10

15

20

Flex_extract v7.1.2 — A software package to retrieve and prepare

ECMWEF data for use in FLEXPART
Anne Philipp!?, Leopold Haimberger', and Petra Seibert?

'Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria
2 Aerosol Physics & Environmental Physics, University of Vienna, Vienna, Austria
3Institute of Meteorology, University of Natural Resources and Life Sciences, Vienna, Austria

Correspondence: Anne Philipp (anne.philipp@univie.ac.at)

Abstract. Flex_extract is an open-source software package to efficiently retrieve and prepare meteorological data from the
European Centre for Medium-Range Weather Forecasts (ECMWF) as input for the widely-used Lagrangian particle dispersion
model FLEXPART and the related trajectory model FLEXTRA. ECMWF provides a variety of data sets which differ in a
number of parameters (available fields, spatial and temporal resolution, forecast start times, level types etc.). Therefore, the
selection of the right data for a specific application and the settings needed to obtain them are not trivial. Consequently, the
data sets which can be retrieved through flex_extract by both member-state users and public users as well as their proper-
ties are explained. Flex_extract 7.1.2 is a substantially revised version with completely restructured code, mainly written in
Python3, which is introduced with all its input and output files and an explanation of the four application modes. Software
dependencies and the methods for calculating the native vertical velocity 7, the handling of flux data and the preparation of
the final FLEXPART input files are documented. Considerations for applications give guidance with respect to the selection
of data sets, caveats related to the land-sea mask and orography, etc. Formal software quality-assurance methods have been
applied to flex_extract. A set of unit and regression tests as well as code metric data are also supplied. A short description of
the installation and usage of flex_extract is provided in the Appendix. The paper points also to an on-line documentation which

will be kept up-to-date with respect to future versions.

1 Introduction

The widely used off-line Lagrangian particle dispersion model (LPDM) FLEXPART (Stohl et al., 1998; Stohl et al., 2005;
Pisso et al., 2019) and its companion, the trajectory model FLEXTRA (Stohl et al., 1995; Stohl and Seibert, 1998), require
meteorological data in GRIB format as input. A software package, flex_extract, is provided to retrieve and prepare these data
from the Meteorological Archival and Retrieval System (MARS) of the European Centre for Medium-Range Weather Forecasts
(ECMWEF) to run FLEXPART. Because of specific requirements of FLEXPART and FLEXTRA and the variations between the
various ECMWF products, this is a complex task.

After the retrieval of the meteorological fields, flex_extract calculates, if necessary, the vertical velocity in the native coor-
dinate system of ECMWEF’s Integrated Forecast System (IFS), the so-called hybrid coordinate (Simmons and Burridge, 1981);

furthermore, it calculates approximate instantaneous fluxes from the accumulated flux data provided by the IFS (precipitation

25

30

35

40

45

50

55

and surface fluxes of momentum and energy). It also takes care of packaging and naming the fields as expected by FLEXPART
and FLEXTRA. The retrieval software is an integral part of the FLEXPART / FLEXTRA modelling system which is needed
by users who apply the main branch based on the ECMWF meteorological fields (Pisso et al., 2019).

Flex_extract is an open-source software package with a history starting in 2003 which has undergone adaptations and ex-
tensions ever since. After the release of version 7.0.2, which was very specific as it could retrieve data only from a subset of
ECMWF’s products, the demand for additional data sources and to adapt to new versions of ECMWF’s software packages
arose. Unfortunately, the existing code was not very flexible and thus difficult to maintain and expand. User friendliness was
insufficient, as knowledge about flex_extract’s driving parameters, the various ECMWF data sets, and their interaction was ex-
pected from users; with the increasing popularity of the FLEXPART model, improvements were necessary also in this respect.
One of the priorities was to enable the extraction of fields from the reanalysis data sets ERAS and CERA-20C. Additionally, the
need for retrieving ensemble members in combination with forecast products arose. A recently developed new algorithm for
disaggregation of the precipitation fields (Hittmeir et al., 2018) to improve the wet deposition calculation in FLEXPART should
also be considered. With respect to ECMWEF software packages on which flex_extract depends a package called ecCodes
replaced GRIB—APT for decoding and encoding GRIB messages.

Recently, ECMWEF opened the access to selected reanalysis data sets for non-member-state users, so-called public users
from anywhere in the world, while previously only users with a member-state account could access the data. Along with this
change, two new web interfaces (ECMWEF’s Web API and the Copernicus Data Service [CDS] Web API) were introduced,
which allow to download data without direct access to ECMWF servers. This required a further adaptation, so that flex_extract
can now be used also on a local host in combination with these APIs for both member-state and public users.

All these developments led to the new and totally revised version 7.1.2 (also referred to as 7.1 henceforth) of flex_extract
introduced in this software description paper. It constitutes a more significant change of the code base than one might expect
from the version number increment. The code was modularised in order to implement software quality standards and as a
prerequisite of the extension of the functionality. A more comprehensive set of test cases was developed, the documentation
was significantly enhanced with more details. A big step forward was thus achieved in terms of user friendliness.

This paper contains the first documentation of flex_extract published in open literature.
1.1 FLEXPART and FLEXTRA

The FLEXible PARTicle model (FLEXPART) is one of the most widely used Lagrangian particle dispersion models (LPDM)
for multi-scale atmospheric transport studies (Stohl et al., 1998; Stohl et al., 2005; Pisso et al., 2019) with a world-wide
user base. It is an open-source model under the GNU General Public Licence (GPL) Version 3. As an off-line model, it
requires meteorological fields (analysed or forecast) as input. Such data are available from numerical weather prediction (NWP)
models and thus several model branches have been created for input from different models (Pisso et al., 2019). The main
branch of the FLEXPART model is able to use data from the ECMWEF’s IFS and the US National Centers for Environmental
Prediction’s (NCEP) Global Forecast System (GFS). The software package flex_extract supports the extraction of ECMWF/IFS

data, considered to be the most accurate data source, as ECMWEF is one of the leading global weather forecast centres and

60

65

70

75

80

85

90

provides data on model-level and at high time resolution. As an LPDM, FLEXPART solves a Langevin equation for the
trajectories of computational particles under the influence of turbulence (stochastic component) and quantifies changes to the

trace substance mass or mixing ratio represent by these particles due to various processes.

Applications include a wide range of topics, such as air pollution, natural and man-made atmospheric radioactivity, stratosphere-

troposphere exchange, and atmospheric water cycle studies and airflow patterns. With the domain-filling mode the entire at-
mosphere can be represented by particles representing an equal share of mass.

FLEXTRA is a model that calculates simple trajectories as a function of fields of the mean 3D wind (Stohl et al., 1995;
Stohl and Seibert, 1998). FLEXPART is based on it and some code goes back to the same original routines from FLEXTRA.
FLEXTRA ingests the same input fields in GRIB format as FLEXPART, thus it may be considered as a companion model. It
is also free software and can be downloaded as well from the FLEXPART community web site.

Both FLEXTRA (v5.0) and FLEXPART (v9.02) can be used from within ECMWF’s Metview software (ECMWF, 2019m).

1.2 The history of flex_extract

When the FLEXTRA model was developed in the 1990s, one aim was to optimise its accuracy by avoiding unnecessary vertical
interpolation. Therefore, it was implemented to directly use the three-dimensional wind fields on the IFS model levels rather
than fields interpolated to pressure levels as most other off-line trajectory and particle dispersion models do (Stohl et al.,
1995; Stohl and Seibert, 1998). This also solves the issue of the lower boundary conditions over topography (trajectories
should not intersect the surface) in an optimum way. The IFS model uses a hybrid coordinate system, terrain-following near
ground and approaching a pressure (p) based coordinate towards the model top; the vertical coordinate is called 7 and thus the
corresponding native vertical velocity is 7).

At that time, most ECMWEF/IFS model fields were available on n-levels, however, 1 was not routinely stored in the MARS
archive. Thus, a pre-processing tool was needed to calculate accurate 1 values from available fields. A second motivation
was the need of a chemical transport model (POP model, see Wotawa et al. (1998)) coupled with FLEXTRA and later on
FLEXPART for instantaneous surface fluxes (latent and sensible heat, surface stresses, precipitation) instead of accumulated
values of these fluxes as stored in MARS.

When the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO) started to use FLEXPART operationally, it be-
came necessary to adapt the extraction software (consisting of Korn shell scripts and Fortran programmes for the numerically
demanding calculation of 7)) such that it could be incorporated into ECMWF’s automatic data dissemination system. This
became the first numbered version of flex_extract, v1, released in 2003. In version 2 (2006), it became possible to extract
sub-regions of the globe and the Fortran code was parallelised with OpenMP. In Version 3, the option to use 7 from MARS,
which became available for some forecast products from 2008 on, was introduced. Version 4 was needed to adapt the package
to the then new GRIB2 standard for meteorological fields. Versions 5 and 6 (2013) where adaptations to allow for higher hori-
zontal resolutions and additional data sources, e. g. global reanalysis data. At this time, the Korn shell scripts had become quite

complicated and difficult to maintain.

95

100

105

110

115

120

In 2015, the demand was raised to retrieve fields from long-term forecasts, not only analyses and short-term forecasts. At
this stage, it was decided to rewrite flex_extract in Python2. The Python part controls the program flow by preparing korn shell
scripts which are then submitted to ECMWF batch queue to start flex_extract in batch mode. The Fortran program for the
calculation of the vertical velocity, calc_etadot (previously also called CONVERT2 or preconvert), was still used and
called from the Python code. Version 7.0.3 allowed to retrieve CERA-20C and ERAS data, and introduced local retrieval of
MARS data through the ECMWF Web API. Version 7.0.4 enabled the retrieval of multiple ensemble members at a time and
included bug fixes for the retrieval of ERAS and CERA-20C data.

For the current version 7.1.2, the Python part was completely revised by refactoring and modularisation, and it was ported to
Python3. Instead of ECMWF’s GRIB-APT for decoding and encoding GRIB messages, its successor ecCodes was utilised.
The installation process has been simplified. In addition to the ECMWF Web API, also the new CDS API is supported. The
disaggregation of precipitation data offers to alternatively use the new algorithm of Hittmeir et al. (2018) which maintains
non-negativity and preserves the integral precipitation in each time interval. The Fortran part underwent some mostly cosmetic
changes (source format, file names, messages, etc. and a minor bug fix) and an overhaul of the makefiles. The code quality of
flex_extract was improved by adding a first set of unit tests and the introduction of regression tests. A new, detailed on-line

documentation was created with Sphinx / FORD, hosted on the FLEXPART community web site http://flexpart.eu/flex_extract.
1.3 Structure of the paper

Section 2 gives an overview of available ECMWEF data sets and their accessibility for member-state and public user, respec-
tively. The diversity of available data sets, possible combinations of parameter settings, and accessibility is a key piece of
information for users. The code of flex_extract is described in Sect. 3. This is followed by considerations for application in
Sect. 4, and the methods applied for the quality assurance in Sect. 5. The final remarks in Sect. 6 include information support
options for users and plans for future development. The technical instructions for the installation and usage of the software

package are outlined in the Appendix.

