
Author‘s response (black) to comments by the Anonymous Referee (orange)

This paper presents the development, implementation, and evaluation of an evolved and generalized
bias correction method tailored to the ISIMIP. The method is a significant evolution from its 
predecessor because it separates the bias correction (BC) and statistical downscaling (SD) portions 
explicitly, accounts for likelihoods of individual extreme events, and recasts the BC of individual 
variables in one single formalism. I have carefully read the specific choices for each of the 10 
corrected variables and I find them to be reasonable and in line with best practice. For example, the 
use of upper and lower bounds and upper and lower thresholds is a logical extension of the common
dry-day correction for precipitation. Similarly, the choice to draw random numbers from a power 
law rather than a uniform distribution (for those variables that require it) is an intelligent 
improvement. The same can be said about the introduction of the Logit function. The paper is well 
written, as succinct as possible and exhaustive. The illustrations are all useful and clear. I find that 
this work should be accepted after the author addresses a few minor issues.

Thank you for this positive introduction.

1) If I understand correctly, the author uses univariate bias correction for the coarse grid. I accept 
that this is a progression from the former bias correction method (ISIMIP2) but, since the author 
does use MBC with an added conservation step (MBCnSD) for the fine grid, could this method not 
be applied to the course grid to begin with? Would the method not be far simpler? I would be 
interested in the author’s reason for using univariate BC for the course grid.

Thank you for this suggestion. When I set out to develop ISIMIP3BASD, I actually considered 
making it a multivariate bias adjustment method. Then, in the rather lengthy development process, I
abandoned this goal for various reasons, and later forgot about altogether. Yet I agree that  
ISIMIP3BASD v1.0 can easily be made multivariate. I will therefore make ISIMIP3BASD v2.0 
multivariate by employing the MBCn algorithm for an adjustment of the multivariate rank 
distribution at the coarse grid. This adjustment will be inserted between steps 4 and 5 of the 
ISIMIP3BASD v1.0 bias adjustment algorithm. Otherwise, v1.0 and v2.0 of ISIMIP3BASD will be 
identical. I will keep using the methods described in this paper for the adjustment of the marginal 
distributions because these parametric quantile mapping methods promise more robust extreme 
value adjustments than non-parametric quantile mapping methods such as the quantile delta 
mapping method shipped with the original MBCn algorithm. I will add a paragraph to the 
Conclusions section announcing this enhancement.

As far as I can see, it is not possible to simultaneously apply MBCnSD to multiple variables such 
that values of all of these variables are conserved at the coarse grid scale. That is why I think that 
ISIMIP3BASD cannot be made much simpler.

2) The cross-validation is done by training on even years and validating on odd years (in a second 
step validation and training years are swapped). I would have divided the observational time-period 
in 2 consecutive and non-overlapping periods. The first for observation and the second for 
validation. This would allow for longer-term climate variability to be represented in the cross-
validation effort. I think the author should write a few words explaining why his choice of cross-
validation time periods is optimal.

The division into even and odd years is supposed to minimize the influence of climate trends on 
cross-validation results. Switanek et al. (2017, doi:10.5194/hess-21-2649-2017) have demonstrated 
how such trends can distort cross-validation results if validation and training periods are chosen as 
suggested by you. Yet I admit that my validation and training datasets are similar in terms of longer-
term climate variability. I will add a discussion of this trade-off to the Methods section.



Other minor issues: Page 2, line 16) The author claims to develop a new quantile mapping method 
that allows for controlled adjustment of biases in all quantiles. As far as I know, most QM bias 
correction methods do just that. Have I misunderstood something here?

For most variables, the ISIMIP2b bias adjustment method is not a quantile mapping method, see 
also the description in Section 3.1. To make this clearer, I will write “While structurally different 
bias adjustment methods (including but not restricted to quantile mapping methods)” instead of 
“While structurally different bias adjustment methods” in line 16 of page 2.

Page 4 line 26) “. . .tasmax, and tasmin are not adjusted directly. Instead, I adjust biases in pr and 
prsnratio. . .” The author passes, here and in other parts of the article, from a passive to an active 
(first person) voice. I suggest he chose one or the other.

I will try to use the passive voice more often in the revised manuscript. I do not see the value in 
removing all first person voices, though.

Page 7 line 19) x should be x_histˆobs, am I right? Also, y needs indexes as well, I think. This 
should be the case in all the math that follows. I understand that the author is trying to keep the 
formalism light. I suggest then that the author state that, in what follows, x is actually x_histˆobs, 
etc.

Actually, in the previous line I wrote “let x be a value of x_hist^obs”, so x is one value whereas 
x_hist^obs is a time series of many values. This convention is used in the entire Methods sections. 
To make this clearer I will write “let x be one of the many values of x_hist^obs” in the previous 
line.

Caption figure 4) 3rd Sentence : Panele (c-j) should perhaps be (c-f)?

Right, thank you.

Page 12 line 8/9) Write “instead of conservative” in the place of “and not conservative”. Else it is 
not clear that we are comparing bilinear with conservative methods.

Thank you, will change.



Author‘s response (black) to comments by Stefan Hagemann (orange)

The author presents a documentation about an improved bias correction technique that separates 
bias correction and statistical downscaling. The manuscript provides an useful overview on the bias 
correction method that is supposed to be used in the third phase of the Inter-Sectoral Impact Model 
Intercomparison Project (ISIMIP). The paper is generally written well, and the describe formalisms 
are necessary but not too overloaded with equations. I have only a few remarks that should be 
addressed.

Thank you for this positive general comment.

Section structures should be indicated in the beginning of a section. Currently, in several cases, a 
description is given where information is missing. The missing information is then provided in the 
one of the next paragraphs, but in the beginning there was no indication that this is being done. One 
example for this is sect. 3.2.2., where the detailed description starts on p.11 – line 32 after 5 
paragraphs of general description of the downscaling method.

I will add currently missing section structure descriptions to the first paragraph of every section.

Observations used for bias correction are usually available on a fine, regular grid while the coarse 
GCM grids are usually not regular (e.g. often a Gaussian grid is used). Thus, the usage of the 
downscaling technique must be clarified for this common case where the fine grid does not fit into 
the coarse grid. In this respect I was really wondering why it is written on p. 11 – line 7-11 that ‘It 
requires that the coarse grid of the climate simulation data and the fine grid of the climate 
observation data are compatible ...’

Thank you for this remark. Indeed fine and coarse grid have to be compatible for MBCnSD to be 
applicable. If they are not, i.e. if there is a fine grid cell that extends across multiple coarse grid 
cells, then the value of that fine grid cell cannot be determined by independent downscaling of the 
corresponding coarse grid cell values. So in order to make MBCnSD applicable in such cases as 
well, the original GCM output first has to be interpolated to a grid that is both compatible with the 
fine grid and of similar resolution as the the original GCM grid. I will add this clarification to the 
manuscript.

Even though the manuscript is a documentation on the technical method of the ISIMIP3 bias 
correction, it should not be concealed that the bias correction cannot compensate for several types 
of GCM errors, e.g. erroneous shifts of storm tracks in the GCM. In such cases, bias correction may
even lead to erroneous climate change signals. With respect to this topic, I suggest pointing towards 
Maraun, D., T. Shepherd, M. Widmann, G. Zappa, D. Walton, J.M. Gutiérrez, S. Hagemann, I. 
Richter, P. Soares, A. Hall and L. Mearns (2017). Towards process-informed bias correction of 
climate change simulations. Nature Clim. Change 7: 764-773, doi:10.1038/nclimate3418.

I did not conceal this caveat but I did and do not think that it needs to be included in this 
manuscript, given that it is a technical description of one particular method, not a bias adjustment  
review paper. I am aware of the caveat and I also think that everybody who applies bias adjustment 
methods should be aware of it but I do not see the need to repeat it in every paper about bias 
adjustment. This is what I would have to do if I wanted to be consistent and followed your 
suggestion in this case.

p.3 – line 2: It is written: ‘... these data are bilinearly interpolated...’



Does ‘these data’ refers to the original GCM data or to the data interpolated on the 2° grid? I guess 
you mean the original data as otherwise the bilinear interpolation would not make so much sense as 
the 0.5° data fit to the 2° data.

Right, this is not clear enough. I will simply remove this sentence because it is only relevant for the 
LI+BA approach, which is sufficiently elaborated in section 3.3.

p.3 – line 8: As the EWEMBI refers to a published dataset, but not peer-reviewed publication, I 
suggest including more information about the data, variables (and their respective source) and bias-
correction. This may also be done in an appendix.

Thank you. I forgot to mention that all of that information is given in Frieler et al. (2017, 
http://dx.doi.org/10.5194/gmd-10-4321-2017). I will add the following sentence to the paragraph: “ 
For a description of the EWEMBI dataset including variables covered, data sources used, and bias 
adjustments applied see Frieler et al. (2017; Sect. 3.1 and Table 1).”

p.5 – Table 2: In table or the associated text, the difference between bounds and threshold should be 
clearly described. In addition, it should be noted where the different types of trend preservation are 
prescribed (see also major remark 1).

I agree, thank you. I will add the following sentences to the table caption: “Where a lower (upper) 
bound is specified, no values less (greater) than this bound will occur in the bias-adjusted data. For 
every lower (upper) bound, a lower (upper) threshold is defined, which is only slightly greater (less)
than the bound. The lower (upper) threshold is used to adjust the relative frequency of values less 
(greater) than the threshold. […] The different kinds of trend preservation are described in and 
around equations (1–8).”

p.9 – line 6: Is this the threshold listed in Table 2?

Yes. I will insert “(see Table 2)” after “threshold” to make this clearer.

p.9 – line 7-13: The definitions and differences of a and α as wells as b and β are unclear. Please 
clarify!

