarios, the reconstructed national wood harvest data were increased by a slash 

fraction of 30% (as in LUH1, Hurtt et al., 2011) to account for non-harvested losses from forests that occur during 

the wood harvesting process. For the “high” scenario, we do not add a slash fraction to the data for the years 850-310 
1800 since it is assumed this is already included in the Kaplan data (Kaplan et al. 2017). In this scenario, the slash 

fraction is linearly increased from 0% to 30% during 1800 to 1920, and held constant thereafter. 

All national wood harvest totals from FAO and Zon and Sparhawk are assumed to represent the amount of wood 

produced by each country. In contrast, the data from Kaplan represents the wood harvest demand from each country, 

although it is assumed that during the years 850-1800 there was limited wood trade in most parts of the world, and 315 
hence demand would equal production. In Europe, however, international wood trade occurred during 850-1800 

(Kaplan et al., 2017). So, for European countries only, if the available national biomass is not sufficient to meet the 

national wood harvest demand in a particular year, we seek the unmet demand from other European countries (i.e. 

increase the wood harvest production in other countries) proportional to the available biomass in each country.  

From 1500–2005, the global cumulative total wood harvest in the baseline scenario was 190 Pg C including slash 320 
(Fig. 2), compared with 142 Pg C and 381 Pg C in the “low” and “high” scenarios, respectively.  

2.6 Historical Maps of Forest Transitions  

The spatial patterns of forest transitions, particularly those related to wood harvesting, were constrained by the 

Landsat-based gridded forest loss observations from Hansen et al. (2013). This product consists of global 30m grids 

of tree canopy cover for year 2000 and gross forest cover loss and gain for the 2000-2012 time interval mapped 325 
using the entire global Landsat data archive (although only the forest loss data was used within LUH2). Within this 

dataset, forest was defined using a single tree canopy cover threshold to match the global forest extent provided by 

the FAO FRA report (FAO 2000). Cumulative forest area was estimated by summing pixels with different tree 

canopy cover. Then the threshold was selected that most closely enabled a match to the total world forest cover for 

year 2000, which is 4085 million ha, according to FAO data. A threshold of 28% tree canopy cover produced 330 
100.5% of the FAO forest area. This threshold was used to define forest area for the year 2000 at 30m spatial 

resolution. Gross forest cover loss was reported only within areas covered with forest in the year 2000. Gross forest 

cover gain was mapped independently outside areas forested in the year 2000 and represents gain of tree canopy 

cover to 30% or higher from non-forest state. The global maps of forest extent and change were then aggregated to 

the same spatial resolution and format as the LUH1 datasets (0.5° × 0.5° fractional). To aggregate the data to the 335 
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0.5° grid, the area of each class was computed within each grid cell, and then the class area percent of total cell area 

was calculated. The 0.5° product shows percent forest cover for year 2000 and percent gross forest cover loss and 

gain during the 2000-2012 time interval. The 0.5° product was later downscaled to 0.25° for consistency with the 

new LUH2 spatial resolution. A very simple downscaling method was employed that kept the fraction of forest area 

(or forest loss) equal within each 0.25° grid-cell inside the 0.5° grid-cell cells.  340 

The resulting map of forest loss was used within LUH2 as part of the algorithm for determining the spatial pattern of 

forest loss from wood harvesting. However, it should be noted that the Landsat-based forest loss maps differ from 

the LUH2 forest loss maps in multiple ways, including definitions of “forest” (i.e. tree canopy cover vs. biomass 

density), whether or not a single grid-cell can contain both forest and non-forest (LUH2 grid-cells are either 

potentially forested or potentially non-forested), whether or not the forest loss includes natural disturbances such as 345 
fires or not (LUH2 forest loss results only from land-use-related changes). As a result, the match between these 

products is not perfect, and the Landsat-based forest loss data is used as a guide to improving the LUH2 forest loss 

patterns, rather than a hard constraint on those patterns. 

2.7 Biomass Density and Recovery Rates 

To discriminate forested land from non-forested land, and to convert quantities of harvested wood in biomass units 350 
into harvested area, information was needed on the historical distribution of forests and above ground carbon stocks. 

As no complete global, gridded, historical record of these quantities was available, a simple empirically-based 

global terrestrial model was used to provide a consistent set of both global forest cover and carbon stocks.  Estimates 

of ecosystem properties were based on an updated version of the MIAMI-LU ecosystem model (Hurtt et al., 2002; 

Hurtt et al., 2006; Hurtt et al., 2011). Miami-LU was driven by the empirically-based Miami model of net primary 355 
production (Leith, 1972), which has integrated sub-models of plant mortality and disturbance. The model tracked 

sub-grid heterogeneity resulting from land-use changes in a manner similar to the more advanced Ecosystem 

Demography (ED) model (Hurtt et al., 1998; Moorcroft et al, 2001; Hurtt et al., 2002).  

Miami-LU was run globally at 0.5° x 0.5° resolution for a spin-up period of 500 years using data from the Multi-

Scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) (Wei et al., 2013). These data are a 360 
combination of climatologies from the Climate Research Unit and National Centers for Environmental Protection, 

and has a global 0.5° x 0.5° climatology with a 6 hourly daily time step from 1901 – 2010. MIAMI-LU outputs 

were subsequently downscaled to 0.25° x 0.25° resolution to match the remaining LUH2 inputs (downscaling 

simply assigned all 0.25° x 0.25° grid-cells the same fraction value as the 0.5° x 0.5° grid-cell they were contained 

within). Aggregated globally, the NPP estimate from Miami-LU was 63 Pg C y-1. This fell within a range of NPP 365 
estimates from various global biogeochemical models, ranging from 40 Pg C y-1 to 81 Pg C y-1 (Cramer et al. 1999). 

Miami-LU estimated a global stock of potential plant carbon of 718 Pg C (Figure 3). This fells within a range 

spanning 557 Pg C (Kucharik et al., 2000) to 923 Pg C (Sitch et al., 2003), with a more recent estimate of 772 Pg C 

(Pan et al., 2013). The total potential above-ground carbon stock was 563 Pg C. To differentiate forest from non-
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forest areas, a definition based on potential above-ground standing stock of 2 kg C m-2 was used (Hurtt et al., 2002; 370 
Hurtt et al., 2006; Hurtt et al., 2011). Each grid cell was thus identified as potential forest or potential non-forest 

based on potential biomass, providing a static map that is used for the entire time period from 850-2100.   Using this 

definition, 48.8 x 106 km2 of the land surface was classified as potential forest. For comparison, potential forest area 

based on the BIOME model was estimated at 60 x 106 km2 (Klein Goldewijk, 2001). Finally, Miami-LU was also 

used to estimate the recovery of carbon stocks on secondary lands by tracking the mean age of secondary land in 375 
each grid cell, although not explicitly account for the full age distribution or the potential effects of land 

degradation, management, or pollution that may have occurred. 

 

2.8 Future Land Use, Wood Harvest, and Management from Integrated Assessment Models 

For 2015-2100, we use land use and wood harvest information from eight different marker SSP-RCP scenarios 380 
derived from five different Integrated Assessment Models (Riahi et al. 2017). These marker scenarios were 

prioritized as input to CMIP6 climate model simulations by ScenarioMIP. They are fully described elsewhere 

(O’Neill et al., 2016, Riahi et al. 2017), and their main features are summarized below and in Table 2 in the order 

described in O’Neill et al. (2016).  

2.8.1 SSP5-8.5 REMIND-MAGPIE  385 

The scenario SSP5-8.5 is based on the REMIND-MAgPIE SSP5 baseline scenario, which has a radiative forcing 

close to RCP8.5 (Kriegler et al., 2017). SSP5 is characterized by rapid and resource intensive development and 

material-intensive consumption patterns, whereas technological progress, including agricultural productivity, is 

high. In consequence, the SSP5-RCP8.5 scenario exhibits very high levels of fossil fuel use, up to a doubling of 

global food demand, and up to a tripling of greenhouse gas emissions over the course of the century, marking the 390 
upper end of the emission scenario literature. The REMIND-MAgPIE integrated assessment modeling framework 

consists of the Regionalized Model of Investment and Development (REMIND) and the Model of Agricultural 

Production and its Impacts on the Environment (MAgPIE). REMIND (Luderer et al., 2015) is a global multi-

regional energy-economy general equilibrium model linking a macro-economic growth model with a bottom-up 

engineering-based energy model. MAgPIE (Popp et al., 2014) is a global multi-regional partial equilibrium model of 395 
the land-use sector, which accounts for spatially explicit biophysical constraints derived by the vegetation, 

hydrology and crop growth model LPJmL (Müller and Robertson, 2014; Bondeau et al., 2007; Bodirsky et al., 

2012). Land-use decisions in MAgPIE are modeled at a spatially-explicit level (Lotze-Campen et al., 2008). 

REMIND and MAgPIE are coupled by exchange of price and quantity information on bioenergy and GHG 

emissions (Popp et al., 2011; Kriegler et al., 2017). As an outcome of the strongly increasing food and feed demand 400 
as well as highly intensified future livestock production systems relying on concentrates rather than roughage feed 

(Weindl et al., 2017), the SSP5-RCP8.5 scenario shows strong expansion of global cropland into pasture and forest 

land, with an increase of about 300 Mha (20%) between 2010 to 2100. 
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2.8.2 SSP3-7 AIM  

The SSP3-7.0 is a simulation derived from the SSP3 baseline scenario (Fujimori et al., 2017) which has a radiative 405 
forcing close to 7.0 Wm-2. The SSP3-7.0 was simulated using the Asia-Pacific Integrated assessment 

Model/Computable General Equilibrium model (AIM/CGE; (Fujimori et al., 2014; Fujimori et al., 2012)) combined 

with a land-use allocation model (Hasegawa et al., 2017). AIM/CGE is a global integrated assessment model, 

coupling representations of economy, energy systems, land, and climate. AIM/CGE is a recursive dynamic general 

equilibrium model, adjusting prices until the supply and demand for energy, industrial, agriculture, forest 410 
commodities as well as all the other goods and services equilibrate. AIM/CGE includes 17 regions and 42 industrial 

classifications including 10 agricultural sectors. The land system is divided into nine agro-ecological zones. Land 

use and land cover were further downscaled to 0.5  x 0.5  grids using the land allocation approach developed by 

Hasegawa et al. (2017). SSP3 is a world of regional rivalry where countries increasingly focus on domestic and 

regional issues. Economic development is slow, consumption is material-intensive, and population growth is low in 415 
industrialized and high in developing countries. Land use change is hardly regulated. Agricultural land 

intensification is low, especially due to very limited transfer of new agricultural technologies to developing 

countries. Unhealthy diets with high animal shares and high food waste prevail. A regionalized world leads to 

reduced trade flows for agricultural goods. The SSP3-RCP7.0 scenario includes strong expansion of global crop and 

pasture land, with increases of 40% and 7% from 2010 to 2100, respectively, resulting in large-scale deforestation. 420 

2.8.3 SSP2-4.5 MESSAGE  

SSP2-4.5 is a low stabilization scenario that stabilizes radiative forcing at 4.5 Wm-2 (~650 ppm CO2-equivalent) 

before 2100 without ever exceeding that value. RCP4.5 is simulated in a structure of interlinked disciplinary and 

sectorial models referred to as the IIASA Integrated Assessment Modelling (IAM) framework (Riahi et al. 2007, 

Fricko et al. 2017). Within the framework, land-use dynamics are modelled with the GLOBIOM model, which is a 425 
recursive-dynamic partial-equilibrium model (Havlík et al., 2011). GLOBIOM includes a bottom-up representation 

of the agricultural, forestry and bio-energy sector, which allows for the inclusion of detailed grid-cell information on 

biophysical constraints and technological costs, as well as a rich set of environmental parameters, including 

comprehensive AFOLU (agriculture, forestry and other land use) GHG emission accounts and irrigation water use. 