2 ECMWEF data

The ECMWF produces reanalysis data sets and global numerical weather predictions in operational service to its supporting
Member States. All data are available to the national meteorological services in the Member States and the Co-operating States.
Some data sets are also publicly available (ECMWF, 2019a). The data are stored in GRIB or BUFR format in MARS (ECMWF,
2019b). The smallest addressable object is a meteorological field or an observation, grouped into logical entities such as “a
forecast”. These entities can be addressed through meta data organised in a tree-like manner. The meteorological fields are
archived in one of three spatial representations: spherical harmonics (mainly model level fields), Gaussian grid (mainly surface

fields, but also some model level fields), or a regular latitude / longitude grid (ECMWEF, 2019b).

http://flexpart.eu/flex_extract

125

130

135

140

145

2.1 Access to ECMWF

For the access to its MARS archive, ECMWF distinguishes two user groups: member-state and public users. Member-state
users have the possibility to work directly on the ECMWF Member State Linux servers as well as via a Web Access Toolkit
(ECaccess) through a Member State gateway server. This mode provides full access to the MARS archive. Nevertheless, there
might be some limitations in user rights, particularly regarding current forecasts and ensemble forecasts. Member-state user
accounts are granted by the Computing Representative of the corresponding Member State. Public users access the ECMWF
public data sets directly from their local facilities, anywhere in the world. The main differences to the member-state users are
the method of access — through a Web API — and the limited availability of data. Public users have to explicitly accept the
licence for the data set to be retrieved. Member-state users may also access data via a Web API, without a gateway server, in
the same way as public users. The only difference is that different MARS databases are utilised. Flex_extract automatically
chooses the correct ones.

Users can explore the availability of data in MARS via a web interface where they are guided through a stepwise selection of
meta data. With this method, it is also possible to estimate the download size of a data set before actually retrieving it through
flex_extract. There is a web interface “MARS Catalogue” for member-state users! with the full content and an interface “Public
data sets” for public users? with the subset of public data. The availability of data can also be checked by MARS commands
on ECMWEF servers. MARS commands® are used by flex_extract to retrieve the data on ECMWF servers.

2.2 Data sets available through flex_extract

ECMWEF has a large variety of data sets varying in model physics, temporal and spatial resolution as well as forecast times.
Only the subset of data which are most commonly used with FLEXPART can be retrieved through flex_extract. The accessible

data sets are:

1. The operational deterministic atmospheric forecast model (DET-FC), nowadays called atmospheric high-resolution fore-

cast model (HRES),
2. the operational atmospheric ensemble forecast (ENS),
3. the ERA-Interim reanalysis,
4. the CERA-20C reanalysis, and
5. the ERAS reanalysis.

Public users have access to the public version of ERA-Interim (Berrisford et al., 2011), CERA-20C (Laloyaux et al., 2018) and
ERAS5 (Hersbach et al., 2020) reanalysis.

Uhttps://apps.ecmwf.int/mars-catalogue/; Last accessed: 17.08.2019
Zhttps://apps.ecmwf.int/datasets/; Last accessed: 17.08.2019
3https://confluence.ecmwf.int/display/UDOC/MARS+command-+and+request+syntax; Last accessed: 17.08.2019

https://apps.ecmwf.int/mars-catalogue/
https://apps.ecmwf.int/datasets/
https://confluence.ecmwf.int/display/UDOC/MARS+command+and+request+syntax

150

155

160

165

170

175

180

The retrievable data sets are identified by the key meta data listed in the “Identification” section of Table 1. The relevant data
period for each data set is also listed. Furthermore, the table presents the available temporal and spatial resolution as well as
the number of ensemble members (may change in the future for the operational data). The availability of 7 is important for the
mode of preparing the vertical velocity fields (see Sect. 3.7) and is therefore marked for accessibility as well. With the current
operational data, a temporal resolution of 1 h can be established with a well-selected mix of analysis and forecast fields (see
Sect. 4). The horizontal grid type refers to the spatial representation. Table 4 provides the relationship between corresponding
spectral, Gaussian and latitude / longitude grid resolutions.

In this paper, we collect the essential changes in forecast steps and spatial resolution since the first IFS release, as they need
to be known for using flex_extract. Table 2 lists the evolution of horizontal and vertical resolutions for all operational data
sets. The evolution of the forecast steps and the introduction of additional forecast times in “DET-FC” and “ENS-CF” are
summarised in Table 3.

The reanalysis data sets are naturally more homogeneous. Nevertheless, they all have their individual characteristics, making
the selection process with flex_extract complex. Table 1 provides an overview of the main differences in the reanalysis meta
data. ERA-Interim has a 3-hourly resolution with an analysis and forecast field mix in the full access mode but only a 6-
hourly resolution for public users. It lacks the 7 fields which makes the retrieval of ERA-Interim computationally demanding
(Sect. 3.7). The ERAS and CERA-20C reanalyses can be retrieved with 1 h resolution and include ensembles; however, ERAS
ensemble members are not yet retrievable with flex_extract and therefore omitted in the tables. Even though the availability
of 1-hourly analysis fields means that forecast fields are not required for most of the variables, accumulated fluxes are only
available as forecasts. One should also pay attention to different forecast start times in both data sets and the complication
implied by forecasts starting from 18 UTC as the date will change until the subsequent start time; see also Sect. 3.6.

With the establishment of the Copernicus Climate Change Service (C3S) in March 2019, a new channel for accessing
ECMWEF reanalysis data, most prominently ERAS (Hersbach et al., 2020), has been opened. At the same time, access to
this data set via the ECMWF Web API was cancelled. While access directly from ECMWF servers is not affected, in local
retrieval modes now one has to submit requests to the Copernicus Climate Data Store (CDS), which uses another Web API
called CDS API; in the background, this API retrieves the public data from dedicated web servers for faster and easier access.
Unfortunately, only surface and pressure level data are available in CDS at the moment; this might change in the future. It is
possible to pass the request for model levels to the MARS archive even through the CDS interface. This is done automatically
since flex_extract is configured to do this. However, experience shows that this access mode is very slow*, thus currently it is

not recommend for member-state users.

3 Software description and methods

The flex_extract software package allows to retrieve and prepare the meteorological input files from ECMWF for FLEXPART

(and FLEXTRA) easily and in an automated fashion. The necessary meteorological parameters to be retrieved are predefined

“https://confluence.ecmwf.int/display/CKB/How+to+download+ERAS; Last accessed: 22.06.2020

https://confluence.ecmwf.int/display/CKB/How+to+download+ERA5

185

190

195

200

205

210

according to the requirements of FLEXPART and the characteristics of various data sets. The post-processing after retrieval
for the calculations of the flux fields (Sect. 3.6) and the vertical velocity (Sect. 3.7) is also included.

The actions executed by flex_extract (also called “the software package” henceforth) depend on the user group (see Sect.
2.1), the location of execution, and the data to be retrieved. There are three possible locations of execution, namely the ECMWF
Member State Linux servers, the Member State Gateway server, or a local host. As not all combinations are possible, a total
of four different application modes results which are described in Sect. 3.1. Because of the dependencies of flex_extract,
the respective application environments need to be prepared in different ways as described in Sect. 3.2. The software package
comprises a Python part for the overall control of the processing, including the data extraction, a Fortran part for the calculation
of the vertical velocity, korn-shell scripts for batch jobs to run on ECMWEF servers, and bash shell scripts as a user-friendly
interface to the Python code. Available settings and input files are described in Sect. 3.4. The output files are divided into
temporary files (Sect. 3.8) which are usually deleted at the end and the final output files (Sect. 3.9) which serve as FLEXPART
input. An overview of the program structure and the work flow together with an example is given in Sect. 3.3.

The structure of the flex_extract root directory is presented in Table 5; it is completely different than in previous versions.
The installation script setup. sh is directly stored under the root directory together with basic information files. Source
contains all Python and Fortran source files, each in a separate directory. Flex_extract works with template files, stored in
Templates. The on-line documentation is included in Documentation so that it can also be read off-line. The actual
work by users takes place in the Run directory. There are the CONTROL_ * files in the Cont rol directory, the korn shell job
scripts in Jobscripts and, in the case of applying the local mode, also a Workspace directory where the retrieved GRIB
files and final FLEXPART input files will be stored. The ECMWF_ENV file is only created for the remote and gateway mode;
it contains the user credentials for ECMWF servers. The run.sh and run_local. sh scripts are the top-level scripts to
start flex_extract. Like in the previous versions, users can also directly call the submit . py script. There is also a directory
For_developers which contains the source files of the on-line documentation, source files for figures, and sheets for

parameter definitions.
3.1 Application modes

Arising from the two user groups described in Sect. 2.1 and the three possible locations of application, three different user
application modes are defined, namely “remote”, “gateway” and “local” mode. However, the local mode is further split in the
“local member” and the “local public” mode. A summary of the necessary registration method per mode and user group is

outlined in Table 6. An overview of locations and modes is sketched in Figure 1 and a definition is given in the following list:

Remote (member) Users work directly on ECMWF Linux Member State servers, such as ecgate or cca/ccb. The soft-
ware will be installed and run in the users $HOME directory. Users do not need to install any of the additional library pack-
ages mentioned in Sect. 3.2 since ECMWF provides everything with an environment modules framework. Flex_extract

takes care of loading the necessary modules.

215

220

225

230

i R
/ Public

user

Member-
state user

A

V-

ECMWF Access Access Access
’:AC;;SSS WebAPI [public ERAS in g::ii‘:s' public ERA5
Services datasets MARS dataset

Local H) Public
| JAtEWAY | Archive datasets
server catalogue

ECMWF server

Figure 1. Schematic overview of access methods to the ECMWF MARS archive implemented in flex_extract.

Gateway (member) This mode is recommended in the case a local Member State Gateway server is in place (ECMWF,
2019j) and the user has a member-state account. Job scripts would then be prepared locally (on the gateway server) and
submitted to the ECMWF Linux Member State server via the ECMWF web access toolkit ECaccess. The actual data
extraction and post-processing is then done at the ECMWEF servers and the final data are, if selected, transferred back to
the local gateway server. The installation script of flex_extract must be executed at the local gateway server. However,
this will install flex_extract in the users $HOME directory on the ECMWF server and some extra setup is done in the
local gateway version. For instructions about establishing a gateway server, please consult ECMWF (2019j) directly. The

necessary software environment has to be established before installing flex_extract.

Local member Member-state users work on their local machines which require a similar software environment as the one on

ECMWEF servers plus the provided Web API’s as the interface for the MARS archive.

Local public Public users can work on their local machines, having fulfilled the software dependencies and having added the
ECMWF Web API and the CDS API as the interfaces to the public MARS archive. In this case, a direct registration
at ECMWF and CDS is necessary, and all users have to accept a specific licence agreement for each data set which is

intended to be retrieved.

3.2 Software dependencies

Software required to run flex_extract depends on the application mode. Basic requirements for all application modes are listed
in Table 7. The local mode requires in addition Python packages ecmwf-api-client and/or cdsapi, depending on the
data set to be retrieved, to connect to the MARS archive as Table 6 shows. Users should make sure that all dependencies are
satisfied before starting the installation. Flex_extract is tested only in a GNU/Linux environment, although it might be possible

to use it also under other operating systems.

235

240

245

250

255

260

3.3 Program structure
The work of flex_extract can be decomposed into the following three separate tasks:

1. Setting the parameters controlling the retrieval and the data set:
Reading of the CONTROL file, command-line arguments, and ECMWF user credential file (in the case of remote or
gateway mode). Depending on the application mode, flex_extract prepares a job script which is sent to the ECMWF

batch queue, or proceeds with the tasks 2 and 3.

2. Retrieve data from MARS:
MARS requests are created in an optimised way (jobs split with respect to time and parameters) and submitted. Retrieved
data are arranged in separate GRIB files. If the parameter REQUEST was set to 1, the request is not submitted and only

afilemars_requests.csv is created. If it is set to 2, this file is created in addition to retrieving the data.