I will replace “Let” in line 6 of page 9 by “For climate variables with a lower bound a and lower 
threshold α, let”, and “bound” in line 10 of page 9 by “bound b and upper threshold β” to clarify 
this.

p.10 – eq. 10-14: I am not familiar with the logit function, and I assume other readers many not 
either. Please explain what this function is doing. Or is this just the function you define in eq. 15?
This must be indicated when the logit term is used for the first time.

I will append “(see Eq. (15) for the definition of the logit function)” to line 7 of page 10.

p.11 – line 3: It is written: ‘Since the resulting data can be considered bias-free ...’ The uninformed 
user may understand this misleading statement wrongly. See also major remark 3.

This statement is misleading, I agree. I will therefore replace “bias-free” by “unbiased in the 
distribution of daily values per climate variable, grid cell, and calendar month”.

p.12 – line 8-10: Sentence “This is done ...” is too long and difficult to read. Please separate into 
two sentences.



I will chop the sentence in two after “for all k”. The then second sentence will be replaced by 
“Broadcasting with bilinear interpolation is preferred because it results in smoother fields than 
broadcasting with conservative interpolation, as exemplified in Fig. 6.”

p.15 – line 11: The first column is set to W. What about the other columns?

The other columns do not matter as long as O is orthogonal. I will append “(all other columns can 
be chosen at will)” to the first sentence in this line.

p.17 – line 5 and 8: Replace ‘is to represent’ by ‘represents’.

Will do.

p.19 – Fig. 7 (also Fig. 8, 9, 10): Some of the bluish and greenish colours are difficult to separate. 
Please improve colour setting.

Will do.



List of changes made to the manuscript (page and line numbers refer to the discussion paper)

• Add outlook to ISIMIP3BASD v2.0 = ISIMIP3BASD v1.0 + multivariate bias adjustment to
Conclusions section.

• Add discussion of cross-validation setting to Methods section.
• Write “While structurally different bias adjustment methods (including but not restricted to

quantile  mapping  methods)”  instead  of  “While  structurally  different  bias  adjustment
methods” in line 16 of page 2.

• Use the passive voice more often.
• Write “Let x be one of the many values of x_hist^obs” instead of “Let x be a value of

x_hist^obs” in line 18 of page 7.
• Change “Panels (c-j)” to “Panels (c-f)” in caption of Figure 4.
• Write “instead of conservative” instead of “and not conservative” in line 8/9 of page 12.
• Add currently missing section structure descriptions to the first paragraph of every section.
• Add clarification of how to apply MBCnSD if fine and coarse grids are not compatible.
• Remove sentence “For bias adjustment at 1/2° spatial resolution, these data are bilinearly

interpolated to a global 1/2° × 1/2° latitude–longitude grid.” from line 1/2 of page 3.
• Add sentence “For a description of the EWEMBI dataset including variables covered, data

sources used, and bias adjustments applied see Frieler et al. (2017; Sect. 3.1 and Table 1).”
to line 9 of page 3.

• Add “Where a lower (upper) bound is specified, no values less (greater) than this bound will
occur in the bias-adjusted data. For every lower (upper) bound, a lower (upper) threshold is
defined, which is only slightly greater (less) than the bound. The lower (upper) threshold is
used to adjust the relative frequency of values less (greater) than the threshold. […] The
different kinds of trend preservation are described in and around equations (1–8).” to the
caption of Table 2.

• Insert “(see Table 2)” after “threshold” in line 6 of page 9.
• Replace “Let” in line 6 of page 9 by “For climate variables with a lower bound a and lower

threshold α, let”, and “bound” in line 10 of page 9 by “bound b and upper threshold β”.
• Append “(see Eq. (15) for the definition of the logit function)” to line 7 of page 10.
• Replace “bias-free” by “unbiased in the distribution of daily values per climate variable, grid

cell, and calendar month” in line 3 of page 11.
• Chop long sentence in line 8-10 of page 12 in two after “for all k”. Replace the then second

sentence  by  “Broadcasting  with  bilinear  interpolation  is  preferred  because  it  results  in
smoother fields than broadcasting with conservative interpolation, as exemplified in Fig. 6.”

• Append “(all other columns can be chosen at will)” to the first sentence in line 11 of page
15.

• Replace “is to represent” by “represents” in lines 5 and 8 of page 17.
• Use more easily distinguishable colors in figures 7–10.
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Abstract. In this paper I present new methods for bias adjustment and statistical downscaling that are tailored to the re-

quirements of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). In comparison to their predecessors, the

new methods allow for a more robust bias adjustment of extreme values, preserve trends more accurately across quantiles,

and facilitate a clearer separation of bias adjustment and statistical downscaling. The new statistical downscaling method is

stochastic and better at adjusting spatial variability than the old interpolation method. Improvements in bias adjustment and5

trend preservation are demonstrated in a cross-validation framework.
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1 Introduction

Bias adjustment in climate research is the adjustment of statistics of climate simulation data to the end of making them more

similar to climate observation data. In many application cases, these climate simulation and observation data have different10

spatial resolution. In most of these cases, the climate observation data are more highly resolved. In any of these cases, bias

adjustment requires bridging the resolution gap.

In previous phases of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP; Warszawski et al., 2014; Frieler

et al., 2017), climate simulation data were always more coarsely resolved than the climate observation data used for their bias

adjustment, and the goal of this bias adjustment was not just to remove systematic biases from the simulation data but also to15

increase their spatial resolution to that of the observation data. In application cases like these, bias adjustment as it is commonly

understood involves two distinct problems, (i) the actual bias adjustment at the spatial resolution of the simulation data, and

(ii) a statistical downscaling to the spatial resolution of the observation data.

Commonly, the bulk of resources for the development of solutions to these problems is allocated to problem (i), and problem

(ii) is solved by a mere spatial interpolation of the simulation data to the spatial resolution of the observation data prior to20

bias adjustment. For example, this approach was adopted in the ISIMIP Fast Track (Hempel et al., 2013), in ISIMIP2b (Frieler

et al., 2017), and for the generation of the NASA Earth Exchange Global Daily Downscaled Projections data set (NEX-GDDP;
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Thrasher et al., 2012). The simplicity of this approach comes at a price if, as usual, the same univariate bias adjustment

method is independently applied in every cell of the observation data grid. The bias adjustment then retains the too high spatial

coherence of the interpolated simulation data, and inflates temporal variability at their original spatial resolution (Maraun,

2013).

These issues can be overcome by spatially multivariate bias adjustment or, as suggested by Maraun (2013), using a statistical5

downscaling method which is able to add the spatiotemporal variability that is missing at the simulation data resolution. He

argues that such a method should be stochastic, given the multivalued nature of statistical downscaling (there are infinitely

many high-resolution fields compatible with the same low-resolution field) and the multifaceted inflation issues caused by

deterministic methods such as spatial interpolation.

In this paper, I present the bias adjustment and statistical downscaling methods to be used in phase 3 of ISIMIP. These10

methods have been developed following the paradigm of a clear separation of bias adjustment and statistical downscaling.

In ISIMIP3, climate simulation data shall first be bias-adjusted at their original spatial resolution using spatially aggregated

climate observation data. In a second step, their spatial resolution shall be increased using the original climate observation data

and a stochastic statistical downscaling method.

Next to this paradigm shift, the new bias adjustment method has been developed to work better than its predecessor in several15

respects. The following design decisions were taken in this context. While structurally different bias adjustment methods

::::::::
(including

:::
but

:::
not

::::::::
restricted

::
to

:::::::
quantile

::::::::
mapping

:::::::
methods)

:
were used for different climate variables in ISIMIP2b (Frieler et al.,

2017), the ISIMIP3 method applies a newly developed quantile mapping method to all climate variables since this allows for

the controlled adjustment of biases in all quantiles. The new method is approximately trend-preserving in all quantiles and

therefore features a more comprehensive trend preservation than the ISIMIP2b method. The new quantile mapping method20

is parametric because this promises a more robust adjustment of biases in extreme quantiles than non-parametric quantile

mapping (Switanek et al., 2017). The new bias adjustment method also includes a modified version of the event likelihood

adjustment introduced by Switanek et al. (2017). This new feature facilitates a confinement of extreme values to the physically

plausible range, which had to be enforced using cap values in ISIMIP2b.

The remainder of this paper is organized as follows. Climate simulation and observation data used in this study are described25

in Sect. 2. Details of the ISIMIP2b and ISIMIP3 bias adjustment and statistical downscaling methods are presented in Sect. 3.

Also in Sect. 3 I explain how the new and old methods are tested in the following. Test results are presented and compared in

Sect. 4. Conclusions are made in Sect. 5.

2 Data

2.1 Climate simulation data30

Climate simulation data are taken from the fifth phase of the Coupled Model Intercomparison Project (CMIP5; Taylor et al.,

2011). I use data produced with the four climate models that were also used in ISIMIP2b (GFDL-ESM2M, HadGEM2-ES,

IPSL-CM5A-LR, MIROC5; Frieler et al., 2017). For bias adjustment at 2◦ spatial resolution, daily data for ten variables (see
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Table 1. Climate variables considered in this study.