For spatially explicit projections of the change in afforestation, deforestation, forest management, and their related 430 
CO2 emissions, GLOBIOM is coupled with the G4M model (Kindermann et al., 2006; Kindermann et al., 2008; 

Gusti, 2010). These models are linked to the MESSAGE energy system model (Messner and Strubegger, 1995; 

Riahi et al., 2012), while air pollution implications are derived with the help of the GAINS model. An important 

feature of the RCP4.5 is the initial decrease in forest by about 43 million ha from 2000 to 2050 (comparable to the 

reference scenario), with a subsequent increase in forest by about 331 million ha from 2050 to 2100. 435 
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2.8.4 SSP1-2.6 IMAGE  

The SSP1-2.6 scenario is developed using the IMAGE 3.0 integrated assessment model (Stehfest et al., 2014). IMAGE 

is a model framework describing the future agriculture system and energy system, as well the changes in future land 

cover, the carbon and hydrological cycle and climate change. While most socio-economic processes are described at 

the level of 26 regions, environmental processes are modeled on a grid -basis (30 or 5 arc-minutes). The LPJmL model 440 
is hard-coupled to IMAGE on a yearly basis (Mueller et al., 2016), and calculates for crops & grassland productivity, 

natural vegetation dynamics, hydrology, and the carbon cycle. The SSP1-RCP2.6 is derived from the SSP1 baseline 

scenario which projects a future under a green growth paradigm (van Vuuren et al, 2017). The SSP1 scenario is 

characterized by moderate population growth leveling off by mid-century, and by high economic growth and 

technological improvements including agricultural productivity. In addition, SSP1 describes an environmentally 445 
aware world concerned with limiting biodiversity loss and reduced appetite for animal product consumption. 

Mitigation policy is added to the SSP1 baseline scenario to achieve a maximum warming of 2 degrees consistent with 

the RCP2.6 scenario (van Vuuren et al., 2011). Important policies from the land-use perspective are increased bio-

energy use in combination with carbon capture and storage, avoided deforestation policy to reduce deforestation, and 

restoration of degraded forests (Doelman et al., 2018). 450 

In SSP1-2.6, the combination of socio-economic trends and climate policy results in substantial reductions in total 

agricultural land. At the same time, large areas are dedicated to bioenergy production, and also forest area increases 

(Doelman et al., 2018; Popp et al., 2017).   

2.8.5 SSP4-6.0 GCAM  

The SSP4-6.0 is a simulation derived from the SSP4 baseline (Calvin et al., 2017), with a modest climate policy 455 
imposed to limit 2100 radiative forcing to 6.0 Wm-2. The SSP4-6.0 was simulated using the Global Change 

Assessment Model (GCAM; Wise et al., 2014). GCAM is a global integrated assessment model, coupling 

representations of energy, water, land, economy, and climate. GCAM is a market-equilibrium model, adjusting 

prices until the supply and demand for energy, agriculture, and forest commodities equilibrate. GCAM subdivides 

the world into 32 economic regions. The land system is further subdivided into as many as 18 agro-ecological zones, 460 
resulting in 283 agriculture and land use regions. Land use and land cover were further downscaled to 0.5° x 0.5° 

grids using the approach developed by West et al. (2014) and implemented globally in Le Page et al. (2016). SSP4 is 

a world of inequality, both within and across regions. High-income regions continue to prosper, with increased 

demand for energy and food. Technological progress, including agricultural productivity, is high. Low-income 

regions, however, stagnate; increases in total consumption are due to increased population and not increased wealth. 465 
Agricultural productivity growth is low. Environmental policies, including reduced deforestation, reforestation, and 

afforestation programs, are present in high- and medium income countries only. The SSP4-60 scenario includes 

modest expansion of global crop and pasture land, with increases of 14% and 9% from 2010 to 2100, respectively. 



 

 15 

The modest climate policy encourages afforestation in the high- and medium-income regions where environmental 

policies are strong, resulting in a global increase in forest cover of 3% between 2010 and 2100. 470 

 

2.8.6 SSP4-3.4 GCAM  

The SSP4-3.4 scenario starts from the same baseline as the SSP4-60, but includes a more stringent mitigation policy 

limiting radiative forcing to 3.4 Wm-2 in 2100. SSP4-3.4 was also simulated with GCAM (described above). 

Limiting 2100 radiative forcing to 3.4 W/m2 requires a much larger carbon price, exceeding $1000/tCO2 (2005 475 
US$) in 2100, than the SSP4-60. This increased carbon price has substantial effects on energy and land use. In 

particular, ~1200 million ha of land is allocated to the production of bioenergy, resulting in a large increase in total 

cropland area (80% increase between 2010 and 2100). Forest cover increases in the high and medium-income 

regions as the result of afforestation policies but decreases in the low-income regions as the result of agricultural 

land expansion. The net effect is that global forest cover increases through mid-century before returning to 2010 480 
levels at the end of the century.  

2.8.7 SSP5-3.4OS REMIND-MAGPIE 

The SSP5-3.4OS scenario starts from the baseline SSP5-RCP8.5, but includes mitigation policy limiting radiative 

forcing to 3.4 Wm-2 in 2100.  SSP5 RCP3.4OS was also simulated with REMIND-MAgPIE (described 

above) (Kriegler et al., 2017). This scenario is supposed to follow SSP5-8.5, an unmitigated baseline scenario, 485 
through 2040, but includes after 2040 strong mitigation action to rapidly reduce CO2 emissions to zero around 2070 

and to net negative levels thereafter. In consequence, the SSP5-RCP3.4OS pathway shows even stronger cropland 

expansion compared to the SSP5-RCP8.5 scenario, mainly due large-scale deployment of 2nd generation bioenergy 

crops after 2040. Globally, cropland in the SSP5-RCP3.4OS pathway increases by about 800 Mha (50%) between 

2010 and 2100, mainly at the cost of pasture area. 490 

2.8.8 SSP1-1.9  IMAGE 

The SSP1-1.9 parallels SSP1-2.6 in all aspects, but reaches a lower radiative forcing target, namely 1.9 instead of 2.6 

W m-2. As SSP1-2.6, also SSP1-1.9 is derived from the IMAGE 3.0 integrated assessment model (Stehfest et al., 

2014). IMAGE is a model framework describing the future agriculture system and energy system, as well the changes 

in future land cover, the carbon and hydrological cycle and climate change, as described above. The SSP1-1.9 is based 495 
on the SSP1 baseline scenario. As also described above, SSP1 projects a future under a green growth paradigm, with 

moderate population growth, and fast economic growth and technological improvements (van Vuuren et al, 2017). In 

terms of land use, SSP1 describes a world that is environmentally aware, and aims at limiting biodiversity loss and 

environmental impacts of food consumption. Mitigation policy is added to the SSP1 baseline scenario to limit warming 

to 1.9 W m-2 (Rogelj et al., 2018; Doelman et al., 2018). As for SSP1-2.6, important policies from the land-use 500 
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perspective are increased bio-energy use in combination with carbon capture and storage, avoided deforestation policy 

to reduce deforestation, and restoration of degraded forests (Doelman et al., 2018). 

 

2.9 Harmonization of LUH2 Inputs  

Harmonization of inputs involved minimizing the difference between the end of the historical reconstruction and the 505 
beginning of future projections, and preserving as much information on the future from IAMs as possible. Five 

different IAMs provide future land-use, wood harvest, and management data using a variety of variables and units 

and at different spatial and temporal resolutions (Table 2).  Prior to harmonization, inconsistencies in definitions, 

resolutions, and other factors resulted in significant discrepancies. The spread of global cropland values from the 

IAMs in 2010 was 5% of the historical reconstruction values in that year, and the spread of global pasture values 510 
from the IAMs in 2010 was 23% of the historical values. Gridded values had even larger discrepancies, differing by 

as much as 100% from the historical values. After harmonization, these inconsistencies were eliminated by design of 

the harmonization methodology. Since some IAMs didn’t simulate built-up area or urban spread, and for consistency 

of urban-land definitions across all scenarios, the IMAGE model provided land-use inputs for built-up area in all 

scenarios (Doelman et al., 2018). Also, since the REMIND-MAGPIE model did not compute wood harvest amounts, 515 
these were provided for the SSP5-8.5 and SSP5-3.4OS scenarios from analogous scenarios computed by the GCAM 

model.  