3. Post-process retrieved data to create final FLEXPART input files:
After all data are retrieved, flux fields are disaggregated, and vertical velocity fields are calculated by the Fortran program
calc_etadot. Finally, the GRIB fields are merged into a single GRIB file per time step with all the fields FLEXPART

expects. Depending on the parameter settings, file transfers are initiated and temporary files deleted.

In task 1, the execution of the code depends on the application mode. In the case of remote or gateway mode (see also Fig. 2),
the job script for the ECMWF batch system is prepared and submitted to the batch queue. The program finishes with a message
to standard output. In the case of the local application mode, the work continues locally with tasks 2 and 3, as illustrated in
Figure 3.

Figure 4 demonstrates the involved input files, execution scripts and connection methods as well as the locations where each
step takes place.

The remote and gateway mode both create a job script using the command-line parameters and the content of the specified
CONTROL file and then send it to an ECMWF batch queue. In remote mode this happens on an EMCWF server while the
gateway mode uses the local gateway server for the creation and submission of the job. As the job script is executed from
whichever of the two modes, it creates the job environment (in particular, the working directory) and starts submit .py to
retrieve and post-process the data. Note that this locally started instance of submit .py triggers the work flow of the local
mode but uses the MARS client to extract the requested fields from the database. The final output files are sent to the local
member-state gateway server only if the corresponding option was selected in the CONTROL file. When flex_extract is used on
a local host and in local mode, fields are extracted from MARS using one of the Web API’s (which sends HTTP requests to
ECMWEF/CDS) and are received by the local host without storage on ECMWF servers.

setup_controldata

False

Figure 3 applies

operational =
None

False

start-date <=
end-date

job chunk = None

. . adapt end date
create dates with env vars make jobscript
¢ L . make jobscript
make operational jobscript submit jobscript ¢
¢ l submit jobscript
submit jobscript / print "The job id is: XXX" / +

l /print "The job id is: XXX“/
/print"Thejob id is: xxx"/ ‘

adapt start date
f'\‘

> <

/ print "You should get an email per job with subject flex.hostname.pid" /

v

/print "FLEX_EXTRACT JOB SCRIPT IS SUBMITTED!" /

normal_exit

End

Figure 2. Flow diagram for the remote and gateway mode. A job script is created and submitted to the batch queue on an ECMWF server.
The job script will then be executed on the ECMWEF server to start flex_extract again for retrieving and post-processing of the data. The
branch indicated by queue = None refers to the work flow shown in Figure 3. Trapezoidal boxes mark standard output, simple rectangles

mark the execution of sequential instructions, and the rectangles with a side border mark the execution of subroutines. The boxes in diamond
form indicate decisions.

10

265

270

275

280

285

3.4 Input files
3.4.1 The CONTROL file

Flex_extract needs a number of controlling parameters. They are initialised by flex_extract with their default values and will
be overwritten by the settings in the CONTROL file. Only those parameters which deviate from the default values have to be
provided. It is necessary to understand these parameters and to set them to proper and consistent values. They are listed in
Table 8 with their default values and a short description. More detailed information, hints about the conditions of settings, and
possible value ranges are available in the supplemental material, partially in Sect. 4 and the on-line documentation.

Regarding the file content, the first string in each line is the parameter name, the following string(s) (separated by spaces) are
the parameter values. The parameters may appear in any order, with one parameter per line. Comments can be added as lines
beginning with #-sign, or after the parameter value. Some of these parameters can be overruled by command-line parameters
provided at program call.

The naming convention is CONTROL_<dataset>[.optionalIndications], wherethe optionalIndications
is an optional string to provide further characteristics about the retrieval method or the data set. See Sect. 4 for more details

and examples.
3.4.2 User credential file ECMWF_ENV

In the remote and gateway mode, flex_extract sends job scripts to the batch system of an ECMWF server, thus it is necessary
to provide the user and group name which are given in file ECMWF_ENV. Additionally, this file provides the name of the local
member-state gateway server and the destination so that unattended file transfer’ (ect rans) between ECMWF and member
gateway servers can be used. The destination is the name of the so-called ect rans association; it has to exist on the local

gateway server.
3.4.3 Template files

Some files are highly variable depending on the setting in the other input files. They are created during run time by using
template files. The templates are listed in Table 10. Flex_extract uses the Python package genshi to read the templates and
substitute placeholder by values. These placeholders are marked by a leading $ sign. In the case of the korn shell job scripts,
where (environment) variables are used, the $ sign needs to be escaped by an additional $ sign. Usually, users do not have to

change these files.

Shttps:/confluence.ecmwf.int/display/ECAC/Unattended-+file+transfer+-+ectrans; Last accessed: 09.09.2019

11

https://confluence.ecmwf.int/display/ECAC/Unattended+file+transfer+-+ectrans

290

295

300

305

310

315

3.5 Executable scripts
3.5.1 Installation

The shell script setup . sh, which is located in the root directory of flex_extract, installs flex_extract. It defines the installation
parameters which are defined in Table 9 and Table 11 and applies some plausibility checks before it calls the Python script
install.py. The Python script does the installation depending on the selected application mode. In the case of remote and
gateway mode, the ECMWE_ENV file is created, the job script template submit job.template is prepared and stored in
the Templates directory and the korn shell script for compiling the Fortran source code compilejob.ksh is created.
After these preparations, a tar ball with the core content is created and copied to the target location (ECMWF server or
local installation path). Next, the compilejob.ksh is submitted to the batch system of ECMWF servers via ECaccess
commands, or just untar-ed at the local target location. It compiles the Fortran code, prepares the work environment at ECMWF

servers and, in the case of remote/gateway mode, a log file is sent to the user’s email address.
3.5.2 Execution

The shell script run.sh or run_local. sh starts the whole procedure by calling the Python script submit .py with
predefined command-line arguments (see Table 12) from a user section. The Python script constitutes as the main entry point
and controls the program flow including the call of the Fortran program. Some of the parameters in run. sh are only needed
at the time of the program call, while others are also defined in the CONTROL file. In this case, the values in run. sh take
precedence over those from the CONTROL file.

The submit . py script interprets the command-line arguments and, based on the input parameter QUEUE, it decides which
application mode is active. In local mode, data are fully extracted and post-processed, while in the remote and gateway mode, a
korn shell script called job . ksh is created from the template submit job.template and submitted to the ECMWF batch
system. In case of the gateway mode, this is done via the local gateway server. The job script sets necessary directives for the
batch system, creates the run directory and the CONTROL file, sets some environment variables (such as the CONTROL file
name) and executes flex_extract. The standard output is collected in a log file which will be sent to the users’ email address in
the end. The batch system settings are fixed and they differentiate between the ecgate and the cca/ccb server systems to
load the necessary modules for the environment when submitted to the batch queue. The ecgate server has directives marked
with SBATCH® for the SLURM workload manager, the high performance computers cca and ccb have PBS’ comments for
PBSpro. The software environment dependencies mentioned in Sect. 3.2 are fulfilled by loading the corresponding modules. It

should not be changed without further testing.

Shttps://confluence.ecmwf.int/display/UDOC/Writing+SLURM-+jobs; Last accessed: 10.09.2019
"https:/confluence.ecmwf.int/display/UDOC/Batch+environment%3A++PBS; Last accessed: 10.09.2019

12

https://confluence.ecmwf.int/display/UDOC/Writing+SLURM+jobs
https://confluence.ecmwf.int/display/UDOC/Batch+environment%3A++PBS

320

325

330

335

340

345

3.6 Disaggregation of aggregated flux data

FLEXPART interpolates meteorological input data linearly to the position of computational particles in time and space (Stohl
et al., 1998; Stohl et al., 2005). This method requires point values in the discrete input fields. However, flux data from ECMWF
(as listed in Table 13) represent cell integrals and are accumulated over a time interval which depends on the data set. A pre-
processing scheme is therefore applied to convert the accumulated values to point values valid at the same times as the main
input fields while conserving the integral quantity with FLEXPART’s linear interpolation.

The first step is to de-accumulate the fields in time so that each value represents an integral in (z, y, t)-space. Afterwards, a
disaggregation scheme is applied. While the horizontal cell values are simply ascribed to the cell centre, with respect to time,
a more complex procedure is needed because the final values should correspond to the same time as the other variables. In
order to be able to carry out the disaggregation, additional flux data are retrieved automatically for one day before and one day
after the period specified. Note that these additional data are temporary and used only for disaggregation within flex_extract.
They are not contained in the final FLEXPART input files. The flux disaggregation produces files named £ 1uxYYYYMMDDHH,
where YYYYMMDDHH is the date. Note that the first and last two flux files do not contain any data. Note that for operational
retrievals which use the BASETIME parameter, forecast fluxes are only available until BASETIME, so that interpolation is not
possible in the last two time intervals. This is the reason why setting BASET IME is not recommended for regular on-demand

retrievals.
3.6.1 Disaggregation of precipitation in older versions

In versions 7.0.x and before, a relatively simple method was applied to process the precipitation fields, consistent with the
linear temporal interpolation applied in FLEXPART for all variables. At first, the accumulated values are divided by the
number of hours (i.e., 3 or 6). For the disaggregation, precipitation sums of four adjacent time intervals (pq, Py, Dc, Pq) are used
to generate the new instantaneous precipitation (disaggregated) value p which is output at the central point of the four adjacent
time intervals:

0.5 pp for p, +p. =0

Pac = (1)

piberpcc for pa +pe >0

0.5 p. for pp, +pqg =0

Pbd = . ()
m fOr Pb +pd > 0
D = Pac + Pbd (3)

The values p,. and pq are temporary variables. The new precipitation value p constitute the de-accumulated time series used
later in the linear interpolation scheme of FLEXPART. If one of the four original time intervals has a negative value, it is
set to 0 prior to the calculation. Unfortunately, this algorithm does not conserve the precipitation within the interval under

consideration, negatively impacting FLEXPART results as discussed by Hittmeir et al. (2018) and illustrated in Figure 5.

13

350

355

360

365

370

Horizontally, precipitation is given as cell averages. The cell midpoints coincide with the grid points at which other variables

are given, which is an important difference to the temporal dimension. FLEXPART uses bilinear interpolation horizontally.
3.6.2 Disaggregation for precipitation in version 7.1

Due to the shortcomings described above, a new algorithm was developed by Hittmeir et al. (2018). In order to achieve the
desired properties (Hittmeir et al., 2018, p. 2513), a linear formulation with two additional supporting points within each
interval is used. The current version of flex_extract implements this algorithm for the temporal dimension. Figure 6 shows how
these requirements are fulfilled in the new algorithm for the simple case presented in Figure 5.

Flex_extract allows to choose between the old and the new disaggregation method for precipitation. In the latter case, the
two additional sub-grid points are added in the output files. They are identified by the parameter STEP which is O for the
original time at the left boundary of the interval, and, respectively, 1 and 2 for the two new sub-grid points. Filenames do not
change. FLEXPART up to version 10.4 cannot properly handle this input files generated with the new disaggregation scheme;
they would use the third field (second additional sub-grid point in time), which would be worse than using the current method.