Variable Short name Unit

Daily mean near-surface relative humidity hurs %

Daily mean precipitation pr kg m−2 s−1

Daily mean snowfall flux prsn kg m−2 s−1

Daily mean sea-level pressure psl Pa

Daily mean surface downwelling longwave radiation rlds W m−2

Daily mean surface downwelling shortwave radiation rsds W m−2

Daily mean near-surface wind speed sfcWind m s−1

Daily mean near-surface air temperature tas K

Daily maximum near-surface air temperature tasmax K

Daily minimum near-surface air temperature tasmin K

Table 1) are conservatively interpolated (Jones, 1999) to a global 2◦× 2◦ latitude–longitude grid. For bias adjustment at 1/2◦

spatial resolution, these data are bilinearly interpolated to a global 1/2◦× 1/2◦ latitude–longitude grid. I concatenate output

data of the historical CMIP5 experiment with output data of the rcp85 CMIP5 experiment to obtain climate simulation data

representing the historical time period 1980–2015. Only output data of the rcp85 CMIP5 experiment are used to obtain climate

simulation data representing the future time period 2064–2099.5

2.2 Climate observation data

As observational reference data for bias adjustment and statistical downscaling I use the EartH2Observe, WFDEI and ERA-

Interim data Merged and Bias-corrected for ISIMIP (EWEMBI; Lange, 2019), which cover the entire globe at 1/2◦ spatial

and daily temporal resolution from 1979 to 2016. For
:
a
::::::::::
description

::
of

:::
the

::::::::
EWEMBI

::::
data

:::
set

::::::::
including

::::::::
variables

:::::::
covered,

::::
data

::::::
sources

:::::
used,

:::
and

::::
bias

::::::::::
adjustments

::::::
applied

:::
see

::::::::::::::::::::::::::::::::::
Frieler et al. (2017, Sect. 3.1 and Table 1)

:
.
:::
For

:
statistical downscaling from 2◦10

to 1◦ and for bias adjustment at 2◦ spatial resolution, these data are conservatively aggregated to global 1◦× 1◦ and 2◦× 2◦

latitude–longitude grids, respectively.

3 Methods

3.1 ISIMIP2b method

The ISIMIP2b bias adjustment and statistical downscaling method is comprehensively described in Frieler et al. (2017), Lange15

(2018), and Hempel et al. (2013). For statistical downscaling, simulation data are bilinearly interpolated to the observation data

grid. These interpolated data are then bias-adjusted in different ways for different climate variables.
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For pr, psl, rlds, sfcWind, and tas, monthly mean values are adjusted to the end of removing the bias in their historical

multi-year mean value. This adjustment is done multiplicatively for pr, rlds, and sfcWind, and additively for psl and tas. In

order to preserve trends in multi-year monthly mean values, the same scaling factor respectively offset is used in all application

periods. In a second step, day-to-day variability around the monthly mean value is adjusted using transfer functions derived for5

every calendar month from historical simulations and observations.

An indirect bias adjustment of tasmax and tasmin is done by adjusting tasmax− tas and tas− tasmin using monthly

scaling factors which remove the bias in the mean value of all historical daily values of these non-negative variables from a

given calendar month. The adjusted values are then added to and subtracted from bias-adjusted tas values in order to obtain

bias-adjusted tasmax and tasmin values, respectively.10

Bias adjustment of rsds is done by parametric quantile mapping using beta distributions with lower bounds of zero and

upper bounds estimated by rescaled climatologies of downwelling shortwave radiation at the top of the atmosphere. For trend

preservation, upper bounds, mean values, and variances of historical observations are modified using simulated trends prior

to quantile mapping. Using beta distributions with fixed lower and upper bounds of 0 and 100 %, respectively, this method is

also used to bias-adjust hurs. Bias-adjusted prsn values are obtained by multiplying bias-adjusted pr values with the original15

prsn-over-pr ratio. This ratio is therefore not bias-adjusted.

3.2 ISIMIP3 method

The newly developed ISIMIP3 bias adjustment and statistical downscaling method is comprehensively described in the fol-

lowing. It consists of a bias adjustment method that is applied at the spatial resolution of the climate simulation data and a

statistical downscaling method that is applied to the bias-adjusted climate simulation data to the end of increasing its spatial20

resolution to that of the climate observation data. These two new methods are presented in the following two subsections.

3.2.1 ISIMIP3 bias adjustment method

::::
This

::::::
section

::::::::
describes

:::
the

:::
new

::::
bias

:::::::::
adjustment

:::::::
method.

::::::
Before

::::::
diving

:::
into

::::::
details

:
I
::::
will

::::::
explain

:::
the

:::::::
concept

::
of

:::
the

::::::
method

::::
and

::::::
outline

:::
how

:::
the

::::
new

::::::
unified

::::
bias

:::::::::
adjustment

::::::::::
framework

:::
can

::
be

::::::::::
customized

:::
for

::
an

::::::::::
application

::
to

:::
the

::::::
climate

::::::::
variables

:::::
listed

::
in

::::
Table

::
1.
:

25

The ISIMIP3 bias adjustment method is a parametric quantile mapping method that has been designed to (i) robustly adjust

biases in all percentiles of a distribution and (ii) preserve trends in these percentiles. It is applicable for bias adjustment

of different kinds of climate variables including those listed in Table 1. Like the ISIMIP2b bias adjustment method, it is

independently applied to every variable, grid cell, and calendar month.

In order to overcome the zoo of approaches to bias adjustment used for different variables in ISIMIP2b, the new method fea-30

tures a unified framework, which can be specified
:::::::::
customized

:
for an application to one particular climate variable. Specifications

::::::::::::
Customization

:::::::::::
specifications

:
for the variables considered here are listed in Table 2. Note that biases in prsn, tasmax, and

tasmin are not adjusted directly. Instead, I adjust
:::
the

::::::::
ISIMIP3

::::::
method

:::::::
adjusts biases in pr and prsnratio = prsn/pr, and

multiply
::::::::
multiplies the resulting values to arrive at bias-adjusted prsn values. I do this

::::
This

::
is

:::::
done in order to (i) ensure

4



Table 2. Bias
::::::::::
Specification

::
of

::
the

:::::::
ISIMIP3

:::
bias

:
adjustment specifications

::::::
method for

::
all climate variables considered in this study.

::::
Where

::
a

::::
lower

::::::
(upper)

:::::
bound

:
is
::::::::
specified,

::
no

:::::
values

:::
less

:::::::
(greater)

:::
than

:::
this

:::::
bound

:::
will

:::::
occur

:
in
:::

the
::::::::::
bias-adjusted

::::
data.

:::
For

::::
every

:::::
lower

:::::
(upper)

::::::
bound,

:
a
::::
lower

::::::
(upper)

:::::::
threshold

::
is
::::::
defined,

:::::
which

::
is
::::
only

::::::
slightly

:::::
greater

:::::
(less)

:::
than

:::
the

::::::
bound.

:::
The

:::::
lower

:::::
(upper)

::::::::
threshold

:
is
::::

used
::
to

:::::
adjust

:::
the

:::::
relative

::::::::
frequency

::
of

:::::
values

:::
less

:::::::
(greater)

::::
than

:::
the

:::::::
threshold.

:
Note that the units of prsnratio = prsn/pr, tasrange = tasmax− tasmin,

and tasskew = (tas−tasmin)/tasrange are 1, K, and 1, respectively. For units of the other climate variables see Table 1. Note that the
:::
The

lower threshold of pr is equivalent to 0.1 mm/day.
::
For

::
a
::::::::
description

::
of

:::
the

:::::::
different

::::
kinds

::
of

::::
trend

::::::::::
preservation

:::
see

:::
Eqs.

:::::
(1–8)

:::
and

:::
the

:::
text

:::::
around

:::::
those.

Variable Lower Lower Upper Upper Distribution Trend Detrending Other

short name bound threshold bound threshold preservation

hurs 0 0.01 100 99.99 beta bounded no –

pr 0 0.1/86400 – – gamma mixed no –

prsnratio 0 0.0001 1 0.9999 beta bounded no sampling of missing values

psl – – – – normal additive yes –

rlds – – – – normal additive yes –

rsds 0 0.0001 1 0.9999 beta bounded no upper bound scaling

sfcWind 0 0.01 – – Weibull mixed no –

tas – – – – normal additive yes event likelihood not adjusted

tasrange 0 0.01 – – Rice mixed no –

tasskew 0 0.0001 1 0.9999 beta bounded no –

0≤ prsnratio≤ 1, and (ii) preserve trends in prsnratio. For tasmax and tasmin, Piani et al. (2010) point out that an in-

dependent bias adjustment of tas, tasmax, and tasmin may result in large relative errors in the daily temperature range,

tasrange = tasmax− tasmin, and the skewness of the daily temperature cycle, tasskew = (tas− tasmin)/tasrange. They

also demonstrate that these errors can be minimized by a direct and independent bias adjustment of tas, tasrange, and tasskew.5

Here, I follow their lead and derive
:::::::::
Therefore,

:::
the

::::::::
ISIMIP3

::::::
method

:::::::
derives

:
bias-adjusted tasmax and tasmin values from

bias-adjusted tas, tasrange, and tasskew values.

In the following, I will describe the unified framework of the ISIMIP3 bias adjustment method
:
in

:::::
detail. In this context, let

xobshist be the time series of historical observations for one climate variable, grid cell, and calendar month. Let further xsimhist and

xsimfut be the simulated time series for the historical and future time period, respectively, and the same climate variable, grid cell,10

and calendar month. Since the bias adjustment method is trained on xobshist and xsimhist the historical time period is also called the

training period. Since it is applied to xsimfut the future time period is also called the application period.

The bias adjustment algorithm with inputs xobshist, x
sim
hist, x

sim
fut and output ysimfut proceeds in the following steps, which are

explained in more detail below.

1. (For rsds only.) Scale values in xobshist, x
sim
hist, x

sim
fut to the interval [0,1].
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2. (For prsnratio only.) Replace missing values in xobshist, x
sim
hist, x

sim
fut by random sampling from available values.

3. (For psl, rlds, and tas only.) Detrend xobshist, x
sim
hist, x

sim
fut .