The first step in harmonizing inputs was to convert the IAM data into a standardized format for comparison with the 

historical product. Future land-use data were aggregated into the fractions of each grid-cell occupied by total 

cropland, total grazing land (the sum of managed pasture and rangeland), urban land, and natural vegetation (the 520 
sum of primary and secondary forest and non-forest) annually at 0.25°×0.25°resolution. Future data on irrigation and 

flooded areas were standardized into national totals. Future wood harvest data were standardized into a total national 

wood harvest demand in Mg C y-1, as well as the fuelwood component of that national wood harvest, either by 

aggregating gridded wood harvest data into national totals, or by disaggregating regional wood harvest data using 

the ratio of national to regional wood harvest from the end-of-historical period (i.e. 2015). Wood harvest data that 525 
were provided in volume units (m3) were converted to biomass (Mg C) using a conversion factor of 

0.2688 Mg C m-3. A 30% slash fraction was added to the wood harvest scenarios. Future fertilizer rates were 

standardized into national fertilizer application rates in kg N ha-1 y-1 per crop functional type. For future scenarios 

with only regional data, all countries within a region were assigned the same regional rates. When gridded future 

fertilizer application rates were available these were also used in LUH2 and were standardized into annual rates per 530 
crop type (kg N ha-1 y-1) at 0.25° × 0.25° resolution. For SSP4-3.4 and SSP4-6.0 (both from GCAM), the fertilizer 

rates for the GCAM crop types misccrop and palmfruit were used as estimates of fertilizer rates for C3 perennials, 

sugarcrop and biomass rates were used as estimates for C4 perennial rates, oilcrop and misccrop rates were used for 

C3 nitrogen fixing crops, rice and wheat were used for C3 annuals, and corn was used for C4 annuals. 
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Although the IAM land-use data were generally in good agreement with the end-of-historical period values at the 535 
global scale, there were still significant differences both globally and spatially, particularly for pasture which has 

less consistent definitions across models (Fig. 4). To address this issue, we applied IAM-based annual changes in 

land use sequentially to the spatial pattern of land use at the end of the historical reconstruction. Annual future 

changes in cropland, grazing land, and urban land were computed and aggregated to 2°x2°. These changes were then 

applied to the 2°-aggregated cropland, grazing land, and urban land, from the previous time-step, starting with the 540 
end-of-historical period (i.e. 2015). When it was not possible to apply the annual change within a 2° grid-cell, due to 

lack of available land to expand into, or lack of cropland, grazing, or urban land to abandon, the unmet changes were 

applied in neighboring 2° grid-cells, starting with immediate neighbors and then radiating outward. The harmonized 

grids of cropland, grazing land, and urban land were then disaggregated into 0.25°×0.25° grids according to the 

following method: when disaggregating decreases, the percentage change in each land-use state was computed and 545 
then applied to all underlying 0.25° land-use fractions; for increases in cropland, grazing, or urban land, the needed 

change was applied across all underlying 0.25° grid-cells and was weighted by available land in each grid-cell. 

Figure 5 shows how well the IAM 2015-2100 changes in cropland and pasture fractions are retained in the 

harmonized data, which increases markedly with decreased spatial resolution. For wood harvest, analogous methods 

were applied. 550 

After the harmonization of total cropland, grazing land, and urban land, cropland and grazing areas were further 

disaggregated into underlying sub-types. Assignment of future crop functional types were based on fixed 

contemporary Monfreda/FAO proportions, and adjusted to match IAM specific information as needed.  For grazing 

land, a pasture/rangeland mask was generated for 2015 (and held constant for all years) to sub-divide future total 

grazing land into the two grazing sub-types. For new grid cells projected to be converted to grazing land in the 555 
future, national ratios were used.   

Next, management data were harmonized by applying analogous algorithms to sequentially apply projected changes 

in managed area and rates to the pattern at the end of the historical reconstruction. Annual change in national 

irrigated areas were computed and then applied to the previous years gridded irrigation fractions for all crop types, 

first increasing irrigated area on grid-cells with existing irrigation, and then adding any additional needed irrigated 560 
area equally to all non-irrigated cropland grid-cells within each country. Annual national percentage change in 

flooded area was computed and this percentage change was applied to all grid-cells that have a non-zero flooded 

fraction in the previous time-step. Any resulting fractions that are greater than 1 are reset to 1. Finally, annual 

national percentage changes in fertilizer rates per crop type are computed. These national percentage changes are 

applied to the previous years gridded fertilizer rates for all grid-cells within each country. In an effort to ensure that 565 
the final (year 2100) gridded fertilizer rates closely approximate the future IAM fertilizer rates, there are a few 

exceptions to this method, which are based on simple assumptions that aim to keep the LUH2 rates from remaining 

too low, or becoming too large, when compared to the IAM gridded rates. First, the gridded fertilizer rates are held 

between 0 and 500 kg N ha-1 yr-1. Then, for grid-cells with fertilizer rates below 1 kg N ha-1yr-1 on the previous time-

step, and with an increasing national percentage change in fertilizer rates, the actual gridded IAM fertilizer rates for 570 
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the next time step are used instead of the computed LUH2 rates. Also, if gridded fertilizer rates increase between 

time-steps and are above the gridded IAM fertilizer rates, the gridded fertilizer rates for the next time-step are held 

constant at the current LUH2 gridded rates. Finally, if the gridded LUH2 fertilizer rates are less than 80% of the 

IAM gridded fertilizer rates, and the national percentage change in fertilizer rates is positive, a small additional 

increase (1% of the total current difference between IAM gridded rates and LUH2 gridded rates) is added to the 575 
LUH2 fertilizer rates. 

2.10  Additional Major Factors 

2.10.1 Inclusiveness of Wood Harvest  

Since it is not always known whether or not the wood cut on land cleared for agriculture is counted in national wood 

harvest statistics, assumptions are made in LUH2 about the amount of biomass from land clearing that is included 580 
towards meeting national wood harvest demands. The need to use wood from cleared land for fuel or wood products 

was probably higher in the past than it is now. To that end, we assumed all wood on land cleared for agriculture 

prior to 1850 was counted towards meeting the national wood harvest estimates and additional wood harvest was 

only conducted when the land cleared for agriculture did not provide enough wood to meet the estimates. We also 

assumed that after 1920 none of the wood from cleared land was counted toward meeting national wood harvest 585 
numbers and wood harvest demand was met only through explicit wood harvesting activities. Between 1850 and 

1920 a fraction of the wood from cleared land was used to meet wood harvest demands, starting from 100% of wood 

from cleared lands in 1850 and decreasing linearly to 0% in 1920. If this fraction of wood from cleared lands was 

not enough to meet national wood harvest demands, additional explicit wood harvest was conducted to meet national 

totals.  590 

2.10.2 Priority of Land Conversion  

When converting natural land to agriculture, or using it for wood harvest, a decision must be made about whether to 

prioritize the use of primary or secondary land. The cumulative effect of these decisions has a large impact on the 

resulting secondary land area, age, and biomass in each grid-cell, and in aggregate at the regional and global scale. 

Although the decision of which natural vegetation type to prioritize is undoubtedly variable in space and time, for 595 
the sake of simplicity we have chosen a single priority rule for each land-use transition type, as follows. For urban 

expansion, secondary was prioritized. After all secondary land is used, further urban land-use demand (if any) was 

met on primary land. For expansion of cropland and grazing land, both primary and secondary land were used in 

relative proportion to their availability in each grid-cell. For example, if primary land and secondary land occupied 

10% and 90% of natural vegetation in a grid-cell, respectively, then 10% of the converted natural vegetation would 600 
be taken from primary land, and 90% of the converted natural vegetation land would be taken from secondary land. 

For shifting cultivation, secondary land was prioritized unless the secondary land area was less than 10 times the 

cropland area in a grid-cell, in which case primary land was prioritized. For wood harvesting, the priority was to 
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take wood from both primary and secondary land in relative proportion to the amount of available biomass in each 

land type. 605 
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2.11 Methodology for Calculating Land Use Transitions 

2.11.1 Determining agriculture land use transitions 

Following Hurtt et al. (2011), a bookkeeping approach was used to calculate annual land-use transition rates 

between five aggregate land-use types—cropland, grazing land, urban, primary and secondary. To determine these, 

the annual change in urban area in each grid cell was first computed from either the HYDE data (for the historical 610 

period) or IAM data (for the future period) and applied proportionally to the cropland, grazing land, and secondary 

land-use categories within the grid cell. If there was not enough land available between cropland, grazing land and 

secondary land for a given urban land-use increase, the remaining area needed was taken from the primary land 

within the grid cell. Next, minimum transition rates were calculated between the remaining three land-use types 

(cropland, grazing land, and other; where other was defined as the sum of primary and secondary), based on the 615 

gridded annual input data on land-use patterns from HYDE or the IAMs (adjusted for the transitions into and out of 

those types associated with urban land- use change computed on the previous step). With only three land-use types, 

unique minimum transitions (i.e. solutions to Eq. 1) could be easily determined. Additional transitions associated 

with shifting cultivation and wood harvest were then determined. In cases of shifting cultivation, land-use transitions 

from cropland to other, and other to cropland, were both increased by the abandonment rate of agricultural land. 620 

Transitions from other were then partitioned into transitions from primary and secondary based on availability and 

the previously described shifting cultivation algorithm. All transitions from cropland or grazing land to other were 

defined as transitions to secondary. The amount of wood cut in converting land to agriculture was determined by 

overlaying these transitions with estimates of biomass density.  

 625 
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After computing transitions between the five aggregate land-use types, the transitions to/from both primary and 

secondary were further sub-divided into transitions to/from primary forest, primary non-forest, secondary forest, and 

secondary non-forest, based on the underlying map of potential forest (grid-cells with potential biomass density 

greater than 2 kg C m-2 were designated as potentially forested). In addition, the transitions to/from grazing land 

were subdivided into transitions to/from managed pasture and rangeland, based on the annual gridded input data 630 
from HYDE. The HYDE maps of managed pasture and rangeland for the year 2015 were also used to sub-divide 

grazing land into the underlying grazing sub-types for all years in the future period (2015-2100). Transitions to/from 

total cropland in each grid-cell were further sub-divided into transitions to/from each of the five crop functional 

types (CFTs) using the data and methodology described in the section on “Historical Maps of Crop Types and Crop 

Rotations”. 635 

 

2.11.2 Determining area cleared by wood harvest  

Since the spatial patterns of wood harvest within each country are not generally known (especially for years outside 

the period of satellite observations), several assumptions were used to spatially allocate the reconstructed national 

annual wood harvest demands to individual grid-cells within each country, and to convert the biomass harvested to 640 
an area cleared per grid-cell. As a first step, within each country and at each time-step, a fraction of the biomass 

cleared from agricultural land expansion is subtracted from the national wood harvest demand, as described in the 

preceding section on the inclusiveness of wood harvest data. After wood from agricultural clearing has been 

subtracted, the remaining national wood demand is then explicitly harvested, first from grid-cells with available 

primary forest and/or mature secondary forest, then from grid-cells with young secondary forest, and finally from 645 
non-forested land (both primary and secondary). Mature secondary forests are defined using an average probability 

of harvest vs. biomass function parameterized from detailed age-specific harvesting algorithms previously 

developed and applied in the U.S. (Hurtt et al., 2002; Hurtt et al. 2006). Note that since the natural vegetation 

definitions are based on a mean biomass density, wood harvesting from non-forested land can imply either 

harvesting vegetation, such as shrubland, that is tree-based albeit with a mean biomass density below that of a forest, 650 
or harvesting isolated trees within other low-biomass-density vegetation such as grasslands. 