One of the next minor versions of FLEXPART (probably version 10.5 or higher) is going to support the scheme.
3.6.3 Disaggregation for the other flux fields

The accumulated values for the other fluxes are first divided by the number of hours, and then interpolated to the times of the
major fields. The algorithm was designed to conserve the integrals of the fluxes within each time interval when reconstructed
with a cubic polynomial. It uses the integrated values F' during four adjacent time intervals (Fy, I, F>, F3) to generate a new,

disaggregated point value F' which is output at the central point of the four adjacent time intervals:

1 7 7 1
F=-gh+phtgh-5F “)

Note that a cubic interpolation was never implemented in FLEXPART. We therefore plan to replace this scheme by an

adaption of the scheme used for precipitation, adapted to the situation where both positive and negative values are possible.
3.7 Preparation of vertical velocity

An accurate representation of the vertical velocity is a key component for atmospheric transport models. One of the consider-
ations for the design of FLEXTRA was to work entirely in the native coordinate system of ECMWF’s IFS model to minimise
interpolation errors. This meant that the same hybrid 1 coordinate (terrain-following near ground, approaching pressure levels
towards the model top) would be used, which implied to use the corresponding native vertical velocity (“etadot”)

_

=3)

rather than the more commonly used ordinary vertical velocity in a simple z-sytem (units of ms~!) or the vertical motion w

of pressure-based systems (unit Pas~1). For reasons that we can’t reconstruct, however, FLEXTRA did not use 7 strictly, but

14

375

380

385

390

395

400

405

rather a quantity

_dndp

= 6

which obviously has units of Pas—!. The code calls this quanitity etapoint, not to be confused with etadot. Even though in
FLEXPART this concept had to be abandoned in favour of a terrain-following z-system to allow a correct implementation of
the Langevin equation for turbulent motion, FLEXTRA and FLEXPART share the same requirement for the vertical motion
with respect to their input. Over many years, ECMWF would store only the post-processed pressure vertical velocity w=dp/dt.
Transforming this back to 7, with approximations and interpolations involved in both operations, leads to vertical velocities that
do not fulfill continuity. Therefore, 1) was reconstructed from the fields of divergence using the continuity equation, integrated
from the model top downward as described in Simmons and Burridge (1981). In the IFS model, dynamical variables are
horizontally discretised by spherical harmonics. It is best to do this on the reduced Gaussian grid that is used in IFS when a
grid-point representation is required.

In September 2008, ECMWEF started to archive the model’s native vertical velocity fields (1)) for the operational analyses
and forecasts. This allowed flex_extract to skip the cumbersome reconstruction and directly use this parameter. The amount
of data that needs to be extracted from MARS, the CPU time and the memory requirements are all reduced substantially. The
ERAS and CERA-20C reanalyses also provide 7). Thus, even though it is possible to use the old method on new data sets, there
is no reason to do so and it would be a waste of resources. It is, however, still kept in flex_extract to allow extraction of data

from the older data sets, in particular ERA-Interim. In the following, the two methods are briefly characterised.
3.7.1 Reconstruction of the vertical velocity using the continuity equation

The most accurate algorithm for the reconstruction of the native vertical velocity requires the extraction of the horizontal
divergence fields and the logarithm of the surface pressure in spectral representation (and thus always global, regardless of the
final domain), their transformation to the reduced Gaussian grid (introduced by Ritchie et al. (1995)), on which the continuity
equation is solved, a transformation back to the spectral space, and finally the evaluation on the latitude-longitude grid desired
by users. Especially for high spectral resolution, this is a compute- and memory-intensive process that also takes time, even
when making use of OpenMP parallelisation. Larger data sets can only be treated on the supercomputer (cca/ccb) but not
on ecgate. The code for these calculations is written in Fortran90.

Alternatively, data can be extracted from MARS immediately on the latitude-longitude grid for the domain desired, and the
continuity equation is then solved on this grid, but this method is not as accurate as the calculations on the Gaussian grid,

particularly for higher spatial resolutions.
3.7.2 Preparation of the vertical velocity using archived 7

If the vertical velocity is available in MARS, it only needs to be multiplied with Op/9n. In the flex_extract version discussed

here, this is done by the Fortran program whose functionality is described below.

15

3.7.3 Short description of the functionality of the calc_etadot code

A dedicated working directory is used where all input and output files are kept. Currently, the files have names of the form
fort .xx where xx is some number.
The control file steering the code is fort . 4 and has the form of a Fortran namelist. An overview of the options set by this

410 namelist is contained in Table 14. The control file is prepared automatically by the Python code, but some of these parameters
appear also as input to the Python part. Note that the selection of the method for obtaining 7 follows the logic laid out in Table
15.

All other input files are data in GRIB format that were retrieved from MARS. The code is using dynamic memory allocation
and thus does not need to be recompiled for different data sets.

415 The code is provided with a set of makefiles. The standard version assumes a typical GNU/Linux environment with the
gfortran compiler and the required libraries: OpenMP for parallelisation which is included in the gcc compiler package
(libgomp), ecCodes for handling GRIB files, EMOSLIB for transformation between the various representations of fields.
Note that the latter two typically require also so-called developer packages containing the Fortran module files. One may
substitute ecCodes by its predecessor GRIB_APTI, if ecCodes is not available. It is assumed that these libraries have

420 been installed as a package from the distribution and thus are at their standard locations and compatible with the gfortran
compiler (if not, the makefile library and include paths need to be adapted). There is one makefile called makefile_fast
with optimisation that is used for production. In addition, there is makefile_debug which is optimised for debugging.
There are also makefiles for the ECMWEF servers cca/ccb and ecgate.

If the program finishes successfully, the last line written to standard outputis SUCCESSFULLY FINISHED calc_etadot:

425 CONGRATULATIONS which is useful for automated checking the success of the run. The output file into which the fields of 1),
and the other three-dimensional variables (temperature, specific humidity, v and v components of the wind — not the recently
introduced cloud water variable) are combined is fort . 15; it is a GRIB file.

The code also foresees options for certain checks where different forms of the vertical velocity are obtained, statistically
compared, and also written out (see Table 14). These options were used for quality control in the development process and

430 should not normally be activated by users.

Currently, the code also unifies the three-dimensional fields extracted from MARS and stored in separate GRIB files with the
calculated vertical velocity by writing out all fields into a single GRIB file; later this is unified with the 2D fields and the new
3D parameters such as cloud water and written out into a final single GRIB file as required by FLEXTRA and FLEXPART.

3.8 Temporary output files

435 These temporary output files are usually deleted after a successful data extraction. They are only kept in debugging mode,

which is the case if the DEBUG parameter is set to true.

16

440

445

450

455

460

465

3.8.1 MARS GRIB files

All extracted meteorological fields from MARS are in GRIB format and stored in files ending with . grb. MARS requests
are split in an optimised way to reduce idle times and considering the limit of data transfer per request. The output from each
request is stored in one GRIB file whose name is defined as <field_type><grid_type><temporal_property>
<level_type>.<date>.<ppid>.<pid>.grb. The field type can be analysis (AN), forecast (FC), 4d variational anal-
ysis (4V), validation forecast (CV), control forecast (CF) and perturbed forecast (PF). The grid type can be spherical harmonics
(SH), Gaussian grid (GG), output grid (OG) (typically lat/lon) or orography (_OROLSM) while the temporal property distin-
guishes between an instantaneous field (__) or an accumulated field (_acc). Level types can be model (ML) or surface level
(SL) and the date is specified in the format YYYYMMDDHH. The last two placeholders are the process number of the parent
process of submitted script (ppid) and the process number of the submitted script (pid). The process IDs are incorporated so

that the GRIB files can be addressed properly in the post-processing.
3.8.2 MARS request file

This file contains a list of the MARS requests from one flex_extract run, with one request per line. This is an optional file users
are able to create in addition to full extraction; it can also be created without actually extracting the data which is useful for test
purposes. Each request consist of the following parameters whose meaning is explained in Table 8, and in more detail in the
supplemental material or are self-explanatory: request number, accuracy, area, dataset, date, expver, Gaussian, grid, levelist,
levtype, marsclass (alias class), number, param, repres, resol, step, stream, target, time and type. The parameters Gaussian
(defines whether the field is regular or a reduced Gaussian grid), levtype (distinguishes between model levels and surface level)

and repres (defines the grid type — SH, GG, OG) are internal parameters not defined as any available input parameter.
3.8.3 Index file

The index file is called date_time_stepRange. idx. It contains indices pointing to specific GRIB messages from one or
more GRIB files so Python can easily loop over these messages. The messages are selected with a predefined composition of

GRIB keywords.
3.8.4 Files with forecast vertical flux data

The flux files, in the format flux<date> [.N<xxx>] [. <xxx>], contain the de-accumulated and disaggregated flux fields
which are listed in Table 13. The files are created per time step with the date being in the format YYYYMMDDHH. The optional
block [.N<xxx>] marks the ensemble forecast, where <xxx> is the ensemble member number. The second optional block
[. <xxx>] marks a long forecast (see Sec. 3.9.2) with <xxx> being the forecast step.

Note that, in the case of the new disaggregation method for precipitation, two new sub-intervals are added in between each
original time interval. They are identified by the forecast step parameter STEP which is O for the original time interval and 1

or 2 for the two new intervals respectively.

17

470

475

480

485

490

495

3.8.5 fort. *files

There are a number of input files for the calc_etadot Fortran program named fort . xx, where xx is the number which
defines the meteorological fields stored in these files. They are generated by the Python part of flex_extract by just splitting
the meteorological fields for a unique time step from the » . grb files. Table 16 explains the numbers and the corresponding
content. Some of the fields are optional and are retrieved only with specific settings, for example the divergence is retrieved
only if 7 is not available in MARS, and the total cloud water content is an optional field for FLEXPART v10 and newer. The
output of calc_etadot is file fort.15.

3.9 Final output — FLEXPART input files

The final output files are the FLEXPART input files containing the meteorological information. FLEXPART expects one
file with all relevant fields per time step. Table 17 and 18 list all of the meteorological fields that flex_extract retrieves and
FLEXPART expects. The naming of these files depends on the extracted data. In the following sections we describe the

differences and how the filenames are built.
3.9.1 Standard output files

The standard file names have the format <prefix>YYMMDDHH, where the <prefix> is by default defined as EN and can
be re-defined in the CONTROL file. Each file contains all fields on all selected levels on a latitude-longitude grid as needed by
FLEXPART. There is one file per time step and YYMMDDHH indicate the date and hour for which the fields are contained in the
file. Analysis and forecast times with their corresponding forecast steps are summarized to the actual times. If not otherwise
stated, model-level fields are in GRIB2 format and surface fields in GRIB1. When CERA-20C data are retrieved, the date
format is changed to YYYYMMDDHH.

3.9.2 Output files for long forecasts

For a long forecast, where only forecast fields are retrieved for more than 23 hours, a different naming scheme has to be applied
to avoid collisions of time steps for forecasts of more than one day. This case is defined as long forecast mode and file names are
defined as <prefix>YYMMDD.HH.<FORECAST_STEP>. The <prefix> is, as in the standard output files, EN by default
and can be re-defined in the CONTROL file. In this case, the date format YYMMDD does not include the hour. The HH represents
the starting time (base time) of the forecast. The FORECAST_STEP is a 3-digit number which represents the forecast step in

hours.
3.9.3 Output files for ensemble predictions

If flex_extract retrieves ensemble members, multiple fields result for each meteorological variable (the ensemble members) at

a single time step. They are distinguished by the GRIB parameter NUMBER. All fields of one ensemble member are collected

18

together in a single file per time step. The standard filenames are supplemented by the letter N for “number” and the ensemble

member number in a 3-digit format such as <prefix>YYMMDDHH .N<ENSEMBLE_MEMBER>.
3.9.4 Additional fields with new precipitation disaggregation

500 The new disaggregation method for precipitation fields produces two additional fields for each time step and precipitation
type. They contain the sub-grid points in the corresponding original time intervals as described above in Sect. 3.6.2. The two
additional fields are marked with the STEP parameter in the GRIB messages, are set to “1”” and “2”, respectively. The output

filenames do not change in this case.