4. (For bounded variables only.) Randomize values beyond threshold in xobshist, x
sim
hist, x

sim
fut .

5. (For all variables.) Transfer the simulated climate change signal for every distribution quantile from xsimhist, x
sim
fut to xobshist.5

Let xobsfut be the resulting time series of pseudo future observations.

6. (For all variables.) Use parametric quantile mapping to adjust the distribution of values in xsimfut to the distribution of

values in xobsfut . For bounded variables, also bias-adjust the frequency of values beyond threshold. Let ysimfut be the resulting

time series.

7. (For psl, rlds, and tas only.) Add trend subtracted from xsimfut in step 3 to ysimfut .10

8. (For rsds only.) Scale values in ysimfut back to their actual range.

Steps 1 and 8 are only applied to rsds and reflect that this climate variable has a physical upper bound which varies over the

annual cycle. In order to fit this case into the unified framework, which at its core assumes constant bounds and thresholds, rsds

values are scaled to the interval [0,1] in step 1, and back to their actual range in step 8. These scalings are done using annual

cycles of upper bounds that are estimated from the rsds values in xobshist, x
sim
hist, x

sim
fut . Following Lange (2018), annual cycles15

of upper bounds at daily temporal resolution are estimated as running mean values of running maximum values of multi-year

daily maximum values. Here, a window length of 31 days is used for the running window calculations. Let bobshist, b
sim
hist, b

sim
fut be

these annual cycles estimated for time series xobshist, x
sim
hist, x

sim
fut , respectively. Let further xij be the value of one of these time

series on day j of year i, and let bj be the upper bound for that day of the year according to the corresponding annual cycle,

then xij ≤ bj holds true for all years i and j = 1, . . . ,366. The scaling in step 1 is done according to xij 7→ xij/bj . The scaling20

in step 8 requires an annual cycle of upper bounds to the bias-adjusted rsds values. Let bobsfut denote this annual cycle. Following

Frieler et al. (2017, Eq. (2)), it is estimated according to bobsfut = bobshistb
sim
fut /b

sim
hist. The scaling in step 8 is then done according to

yij 7→ yijbj , where yij is the value of ysimfut on day j of year i, and bj is the upper bound for that day of the year according to

bobsfut .

Step 2 is only applied to prsnratio and reflects that values of this variable are missing on days of zero precipitation, because on25

these days the ratio prsn/pr is not defined. In order to fit this case into the unified framework, which at its core assumes gap-less

time series, missing prsnratio values are replaced by random sampling from available values. More precisely, for every missing

value in xobshist, x
sim
hist, x

sim
fut , an independent random number p is drawn from the interval [0,100]⊂ R with uniform probability,

and the missing value is replaced by the pth empirical percentile of all available values in xobshist, x
sim
hist, x

sim
fut , respectively. This

procedure approximately preserves the distribution of values in the time series.30

Steps 3 and 7 are only applied to psl, rlds, and tas, and reflect that these variables can have significant trends not only

between but also within training period and application period. In order to prevent a confusion of these trends with interannual

variability during quantile mapping (steps 5 and 6), linear trends within xobshist, x
sim
hist, x

sim
fut are removed in step 3 and restored
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in step 7. Trend lines tobshist, t
sim
hist, t

sim
fut are estimated at annual temporal resolution, i.e. by linear regression of annual mean

values of the daily values of the respective time series. Let xij be the value of one of these time series on day j of year i, and

let ti be the value for year i of the corresponding trend line, which is shifted such that
∑

i ti = 0. Then detrending in step 3

is done according to xij 7→ xij − ti, and the trend simulated within the application period is restored in step 7 according to5

yij 7→ yij + ti, where yij is the value of ysimfut on day j of year i, and ti is the value for that year of trend line tsimfut .

Step 4 is only applied to bounded variables, i.e. variables which have either a lower bound (and threshold) or an upper

bound (and threshold) or both (see Table 2). These bounds reflect physical limits to values these variables can take. Thresholds

located slightly above the lower bound and slightly below the upper bound are used in step 6 to bias-adjust the frequencies of

occurrence of values close to the bounds. In particular, the lower threshold of pr is used to bias-adjust the dry day frequency, i.e.10

the frequency of occurrence of pr< 0.1 mm/day. In most cases, the simulated dry day frequency will be lower than the observed

one (drizzle effect), and its bias adjustment is easily done by setting pr values on some initially wet days to 0. Conversely, if

the simulated dry day frequency is too high, its bias adjustment requires turning initially dry days into wet days. These days

are randomly selected following Cannon et al. (2015): All values below the lower threshold, α, and above the upper threshold,

β, are replaced by random numbers drawn from the open interval (a,α) and (β,b), where a and b are the lower bound and15

the upper bound, respectively. These new values can then be moved across the respective threshold by quantile mapping in

step 6. In contrast to Cannon et al. (2015), random numbers from (a,α) and (β,b) are not drawn with uniform probability

but with power-law probability that increases towards the respective bound, as this approach is found to alleviate kinks in the

distribution of wet day precipitation after bias adjustment.

Step 5 generates pseudo future observations, which are needed for parametric quantile mapping in step 6. These pseudo20

future observations are generated such that trends in all quantiles between any two application periods are approximately the

same before and after quantile mapping. This makes the bias adjustment method trend-preserving in all quantiles. Different

kinds of trends are preserved for different climate variables (Table 2).

Pseudo future observations for one specific future time period are generated by transferring simulated climate change signals

between the historical and the future time period to the historical observations. This transfer is done quantile by quantile using25

a non-parametric kind of quantile mapping. In the following, I will describe the transfer for additive, multiplicative, mixed, and

bounded trend preservation. Figure 1 provides an illustration for the former three of these four cases.

In what follows, let F obs
hist, F

sim
hist , F sim

fut be the empirical cumulative distribution function of all values in xobshist, x
sim
hist, x

sim
fut ,

respectively. Let Qobs
hist, Q

sim
hist, Q

sim
fut be the corresponding quantile functions. Let x be a value

:::
one

::
of

:::
the

:::::
many

::::::
values of xobshist,

let p= F obs
hist(x) be the cumulative probability of x, and let y be the pseudo future observation corresponding to x. Additive30

trend preservation is achieved by an additive climate change signal transfer, i.e. in this case, y is generated according to

y = x+ ∆additive(p), where (1)

∆additive(p) =Qsim
fut (p)−Qsim

hist(p). (2)

Additive trend preservation is the goal here for climate variables psl, rlds, and tas.
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Figure 1. Schematic of climate change signal transfer from simulations to observations for wet day precipitation. Empirical cumulative

distribution functions of historical and future simulations and observations are displayed using a linear precipitation scale in (a) and a

logarithmic precipitation scale in (b). Pseudo future observations generated preserving different kinds of trends are shown in red with

different line styles. For the 90th percentile, black double-headed arrows indicate additive trend preservation in (a) and multiplicative trend

preservation in (b). Mixed trend preservation is explained in the text.

Multiplicative trend preservation is achieved by a multiplicative climate change signal transfer, i.e. in this case, y is generated

according to

y = x∆multiplicative(p), where (3)5

∆multiplicative(p) = max
(
0.01,min

(
100,∆∗

multiplicative(p)
))
, and (4)

∆∗
multiplicative(p) =





1 if Qsim
hist(p) = 0,

Qsim
fut (p)/Qsim

hist(p) otherwise.
(5)

Note that the limits imposed in Eq. (4) are usually only reached for very small values of x. Multiplicative trend preservation is

in most cases but not always the goal here for climate variables pr, sfcWind, and tasrange. It is not the goal here if x=Qobs
hist(p)

is much larger than the corresponding quantile of the historical simulations Qsim
hist(p) (this corresponds to a large negative bias10

in the historical time period) because in this case even moderate multiplicative climate change signals Qsim
fut (p)/Qsim

hist(p) can

result in unrealistically large y values, as illustrated in Fig. 1, which I want to avoid generating in particular for pr.

Pseudo
::
In

:::::
order

::
to

:::::::
prevent

:::::::::
generating

::::
such

::::::::::::
unrealistically

:::::
large

:
y
::::::
values,

:::::::
pseudo future observations for pr, sfcWind, and

tasrange are therefore generated by a mixed (multiplicative and additive) climate change signal transfer, i.e. for these climate
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Figure 2. Function γ(p) used to transition from multiplicative to additive trend preservation in mixed trend preservation (Eqs. (6–7)).

variables, y is generated according to

y = γ(p)x∆multiplicative(p) + (1− γ(p))(x+ ∆additive(p)), where (6)

γ(p) =





1 if Qsim
hist(p)≥Qobs

hist(p),

0.5
(
1 + cos

((
Qobs

hist(p)/Q
sim
hist(p)− 1

)
π/8

))
if Qsim

hist(p)<Qobs
hist(p)< 9Qsim

hist(p),

0 otherwise.

(7)5

This translates to a multiplicative trend preservation for positive biases, an additive trend preservation for large negative bi-

ases, and a mixed trend preservation for moderate negative biases in the historical time period. A smooth transition from

multiplicative to additive trend preservation is facilitated by the function γ(p) (Eq. (7) and Fig. 2).

For climate variables with both lower bound a and upper bound b, climate change signals are transferred respecting these

bounds, i.e. for these climate variables, y is generated according to10

y =





a+ (x− a)
(
Qsim

fut (p)− a
)
/
(
Qsim

hist(p)− a
)

if Qsim
hist(p)>Qsim

fut (p),

x if Qsim
hist(p) =Qsim

fut (p),

b− (b−x)
(
b−Qsim

fut (p)
)
/
(
b−Qsim

hist(p)
)

otherwise.