Within the group of grid-cells containing primary forest and/or mature secondary forest in each country, the first 

cells to be harvested are all those with a “significant human presence” (SHP), followed by all neighboring cells, 

radiating outwards, taking only the fraction of biomass needed until the demand has been satisfied or the available 

biomass exhausted. The use of proximity to a SHP in this algorithm is based on the assumption that proximity to a 655 
SHP implies proximity to transportation infrastructure (accessibility) or local markets. Prior to the year 1900, grid-

cells with a SHP are defined as those grid-cells having cropland, managed pasture, secondary land, or urban land 

area. Grid-cells that have Landsat-observed forest loss of at least 10% of the cell’s land area during the period 2000-

2012 are gradually included in the definition of SHP between the years 1900 and 2000, until both the land-use-based 
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and Landsat-based definitions of SHP are given equal weighting between 2000 and 2015. The contribution of 660 
Landsat-based forest loss to SHP then decreases again between 2015 and 2100.  

When harvesting wood from a grid-cell chosen using these methods, if only a fraction of the biomass in a grid-cell is 

needed, wood is harvested from both primary forest and secondary mature forest (or from primary non-forest and 

secondary non-forest) in proportion to their available biomass. Wood harvested from primary land provides an area-

based transition “primary to secondary”, whereas wood harvested from secondary land provides an age- (and 665 
biomass-) resetting/reduction transition “secondary to secondary”, with the resulting secondary mean age and 

secondary mean biomass density tracked in the ‘secma’ and ‘secmb’ variables, respectively.. To calculate these 

transitions in area units, the wood harvest biomass was converted using the carbon density of land affected (Hurtt et 

al. 2006). 

In addition to its use in the definition of SHP, the Landsat forest loss data is also used in two additional ways to 670 
further constrain the spatial pattern of wood harvesting. First, primary forest and mature secondary forest land that 

will experience a Landsat-observed forest loss during the period 2000-2012 is protected from wood harvest between 

the years 1950 and 2000 so that it is available for harvesting during the period 2000-2012. Second, during the years 

2000-2012, the Landsat forest loss data is used in LUH2 to constrain the spatial pattern of where wood harvest does, 

or does not, occur, by checking whether the annualized gridded forest loss from the Landsat data has already been 675 
met within LUH2 yet. Inclusion of Landsat-based forest loss data in the LUH2 algorithm generates a significant 

improvement in the match between satellite observations of forest loss and the LUH2 representation of forest loss 

between the years 2000-2012 (Fig. 6).  

For European countries that are unable to meet their national wood harvest demand with the available biomass, the 

unmet wood harvest from each country is reassigned to other European countries (including the former USSR), 680 
proportional to available biomass, and the spatial pattern of this additional wood harvest is then allocated using the 

same rules as outlined above. This is done to model the known trade in wood that was occurring between European 

countries, even in the early years of our historical simulation (Kaplan et al., 2017). 

2.12 Added Tree Cover 

While it is primarily a land use dataset, LUH2 does also provide a simple estimate of forest cover change. For IAM 685 
future scenarios with positive forest cover gain (SSP1-2.6, SSP2-4.5, SSP1-1.9), an algorithm was developed to 

match the spatial pattern of forest gain from IAMs, preserve existing harmonized land-use transitions, and that could 

be implemented relatively easily in ESMs. For each scenario, a supplementary file was created with a data variable 

called ‘added_tree_cover’. The variable specifies the added tree cover that needs to be planted in each grid cell each 

year to better represent the corresponding IAM Added Tree Cover estimates. For the other IAM scenarios that are 690 
not affected by this issue, added_tree_cover values are set to zero. To produce these datasets, the spatial pattern of 

differences in forest cover between LUH2 and each corresponding IAM were computed annually for 2015-2100. For 

each year, each grid cell, if the difference could be met on LUH2 classified non-forest land, that difference was 
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noted as ‘added_tree_cover’ in the new file. If the gain could not be met on the non-forest area, the change was 

applied on nearby cells up to 4 grid cells away.  695 

 
 

2.13 Extensions 2100-2300 

In addition to the eight future scenarios for the period 2015-2100, the LUH2 dataset also includes extensions for the 

years 2100-2300 for three of the harmonized future land-use forcing datasets for use in long-term climate 700 
stabilization experiments. By design, in these extensions, all land-use states and management variables are held 

constant at year 2100 values for the years 2100-2300. As a result, almost all transitions between land-use states are 

set to zero, with the exception of crop rotations and shifting cultivation, which continue at their year 2100 rates, and 

wood harvest, which uses year 2099 national wood harvest demands for all years from 2100 to 2299. These 

extensions to future scenarios are available for SSP1-2.6, SSP5-3.4OS, and SSP5-8.5. 705 

3 Results  

3.1 Aggregate Results 

The annual, gridded land-use states are aggregated to annual global values by multiplying the grid-cell land-use 

fractions by the grid-cell area and summing over all grid-cells (Fig. 7). The 12 land-use states represented in the 

LUH2 dataset can be further aggregated into the 5 broader land-use categories of total cropland (the sum of all 5 710 
crop types), total grazing land (the sum of managed pasture and rangeland), primary land (the sum of primary forest 

and primary non-forest), secondary land (the sum of secondary forest and secondary non-forest), and urban land. 

Historically, the area of cropland increased at an accelerating rate from 1.7×106 km2 in 850, to 4.3×106 km2 in 1800, 

and 15.9×106 km2 by 2015 (Fig. 7). Grazing lands increased more rapidly, from 3.3×106 km2 in 850, to 9.2×106 km2 

in 1800, and to 32.8×106 km2 by 2015. Urban increased from 0 in 850 to 0.6×106 km2 by 2015. See also HYDE 3.2 715 
on the historic trends of cropland and pasture (Klein Goldewijk et al. 2017). During the historical period (850-2015 

CE), primary land area decreased from 125×106 km2 to 50.1×106 km2 (of which 44% is forested), while secondary 

land increased from 0 to 30.4×106 km2 (of which approximately 49% is forested); note that by definition LUH2 

initializes secondary land area to zero in 850 CE. The new land-use history reconstruction derived here generally 

compared favorably to prior reconstructions (Hurtt et al, 2006; Hurtt et al., 2011) and other references across a range 720 
of important diagnostics (Table 3), albeit at higher spatial resolution and with more process detail. 

For the future, all eight scenarios projected increases in global cropland area, while six projected grazing land 

decreases (SSP4 RCP6.0 from GCAM, and SSP3 RCP7.0 from AIM projected grazing land increases). The global 

and regional trends of agriculture and land use in these eight projections are described in detail in Popp et al. (2017), 

and underlying drivers of these land-use dynamics have been identified in Stehfest et al. (2019). For non-agricultural 725 
land, six out of eight scenarios projected large increases in wood harvesting, which contributed to large increases in 
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secondary area and corresponding reductions in primary area by 2100. In 2100 global cropland ranged from 

17.8×106 km2 (SSP1 RCP2.6 from IMAGE) to 29.1×106 km2 (SSP4 RCP3.4 from GCAM). As shown in Table 4 

and Figure 15 (panel a), for 6 out of 8 scenarios the dominant crop functional type in 2100 was C3 annuals, with C4 

perennials (for biofuels) the dominant crop functional type in 2100 for the remaining two scenarios (SSP4 RCP3.4 730 
from GCAM and SSP5 RCP3.4OS from REMIND-MAGPIE). Global grazing land in 2100 ranged from 25.4×106 

km2  to 35.5×106 km2, with the majority of that coming from rangeland (Table 4). Secondary land in 2100 ranged 

from 36.5 × 106 km2 to 44.5×106 km2 (Table 4). In all cases, approximately half of all secondary land was forested, 

and the estimated mean age of secondary forest ranged from 58 yr  to 74 yr. Added tree cover data layers, were 

computed to match the forest tree cover gains of the SSP1-2.6, SSP2-4.5, and SSP1-1.9 scenarios and were able to 735 
capture >80% of the global afforestation signal in the IAM scenarios. Extensions to year 2300 were computed for 

the SSP1-2.6, SSP5-3.4OS, and SSP5-8.5 scenarios, and by design did not change the gridded or global cropland, 

grazing land, or urban land areas. However, due to wood harvesting and shifting cultivation continuing at their end-

of-century rates, the area of secondary vegetation continued to grow, and the area of primary vegetation continued to 

decline in these extensions. By 2300 the global secondary vegetation area in these extension scenarios ranged 740 
between 46.3×106 km2 and 51.2×106 km2, while the global primary vegetation area ranged between 28.6 ×106 km2 

and 33.0 ×106 km2. 

Gross transitions (the sum of the absolute value of all land-use transitions) are a measure of all land-use change 

activity. In general, the annual gross transitions tend to increase through time, beginning at 2×105 km2 in 850 and 

increasing to 1.86×106 km2 in 2000 (Table 3). The differences between the historical period low, baseline, and high 745 
scenarios in LUH2 (computed using 3 different HYDE land-use reconstructions and 3 different national wood 

harvest reconstructions) prior to 1920 are primarily due to the differences in rates of wood harvest between those 

three scenarios. After 1920 the three LUH2 historical scenarios share the same wood harvest reconstruction and their 

associated gross transitions are very similar.  In the future scenarios, gross transitions mostly increased and by 2100 

ranged from 2.0×106 km2 to 4.8×106 km2 (Table 5).  750 

Net transitions measure only the net changes into land use (excluding wood harvest on secondary forests, shifting 

cultivation, and other agricultural land abandonment that is offset by land conversions to agriculture). Net transitions 

increase from 2×104 km2 in 850 to 2.3 ×105 km2 in 2000 (Table 3). The net transitions across all three historical 

LUH2 scenarios (low, baseline, and high) are all very similar at most time points. The LUH2 historical scenario 

shows a significant reduction in transitions to pasture around 1950-1960, with implications for carbon investigated 755 
separately (Ma et al., 2020). In the future, net transitions range from -1.1×105 km2 to 1.6×105 km2 in 2100 (Table 5).  