4 Considerations for application

505 Asin earlier versions of the software package, it is still possible to directly start flex_extract with the Python script submit . py.
An overview of its current command-line arguments is available through . /submit.py - -help. Please note that when
flex_extract is started in local mode, the parameter INPUTPATH in the run_local. sh script must be set, so that each
retrieval uses a unique directory to avoid mixing of data files.

There are two more entry points into flex_extract which can be used for debugging; they are described here for the sake

510 of completeness: the Python scripts getMARSdata.py and prepare_flexpart.py. In the standard way of running
flex_extract, they are both imported as modules (as shown in Fig. 3), but they can also be used as executable programs.
The script getMARSdata . py controls the extraction of ECMWF data, while prepare_flexpart . py controls the post-
processing. It may happen that the procedure terminates unexpectedly during the post-processing due to time limits on ECMWF
servers. In this case, the prepare_flexpart .py script can be used to redo the complete post-processing, bypassing the

515 need to retrieve the data from MARS again.
4.1 Example CONTROL files

The file CONTROL . documentat ion provides a collection of the available parameters grouped in sections together with their
default values. Users can start from this file to define their own setup, or use one of the example CONTROL files as a template (in
flex_extract_v7.1/Run/Control/).Foreach data set (see Sect. 2.2), a basic example CONTROL file is provided with
520 some additional variations in, for example, horizontal and temporal resolution, field type, method for vertical velocity or dura-
tion of forecasts.The variations are specified at the end of the file name (CONTROL_<dataset>[.optionalIndications])
as an optional string.
The usage section in the on-line documentation provides more details on how to set the CONTROL file parameters for
specific applications. For example, CONTROL filenames which end with . public are for public users. They have the specific
525 parameter DATASET for CERA-20C and ERA-Interim data sets to identify the public version in MARS. For ERAS, this
parameter is not needed, and thus public users may use any ERAS file for extraction. For the atmospheric high resolution data

sets, indicated by OD, the optional string contains information of the stream (OPER, ENFO, ELDA), the field type of forecasts

19

530

535

540

545

550

555

(FC, CF, CV, PF, 4V), the method for extracting the vertical velocity (eta or gauss), and other aspects such as long forecasts
(36hours), operational half-day retrievals (baset ime or twicedaily), temporal resolution (Lhourly or 3hourly) or

different horizontal resolutions with global vs. limited-area domains (highres).
4.2 Changes in CONTROL file parameters in comparison to previous versions

With version 7.1, all CONTROL file parameters are initialised with default values. Thus, only those which need to be changed
to identify the data set to be retrieved have to be set in the CONTROL file. In earlier versions, each parameter name contained
the leading string M_; this was removed for version 7.1, but is still accepted for compatibility. The grid resolution had to be
provided in 1/1000 of a degree before, while now it can be provided also as a decimal number. Flex_extract is able to identify
the correct setting of the GRID parameter in combination with the domain-specific settings.

It is now also possible to reduce the number of data values for the combination of TYPE, TIME and STEP parameters to the
actual temporal resolution. Previous versions expected to have 24 values per parameter, one for each hour of the day, even if

only 3-hourly data would be requested as shown in the following example:

DTIME 3

TYPE AN AN AN AN ... AN AN AN AN
TIME 00 01 02 03 ... 20 21 22 23
STEP 00 00 00 00 ... 00 00 00 00

The more intuitive solution of providing the data for the time steps to be retrieved leads, in this example, to eight data values

per parameter for a 3-hourly retrieval:

DTIME 3

TYPE AN AN AN AN AN AN AN AN
TIME 00 03 06 09 12 15 18 21
STEP 00 00 00 00 00 00 00 00

or four values for a 6-hourly retrieval

DTIME 6

TYPE AN AN AN AN
TIME 00 06 12 18
STEP 00 00 00 0O

The only necessity is a consistent setting of the DT IME parameter which defines the temporal resolution. For backward com-
patibility, DT IME may be coarser than the number of temporal points provided in TYPE, TIME and STEP, but not finer.
With this version of flex_extract, it is possible to retrieve data sets with analysis fields at every hour (such as ERAS

and CERA-20C); therefore, it was necessary to introduce new parameters related to flux fields defining the forecast type

20

560

565

570

575

580

585

590

(ACCTYPE), time (ACCTIME) and step (ACCMAXSTEP) specifically for the flux fields (accumulated quantities). For daily

ERADS retrievals, which need up to 12 h forecasts twice a day for the flux fields, these parameters would be:

ACCTYPE FC
ACCTIME 06/18
ACCMAXSTEP 12

Several new parameters were introduced which work as switches. Among the more important ones are REQUEST in order to
write the settings in the MARS requests to an output file mars_requests. csv, and CWC to trigger the additional retrieval of
cloud liquid and ice water content. DOUBLEELDA can be used to double the number of ensemble members if only 25 members
are available from the ELDA stream. These additional members are calculated by subtracting from each existing ensemble
member twice the amount of the difference between the ensemble member and the control run. To distinguish between the old
and new precipitation disaggregation scheme, the switch parameter RRINT was introduced. Setting it to 1 indicates that the

new scheme is used; O selects the old scheme
4.3 Scientific considerations

First of all, users should be aware of the different nature of operational and reanalysis data sets (see Table 1). Operational
data are available since the start of ECMWEF’s operational forecasts, and are influenced by frequent changes in the IFS model,
for example with respect to model physics and resolution. Reanalysis data sets were created using a single IFS model version
throughout the whole period covered. More precisely, the CERA-20C data set (with 91 vertical levels, 1.25° horizontal and
3 h temporal resolution) has a lower resolution but covers a very long period (from 1901 to 2010) and will thus be suitable for
certain climate applications. The ERA-Interim data set (with 60 vertical levels, a medium resolution of 0.75° horizontally and
3 h temporally) was the standard ECMWEF reanalysis until recently, but without 7 having been stored in the MARS archive,
making retrievals computationally demanding as it needs to be reconstructed from the horizontal winds through the continuity
equation. The new ERAS5 data set has the highest resolution (0.25° horizontally and 1 h temporally, 137 vertical model levels)
and includes 7). Users are encouraged to use ERAS data rather than the ERA-Interim data set (production ended in August
2019). In addition to its better resolution, ERAS covers a longer period than ERA-Interim, provides uncertainty estimates with
a 10-member ensemble data assimilation, and uses a newer IFS model version (ECMWF, 20191).

With respect to the relation between temporal and spatial resolution, it is important to consider the use in FLEXPART and
their influence on numerical errors. It is not useful to apply high horizontal resolution in combination with, for example, 6-
hourly temporal resolution as in such a case, small fast-moving structures are resolved in space, but their movement will not
be properly represented. Interpolation will not let the structures move, but rather jump from their position at time ¢ to that at
time ¢ + 6 h if the displacement between two subsequent times where fields are available is comparable to or larger than their
characteristic width along to the phase speed. Users can orient themselves looking at the spatial and temporal resolutions at

which ECMWF provides reanalysis data, and the sample CONTROL files.

21

595

600

605

610

615

620

On the other hand, one has to keep in mind the requirements of the FLEXPART application. For a climatological study on
global scales, a horizontal resolution of 0.5° or 1° could be a reasonable choice, whereas tracking point releases in complex
terrain would call for the best available resolution.

Attention should also be paid to the model topography and the land-sea mask. Due to limited resolution, a coastal site with
a given geographical coordinate could be over water in the model. Then it might be better to shift the coordinates of a release
or receptor point in FLEXPART slightly. Another aspect is that the smoothed representation of the topography could mean
that the model topography is above or below the real height of a site. It is therefore important to select the proper kind of z
coordinate in the FLEXPART RELEASES file. As a compromise, one can place a release location at a height between real
and model topography (for mountain sites which are usually lower in the model topography than in reality). In such cases, it
is strongly recommended to retrieve the model topography and land-sea mask manually and investigate them carefully before
deciding on the FLEXPART set-up details, or even before retrieving the full meteorological data set, as one might come to the
conclusion that one with better resolution should be used.

The vertical levels used in FLEXPART follow a hybrid 1 coordinate system. This is much more efficient than pure pressure
levels since hybrid 1 coordinates follow the terrain near ground and approach pressure levels towards the model top. This
allows to easily fulfil the lower boundary condition of a flow parallel to the surface whereas pressure levels do not follow
the terrain (Stohl et al., 2001), while still at higher levels of the atmosphere, where the flows are close to horizontal, strong
vertical motions derived from coordinate transformation are avoided. It also allows better to assign a higher vertical resolution
to the lowest part of the atmosphere. ECMWF data sets either directly provide the 7 variable (set ETA and DPDETA to 1, see
CONTROL files with et a in their names), or include the data needed to reconstruct it (set GAUSS to 1, see CONTROL files with
gauss in their names) accurately. This is a big advantage of ECMWF data compared to other data sources, most notably the
NCEP model data, which are publicly available only on pressure levels.

Attention should be paid to the number of vertical model levels to be extracted and used in FLEXPART, as the computa-
tional cost of the FLEXPART verttransform subroutine (reading and preparing meteorological input) increases with the
third power of the number of vertical levels. Thus, only data that are really needed for the application (e.g. troposphere, or
troposphere and lower stratosphere) should extracted. File CONTROL_OD.OPER.FC.eta.highres.reducedlev, for
example, retrieves a limited domain with high horizontal (0.2°) and 1-hourly temporal resolution with 7) levels up to, approxi-
mately, 100 hPa by setting LEVELIST to 60/T0/137.

Operational data sets and ERA-Interim have analysis fields at 6- or 12-hour intervals (00, (06), 12 and (18) UTC) only.
The gaps inbetween can be filled with forecast fields. Mixing analysis and forecast fields should be done by considering at
which time steps the differences between two IFS run segments will be the smallest. For example, using all four analysis fields
together with forecasts starting at 00 and 12 UTC would lead to undesired changes between 05, 06, and 07 UTC and 17, 18,
and 19 UTC. This should be avoided by using only 00 and 12 UTC analysis fields and the forecast fields for +1 to +11 hours
for the forecasts starting at times 00 and 12 UTC, respectively (note that forecasts from the intermediate analyses at 06 and 18

UTC are not archived). See file CONTROL_OD.OPER.FC.eta.global for an example.

22

625

630

635

640

645

650

655

5 Quality assurance

To assure a certain quality of a piece of software, testing is at least as important as developing the code itself. Adding new
functionalities requires to develop new tests to identify possible bugs, or to show that the code works under specified conditions.
As a consequence, output from the tests conducted with the preceding version can be used to verify that there are no unexpected
side effects. This is called regression testing (Beizer, 1990; Spillner, 2012). As the functionality of the software changes, tests
need to be updated or expanded as well. For this flex_extract version, code refactoring was at the core of the development,
and a number of regression tests were developed for that. In addition, a first set of unit tests (Sect. 5.1), which also serve as a
kind of regression test, have been developed within the refactoring process as they are the established best-practice in software
engineering to investigate small code blocks. Furthermore, we defined test cases to compare the outcome of two flex_extract
versions after three different stages of the retrieval process: (1) the MARS requests prepared (Sect. 5.2), (2) the vertical velocity
obtained with the different options of calculation (Sect. 5.4), and (3) the final output files in GRIB format (Sect. 5.3). In addition,
generic tests were performed by applying flex_extract with predefined CONTROL files (Sect. 5.5) which are distributed with
the software package to serve as examples for the typical applications. Finally, some code metrics were determined to track
quantitative quality aspects of the code. The combination of all of these tests establishes a sustainable testing environment,

which will benefit the future development process. The testing environment is not directly relevant for users of flex_extract.
5.1 Unit tests

Unit tests are used to test the smallest pieces of code (single code blocks) independently to identify a potential lack of functional
specification (Beizer, 1990). Applying unit tests does not guarantee error-free software, rather it limits the likelihood of errors.
Once the tests are written, they serve also as a kind of documentation and to protect against alteration of the functional behaviour
by future code changes (Wolff, 2014). In this sense, they are also a kind of regression test.