(8)

Bounded trend preservation is the goal here for climate variables hurs, prsnratio, scaled rsds, and tasskew.

Step 6 is the core of the new unified bias adjustment framework. For unbounded climate variables, it consists of a parametric

quantile mapping of xsimfut to the pseudo future observations generated in step 5. For climate variables with at least one bound,

it consists of a bias adjustment of the frequency of values beyond threshold, and a parametric quantile mapping of all other15

values in xsimfut .

Frequencies of values beyond threshold
:::
(see

:::::
Table

::
2)

:
are bias-adjusted as follows. Let

:::
For

::::::
climate

::::::::
variables

::::
with

::
a

:::::
lower

:::::
bound

::
a

:::
and

::::::
lower

::::::::
threshold

::
α,

:::
let

:
P obs
hist, P

sim
hist , P sim

fut be the relative frequency of values less than α in xobshist, x
sim
hist, x

sim
fut

respectively. Similar to step 5, a pseudo future observation of this frequency, P obs
fut , is generated by transferring the simulated

9



climate change signal to the historically observed value,

P obs
fut =





P obs
histP

sim
fut /P

sim
hist if P sim

hist > P sim
fut ,

P obs
hist if P sim

hist = P sim
fut ,

1− (1−P obs
hist)

(
1−P sim

fut

)
/
(
1−P sim

hist

)
otherwise.

(9)

Then, if xsimfut is of length n, the nP obs
fut lowest values of xsimfut are set to a. Similarly, for climate variables with an upper bound5

:
b
:::
and

:::::
upper

::::::::
threshold

::
β, the relative frequency of values greater than β is bias-adjusted by setting the nP obs

fut highest values of

xsimfut to b, where P obs
fut is generated using Eq. (9) with relative frequencies of values less than α replaced by relative frequencies

of values greater than β.

All other values in xsimfut (or all values in the case of an unbounded climate variable) are bias-adjusted using parametric

quantile mapping, the pseudo observations xobsfut generated in step 5, as well as the historical observations and simulations10

xobshist and xsimhist, respectively. Distributions used for parametric quantile mapping are the beta distribution for bounded climate

variables (hurs, prsnratio, scaled rsds, tasskew), the gamma distribution for pr, the normal distribution for unbounded climate

variables (psl, rlds, tas), the Weibull distribution for sfcWind, and the Rice distribution for tasrange. For unbounded climate

variables, distributions are fitted to all values in xobshist, x
obs
fut , xsimhist, x

sim
fut . For climate variables with a lower and/or upper bound,

distributions are only fitted to values greater than α and/or less than β in xobshist, x
obs
fut , xsimhist, and to all values in xsimfut that where15

not set to a or b in the first part of step 6. Let F̂ obs
hist, F̂

obs
fut , F̂ sim

hist , F̂ sim
fut be the cumulative distribution functions of these fitted

distributions.

The parametric quantile mapping method used in ISIMIP3 is inspired by the scaled distribution mapping method introduced

by Switanek et al. (2017), which in addition to biases in quantiles also adjusts biases in the likelihood of individual events.

For the sake of argument, let me assume that the number of values F̂ obs
hist, F̂

obs
fut , F̂ sim

hist , F̂ sim
fut were fitted to is the same for all20

four cumulative distribution functions, and let x̂simhist, x̂
sim
hist, x̂

sim
fut , x̂simfut be the lowest of these values, respectively. Then x̂simfut is

quantile-mapped according to
::::
(see

:::
Eq.

::::
(15)

::
for

:::
the

:::::::::
definition

::
of

:::
the

::::
logit

::::::::
function)

x̂simfut 7→ F̂ obs
fut

−1 (
logit−1

(
Lobs
hist + ∆log−odds

))
, where (10)

∆log−odds = max
(
− log10,min

(
log10,Lsim

fut −Lsim
hist

))
, and (11)

Lobs
hist = logit

(
F̂ obs
hist

(
x̂obshist

))
, (12)25

Lsim
hist = logit

(
F̂ sim
hist

(
x̂simhist

))
, (13)

Lsim
fut = logit

(
F̂ sim
fut

(
x̂simfut

))
. (14)

Values of higher rank are quantile-mapped in the same way, i.e. using Eqs. (10–14) and x̂simhist, x̂
sim
hist, x̂

sim
fut , x̂simfut of equal rank.

Additional interpolations need to be introduced in Eqs. (10–14) to make them work in the general case of unequal sample sizes,

as explained by Switanek et al. (2017).30

Equations (10–14) result in a perfect match in distribution if training and application period are identical. In this case,

∆log−odds = 0 and likelihoods of events are mapped from F̂ sim
fut

(
x̂simfut

)
= F̂ sim

hist

(
x̂simhist

)
to F̂ obs

hist

(
x̂obshist

)
. In all other cases, the

10



simulated climate change signal in event likelihood is transferred to the historically observed event likelihood such that changes

in odds are multiplicatively preserved. To see that this is true, note that

logitp1 + logitp2− logitp35

= log

(
p1

1− p1

)
+ log

(
p2

1− p2

)
− log

(
p3

1− p3

)

= log

(
p1

1− p1
p2

1− p2

/
p3

1− p3

)
. (15)

Asymptotically, i.e. for extreme values, the odds scaling used here is equivalent to the return interval scaling used by Switanek

et al. (2017). The limits imposed in Eq. (11) are to prevent the generation of unrealistic event likelihoods.

Note that in contrast to all other climate variables, the likelihood of individual events is not adjusted for tas. Instead, in this10

case, Eqs. (10–14) are replaced by x̂simfut 7→ F̂ obs
fut

−1
(
F̂ sim
fut

(
x̂simfut

))
. The reason for this exception is that the event likelihood

adjustment can produce artifacts if large nonlinear trends are present within the training or application period. Examples of

such cases have (only) been found for tas.

3.2.2 ISIMIP3 statistical downscaling method

::::
This

::::::
section

::::::::
describes

:::
the

::::
new

:::::::::
statistical

::::::::::
downscaling

::::::::
method.

::::::
Before

:::::
diving

::::
into

::::::
details

::
I
:::
will

:::::::
explain

:::
the

:::::::
concept

:::
of

:::
the15

:::::::
method,

::::::
reveal

::
its

::::::::::
algorithmic

::::::
origin,

:::
and

::::::::
elaborate

::
on

:::::::::::
prerequisites

::::
and

:::
best

::::::::
practices

::
of

::
its

::::::::::
application.

:

As described in the introduction, the ISIMIP3 bias adjustment method shall be applied at the spatial resolution of the cli-

mate simulation data using spatially aggregated climate observation data. Since the resulting data can be considered bias-free
::
to

::::
have

::::::::
unbiased

::::::::::
distributions

:::
of

::::
daily

::::::
values

::::
per

::::::
climate

::::::::
variable,

::::
grid

::::
cell,

::::
and

:::::::
calendar

::::::
month, their subsequent statistical

downscaling should be done using a method which preserves values at the aggregated spatial resolution. The ISIMIP3 statis-20

tical downscaling method has this property. Since the new method is based on the MBCn algorithm by Cannon (2017) it is

abbreviated to MBCnSD in the following.

The MBCnSD algorithm is independently applied to every climate variable and calendar month. It requires that the coarse

grid of the climate simulation data and the fine grid of the climate observation data are compatible in the sense that every fine

grid cell is entirely contained in one coarse grid cell. For example, that is the case if the coarse and fine grid are the global25

2◦× 2◦ and 1◦× 1◦ latitude–longitude grid, respectively, since then every coarse grid cell contains exactly K = 4 fine grid

cells.
:
In

:::::
order

::
to
:::::

make
:::::::::

MBCnSD
:::::::::
applicable

::
in

:::::
cases

::::
with

::::::::
originally

::::::::::::
incompatible

:::::
coarse

::::
and

:::
fine

:::::
grids

::
as

:::::
well,

:::
the

:::::::
original

::::::
climate

:::::::::
simulation

::::
data

::::
need

::
to

::
be

::::::::::
interpolated

:::::::
(before

:::
bias

::::::::::
adjustment)

::
to

::
a
:::
grid

::::
that

::
is

::::
both

:::::::::
compatible

::::
with

:::
the

::::
fine

:::
grid

::::
and

::::::
similar

::
in

::::::::
resolution

::
to

:::
the

:::::::
original

:::::
coarse

:::::
grid.

The MBCn algorithm by Cannon (2017) is a multivariate quantile mapping bias adjustment method. It is employed here in30

the context of statistical downscaling because the downscaling problem at hand can be considered as yet another bias adjustment

problem: Once the climate data to be downscaled have been broadcasted to the fine grid, their statistical downscaling can be

achieved by an adjustment of the multivariate distribution of all time series contained in one coarse grid cell.
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Figure 3. Two-dimensional illustration of one iteration of the modified MBCn algorithm used for statistical downscaling in ISIMIP3

(MBCnSD), which at its core consists of two steps. In the first step, data point A is quantile-mapped to data point B like in the original

MBCn algorithm. In the second step, MBCnSD projects data point B onto the weighted sum-preserving hyper plane of data point A, here

with equal weights on all axes. The result is data point C.

The MBCn algorithm applies a series of univariate non-parametric quantile mappings along randomly chosen axes. Mathe-

matically, this is achieved by repeatedly rotating the climate simulation and observation data using random K×K orthogonal

matrices, each time followed by K univariate quantile mappings. This use of random rotation matrices makes the ISIMIP35

statistical downscaling method stochastic.