To visualize the magnitudes of transitions between variables, we present chord diagrams indicating the average net 

transitions occurring annually from 850-1849, 1850-2015, 850 – 2015, as well as 2015-2099 for all future scenarios 

amongst all the major land-use categories (Fig. 8). Each arc in a chord diagram represents the average annual area 

transitioning from one land-use to another. The color of the arc represents the land-use category from which 760 
transition occurs to a different category. For example, in Figure 8 the arc in light green color represents the transition 
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from cropland to other categories. Transitions involving croplands and secondary forest lands dominate land-use 

transitions in all three historical scenarios. The dominant land-use transition is secondary forest lands to croplands 

and it ranges from nearly  6×104  km2 y-1 in the low historical scenario to 8×104   km2 y-1 in the baseline scenario and 

1×105 km2 y-1 in the high scenario when averaged from 850 – 2015. Cropland abandonment activities are also 765 
significant with nearly 1×105 km2, 1.4×105 km2 and 1.7×105 km2 of croplands transitioning annually to secondary 

lands (both forested and non-forested) in the low, baseline and high LUH2 historical scenarios respectively 

(averaged over the entire historical period). On an annual basis, the transitions to and from croplands and secondary 

lands are generally the same in all three LUH2 historical scenarios.  

LUH2 historical results were compared to multiple diagnostics (Table 3). Almost all metrics are within, or very 770 
close to published reference ranges. These metrics show that 65% of the secondary land increase between 1700 and 

2000 is forested, and 93% of U.S. forests in the year 2000 are on secondary land. Global natural vegetation in 

biodiversity hotspots in the year 2005 is estimated as 1.6% of the land surface (compared with the reference value of 

2.3%). The mean age of secondary land can be calculated for each grid cell and aggregated to a global mean age. 

For the first several hundred years of the simulation the global mean secondary age grew with time, due to primary 775 
land being used for land conversion and wood harvesting more often than secondary land (which was initialized to 

have zero area). Around 1700-1800, existing secondary land was used more often for new land conversions and 

wood harvesting and the global mean secondary age started to decrease with time. The median age of secondary 

forests in the year 2005 is 42 years, and is 43 years in the year 2015 (compared with the reference range of 30-40 

years). The high scenario had the highest secondary mean age, because it had a larger secondary land area, which 780 
allows that secondary land to be used less frequently for wood harvesting and land conversions.  Conversely, the 

low scenario had a lower secondary mean age than the baseline scenario. The overall land area impacted by human 

land use in the year 2000 is 59% of the land surface. The global area of secondary land increase between 1700 and 

2000 is estimated as 13.2 Í106 km2 with 10.4 Í106 km2 of that area forested and 2.8 Í106 km2 non-forested.  

Cumulative clearing for cropland and pasture between the years 1500 and 1990 resulted in 251 Pg C of wood 785 
removed (compared with a reference range of 121.9 to 356.3 Pg C). Total wood harvest over this period was 170 Pg 

C, of which 132 Pg C was from direct wood harvest and 38 Pg C was included from agricultural clearing. In the year 

2000, an estimated 0.32 Í106 km2 of agricultural land was involved in shifting cultivation (compared with a 

reference value of 0.3 Í106 km2). Potential forest area 47 Í106 km2, compared to a reference value of 52 Í106 km2, 

and in the year 2015 global forest area was estimated at 37 Í106 km2, compared with a reference range of 32-41 790 
Í106 km2. In the year 2000 global wood harvest was 1.29 Pg C, of which 0.71 Pg C was for fuelwood. Global 

synthetic fertilizer usage in the year 2012 was 106.6 Tg N yr-1 (compared with a reference value of 100 Pg C), and 

the global area of irrigated cropland in 2003 was 2.51 Í106 km2 (compared with a reference value of 2.77 Í106 

km2). In 2004, the area of cropland (primarily corn) used for biofuels was 0.03 Í106 km2 compared to the reference 

value of 0.033 Í106 km2. Total potential plant biomass on all lands was 718 Pg C (compared with a reference range 795 
between 557 and 923 Pg C), while total plant biomass in 2005 was 434 Pg C (compared with a reference value of 

393 Pg C). Plant above-ground biomass on pantropical forested lands between years 2007-2008 was 184 Pg C 
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(compared with a reference range between 188 and 229 Pg C), and total plant biomass on forested lands in 2005 was 

395 (compared with a reference value of 363 Pg C). In addition, the cumulative loss of above-ground biomass 

resulting from land-use transitions (i.e., the sum of all losses) is an important metric of the gross effects of land use 800 
on the terrestrial carbon cycle and rose from 0 Pg C in 850 to 5.6Í104 Pg C in 2015. Similarly, the cumulative net 

loss in above-ground biomass is the difference between the estimated above-ground biomass including land use, and 

the estimated biomass of potential vegetation, and includes both the losses of above-ground biomass due to land-use 

and the gains due to regrowth. During the historical period the global cumulative net loss of above ground biomass 

carbon increases monotonically from nearly zero in 850AD to around 310 Pg C in 2015. The low, baseline, and high 805 
historical scenarios all give similar global estimates of this metric; the high scenario gives the highest estimates, 

which is presumably due to the high historical wood harvest in this scenario. 

In the future scenarios secondary land increases between 6.0% and 13.27% across the years 2015 to 2100, with 

between 48.9% and 72.8% of that increase being on potentially forested land (Table 5). The median age of 

secondary forest in the year 2100 ranges between 58 and 74 years. The global area covered by natural vegetation in 810 
the biodiversity hotspots ranges between 0.57% and 1.08% of the land surface. Wood clearing for cropland and 

pastures across the years 2015 to 2100 removes between 44 and 88 Pg C of above ground biomass, whereas direct 

wood harvest removes between 93 and 148 Pg C of above ground biomass. Global wood harvest in the year 2100 

ranged between 0.9 and 1.87 Pg C, of which the fuelwood component was between 0.15 and 0.88 Pg C. Total forest 

area change between 2015 and 2100 ranged from a decrease of 5.1Í106 km2 to an increase of 3.42 Í106 km2, 815 
resulting in a global forest area in 2100 of between 32.1 and 38.1 Í106 km2. Global fertilizer use in the year 2100 

ranged between 110 Tg N yr-1 and 240 Tg N yr-1, while the global irrigated area in 2100 ranged between 2.6 and 4.1 

Í106 km2. Land flooded for rice in 2100 ranged from 0.23 to 0.96 Í106 km2, and cropland used for growing 

biofuels in 2100 ranged from 0 to 18 Í106 km2. Total biomass of natural vegetation on forested lands in 2100 

ranged between 290 and 391 Pg C, of which between 170 and 239 Pg C is above ground biomass on pantropical 820 
forested lands. In 2100, the global cumulative net loss of above ground biomass carbon ranges widely across 

scenarios, from 320 Pg C to 385 Pg C. 

3.2 Spatio-temporal Patterns of Land Use Transitions, Secondary Area, and Secondary Age 

Regional results for the historical period, averaged for each century, are shown in Table 6. In each region or 

continent, secondary land, gross transitions, and net transitions all tended to increase with time. Secondary land, 825 
along with both gross and net transitions, was highest in Eurasia and Africa. Mean regional secondary land area was 

8.47×106 km2 in Eurasia and 6.01×106 km2 in Africa in the 1700s and increased to 12.4×106 km2 and 6.82×106 km2 

in Eurasia and Africa respectively in the 1900s. Gross transitions peaked in Eurasia in the 1800s at 660×106 km2 

yr-1, while net transitions peaked in Eurasia in the 1900s at 121×106 km2 yr-1. After 1700, secondary age tended to 

decrease with time for most regions, although it has held relatively constant over the last three centuries for both 830 
Africa and Oceania. The range of secondary mean age in the 1900s was between 52 years to 289 years. In 1850 

there are large areas of cropland in the Eastern USA, Europe, India, and China, and large areas of primary land 
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world-wide with the exception of Europe, Northern Africa and the Middle-East (Fig. 9). By 2015 cropland areas 

have expanded through-out Africa and the Americas as well, primary land is lost in large areas of the Eastern USA, 

Africa, Europe, India, and China, and mean secondary age is lower in most locations (Fig. 10). 835 

Regional results are also averaged for the period 2000-2099 for each future scenario (Table 7). Across all scenarios, 

there were only small differences in regional secondary areas (3.8-4.5×106 km2 for North America, 2.0-3.0×106 km2 

for South America, 17-18×106 km2 for Eurasia, 9.2-11×106 km2 for Africa, and 0.7-0.87×106 km2 for Oceania) with 

SSP1-1.9 having the highest secondary area in each continent. Secondary land area was highest in Eurasia and 

Africa for all scenarios. Regional secondary age also did not vary significantly across scenarios; the SSP5-8.5 840 
scenario had the highest secondary age for all regions except Oceania (67 years for North America, 49 years for 

South America, 209 years for Eurasia, 70 years for Africa, and 50 years for Oceania) and the SSP4-3.4 scenario had 

the lowest secondary age for most regions (60 years for North America, 45 years for South America, 197 years for 

Eurasia, 69 years for Africa, and 48 years for Oceania). Secondary age was highest in Eurasia for all scenarios. 

Gross transitions were highest in Eurasia in 7 out of 8 scenarios (with Africa the second highest), and highest in 845 
Africa in one scenario (with Eurasia the second highest). The highest overall rate of gross transitions was 1936×106 

km2 yr-1 in Eurasia in the SSP5-3.4OS scenario, but comparable rates of gross transitions were also observed in 

Eurasia and/or Africa in the SSP4-3.4, SSP4-6.0, SSP3-7.0, and SSP5-8.5 scenarios. Net transitions were largest in 

Africa in all scenarios (between 34-143×106 km2 yr-1) and lowest in Oceania in 7 out of 8 scenarios (and negative in 

6 of those), with South America having the lowest net transitions in the remaining scenario. The SSP4-3.4, SSP4-850 
6.0, and SSP3-7.0 scenarios had the highest rates of net transitions overall at 143×106 km2 yr-1, 133×106 km2 yr-1, 

and 133×106 km2 yr-1 respectively.  

Large-scale spatial patterns are similar across most scenarios in the year 2100 (Figs 11-14), with the trends of 

increased cropland area in South America, continued loss of primary land worldwide and particularly in Africa, and 

continued reduction of mean secondary age. Analogous mapped results for Tier 2 scenarios are provided in the 855 
Appendix. 