For the current version of flex_extract, we prepared a first set of unit tests for functions which were designed or partly
refactored to be testable code blocks. Our intention is to increase the number of unit tests in the future, and to further refactor
some still rather complex functions into smaller ones (see also Sect. 5.6 or the supplemental material for identifying complex

functions).
5.2 Regression testing for MARS requests

The parameters in the MARS requests produced by flex_extract are a key component of the extraction process. Flex_extract
v7.1 contains a test to compare the content of MARS requests as produced by two versions. It checks whether the number of
columns (parameters) in the request files (see Sect. 3.8.2) is unchanged, whether the number of requests is equal, and whether
the content of the request is identical (except for the desired differences and the environment-dependent data such as paths).
The MARS request files for the current version in use are generated automatically at runtime without actually retrieving the
data, while the files for the reference version have to be in place before. Since the MARS request files are grouped by version

and are saved, the number of reference data sets will grow with each new version.

23

660

665

670

675

680

685

5.3 Regression testing for GRIB files

The final product of flex_extract, the FLEXPART input files in GRIB format (see Sect. 3.9), should be equal between the
previous and the current version, apart from the new or modified features. Since there is always a possibility to have tiny
(insignificant) deviations in the actual field values when retrieving at different points in time (changes in the environment,
library versions, computational uncertainties, etc.), the focus of this test lies on the files themselves and the GRIB message
headers which should not be different. Future improvements may also test for value differences considering a significance
threshold.

A regression test was created which compares the GRIB files produced by two versions with respect to the number of files
produced, the file names, the number of GRIB messages per file, the content of the GRIB messages header, and statistical
parameters for the data themselves. If differences are reported, the developer has to judge whether they are expected or indicate

a problem.
5.4 Functionality and performance tests for the Fortran code

Regression tests were set up to reflect the three possibilities for obtaining the vertical velocity 7 listed in Table 15. In addition
to a basic test for each, enriched tests are implemented where all checks and additional outputs are activated (names with
appended all). These tests use a pre-specified small domain (10° x 10°, 11 levels) and low spectral resolution (T159) and
thus run quite fast. As high spectral resolution and a large domain may pose specific problems, and as it will be relevant to watch
the run times, additional high-resolution tests have been created for the gauss and etadot cases with a domain covering
the northern hemisphere and all 137 vertical levels. The gausshigh test uses a grid spacing of 0.25° and the corresponding

spectral resolution of T799; the etadot case uses 0.1° and T1279.
5.5 Generic test using predefined CONTROL files

Flex_extract comes with a set of CONTROL files, which can be found in the flex_extract_v7.1/Run/Control direc-
tory; executing flex_extract with each of them constitutes a generic test which ensures that the data extraction works for all

typical applications.
5.6 Code Metrics

Metrics for the maintainability and complexity of code as well for the documentation are a useful tool for developers who
should aim at maintaining or reaching good scores in these metrics. For the Python code of flex_extract, a number of metrics
were calculated for the previous version 7.0.4 and the current version 7.1. This section summarizes the metrics and their main
findings. More details can be found in the supplemental material.

Basic metrics, taken from Lacchia (2019) and calculated with the Python package radon (Lacchia, 2019), are

— the total number of lines of code (1.OC),

24

690

695

700

705

710

715

the number of logical lines of code (LLOC),

the number of source lines of code (SLOC),

the number of (single) comment lines (comment s),

the number of lines in multi-line comment strings (multi), and

the number of blank lines (b1ank),

with the following relation between these numbers:
LOC = SLOC+multi+ comment +blank. @)

The comparison shown in Table 19 indicates a significant increase not only in the logical lines of code, but even more in
comment and multi, mostly representing an improvement of in-line documentation by splitting large code blocks into
smaller ones, each with a new docstring. A so-called docstring is a specific multi-line comment for the documentation
of functions, methods and classes, describing their input and return values, which can be read by tools for automatic generation
of a separate documentation. The re-factorisation of code blocks, additional code for new features, and compliance with certain
code style rules (e.g., maximum length of lines), about 1000 lines of pure code were added. The ratio of comment lines (multi
+ comment) to source-code lines (SLOC) grew from 20 % to 117 %.

A further metric for code quality is the so-called cyclomatic complexity (CC), also called the McCabe metric (Sneed et al.,
2010). It is equal to the number of linearly independent paths through the control flow graph of the code or the number of
decisions plus one. A lower CC score indicates a lower complexity which is deemed an advantage. Table 20 gives an overview
of the rank definitions. Regarding code testing, CC provides a lower-bound number of how many test cases (unit tests) are
necessary to provide complete path coverage (Beizer, 1990).

In general, it is said that the score should be less or equal 10, corresponding to rank A and B. From the statistical point of
view, only 10.3 % of flex_extract version 7.1 code blocks have higher complexity, while in version 7.0.4 this was the case for
30.8 %.

The mean cyclomatic complexity of all code blocks in the new Python code is 5.74 (B); for those blocks with C to F , it is 21
(C). In version 7.0.4, the corresponding numbers are 13 (C) and 31.86 (E), indicating a substantial improvement. For example,
the class ControlFile was improved significantly, as well as the class renamed from EIFlexpart to EcFlexpart.
On the other hand, the class method deacc_fluxes became more complex in version 7.1. This is mainly due to two new
features, ensemble retrieval and the new disaggregation. Nevertheless, the overall code complexity was reduced.

Another software metric is the maintainability index (MI), where values 0 — 9 indicate low maintainability, 10 — 19 medium,
and 20 — 100 high maintainability.

The index is calculated for a complete Python file. Both Python versions have in general highly maintainable Python files
except FlexpartTools.py in version 7.0.4 with an MI score of 0.0 and EcFlexpart . py in version 7.1 with an MI score

of 10.79.

25

720

725

730

735

740

745

Additionally, we used a source code quality checker program called pylint (Thénault, 2001) which indicates how well
the Python style guide PEP8 (van Rossum et al., 2001) is followed. This tool provides an overall rating index with a maximum
value of 10. According to this tool, flex_extract version 7.0.4 has a rating of -8.77 and version 7.1 a rating of 9.09. This shows

a massive improvement in following the official style guide.

6 Final remarks and outlook
6.1 Conclusions

This paper describes the software package flex_extract v7.1, which retrieves meteorological fields from the ECMWF IFS
model and prepares them for the use in the Lagrangian particle dispersion model FLEXPART. The package was initially
developed in the 1990s and underwent various developments to adapt to changes in the ECMWF environment and the data
set characteristics. In the past two years, ECMWF introduced considerable changes in its software environment for retrieval,
reading and accessing data and also released new data sets. This necessitated a substantial upgrade of flex_extract to adapt to
these changes. Moreover, the user community had new requirements for data retrievals which were considered in this version.
In the development process, substantial refactoring was carried out, the number of retrievable data sets was increased, user-
friendliness was improved, current ECMWF software packages considered, an on-line documentation was built, and a first set
of test cases for future regression testing was created. Furthermore, a recently developed and improved disaggregation method
for precipitation fields was implemented as an option.

The number of groups using FLEXPART grew substantially over the past decade and with the new opportunity of pub-
licly available reanalysis data sets there will likely be even more users interested in trying out and applying FLEXPART for
their research. Alongside with this reference paper, the newly established git repository on the FLEXPART community web
site https://flexpart.eu and the on-line documentation should assist all these users with up-to-date information about changes,

releases of new versions, installation and usage including a documentation useful for future developers.
6.2 Support

FLEXPART has a community web site http:/flexpart.eu, where flex_extract as a pre-processor has its own sub page®. The
web site features a ticket system to report issues or submit feature requests. The tickets can be viewed by anyone; to create
a ticket, registration’ is necessary. There is also a mailing list for discussion among FLEXPART / FLEXTRA users and with
developers, where questions may be asked or experiences be shared, including pre- and post-processing issues. Announcements
for all FLEXPART users, such as new releases, are distributed through the list as well. Future contributions to the code are

welcome; for granting permission of write access to the git repository, communication via email or ticket is necessary.

Shttps://www.flexpart.eu/wiki/FpInputMetEcmwf; Last accessed: 17.08.2019
https://www.flexpart.eu/wiki/RegisteredUser; Last accessed: 17.08.2019

26

https://flexpart.eu
http://flexpart.eu

750

755

760

765

770

775

6.3 Future work

In its current status, the on-line documentation provides a basic reference. In the future, more examples should be provided,
including answers to typical user questions and workarounds for known problems. Information about updates and new releases
will also be implemented in this documentation.

It is also intended to provide for the optional retrieval of meteorological fields needed as input (initial and boundary condi-
tions) for the WRF model to support the FLEXPART-WRF community.

The unification of the various three-dimensional fields into a single file shall be removed from the Fortran code as this is a
simple task that can be fulfilled more efficiently and transparently with ecCodes command-line tools.

The ERAS5 reanalysis has ensemble members stored in the enda stream, but the flux data have a different accumulation
period and therefore are not yet retrievable. It is planned to allow the retrieval of these ensemble members in the future. Up
to now, it is possible to set flex_extract to retrieve fields on the reduced Gaussian grid. This should be extended to include the
octahedral reduced Gaussian grid.

The hybrid vertical velocity 7 is now stored not only for the operational forecasts but also for the new reanalyses, thus the
need to calculate it is diminishing. In future versions of flex_extract, calc_etadot will probably only be called if 7 really
needs to be calculated, not just for multiplying it with Op/0n as this can be done with sufficient efficiency in Python.

The flex_extract software package is currently provided as a compressed tar file. In the future, a package shall be made
available to be installed as a system package for certain GNU/Linux distributions. In this case, only user-specific data will need

to reside in the user directories.

Code and data availability. Flex_extract is a code package consisting of Python scripts, shell scripts and a Fortran program; it is open
software distributed under a Creative Commons (CC-BY-4.0) licence. The latest version of the code (currently 7.1.2) is available through the
flex_extract project webpage (https://www.flexpart.eu/wiki/FpInputMetEcmwf; Last accessed: 09.07.2020) which is part of the FLEXPART
community web site and contains links to the tarball and the git repository; the on-line documentation is also hosted there (https:/www.
flexpart.eu/flex_extract/; Last accessed: 09.07.2020).

The exact version at the time of manuscript submission is archived on Phaidra (https://phaidra.univie.ac.at/view/0:1070149, DOI:10.
25365/phaidra.130), the permanent secure storage of the University of Vienna.

The software package comes with a number of test cases which should be used by developers in the future. Some tests need additional
reference data which have to be downloaded separately from the project web site. The following open-source libraries have to be available in
addition to the libraries mentioned in the installation section in order to run the flex_extract test cases: numpy/scipy (Walt et al., 2011),
pandas (McKinney, 2010), xarray (Hoyer and Hamman, 2017), pytest (Krekel, 2019), mock (Foord and the mock team, 2019). For
the generation of the on-line documentation, the Python package sphinx (Brandl, 2019) is required, and for the documentation of the

Fortran code, FORD'?.