The MBCn algorithm cannot be used as is to solve the downscaling problem at hand because it does not have the required

preservation property. The preservation of values at the aggregated spatial resolution translates to a preservation of the weighted

sum of all time series contained in one coarse grid cell. With MBCnSD, this is achieved by an additional conservation step

following the K univariate quantile mappings in every iteration of the algorithm. For K = 2, this is illustrated in Fig. 3. A10

corner case of what can happen without this additional step is shown in Fig. 4: For certain axes rotation sequences, the MBCn

algorithm almost reverses the ranks of values along one axis, which results in strongly changed aggregated values. Figure 4

also exemplifies that this is prevented by the MBCnSD algorithm.

If the resolution gap between climate simulation and observation data is large then statistical downscaling can be done in

one big step or in multiple small steps. Vandal et al. (2018) have shown that statistical downscaling with neural networks works

better in multiple small steps. For statistical downscaling with the MBCnSD algorithm, both approaches yield similar results.
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Figure 4. Statistical downscaling of artificial two-dimensional climate data with the original MBCn algorithm by Cannon (2017) and the

modified MBCn algorithm used for statistical downscaling in ISIMIP3 (MBCnSD). Panel (a) shows an example of observation and simulation

data drawn from a bivariate standard normal distribution with cross-correlation 0 and 1, respectively. Panels (c–j
::
c–f) show the result of

statistical downscaling after 4 (c,d) and 32 (e,f) iterations of the MBCn (c,e) and MBCnSD (d,f) algorithm. To track changes, the color of a

data point in panels (c-f) is the same as the color of the corresponding original data point in panel (a). Gray lines in panels (c–f) represent the

axes along which univariate quantile mappings are applied in the respective iteration. Note that MBCn and MBCnSD use the same sequence

of axes rotations here. Panel (b) shows the energy distance (Székely and Rizzo, 2013) between observation and simulation data over iterations

for 30 random data samples (thin dashed lines) and on average over these 30 samples (thick solid lines).

But as in the neural network case, downscaling in multiple small steps yields slightly smoother fields than downscaling in one

big step (Fig. 5) and is therefore deemed the preferred approach.

In the following, I will describe the MBCnSD algorithm in detail. In this context, let xsimij be the previously bias-adjusted5

climate simulation data to be statistically downscaled, with i being the time index and j being the coarse grid cell index. Let

further xobsijk be the historical climate observation data on the fine grid, with i, j as for xsimij , and k = 1, . . . ,K being the index
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Figure 5. Statistical downscaling of precipitation from 2◦ to 1/2◦ spatial resolution in two small steps (2◦ to 1◦ and 1◦ to 1/2◦) versus

in one big step. In this example, the MBCnSD algorithm is applied for statistical downscaling of spatially aggregated historical observation

data. Shown are precipitation fields over Europe for one particular day: The original precipitation field in panel (a) and the result of statistical

downscaling in two small steps and in one big step in panel (b) and (c), respectively.

for the fine grid cells contained in one coarse grid cell. Finally, let wjk be proportional to the area of fine grid cell k in coarse

grid cell j. Then the MBCnSD algorithm works as follows.

1. (For all variables.) Bilinearly interpolate xsimij to the fine grid. Let xsimijk be the result.5

2. (For bounded variables only.) Randomize values beyond threshold in xsimij , xsimijk , xobsijk .

3. (For all variables.) Apply the core of the MBCnSD algorithm independently to every coarse grid cell j. Let ysimijk be the

result.
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Figure 6. Statistical downscaling of precipitation from 1◦ to 1/2◦ spatial resolution using different broadcasting methods in step 1 of the

MBCnSD algorithm. In this example, the algorithm is applied for statistical downscaling of spatially aggregated historical observation data.

Shown are downscaled precipitation fields over Europe for one particular day, using bilinear and conservative interpolation for broadcasting

in panel (a) and (b), respectively. The corresponding original precipitation field is shown in panel (a) of Fig. 5.

4. (For bounded variables only.) De-randomize values beyond threshold in ysimijk .

Step 1 broadcasts the previously bias-adjusted climate simulation data to the fine grid. This is done using bilinear and not

::::::
instead

::
of conservative interpolation, which in this case would be equivalent to setting xsimijk = xsimij for all k, because the former5

approach .
:::::::::::
Broadcasting

::::
with

:::::::
bilinear

:::::::::::
interpolation

:
is
::::::::
preferred

:::::::
because

::
it results in smoother fields than the latter

::::::::::
broadcasting

::::
with

::::::::::
conservative

:::::::::::
interpolation, as exemplified in Fig. 6. There are two reasons for that. First, bilinear interpolation already

generates some of the spatial variability within each coarse grid cell that statistical downscaling has to add whereas conservative

interpolation does not. Therefore, the MBCnSD algorithm would have to add more variability after conservative than bilinear

interpolation, with the result of more noisy fields. Secondly, bilinear interpolation transfers spatial gradients between coarse10

grid cells to the fine grid whereas conservative interpolation does not. The MBCnsD algorithm can then preserve these gradients

to the degree that they are meaningful, which results in smoother fields.

Steps 2 and 4 are only applied to variables which have either a lower bound (and threshold) or an upper bound (and threshold)

or both. I use the same
:::
The

:
bounds and thresholds

::::
used for statistical downscaling as

::
are

::::::::
identical

::
to

:::::
those

:::::
used for bias

adjustment (Table 2) for all climate variables except rsds. For statistical downscaling, rsds values are not scaled, have a lower

bound of 0, a lower threshold of 0.01 W/m2, and no upper bound (or threshold). The randomization itself works exactly as in
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step 4 of the ISIMIP3 bias adjustment method. For de-randomization, all values below the lower threshold are set to the lower

bound, and all values above the upper threshold are set to the upper bound. Note that the MBCnSD algorithm is applied for

statistical downscaling of hurs, pr, prsnratio, psl, rlds, rsds, sfcWind, tas, tasrange, and tasskew. Bias-adjusted and statistically5

downscaled prsn, tasmax, and tasmin values are then derived as described in Sect. 3.2.1.

Step 3 is the core of the MBCnSD algorithm and is applied independently to every coarse grid cell j. Therefore, in the

following, let j be arbitrary but fixed. Let X = (Xi) be the vector with components Xi = xsimij , and let Y = (Yik) and Z =

(Zik) be matrices with components Yik = xsimijk andZik = xobsijk , respectively. Let furtherw =
∑

kwjk be the sum of all fine grid

cell area weights and let w̃ =
√∑

kw
2
jk be their root sum square. Let W = (Wk) be the vector with componentsWk = wjk/w̃.10

The core of the MBCnSD algorithm proceeds in three sub-steps, which I will refer to as 3a, 3b, and 3c in the following.

Sub-step 3a adjusts Y to the end of restoring the spatially aggregated values which shall be preserved by the algorithm but

have been altered by bilinear interpolation in step 1. In addition, sub-step 3a adjusts Z to the end of transferring the simulated

climate change signal to the historical climate observation data on the fine grid. This signal is incorporated in X , given that

X is the result of quantile mapping to the pseudo future climate observation data generated in step 5 of the ISIMIP3 bias15

adjustment algorithm. Since the simulated climate change signal is only available at the coarse resolution, it is transferred to Z

at that resolution, and all statistical dependencies at higher resolution are left unchanged. Mathematically, sub-step 3a proceeds

as follows.

1. Generate a K×K orthogonal matrix O whose first column is equal to W
::
(all

:::::
other

:::::::
columns

::::
can

::
be

::::::
chosen

::
at

::::
will). Set

Ototal = O. Rotate Y,Z, W using O.20

2. Set Yi1 to Xiw/w̃ to restore the spatially aggregated values.

3. Do a non-parametric quantile mapping of (Zi1) to (Xiw/w̃) to transfer the simulated climate change signal.

Here and in the following, to rotate Y,Z, W using O means to apply the matrix multiplications

Y 7→YO, (16)

Z 7→ ZO, (17)25

W 7→ (W TO)T = OTW , (18)

and to set Y,Z, W to the respective result. To do a non-parametric quantile mapping of (Ai) to (Bi) means to use empirically

estimated quantiles ap and bp of (Ai) and (Bi), respectively, corresponding to cumulative probabilities p ∈ {0%,2%,4%, . . . ,100%},
with a0 = miniAi, a1 = maxiAi, and the same for b0, b1, to define a transfer function f using the linearly interpolated

quantile–quantile pairs (ap, bp), to then map Ai 7→ f(Ai), and to set Ai to the result for all i.30

In sub-step 3b, the following three steps are repeated either a fixed number of times or until Y has converged to Z in

distribution. The last two of these steps are illustrated in Fig. 3.

1. Generate a random K ×K orthogonal matrix O. Rotate Ototal,Y,Z, W using O. Set Ỹ = Y.
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2. For all k, do a non-parametric quantile mapping of (Yik) to (Zik).

3. Project Y onto the weighted sum-preserving hyper plane of Ỹ by subtracting ((Y− Ỹ)W )⊗W from Y.

In the first of these steps, random orthogonal matrices are drawn from the circular real random matrix ensemble using the5

algorithm by Mezzadri (2007). In the last step, ⊗ denotes the outer product of two vectors. Note that the results presented

in Sect. 4 are obtained using a fixed number of 20 iterations in sub-step 3b of the MBCnSD algorithm, as this was deemed

sufficient for the MBCn algorithm by Cannon (2017).

In sub-step 3c, all data are rotated back to the original axes. A last quantile mapping along these axes ensures that there are

no values out of bounds in the resulting data. Mathematically, sub-step 3c proceeds as follows.10

1. Set O = OT
total. Rotate Y,Z, W using O.

2. For all k, do a non-parametric quantile mapping of (Yik) to (Zik).

For the arbitrary but fixed coarse grid cell j, the result ysimijk of step 3 of the MBCnSD algorithm is then given by ysimijk = Yik.