3.3 Land-use Management  

During the historical period, the use of synthetic nitrogen-based fertilizer on croplands was zero until the early 20th 

century. After 1950 fertilizer usage started increasing rapidly, and by 2015 global synthetic nitrogen fertilizer usage 

was 112 Tg N y-1 (4150 Tg N cumulatively from 1915 to 2015; none prior to 1915), with the majority of this being 860 
applied in cropland-dominated locations including the North America, Europe, India, China, and South-East Asia. 

The eight harmonized future scenarios show a range of potential nitrogen futures; all except one scenario (the SSP5-

8.5, which does increase but then falls again to close to current year values) project an increase in global nitrogen 

fertilizer usage. The range of harmonized global nitrogen fertilizer values in 2100 is between 110 Tg N y-1 and 240 

Tg N y-1, with a total cumulative use of synthetic nitrogen fertilizer from 2015 to 2100 between 9840 Tg N and 865 
14800 Tg N (Figure 15, panel b). 



 

 28 

The global area of irrigated cropland increased steadily throughout the historical period and was around 2.7 million 

km2 in 2015. The spatial patterns of this irrigated area show that the majority of global irrigation occurs in India and 

China, with other significant areas in the USA, Europe, Middle East, and South-East Asia. Six out of eight future 

scenarios project the global irrigated area to remain steady, or even decrease slightly, whereas two future scenarios 870 
(SSP3-7.0 from AIM and SSP5-8.5) show large increases in global irrigated area. The range of values across all 

future scenarios in 2100 is between 2.6 and 4.1 million km2 (Figure 15, panel c). 

The global use of croplands area for purpose-grown biofuels was very low prior to the year 2000 when a small 

amount of first generation biofuels production began (such as corn or sugarcane). In the future scenarios the fraction 

of cropland area grown for first generation biofuels was held constant, although underlying changes in cropland area 875 
resulted in some small increases or decreases in the total area of first generation biofuels. Second generation biofuel 

area (such as miscanthus or switchgrass) expanded in each of the future scenarios, assumed to start from zero in 

2015. Five of the eight scenarios (SSP1-1.9, SSP1-2.6, SSP4-3.4, SSP5-3.4OS, and SSP4-6.0) all showed significant 

increases in the area of second generation biofuels, while the remaining three scenarios have very little growth in 

this land management type. By the year 2100, global areas of biofuel crops ranged between 0 and 18 million km2, 880 
and maps of the spatial distribution of total biofuels area (both first and second generation biofuels) show the 

dominant locations to be the USA, Europe, China, non-Amazonian Brazil, and Argentina. Large expansion of 

secondary biofuels primarily occurred in South-East Asia, Eastern Europe and the former USSR, and the Middle 

East (Figure 15, panel d).  

4 DISCUSSION  885 

Land use is essential for meeting human needs for food, fuel, fiber, and shelter, but also affects the biogeochemistry, 

biogeophysics, biodiversity, and climate of the Earth. Quantitatively understanding the effects of land-use activities 

on the Earth system requires that the best information on land use be incorporated into the best Earth system models. 

The strategy described here (LUH2) builds on the approach for harmonizing land-use patterns and transitions in 

CMIP5 (LUH1, Hurtt et al., 2011). This new version is completely updated with new inputs, and includes higher 890 
spatial resolution (0.25º vs 0.5º), increased detail (12 states vs. 5, and all associated transitions), added management 

layers, new future scenarios (8 vs. 4), and a longer time domain (850-2100 vs 1500-2100) - in all more than a 50-

fold increase in data from its predecessor. As such, it is designed to facilitate more complete and more consistent 

treatments of how land-use changes influence the Earth system past-present-future.  

In comparison to LUH1 (Hurtt et al., 2011), the LUH2 land-use history is spatially, temporally and thematically 895 
richer than the previous reconstruction. While not strictly comparable for these reasons, comparing the two products 

to each other and across a wide range of diagnostics reveals some important quantitative similarities and differences. 

Historically, the globally aggregated magnitudes of key land-use states (i.e., cropland, grazing area) and key land 

cover variables (forest area and biomass) are generally quite similar (<10% difference) over periods of overlap. 

Larger differences between these datasets are found in transitions, resulting secondary lands, and spatial patterns of 900 
land-use activities, where contemporary global gross transitions are reduced by ~35%, contemporary net transitions 
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increased by ~35%, and estimated primary forest in biodiversity hotspots much closer to independent estimates 

relative to LUH1 (Jantz et al., 2015). Considering the past, LUH2 begins in 850AD, 650 years earlier that LUH1. 

Considering the future, the set of 8 future scenarios included in LUH2 doubles that of LUH1, expanding the range of 

land-use forcing that can be considered and including additional cases.  Like LUH1, LUH2 also includes extensions 905 
to 2100-2300 with no net change in forcing over the interval. LUH2 also includes new Added-tree-cover data, to 

better reflect the changes in tree cover projected by IAMs in afforestation scenarios.  

Since management was a new input in LUH2, we do not have comparable values from LUH1. However, the 

estimates from LUH2 for key management variables are close to empirical estimates and reflect major alterations of 

nutrient and water cycles, with implications for climate. For example, the ~100 Tg N y-1 of industrial fertilizer use 910 
and irrigated area ~2.5 million km2 by 2000 indicate major human impacts on the functioning of agro-ecosystems in 

addition to a general land-cover change metric. The inclusion of these activities here as part of the global 

harmonized dataset is intended to facilitate their inclusion in future global climate assessments, harmonized, and 

together with other concurring land-use changes. 

These LUH2 datasets are part of the official CMIP6 input4MIPs data collection, and are required forcing datasets 915 
for the DECK and historical climate simulations (Meehl et al., 2014; Eyring et al., 2016). The data are also required 

for several of the CMIP6-MIP experiments including ScenarioMIP (O’Neill et al., 2016), LUMIP (Lawrence et al.,  

2016), PMIP (Junclaus et al., 2017) and others. ScenarioMIP defined the set of future scenarios for consideration 

and organized the official climate-model experiment to quantify the effects of future scenarios of anthropogenic 

forcing on climate. LUMIP organized the set of model experiments focused on quantifying the effect of land-use 920 
forcing per se on climate. PMIP is organized to study the historical climate. The central use of these data in the 

DECK and across a range of important MIPs enhances consistency across CMIP6.  

These datasets have also been adopted as required forcing for a range of other international studies including: 

ISIMIP (Frieler et al. 2017), Global Carbon Project (Le Quéré et al., 2016; Le Quéré et al., 2017; Le Quéré et al., 

2018; Friedlingstein et al., 2019), and IPBES (Kim et al. 2018). The LUH2 datasets are regularly employed by the 925 
TRENDY modeling group in the annual carbon budget estimates of the Global Carbon Project using a simple linear 

interpolation to update to year of current budget (Le Quéré et al., 2016; Le Quéré et al., 2017; Le Quéré et al., 2018; 

Friedlingstein et al., 2019). The Global Carbon Project also provides a comparison of land use and land use change 

emissions with quasi-independent data from two ‘bookkeeping’ models, of which one uses FAO statistics directly 

and the other uses the LUH2 data. The bookkeeping and process-based model estimates of emissions tend to show 930 
high agreement, although in the last 3 years have begun to diverge (Friedlingstein et al., 2019). This standardization 

of land-use forcing across the breadth of CMIP6 studies, and other international assessments has the promise to 

facilitate maximum consistency in the treatment of land use across the range of interdisciplinary foci and 

spatial/temporal domains of studies. 

Application of the LUH2 data in ESMs, LSMs, DGVMs and Biodiversity models depends on the model type for 935 
various aspects. For models with their own vegetation cover, different from LUH2, the conversion of forest/non-
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forest vegetation to agricultural conversion needs to be handled. For conversion into grazing land, managed pasture 

should always trigger the removal of natural vegetation, while rangeland should only trigger removal of natural 

vegetation in forested areas (Ma et al. 2020). A general discussion of transition and conversion challenges in the 

various models has been described in (Prestele et al. 2017).  940 

LUH2 preserves the land-use patterns of HYDE 3.2. For the gridded land use, HYDE 3.2 took into account the 

ESA-CCI land cover products (Klein Goldewijk et al. 2017). However, on a national scale, HYDE 3.2 is consistent 

with FAO and other statistical databases, and differences to satellite-based land cover products cannot be avoided, 

and can be large (Li et al. 2019). 

The LUH2 dataset was developed to provide globally consistent and coherent gridded land use for more than a 945 
millennium, spanning the past and future, as a necessary input for earth system model simulations for CMIP6.  The 

requirement of global consistency through time means that it did not always incorporate all of the best local, 

regional, or national historical data available.  For this reason, it may not necessarily be the optimal dataset for a 

local or regional analysis of land use impacts on biogeochemistry or biodiversity. 

Looking ahead, ongoing CMIP6 and several other international activities will be engaged in using LUH2 data as 950 
input to studies of global climate, carbon, biodiversity and other assessments. These data products are intended to 

meet current needs of models, and also provide new variables that most models do not yet include but that may be 

important. Examples of these features include transitions, introduced in LUH1 and now a growing feature of many 

models, and now management variables.   Model development will need to continue to advance to utilize these 

features. Meanwhile, advances need to proceed for the next generation of land-use harmonization. which should 955 
build on these advances and include additional data constraints, more process detail, and a focus on reducing 

uncertainty of the most sensitive features. This should be part of larger effort to develop a robust process to provide 

the best forcing data sets for future global assessments. 

Code Availability 

The source code used to produce the LUH2 datasets, along with the sources and citations of necessary inputs, are 960 
archived at http://doi.org/10.5281/zenodo.3954113. 

Data Availability 

The data produced in this study are archived and publicly available at the U.S. Department of Energy input4MIPS 

site. The data are available in multiple files and fine-grain DOIs, and can be accessed and referenced using the 
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updates and supporting information, please visit the LUH2 website at https://luh.umd.edu. 
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 1310 

Table 1. Historical global population (millions) and land use estimates (million ha) from HYDE 3.2 
(Klein Goldewijk et al., 2017).  