10http://fortranwiki.org/fortran/show/FORD, accessed 20 Dec 2019

27

https://www.flexpart.eu/wiki/FpInputMetEcmwf
https://www.flexpart.eu/flex_extract/
https://www.flexpart.eu/flex_extract/
https://www.flexpart.eu/flex_extract/
https://phaidra.univie.ac.at/view/o:1070149
10.25365/phaidra.130
10.25365/phaidra.130
10.25365/phaidra.130
http://fortranwiki.org/fortran/show/FORD

780

785

790

795

800

The current version 7.1.2 of flex_extract was developed under GNU/Linux and was tested only on this platform. Application under other

operating systems may be possible, but without supported by the developers.

Appendix A: Installation instructions

First of all, download the release version from the FLEXPART community web site. Alternatively, if git is installed on the

target machine, you may clone the latest version of the master branch from the git repository on the community web site.

git clone --single-branch --branch master

https://www.flexpart.eu/gitmob/flex_extract

Currently, flex_extract was only tested for a GNU/Linux environment. The installation process depends on the user group
(see Sect. 2.1) and the application mode (see Sect. 3.1). One should first decide for the modes and then follow the compact
instructions in the corresponding subsections. Shell scripts and Python code snippets mentioned in the Appendix can be found
in the directory Testing/Installation/ after unpacking the tarball. For more details see the instructions in the on-line

documentation.
Al Registration and licences

Table 6 summarizes which registration is required. Follow the given links from the literature to the registration web sites (or
footnotes).

A separate licence has to be accepted for each ECMWF public data set, regardless of the user group. For the ERA-Interim
and CERA-20C datasets this can be done at the web site for “Available ECMWF Public Datasets”!'!. Log in and follow the
licence links on the right side for each data set and accept it. For the ERAS data set this has to be done at the “Climate Data
Store (CDS) web site”!?. Log in and select, on the left panel, product type “Reanalysis” for finding ERAS data sets. Then
follow any link with ERAS to the full data set record, click on tab “Download data” and scroll down. There is a section “Terms
of use” where the “Accept terms” button has to be clicked. The licences for member-state users are accepted by the user when

receiving a so-called “Token”, which generates new passwords for each log in.
A2 System prerequisites
Remote mode

ECMWEF servers provide all required libraries (see Table 7) via an environment modules framework. Flex_extract takes care

of loading the right modules at runtime.

https://confluence.ecmwf.int/display/WEBAPI/Available+ ECMWF+Public+Datasets; Last accessed: 11.11.2019
2https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset; Last accessed: 11.11.2019

28

https://confluence.ecmwf.int/display/WEBAPI/Available+ECMWF+Public+Datasets
https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset

805

810

815

820

825

830

835

Gateway mode

In this mode, access to the ECMWF computing and archiving facilities is enabled through an ECaccess gateway server
on a local member state server. The ECaccess framework is necessary to interactively submit jobs to the ECMWF batch
system and to transfer files between ECMWF and local gateway server. As a consequence, a member state gateway server
has to be established'? and a so-called association'* has to be created to use the ECaccess file transfer service ect rans.
The next step is to create an ECaccess certificate to authorise the file transfers and job submissions. This certificate has to
be renewed periodically (every 7 days). The certificate is created by executing the command ecaccess—certificate-
create on the command-line of the local gateway server and the user is prompted for the ECMWF member-state user name
and a password (generated by a token).

$ ecaccess-certificate-create

Please enter your user-id: example_username

Your passcode: xxx

Additional dependencies on the local gateway server are Python3 and the Python packages NumPy and genshi. Use
the package management system of your Linux distribution which requires admin rights. The installation was tested under
GNU/Linux Debian buster and Ubuntu 18.04 Bionic Beaver. The following installation instructions refer to a Debian-based
system and use apt—get as package manager; of course, other package managers (e. g. aptitude), or other GNU/Linux
distributions can be used as well.

apt-get install python3

apt-get install python3-genshi
apt-get install python3-numpy

Local mode

For the local mode, all software dependencies listed in Sect. 3.2 have to be provided. The installation process is the same for
the member-state and public access modes. Use the package management system of your Linux distribution (requires admin
rights) to establish the dependencies if not already available. Note that for the Python version of ecCodes, a version 2.13.0

or higher is necessary.

apt-get install python3

apt-get install python3-eccodes
apt-get install python3-genshi
apt-get install python3-numpy
apt-get install gfortran
apt-get install fftw3-dev
apt-get install libeccodes-dev
apt-get install libemos-dev

Bhttps://confluence.ecmwf.int/display/ECAC/ECaccess+Home; Last accessed: 31.10.2019
4https://confluence.ecmwf.int/download/attachments/45759146/ECaccess.pdf see page 17 ff. for instructions; Last accessed: 28.10.2019

29

https://confluence.ecmwf.int/display/ECAC/ECaccess+Home
https://confluence.ecmwf.int/download/attachments/45759146/ECaccess.pdf

840

845

850

855

860

865

870

As currently the CDS and ECMWF API packages are not available as Debian packages, they need to be installed outside the
Debian (Ubuntu etc.) package management system. The CDS API (cdsapi) is required for ERAS5 data and the ECMWF Web
API (ecmwf-api-client) for all other public datasets. The recommended way is to use the Python package management

system pip:

apt-get install pip
pip install cdsapi

pip install ecmwf-api-client

Note that if you would like to use Anaconda Python we recommend you follow the installation instructions of Anaconda
Python Installation for Linux and then install the ecCodes package from conda with:
conda install conda-forge::python-eccodes

Both user groups have to provide keys with their credentials for the Web APIs in their home directory. Therefore, follow these

instructions:

ECMWF Web API Go to MARS access web site'> and log in with your credentials. Afterwards, on this site in section “Install
ECMWF KEY” the key for the ECMWF Web API should be listed. Please follow the instructions in this section under

1 (save the key in a file . ecmwfapirc in your home directory).

CDS API Go to CDS API registration'® and register there too. Log in at the cdsapi web site and follow the instructions at

section “Install the CDS API key” to save your credentials in a . cdsapirc file in your home directory.

Since a single retrieval run of flex_extract can take a while, it is recommended to do some basic tests for the local access
method to identify problems with the Web APIs early on. A very simple test retrieval for both Web APIs are enough to be sure
that everything works. For the ECMWF Web API and as a member-state user please use this piece of Python code:

from ecmwfapi import ECMWFService
server = ECMWFService ('mars’)

server.retrieve ({

’stream’ : "oper",

’levtype’ : "sfc",

'param’ : "165.128/166.128/167.128",
’dataset’ : "interim",

"step’ : "o",

"grid’ : "0.75/0.75",

"time’ : "00/06/12/18",

"date’ : "2014-07-01/to/2014-07-31",
" type’ : "an",

'class’ : "ei",

"target’ : "download_erainterim_ecmwfapi.grib"

b

https://confluence.ecmwf.int//display/WEBAPI/Access+MARS; Last accessed: 20.10.2019
16https://cds.climate.copernicus.eu/api-how-to; Last accessed: 25.10.2019

30

https://confluence.ecmwf.int//display/WEBAPI/Access+MARS
https://cds.climate.copernicus.eu/api-how-to

For the ECMWF Web API and as a public user please use that piece of Python code:

875 from ecmwfapi import ECMWFDataServer
server = ECMWFDataServer ()

server.retrieve ({

880 ’stream’ : "enda",
" levtype’ : "sfc",
'param’ : "165.128/166.128/167.128",
’dataset’ : "cera20c",
" step’ ; omon,
885 gria’ :"1./1.",
"time’ : "00/06/12/18",
"date’ : "2000-07-01/to/2000-07-31",
" type’ : "ann,
"class’ : "ep",
890 "target’ : "download_cera20c_ecmwfapi.grib"

})

Extraction of ERAS5 data via CDS API might take time as currently, at the time of publication, there is a high demand for
ERAS data. Therefore, as a simple test for the API, just retrieve pressure-level data (even if that is NOT what we need for
FLEXPART), as they are stored on disk and don’t need to be retrieved from MARS (which is the time-consuming action):

895 Please use this piece of Python code (both user groups) to retrieve a small sample of ERAS pressure levels:
import cdsapi
c = cdsapi.Client ()

900 c.retrieve ("reanalysis—era5-pressure-levels",

{

"variable": "temperature",
"pressure_level": "1000",
"product_type": "reanalysis",
905 "year": "2008",
"month": "O01",
"day": "O1",
"time": "12:00",
"format": "grib"
910 3,

"download_cdsapi.grib™)
An example for retrieving ERAS data from MARS is shown below and can be tested if the code from above worked.
import cdsapi

915 c = cdsapi.Client ()
c.retrieve (' reanalysis—-era5-complete’,

{

"class’ : 'ea’,

31

920

925

930

935

940

945

950

955

"expver’ 1,

! stream’ : ’'oper’,
"type’ : ' fc’,

"step’ : "3/to/12/by/3",
’param’ : 7130.128",
’levtype’ : 'ml’,
’levelist’: ’135/to/1377,
"date’ : 72013-01-01",
"time’ : '06/18",
"area’ : '50/-5/40/5",
"grid’ : 71.0/1.0",

’ format’ : 'grib’,

}, ’'download_era5_cdsapi.grib’)

A3 Building flex_extract
Remote mode

First, log in on one of the ECMWF servers, such as ecgate or cca/ccb. Second, copy the tarfile to the server, untar the

flex_extract release tarball and change into the flex_extract root directory.

scp <localuser>@<localmachine.tld>:</path/to/tarfile> $HOME

cd S$HOME

tar xvf flex_extract_vX.X.tar.gz

cd flex_extract_vX.X

Substitute the <localuser> and <localmachine.t1d> placeholders with your local user name and the IP name or
address of your local machine. Eventually, adapt the parameters (described in Table 11 and 9) in the setup. sh script and

execute it. Flex_extract uses the email address connected to the user account to notify the user about successful or failed

installation.
Gateway mode

The actual execution of flex_extract with retrieval and preparation of the data will be run on ECMWF servers. The only
difference is the preparation of the job script, which is done on the local gateway server and sent to ECMWF servers by the
ECaccess services. Unpack the release tarball and change into its directory. Substitute X . X with the actual release version
number.

tar xvf flex_extract_vX.X.tar.gz

cd flex_extract_vX.X

Afterwards, prepare the setup.sh script by configuring its parameters (described in Table 11 and 9) and execute it. The makefile
has to be selected according to the selection of the target, e.g. ecgate or cca/ccb servers. In this mode the DESTINATION
and GATEWAY parameters have to be set to be able to use the ect rans service. A configuration job script is then sent to the
ECMWEF batch queue and flex_extract uses the email address connected to the user account to notify the user about successful

or failed installation.