3.3 Comparison

In the following section I will compare results
::::::
Results obtained with the ISIMIP2b and ISIMIP3 bias adjustment and statistical15

downscaling methods .
:::
will

::
be

:::::::::
compared

::
in

::::
Sect.

::
4.

::::
This

::::::
section

::::::::
describes

::::
how

::::
that

::::::::::
comparison

:::
will

:::
be

:::::
done.

I will begin with results of bias adjustment applied at 2◦ spatial resolution, i.e. using climate simulation and observation

data both on the global 2◦×2◦ latitude–longitude grid. In particular, I will compare the methods’ ability to (i) adjust biases in

percentiles of distributions of daily values and (ii) preserve trends in these percentiles. Percentiles chosen for this comparison

are the 5th, 50th, and 95th, representing the lower tail, the center, and the upper tail of a distribution, respectively. An exception20

is made for pr and prsn, for which instead of the 5th percentile I consider the dry day frequency, i.e. the frequency of precipi-

tation or snowfall flux to be less than 0.1 mm/day, and instead of the 50th and 95th percentile of all values I consider the 50th

and 95th percentile of all values which exceed 0.1 mm/day, i.e. the 50th and 95th percentile of wet day precipitation.

I will then compare results obtained with the ISIMIP2b and ISIMIP3 statistical downscaling methods. To that end, both

downscaling methods are combined with the ISIMIP3 bias adjustment method. These bias adjustment–statistical downscaling25

method combinations are abbreviated with LI+BA and BA+SD in the following. The combination LI+BA is to represent

::::::::
represents

:
the ISIMIP2b approach to statistical downscaling and therefore consists of a bilinear interpolation of the climate

simulation data from their original spatial resolution of 2◦ to 1/2◦ followed by a bias adjustment using the climate observation

data at their original spatial resolution of 1/2◦. The combination BA+SD is to represent
::::::::
represents

:
the ISIMIP3 approach to

statistical downscaling and therefore consists of a bias adjustment at 2◦ spatial resolution using the climate observation data30

aggregated to that resolution followed by statistical downscaling from 2◦ to 1/2◦ in two steps (2◦ to 1◦ and 1◦ to 1/2◦) using

the ISIMIP3 statistical downscaling method.

Results at 2◦ and 1/2◦ spatial resolution will first be assessed based on the same metrics used to compare the ISIMIP2b

and ISIMIP3 bias adjustment methods at 2◦ spatial resolution. This is done to demonstrate that the BA+SD approach does not
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impair data quality with regard to bias adjustment or trend preservation relative to the LI+BA approach. For the comparison at

2◦ spatial resolution, the bias-adjusted and statistically downscaled climate simulation data are conservatively aggregated back

to that resolution.5

Secondly, I will compare results at 1/2◦ spatial resolution with regard to spatial variability within 2◦× 2◦ grid cells. Two

ways of placing these grid cells will be considered. The first way is to place their centers at odd-numbered latitudes and

longitudes (measured in degrees). These grid cells constitute the regular 2◦×2◦ latitude–longitude grid of the original climate

simulation data. The second way is to place their centers at even-numbered latitudes and longitudes (measured in degrees).

These grid cells form a grid that is staggered by 1◦ latitude and 1◦ longitude relative to the regular one.10

For 2◦× 2◦ grid cells placed in the first way it is expected that spatial variability within them is better adjusted by BA+SD

than by LI+BA by design. It is less clear if this also holds true for spatial variability within staggered 2◦× 2◦ grid cells since

these contain time series whose statistical dependence is not adjusted by the ISIMIP3 statistical downscaling method. In both

cases, spatial variability within a 2◦×2◦ grid cell is measured by the root-mean-square deviation (RMSD) of the 16 time series

contained in that grid cell from their spatial average: Let xij be the value on day i in 1/2◦× 1/2◦ grid cell j. Then, for time15

series of length n, the RMSD is calculated according to

RMSD =

√√√√√ 1

n

n∑

i=1

1

16

16∑

j=1

(
xij −

1

16

16∑

k=1

xik

)2

. (19)

The comparison of methods with regard to their ability to adjust biases and spatial variability is done in a cross-validation

framework. This is done to prevent different extents of overfitting by different methods to dominate differences in results.

I first use odd-numbered years from the time period 1980–2015 for training and even-numbered years from the same time20

period for application. Secondly, I swap these training and application years. Finally, I merge the results of application to odd-

numbered and even-numbered years to arrive at bias-adjusted and statistically downscaled data for cross-validation which fully

cover the 1980–2015 time period.
::::::::
Compared

::
to

:::
the

:::::
more

:::::::
common

:::
use

:::
of

:::::::::
consecutive

::::
and

::::::::::::::
non-overlapping

::::
time

::::::
periods

:::::
(here

:::::::::
1980–1997

:::
and

:::::::::::
1998–2015)

::
for

:::::::
training

::::
and

:::::::::
validation,

::
the

:::::::
division

::::
into

:::::::::::::
even-numbered

:::
and

::::::::::::
odd-numbered

:::::
years

:::::::
reduces

:::
the

:::::::
influence

::
of

:::::::
climate

:::::
trends

:::
on

:::::::::::::
cross-validation

::::::
results

::::::::::::::::::
(Switanek et al., 2017)

:
.
:::
The

::::::::
downside

::
of

:::
the

::::::::::::::
cross-validation

:::::::::
framework25

::::
used

::::
here

:
is
::::
that

:::
the

:::::::
resulting

:::::::::
validation

:::
and

:::::::
training

::::
data

:::
sets

:::
are

:::::
rather

::::::
similar

::
in
:::::
terms

:::
of

::::::
decadal

:::::::
climate

:::::::::
variability. For the

comparison of methods with regard to trend preservation, I use the full 1980–2015 time period for training and the full time

periods 1980–2015 and 2064–2099 for application.

The metrics introduced above (RMSD, dry day frequency, percentiles) are calculated independently for every data set (cli-

mate observations, original climate simulations, climate simulations bias-adjusted with the ISIMIP2b/ISIMIP3 method, cli-30

mate simulations bias-adjusted and statistically downscaled with the LI+BA/BA+SD method combination), climate variable,

calendar month, and grid cell. The goodness of spatial variability adjustment, trend preservation, and bias adjustment is then

quantified using absolute errors: For a fixed metric, adjustment method, climate variable, calendar month, and grid cell, let

xobshist,x
sim
hist,x

sim
fut ,y

sim
hist, and ysimfut represent values of the metric calculated for historical observations, historical simulations,

future simulations, adjusted historical simulations, and adjusted future simulations, respectively. Then, in the case of spatial

18



variability adjustment and bias adjustment, the absolute error e is calculated according to

e=
∣∣ysimhist−xobshist

∣∣ . (20)

In the case of trend preservation, the absolute error e is calculated according to5

e=
∣∣(ysimfut − ysimhist

)
−
(
xsimfut −xsimhist

)∣∣ . (21)

Values of these errors are then aggregated over all calendar months and grid cells using the grid cell area-weighted median.

For prsn I only aggregate errors from higher than 60 ◦ latitude. The aggregated values are then used to comparatively assess

method performance.

4 Results10

In the following I will first present results obtained with the ISIMIP2b and ISIMIP3 bias adjustment methods applied at 2◦

spatial resolution. I will then compare results obtained with the ISIMIP2b and ISIMIP3 statistical downscaling methods applied

for downscaling from 2◦ to 1/2◦ spatial resolution.

4.1 Comparison of bias adjustment methods

The goodness of bias adjustment and trend preservation by the ISIMIP2b and ISIMIP3 bias adjustment methods is assessed15

based on Fig. 7, which shows how well these methods adjust biases and preserve trends in the 5th, 50th, and 95th percentile

of daily values of the ten climate variables listed in Table 1 (mind the special treatment of pr and prsn described in Sect. 3.3).

Results suggest that in most calendar months and grid cells, biases are better adjusted by the ISIMIP3 method than by the

ISIMIP2b method for all ten climate variables. The greatest gains are found for hurs, rlds, rsds, and sfcWind. The least yet still

considerable gains are found for tas, tasmax, and tasmin. Intermediate gains are found for pr, prsn, and psl.20

Results further suggest that in most calendar months and grid cells, trends in psl, rlds, and tas are considerably better

preserved by the ISIMIP3 method than by the ISIMIP2b method. Trends in hurs, rsds, sfcWind, tasmax, and tasmin are mostly

better preserved by the ISIMIP3 method than by the ISIMIP2b method, yet there are a few exceptions of slightly better

trend preservation by the ISIMIP2b method for these climate variables. For pr, results suggest that the ISIMIP3 method is

much better at preserving trends in dry day frequency, while both methods are similarly good at preserving trends in the 50th25

percentile of wet day precipitation, and the ISIMIP2b method is a bit better at preserving trends in the 95th percentile of wet

day precipitation. Trends in prsn are generally better preserved by the ISIMIP2b method, presumably because the prsn/pr ratio

is left unchanged by this method whereas it is adjusted and therefore changed by the ISIMIP3 method.