          

   800 CE 1000 CE 1500 CE 1700 CE 1850 CE 1950 CE 
2015 

CE 

Population  286 323 503 592 1271 2529 7301 

Cropland  140 162 256 293 578 1223 1591 

 Rainfed area 136 157 252 289 549 1118 1316 

 Irrigated area 3.6 4.1 4.2 4.5 28 105 276 

 Rice area 4.2 4.8 8.7 12.5 28 65 118 

  Paddy rice 1.2 1.5 2.4 2.9 12 36 75 

  Rainfed rice 2.9 3.3 6.3 9.6 16 29 43 

Grazing  314 366 515 664 1192 2611 3241 

 Pasture 31 55 105 145 253 535 787 

 Rangeland 282 310 410 519 939 2076 2454 

          

% agric /total land area 3.5% 4.0% 5.9% 7.3% 13.6% 29.4% 37.1% 
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Table 2. Properties of SSPs used in this analysis. SSP-RCP refers to Shared Socioeconomic Pathway and 
Representative Concentration Pathway, respectively and Tier refers to ScenarioMIP Tier (O’Neill et al., 2016).  
 1315 
 

SSP-RCP IAM Tier Crop Grazing Wood 
Harvest 

Irrigation Fertilizer 

SSP5-8.5 REMIND-
MAGPIE 

1 0.5°x0.5° 0.5°x0.5° NA 0.5°x0.5° 0.5°x0.5° 

SSP3-7 AIM 1 0.5°x0.5° 0.5°x0.5° 18 regions 0.5°x0.5° 18 regions 
SSP2-4.5 MESSAGE 1 0.5°x0.5° 30 regions 0.5x0.5 30 regions 30 regions 
SSP1-2.6 IMAGE 1 0.5°x0.5° 0.5°x0.5° 26 regions 0.5°x0.5° 0.5°x0.5° 
SSP4-6.0 GCAM 2 0.25°x0.25° 33 regions 33 regions 33 regions 33 regions 
SSP4-3.4 GCAM 2 0.25°x0.25° 33 regions 33 regions 33 regions 33 regions 
SSP5-
3.4-OS 

REMIND-
MAGPIE 

2 0.5°x0.5° 0.5°x0.5° NA 0.5°x0.5° 0.5°x0.5° 

SSP1-1.9 IMAGE 2 0.5°x0.5° 0.5°x0.5° 26 regions 0.5°x0.5° 0.5°x0.5° 
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Table 3. Diagnostic table, historical data.  
Metric   Units Time-period Literature 

values 
LUH2_v2h LUH1 

Transitions      
Total gross transitions 106 km2 yr-1 2000  1.86 2.9 
Total net transitions 106 km2 yr-1 2000  0.23 0.17 

Human land use impacts      
Secondary land increase that is forested % 1700-2000  64.5 57.6 
U.S. Forests that are secondary % 2000  92.9 100 
Natural vegetation in biodiversity hotspots % 2005 2.31 1.6 4.6 
Median secondary forest mean age yr 2005  42.2 27.6 
Median secondary forest mean age yr 2015 30–402 43.0  
Land impacted by human land use % 2000  58.7 54.0 
Secondary land area increase 106 km2 1700-2000  13 17 
Secondary land area increase (forest) 106 km2 1700-2000  10 10 
Secondary land area increase (non-forest) 106 km2 1700-2000  3 7 

Wood harvest and agricultural clearing      

Wood clearing for crop and pasture Pg C 
1500-1990 121.9–

356.33 
251 278 

Total wood harvest Pg C 1500-1990  170  
    Direct wood harvest Pg C 1500-1990  132 119 
    Agricultural clearing for wood harvest Pg C 1500-1990  38  

Shifting cultivation      
Agricultural land for shifting cultivation 106 km2 yr-1 2000 0.34 0.3 0.6 
Agricultural land for shifting cultivation 106 km2 yr-1 1980 0.2-0.65 0.3 0.5 

Forest loss and area      
Potential forest area 106 km2 Potential 48.7-55.36 47 51 
Forest area 106 km2 2015 32.1-41.47 37  

Management      
Fuelwood Pg C 2000 0.729 0.7  
Wood-harvest Pg C 2000 1.309 1.3  
Fertilizer use Tg N yr-1 2012 1008 107  
Irrigated area 106 km2 2003 2.779 2.5  
Biofuel area (corn, USA) 106 km2 2004 0.03310 0.03  

Biomass      
Plant total biomass on all lands Pg C Potential 557.4-92311 718 731 

Plant AGB on pantropical forest lands Pg C 
2007-2008 187.5-

228.712 
184 177 

Plant total biomass on forest lands Pg C 2005 362.613 395 404 
Plant total biomass on all lands Pg C 2005 393.413 434 440 

References 1320 
1Mittermeier et al. 2005 6Pongratz et al., 2008; 

Ramankutty &Foley, 1999 
 

11Kucharik, 2000; Sitch, 2003; Pan, 2013 
 

2Ben Poulter, NACP 2013 7Sexton, 2016 
 

12Saatchi, 2011; Baccini, 2012; Avitabile, 2016 
 

3Direct wood harvest LUH1, Kaplan low/high-
case (see text) 
 

8Zhang, 2016 13Pan, 2013 

4Heinimann et al. 2017 9FAO 
 

 

5Rojstaczer, 2001 
 

10Searchinger, 2008 
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Table 4. Harmonized Scenarios of Future Land-use: global land-use state areas in year 2100, across all future 
scenarios (106 km2).  

 
 SSP1-1.9 SSP1-2.6 SSP4-3.4 SSP5-3.4OS SSP2-4.5 SSP4-6.0 SSP3-7.0 SSP5-8.5 

C3 annuals 7.86 7.94 9.13 7.72 10.4 8.39 10.5 9.04 
C4 annuals 2.67 2.59 3.56 2.95 4.03 3.50 5.18 4.20 

C3 perennials 2.78 2.79 2.95 2.22 2.02 1.82 2.17 1.59 
C4 perennials 2.87 2.42 11.2 9.04 0.34 2.55 0.35 0.33 

C3 N-fixers 2.11 2.11 2.27 2.11 3.03 2.38 3.34 2.77 
Managed pasture 3.81 4.35 9.04 4.13 6.23 9.74 8.95 7.11 

Rangeland 21.6 22.1 22.2 21.3 22.1 25.8 25.5 23.8 
Urban 1.04 1.04 1.11 1.25 1.10 1.11 1.03 1.25 

Primary 40.7  40.8 32.0 38.7 36.5 33.7 34.6 37.2 
Secondary 44.5  43.8 36.5 40.6 44.1 41.0 38.3 42.6 

1325 
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Table 5. Diagnostic table, future land-use. 

Metric Units Time 
period 

SSP1 
RCP1.9 

SSP5 
RCP3.4OS 

SSP1 
RCP2.6 

SSP5 
RCP8.5 

SSP4 
RCP3.4 

SSP4 
RCP6.0 

SSP3 
RCP7.0 

SSP2 
RCP4.5 

Transitions           
Total gross transitions 106 km2 yr-1 2100 2.02 3.99 2.12 4.21 4.56 4.79 4.60 3.06 
Total net transitions 106 km2 yr-1 2100 0.02 0.04 -0.11 0.03 0.16 0.09 0.13 0.03 

Human land use impacts           
Secondary land increase that is forested % 2015-2100 49.7 54.1 48.9 58.4 60.0 71.6 63.6 72.8 
U.S. Forests that are secondary % 2100 100 100 100 100 100 100 100 100 
Global area covered by natural vegetation in 
biodiversity hotspots  

% 2100 
1.1 0.9 1.1 0.9 0.6 0.8 0.9 0.9 

Median secondary forest mean age yr 2100 74.0 58.5 74.2 67.7 60.8 60.6 68.0 63.0 
Land impacted by human land use % 2100 68.6 70.2 68.6 71.4 75.4 74.1 73.3 71.9 
Secondary land increase  106 km2 2100-2015 13 10 13 12 6 10 8 12 
Secondary land increase (forest)  106 km2 2100-2015 6 5 6 7 4 7 5 8 
Secondary land increase (non-forest)  106 km2 2100-2015 7 5 7 5 2 3 3 3 

Wood harvest and agricultural clearing           
Wood clearing for crop and pasture Pg C 2100-2015 47 56 47 47 88 59 70 44 
Total wood harvest Pg C 2100-2015 93 139 95 141 145 148 131 139 
   Direct wood harvest Pg C 2100-2015 93 139 95 141 145 148 131 139 
   Agricultural clearing for wood harvest Pg C 2100-2015 0 0 0 0 0 0 0 0 

Shifting cultivation           
   Agricultural land for shifting cultivation 106 km2 yr-1 2100 0 0 0 0 0 0 0 0 
Forest loss and area           

Forest area change 106 km2 2100-2015 0.9 -1.3 0.9 -0.9 -5.1 -1.4 -3.4 0.8 
Forest area 106 km2 2100 38.1 35.9 38.1 36.3 32.1 35.8 33.8 38.0 
Forest loss 106 km2 2015-2100 12.0 17.6 12.1 15.3 20.3 17.9 15.1 15.0 

Management           
Fuelwood Pg C 2100 0.2 0.7 0.2 0.9 0.9 0.9 0.8 0.7 
Wood-harvest Pg C 2100 0.9 1.6 0.9 1.7 1.8 1.9 1.5 1.5 
Fertilizer use Tg N yr-1 2100 140 223 177 110 240 145 173 210 
Irrigated area 106 km2 2100 2.9 2.8 2.9 3.4 2.7 2.7 4.1 2.6 
Flooded area 106 km2 2100 0.9 0.2 0.9 0.6 0.8 0.9 0.9 1.0 
Biofuel area  106 km2 2100 3.6 10.9 3.4 0.2 18.0 3.7 0.0 0.0 

Biomass           
Plant total biomass on all lands Pg C 2100 433 380 434 386 319 367 355 401 



 

 45 

Plant AGB on pantropical forest lands Pg C 2100 239 217 239 213 170 198 178 221 
Plant total biomass on forest lands Pg C 2100 390 343 391 349 290 335 322 366 
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Table 6. Regional results for 1700-2000 (historical period). 
  
 

Secondary area     
(106 km2) Secondary Age (yr) 

Gross Transitions    
(103 km2 yr-1) 

Net Transitions      
(103 km2 yr-1) 

1700-1799 mean     
North America 0.3 150 12 3 
South America 0.3 77 40 1 
Eurasia 8.5 429 456 41 
Africa 6.0 245 165 10 
Oceania 0.1 98 5 1 
     
1800-1899 mean     
North America 0.3 144 52 33 
South America 0.4 79 61 11 

Eurasia 9.8 377 660 76 
Africa 6.5 257 191 19 
Oceania 0.1 116 13 10 
     
1900-1999 mean     
North America 1.7 52 108 48 
South America 0.8 53 145 48 
Eurasia 12.4 289 604 121 
Africa 6.8 232 404 80 
Oceania 0.1 99 40 33 
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Table 7. Regional results averaged over years 2000-2099. 