4.2 Comparison of statistical downscaling methods

The goodness of bias adjustment and trend preservation by the LI+BA and BA+SD method combinations applied for bias

adjustment and statistical downscaling from 2◦ to 1/2◦ spatial resolution is assessed based on Figs. 8 and 9, which show how
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Figure 7. Goodness of bias adjustment (x-axis) and trend preservation (y-axis) by the ISIMIP2b and ISIMIP3 bias adjustment methods for

the lower tail (a), center (b), and upper tail (c) of the distribution of daily values of ten different climate variables (color, Table 1) simulated

by 4 different climate models (symbols) at 2◦ spatial resolution. Values on both axes represent ratios of spatiotemporally aggregated absolute

errors after bias adjustment with the two methods (see Sect. 3.3). Values greater than 1 indicate better bias adjustment or trend preservation

by the ISIMIP2b method than by the ISIMIP3 method, and vice versa for values less than 1.

well they adjust biases and preserve trends in the 5th, 50th, and 95th percentile of daily values of the ten climate variables listed

in Table 1 (mind again the special treatment of pr and prsn described in Sect. 3.3). The goodness of bias adjustment is assessed

at 2◦ and 1/2◦ spatial resolution in Fig. 8 and 9, respectively, while the goodness of trend preservation is only assessed at 2◦5

spatial resolution (Fig. 8) because simulated trends are only available at that resolution.

Differences between LI+BA and BA+SD in their ability to adjust biases at 2◦ spatial resolution reflect structural differences

between the ISIMIP2b and ISIMIP3 approaches to statistical downscaling. Bias adjustment in BA+SD is carried out at 2◦

spatial resolution and followed by a statistical downscaling which approximately preserves values at that resolution. Therefore,

biases can be expected to be well adjusted at 2◦ spatial resolution by BA+SD. In contrast, bias adjustment in LI+BA follows a10

bilinear interpolation to 1/2◦ spatial resolution and is independently applied to every 1/2◦×1/2◦ grid cell. Spatial dependen-

cies between time series within 2◦× 2◦ grid cells are not adjusted. Therefore, biases at 2◦ spatial resolution are expected to

be better adjusted by BA+SD than LI+BA. Results shown in Fig. 8 are largely in line with this expectation. The greatest gains

are found for pr. Only biases in the center of the distribution of tasmax and tasmin are slightly better adjusted by LI+BA than

by BA+SD in most calendar months and 2◦× 2◦ grid cells.15

At 2◦ spatial resolution, BA+SD is expected to outperform LI+BA with regard to trend preservation for the same structural

reason as with regard to bias adjustment. Results (Fig. 8) are in line with this expectation. Only for pr, prsn, and psl there

are cases in which LI+BA preserves trends slightly better than BA+SD. Otherwise, trends are better preserved by BA+SD, by

considerable margins in particular for sfcWind and tas.

Biases at 1/2◦ spatial resolution (Fig. 9) are slightly better adjusted by BA+SD than by LI+BA in most calendar months20

and grid cells for all climate variables except pr and prsn. Dry day frequency biases are better adjusted by LI+BA than by

BA+SD, arguably because the parametric bias adjustment of pr that is done following a bilinear interpolation in LI+BA adjusts
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Figure 8. Same as Fig. 7 but for LI+BA and BA+SD applied for bias adjustment and statistical downscaling from 2◦ to 1/2◦ spatial resolu-

tion. Like in Fig. 7, absolute errors are calculated at 2◦ spatial resolution based on conservatively aggregated bias-adjusted and statistically

downscaled climate simulation data.
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Figure 9. Same as Fig. 8 but with goodness of bias adjustment at 1/2◦ spatial resolution on the y-axis.

it explicitly and therefore precisely whereas the non-parametric quantile mapping that is used for statistical downscaling after

bias adjustment in BA+SD adjusts it implicitly and only approximately (see Sect. 3.2). Biases in the 50th percentile of wet day

precipitation are slightly better adjusted by LI+BA than by BA+SD in most calendar months and grid cells. The opposite is5

true for the 95th percentile of wet day precipitation.

In order to assess the goodness of bias adjustment across spatial scales, the y = 1/x line in Fig. 9 is considered to separate

cases in which BA+SD outperforms LI+BA (below the line) from cases in which LI+BA outperforms BA+SD (above the line).

Results suggest that BA+SD adjusts biases better than LI+BA in the vast majority of cases.

The goodness of spatial variability adjustment by LI+BA and BA+SD is assessed based on Fig. 10, which shows how well10

these method combinations adjust spatial variability within regular and staggered 2◦× 2◦ grid cells. Results suggest that, as

expected, spatial variability within regular 2◦× 2◦ grid cells is better adjusted by BA+SD than by LI+BA for most calendar

months and grid cells in all cases but one (prsn simulated by HadGEM2-ES).
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Figure 10. Goodness of adjustment of spatial variability within regular (x-axis) and staggered (y-axis) 2◦ × 2◦ grid cells by the LI+BA

and BA+SD bias adjustment and statistical downscaling methods for ten different climate variables (color, Table 1) simulated by 4 different

climate models (symbols). Values on both axes represent ratios of spatiotemporally aggregated absolute errors after bias adjustment and

statistical downscaling with the two methods (see Sect. 3.3). Values greater than 1 indicate better spatial variability adjustment by LI+BA

than by BA+SD, and vice versa for values less than 1.

Spatial variability within staggered 2◦× 2◦ grid cells is better adjusted by BA+SD than by LI+BA in most cases for hurs,

tas, tasmax, and tasmin, and vice versa for prsn and psl. Results are mixed for pr, rlds, rsds, and sfcWind. In order to assess how

spatial variability is adjusted overall, the y = 1/x line in Fig. 10 is considered to separate cases in which BA+SD outperforms5

LI+BA (below the line) from cases in which LI+BA outperforms BA+SD (above the line). Results suggest that BA+SD adjusts

spatial variability better than LI+BA in the vast majority of cases.

5 Conclusions

The ISIMIP3 bias adjustment and statistical downscaling methods outperform their predecessors in several respects. The new

trend-preserving parametric quantile mapping method used for bias adjustment preserves trends and adjusts biases in distri-10

bution quantiles more accurately than the ISIMIP2b bias adjustment method. The new stochastic method used for statistical

downscaling prevents the variability inflation caused by spatial interpolation in ISIMIP2b.

A major fraction of the bias adjustment gains can be attributed to the newly introduced adjustment of the likelihood of indi-

vidual events. This new feature effectively corrects for the imperfections of the distribution fits that are the basis of parametric

quantile mapping. In addition, it simplifies the confinement of extreme values to the physically plausible range.15

Trend preservation works better with the new methods because they apply it to all distribution quantiles compared an applica-

tion to only distribution mean values for most climate variables in ISIMIP2b. In addition, the new approach of bias adjustment

at the spatial resolution of the climate simulation data followed by statistical downscaling to the spatial resolution of the climate

observation data ensures that trends are preserved at the spatial resolution at which they were simulated.
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The new approach also better adjusts spatial variability at the spatial resolution of the climate observation data than the old

approach of a bilinear interpolation of climate simulation data to the spatial resolution of the climate observation data followed

by bias adjustment of these interpolated data. Overall, the results presented in this paper can be considered as a proof of concept5

of the new paradigm of a clear separation of bias adjustment and statistical downscaling.

:::
The

::::
next

:::::::
version

:::
of

:::::::::::::
ISIMIP3BASD

::
is

::::::
already

::::::
under

:::::::::::
development.

:::
In

:::::
order

::
to

::::::::
improve

:::::::::::
inter-variable

:::::::::::
consistency,

::::
bias

:::::::::
adjustment

::
in

:::::::::::::
ISIMIP3BASD

::::
v2.0

:::
will

:::
be

::::
done

::
in

:
a
:::::::::::
multivariate

::::::
manner.

:::
In

::::::::
particular,

:::
the

::::::
MBCn

::::::::
algorithm

::::
will

::
be

:::::::::
employed

::
for

:::
an

:::::::::
adjustment

:::
of

:::
the

:::::::::::
inter-variable

::::::
copula.

:::::
This

::::::::
additional

::::::::::
adjustment

:::
step

::::
will

:::
be

:::::::
inserted

:::::::
between

:::::
steps

:
4
::::
and

:
5
:::
of

:::
the

:::
bias

::::::::::
adjustment

::::::::
algorithm

::::::::
presented

::::::
herein.

:::::
Apart

:::::
from

::::
that,

:::::::::::::
ISIMIP3BASD

::::
v2.0

::::
and

::::::::::::
ISIMIP3BASD

::::
v1.0

::::
will

:::
be

::::::::
identical:10

:::
The

::::
bias

:::::::::
adjustment

::::::
method

:::
for

:::
the

::::::::
marginal

::::::::::
distributions

::
of

:::
all

::::::
climate

::::::::
variables

::
as

::::
well

::
as

:::
the

::::::::
statistical

::::::::::
downscaling

:::::::
method

:::
will

::::::
remain

::::::::::
unchanged.

Code and data availability. The ISIMIP3 bias adjustment and statistical downscaling code is publicly available at https://doi.org/10.5281/

zenodo.2549631. The ISIMIP2b bias adjustment code is publicly available at https://doi.org/10.5281/zenodo.1069050. The EWEMBI data set

is publicly available via https://doi.org/10.5880/pik.2019.004. The CMIP5 multi-model ensemble output is publicly available via https://doi.15

org/10.1594/WDCC/CMIP5.NGEMhi for GFDL-ESM2M historical, https://doi.org/10.1594/WDCC/CMIP5.NGEMr8 for GFDL-ESM2M

rcp85, https://doi.org/10.1594/WDCC/CMIP5.MOGEhi for HadGEM2-ES historical, https://doi.org/10.1594/WDCC/CMIP5.MOGEr8 for

HadGEM2-ES rcp85, https://doi.org/10.1594/WDCC/CMIP5.IPILhi for IPSL-CM5A-LR historical, https://doi.org/10.1594/WDCC/CMIP5.

IPILr8 for IPSL-CM5A-LR rcp85, https://doi.org/10.1594/WDCC/CMIP5.MIM5hi for MIROC5 historical, and https://doi.org/10.1594/

WDCC/CMIP5.MIM5r8 for MIROC5 rcp85.20
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