  
Secondary area 
(106 km2) 

Secondary Age 
(yr) 

Gross Transitions  
(103 km2 yr-1) 

Net Transitions 
(103 km2 yr-1) 

SSP1 RCP1.9     
North America 4.5 64 89 4 
South America 2.5 46 129 9 
Eurasia 18.4 210 1080 13 
Africa 10.9 77 959 35 
Oceania 0.9 46 20 -4 

     
SSP1 RCP2.6     

North America 4.4 65 86 6 
South America 2.5 47 128 9 
Eurasia 18.2 213 1070 19 
Africa 10.9 76 975 34 
Oceania 0.9 48 18 -4 

     
SSP4 RCP3.4     

North America 4.1 60 153 19 
South America 3.0 45 109 -3 
Eurasia 17.1 197 1790 93 
Africa 9.2 69 1630 143 
Oceania 0.8 48 21 1 

     
SSP5 RCP3.4OS     

North America 4.0 62 171 15 
South America 2.0 49 135 16 
Eurasia 17.8 195 1940 50 
Africa 10.6 81 798 49 
Oceania 0.8 49 18 -3 

     
SSP2 RCP4.5     

North America 4.2 65 92 7 
South America 2.3 45 147 13 
Eurasia 17.7 206 1380 44 
Africa 10.9 69 1340 71 
Oceania 0.8 49 20 -4 

     
SSP4 RCP6.0     

North America 4.1 63 107 12 
South America 2.4 45 130 3 
Eurasia 17.9 201 1750 53 
Africa 9.5 64 1610 133 
Oceania 0.7 50 18 -2 

     
SSP3 RCP7.0     

North America 3.8 66 94 17 
South America 2.0 49 132 24 
Eurasia 18.1 208 1450 32 
Africa 9.5 70 1880 133 
Oceania 0.7 53 16 1 

     
SSP5 RCP8.5     

North America 4.0 67 81 15 
South America 2.1 49 126 19 
Eurasia 17.7 209 1590 48 
Africa 10.8 70 1540 62 
Oceania 0.9 50 16 -4 
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Fig. 1 SMALL FONT! Schematic diagram of major model inputs, decisions, and outputs. 
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Figure 1. Schematic diagram of major model inputs, decisions, and outputs. 
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Figgure 2. (a) Annual national wood harvest (in Pg C/y) for 850-2015, for low, baseline and high scenarios. (FSU= 
Former Soviet Union.) Integrated total wood harvest in baseline scenario was 259 Pg C (including slash).  
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Figure 3. Global potential above-ground biomass (kg C m2) as estimated by Miami-LU model. Land is 
considered to be potential forest if the potential biomass density is >2 kg C m-2 (after Hurtt et al., 2006; 2011). 
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Figure 4. Pre-harmonization (a) global cropland, (b) global grazing land, (c)  0.25° grid cell comparison of 2015 
crop fraction of grid cell areas (excluding water and ice): LUH2 (x-axis), IAM (y-axis). 
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(a) 

 

(b)

 

Figure 5. Post-harmonization comparison of projected changes 2015-2100 at multiple scales: 0.25 degree (grey), 
2 degree (black), regional (red); as fraction of total area. Original IAM change (x-axis), harmonized change (y-
axis), for (a) Cropland, and (b) grazing land. Note that for SSP4 RCP3.4, SSP2 RCP4.5, and SSP4 RCP6.0, 
pasture was only reported by IAMs as regional totals, so LHU2 comparisons at 0.25° and 2° are not possible. 
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Figure 6. Forest loss 2000-2012 (a) Landsat forest loss (Hansen et al. 2013), (b) LUH2 forest loss without 
Landsat constraint, (c) LUH2 forest loss with Landsat constraint. 
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Figure 7. Harmonized global land-use area fractions 850-2015 (baseline historical) and 2015-2100 
for the 8 future scenarios. 
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Figure 8. Global land-use transitions by time-period and by future scenario. Each color represents transitions 
from a specific land-use type to the other land-use types: dark green for cropland, orange for managed 
pasture, blue for primary forest, pink for primary non-forest, light green for rangeland, yellow for secondary 
forest, brown for secondary non-forest, and grey for urban. 
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Figure 9. Maps for year 1850 showing a. fraction of each grid cell occupied by cropland b. fraction of each 
grid cell occupied by pasture, c. fraction of each grid cell occupied by urban land, d. fraction of each grid 
cell occupied by primary vegetation, e. fraction of each grid cell occupied by secondary vegetation, f. mean 
age (in years) of secondary lands in each half degree grid cell, g. mean gross transitions (km2 year-1) over 
20 year interval for each grid cell, h. mean net transitions (km2 year−1) over 20 year interval for each grid 
cell. 
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Figure 10. Maps for year 2015 showing a. fraction of each grid cell occupied by cropland b. fraction of each 
grid cell occupied by pasture, c. fraction of each grid cell occupied by urban land, d. fraction of each grid cell 
occupied by primary vegetation, e. fraction of each grid cell occupied by secondary vegetation, f. mean age 
(in years) of secondary lands in each half degree grid cell, g. mean gross transitions (km2 year-1) over 20 year 
interval for each grid cell, h. mean net transitions (km2 year−1) over 20 year interval for each grid cell. 
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Figure 11. Maps for year 2100 for SSP5 RCP8.5 scenario showing a. fraction of each grid cell occupied by 
cropland b. fraction of each grid cell occupied by pasture, c. fraction of each grid cell occupied by urban 
land, d. fraction of each grid cell occupied by primary vegetation, e. fraction of each grid cell occupied by 
secondary vegetation, f. mean age (in years) of secondary lands in each half degree grid cell, g. mean gross 
transitions (km2 year-1) over 20 year interval for each grid cell, h. mean net transitions (km2 year−1) over 
20 year interval for each grid cell.  
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Figure 12. Maps for year 2100 for SSP3 RCP7.0 scenario showing a. fraction of each grid cell occupied by 
cropland b. fraction of each grid cell occupied by pasture, c. fraction of each grid cell occupied by urban 
land, d. fraction of each grid cell occupied by primary vegetation, e. fraction of each grid cell occupied by 
secondary vegetation, f. mean age (in years) of secondary lands in each half degree grid cell, g. mean gross 
transitions (km2 year-1) over 20 year interval for each grid cell, h. mean net transitions (km2 year−1) over 
20 year interval for each grid cell. 
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Figure 13. Maps for year 2100 for SSP2 RCP4.5 scenario showing a. fraction of each grid cell occupied by 
cropland b. fraction of each grid cell occupied by pasture, c. fraction of each grid cell occupied by urban 
land, d. fraction of each grid cell occupied by primary vegetation, e. fraction of each grid cell occupied by 
secondary vegetation, f. mean age (in years) of secondary lands in each half degree grid cell, g. mean gross 
transitions (km2 year-1) over 20 year interval for each grid cell, h. mean net transitions (km2 year−1) over 
20 year interval for each grid cell. 
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Figure 14. Maps for year 2100 for SSP1 RCP2.6 scenario showing a. fraction of each grid cell occupied by 
cropland b. fraction of each grid cell occupied by pasture, c. fraction of each grid cell occupied by urban land, d. 
fraction of each grid cell occupied by primary vegetation, e. fraction of each grid cell occupied by secondary 
vegetation, f. mean age (in years) of secondary lands in each half degree grid cell, g. mean gross transitions 
(km2 year-1) over 20 year interval for each grid cell, h. mean net transitions (km2 year−1) over 20 year interval for 
each grid cell. 
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Fig. 15. Time series of harmonized management variables. 
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Appendix 

Mapped patterns of Tier 2 Scenarios 1400 

 

  

 

 

Figure A1. Maps for year 2100 for SSP4 RCP6.0 scenario showing a. fraction of each grid cell occupied by cropland b. 
fraction of each grid cell occupied by pasture, c. fraction of each grid cell occupied by urban land, d. fraction of each grid 
cell occupied by primary vegetation, e. fraction of each grid cell occupied by secondary vegetation, f. mean age (in years) 
of secondary lands in each half degree grid cell, g. mean gross transitions (km2 year-1) over 20 year interval for each grid 
cell, h. mean net transitions (km2 year−1) over 20 year interval for each grid cell. 
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Figure A2. Maps for year 2100 for SSP4 RCP3.4 scenario showing a. fraction of each grid cell occupied by 
cropland b. fraction of each grid cell occupied by pasture, c. fraction of each grid cell occupied by urban 
land, d. fraction of each grid cell occupied by primary vegetation, e. fraction of each grid cell occupied by 
secondary vegetation, f. mean age (in years) of secondary lands in each half degree grid cell, g. mean gross 
transitions (km2 year-1) over 20 year interval for each grid cell, h. mean net transitions (km2 year−1) over 
20 year interval for each grid cell. 

 

 



 

 65 

  

 
Figure A3. Maps for year 2100 for SSP5 RCP3.4OS scenario showing a. fraction of each grid cell occupied 
by cropland b. fraction of each grid cell occupied by pasture, c. fraction of each grid cell occupied by urban 
land, d. fraction of each grid cell occupied by primary vegetation, e. fraction of each grid cell occupied by 
secondary vegetation, f. mean age (in years) of secondary lands in each half degree grid cell, g. mean gross 
transitions (km2 year-1) over 20 year interval for each grid cell, h. mean net transitions (km2 year−1) over 
20 year interval for each grid cell. 

 

 



 

 66 

  1405 

 

 

Figure A4. Maps for year 2100 for SSP1 RCP1.9 scenario showing a. fraction of each grid cell occupied by 
cropland b. fraction of each grid cell occupied by pasture, c. fraction of each grid cell occupied by urban 
land, d. fraction of each grid cell occupied by primary vegetation, e. fraction of each grid cell occupied by 
secondary vegetation, f. mean age (in years) of secondary lands in each half degree grid cell, g. mean gross 
transitions (km2 year-1) over 20 year interval for each grid cell, h. mean net transitions (km2 year−1) over 
20 year interval for each grid cell. 
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