32

960

965

970

975

980

985

Local mode

Since flex_extract compiles the Fortran program calc_etadot during the installation process, a corresponding makefile
has to be provided. Flex_extract comes with a prepared makefile for the gfortran (https://gcc.gnu.org/fortran/) compiler. The
makefile assumes that ecCodes and EMOSLIB are installed as distribution packages. It is necessary to adapt the two pa-
rameters ECCODES_INCLUDE_DIR and ECCODES_LIB in these makefiles if other than standard paths are used. Therefore,
if needed, prepare the Fortran makefile for your environment by starting from the makefile makefile_ fast provided and
edit the paths to point to the ecCodes library on your local machine. It can be found at flex_extract_vX.X/Source/
Fortran, where vX. X should be substituted with the current version number. Eventually, adapt the command-line parameters

(described in Table 9 and 11) in the setup . sh script in the root directory of flex_extract and execute it.
A4 Installation test

The most common errors in applying flex_extract arise from wrong installation and settings regarding the libraries for the
Fortran program. Therefore it is useful to do a simple test with a prepared minimal data set. The following instructions have
to be executed on the local system for the local mode and on the ECMWF servers in the remote and gateway mode. From the
flex_extract root directory change into the Testing/Installation/Calc_etadot/ directory and execute the Fortran
program by

cd Testing/Installation/Calc_etadot

execute the Fortran progam

../../../Source/Fortran/calc_etadot

The installation was successful if you obtain on standard output:

STATISTICS: 98842.4598 98709.7359 5120.5385
STOP SUCCESSFULLY FINISHED calc_etadot: CONGRATULATIONS

Note that on ECMWEF servers the flex_extract root directory is placed in the $HOME directory.

Appendix B: Usage instructions

Flex_extract is a command-line tool which can be started by executing the submit . py script in the Python source directory or
more preferably with an upstream shell script run. sh which calls the submit . py script with its corresponding command-

line arguments. Therefore, the user should navigate to the Run directory, where the shell script is located.

cd <path-to-flex_extract_vX.X>/Run

with X.X as the placeholder for the version number. This directory contains all information necessary to run flex_extract.
The only files which might need modifications by the user are the run. sh script and the selected CONTROL file within the

Control directory. This directory contains a sample set of the current range of possible data set retrievals.

33

990

995

1000

1005

1010

1015

1020

1025

This section describes the basic steps to start a flex_extract retrieval within the different modes based on an example. More
details about the usage can be found in Sect. 4 and in the on-line documentation, especially specifics of different data sets and
CONTROL file parameters.

For the first data retrieval it is recommended to use one of the example CONTROL files stored in the Control directory
to avoid unnecessary problems. We recommend to extract CERA-20C data since they are usually not highly demanded and
guarantee quick processing for the best testing experience. In the following, we will provide step-by-step instructions for all
application modes to retrieve a single day (08 September 2000) from the CERA-20C dataset with 3-hourly temporal resolution
and a small domain over Europe with 1° resolution, using CONTROL_CERA [.public].

Remote and gateway modes

For member-state users it is recommended to use the remote or gateway mode, especially for more demanding tasks, to retrieve
and post-process data on ECMWF machines and to transfer only the final output files to the local host. The only difference
between both modes is the location where flex_extract will be started from. In the remote mode we work directly on the
ECMWEF server, therefore login to the ECMWEF server of your choice and change to the Run directory as shown above.
Remember, at ECMWF servers flex_extract is always installed in the $SHOME directory. Within the gateway mode, only a
change into the Run directory of flex_extract on the gateway server is necessary. Otherwise, the rest of the working steps are
the same in both modes. Now, open the run. sh script and modify the parameter block marked in the file as shown below.

The parameters are described in Table 12.

AVAILABLE COMMANDLINE ARGUMENTS TO SET
#
THE USER HAS TO SPECIFY THESE PARAMETERS:

QUEUE='ecgate’
START_DATE=None
END_DATE=None
DATE_CHUNK=None
JOB_CHUNK=3

BASETIME=None

STEP=None

LEVELIST=None

AREA=None

INPUTDIR=None
OUTPUTDIR=None

PP_ID=None

JOB_TEMPLATE=' submitscript.template’
CONTROLFILE='CONTROL_CERA’
DEBUG=0

REQUEST=2

PUBLIC=0

34

This would retrieve CERA-20C data on the ECMWF server ecgate. For the ECMWF cca/ccb servers, the parameter
QUEUE has to be adapted. Since the ect rans parameter in the CONTROL_CERA file is set to 1 the resulting output files will
be transferred to the local gateway into the path stored in the destination, provided that the destination was correctly set-up.
Please note that success of the submission of the ect rans command does not guarantee that the file transfer will succeed.
1030 It means only that the output file has been successfully submitted to the ect rans queueing system. One still has to check
manually in the local directories or with ECaccess tools whether the files reached their final destination. The parameters
listed in the run. sh script would overwrite existing settings from the CONTROL file.
Starting the retrieval process will be done by executing the script by . /run. sh. Flex_extract will print some information

about the job on standard output. If there is no error in the submission to the ECMWEF server a message like this will be shown:

1035 - on-demand mode! ———-
The job id is: 10627807
You should get an email per job with
subject flex.hostname.pid
FLEX_EXTRACT JOB SCRIPT IS SUBMITTED!

1040 Once submitted, the job status can be checked by using the command ecaccess—job-1ist. At the end of the job, the user
should receive an email with a detailed protocol of what was done and if the job was successful.
In case the job failed, the subject will contain the keyword ERROR! and the job name. Then, the user can check the email or
on ECMWEF servers in the $SCRATCH directory for debugging information.
In the $SCRATCH directory on ecgate it is recommended to list the content with 1s —rthl to list the most recent logs
1045 and temporary retrieval directories (usually ext ract XXXXX, where XXXXX is the process id). Under ext ract XXXXX a
copy of the CONTROL file is stored under the name CONTROL, the protocol is stored in the file prot and the temporary files
as well as the resulting files are stored in a directory work. The original name of the CONTROL file can be found within this
new file under parameter controlfile.
If the job was submitted to the High Performance Computer (HPC) (QUEUE is cca or ccb) you may login to the HPC and look
1050 into the directory /scratch/ms/ECGID/ECUID/.ecaccess_do_not_remove for job logs. The working directories
are deleted after job failure and thus normally cannot be accessed.
If the resulting files can not be found in the destination path of the local gateway server, it can be checked if the files are still
to be transferred to the local gateway server by using the command ecaccess—ectrans—1list.
After this test retrieval was successful, feel free to try changing the CONTROL file parameters described in Table 8 and by

1055 selecting other CONTROL files. Please mind the considerations of application in Sect. 4.

Local mode

Since this mode can be used by member-state and public users, we show an example for both user groups. Open the run_local.sh
file and adapt the parameter block marked in the file as shown for the corresponding user group. The parameters are described
in Table 12. Take this setting as a member-state user:

1060 § -
AVAILABLE COMMANDLINE ARGUMENTS TO SET

35

#
THE USER HAS TO SPECIFY THESE PARAMETERS:
#
1065
QUEUE=""’
START_DATE=None
END_DATE=None
DATE_CHUNK=None
1070 JOB_CHUNK=None
BASETIME=None
STEP=None
LEVELIST=None
AREA=None
1075 INPUTDIR=’./Workspace/CERA’
OUTPUTDIR=None
PP_ID=None
JOB_TEMPLATE=""
CONTROLFILE=' CONTROL_CERA’
1080 DpEBUG=0
REQUEST=0
PUBLIC=0

and take this setting as a public user:

1085 # AVAILABLE COMMANDLINE ARGUMENTS TO SET
#
THE USER HAS TO SPECIFY THESE PARAMETERS:
#

1090 QuEUE=""
START_DATE=None
END_DATE=None
DATE_CHUNK=None
JOB_CHUNK=None
1095 BASETIME=None
STEP=None
LEVELIST=None
AREA=None
INPUTDIR='./Workspace/CERApublic’
1100 OUTPUTDIR=None
PP_ID=None
JOB_TEMPLATE='"
CONTROLFILE=' CONTROL_CERA.public’
DEBUG=0
1105 REQUEST=0
PUBLIC=1

The working location for this retrieval is set by the INPUTDIR parameter and will be the Workspace/CERA« directory

within the current Run directory. It is also the output directory since OUTPUTD IR was not set. This can be changed to whatever

36

1110

1115

1120

1125

1130

path is preferred. The parameters listed in run_local. sh would overwrite existing settings in the CONTROL file. Starting
the retrieval process will be done by executing the script by . /run_local. sh.

While a job submission on the local host is convenient and easy to monitor (on standard output), there are a few caveats with
this option. There is a maximum size of 20 GB for single retrievals via ECMWF Web API. Normally this is not a problem but
for global fields with T1279 resolution and hourly time steps the limit may already apply. If the retrieved MARS files are large
but the resulting files are relatively small (small local domain, but large time period) then the retrieval to the local host may be
inefficient since all data must be transferred via the Internet. This scenario applies most notably if ETADOT has to be calculated
via the continuity equation as this requires global fields even if the domain is local and small. In this case, job submission via
ecgate might be a better choice. It really depends on the patterns used and also on the speed of the internet.

After this test retrieval was successful, feel free to try changing the CONTROL file parameters described in Table 8 and by

selecting other CONTROL files. Please mind the considerations of application in Sect. 4.

Author contributions. A. Philipp revised the complete software package (except for the Fortran part) and applied the necessary changes to
keep it up-to-date with the ECMWEF software environment. She coordinated and added new implementations and guided the evaluation. She
wrote the on-line documentation as well as most of the manuscript.

L. Haimberger is the original author of the software package and provided the first implementation for the use of the ECMWF Web API and
the retrieval of ensemble members. He participated in writing introductory and history parts as well as giving feedback on all other parts.

P. Seibert revised the Fortran code and provided the Fortran code documentation and test cases, and wrote the respective section of the

manuscript. She also gave feedback on all other parts, and contributed to editing the final manuscript version.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. Over the years, the development of flex_extract was partly funded by the CTBTO. We thank the ZAMG for providing
access to the ECMWEF MARS archive and the hosting of the community web site. We would also like to thank the ECMWF user support for
their assistance in converging the software environment to the current state and for their many publicly available code examples for working
with GRIB files. Additionally, we thank Anne Fouilloux for an initial version of the Python routines. Moreover, we thank the users for their
feedback and questions which made it possible to make progress in user friendliness, eliminate bugs and react on requirements.

Open access funding provided by University of Vienna.

37

1135

1140

1145

1150

1155

1160

1165

1170

References

Beizer, B.: Software Testing Techniques, Van Nostrand Reinhold, 2nd edn., 1990.

Berrisford, P., Dee, D., Poli, P., Brugge, R., Fielding, M., Fuentes, M., Kallberg, P., Kobayashi, S., Uppala, S., and Simmons, A.: The
ERA-Interim archive Version 2.0, ERA Report Series, Vol. 1, https://www.ecmwf.int/node/8174, 2011.

Brandl, G.: Sphinx - Python Documentation Generator, http://www.sphinx-doc.org/en/master/, 2019.

Buizza, R., Richardson, D. S., and Palmer, T. N.: Benefits of increased resolution in the ECMWF ensemble system and comparison with
poor-man’s ensembles, Quarterly Journal of the Royal Meteorological Society, 129, 1269-1288, https://doi.org/10.1256/qj.02.92, https:
/lrmets.onlinelibrary.wiley.com/doi/abs/10.1256/qj.02.92, 2003.

Copernicus: How to use the CDS API, https://cds.climate.copernicus.eu/api-how-to, 2019.

ECMWEF: ERA-Interim: What is the spatial reference, https://confluence.ecmwf.int/display/CKB/ERA-Interim%3 A+What+is+the+spatial+
reference, 2016a.

ECMWEF: ERAS5: What is the spatial reference, https://confluence.ecmwf.int/display/CKB/ERAS5%3 A+What+is+the+spatial+reference,
2016b.

ECMWFEF: OpenlFS: Horizontal Resolution Configurations, https://confluence.ecmwf.int/display/OIFS/4.2+OpenlFS%3A+Horizontal+
Resolution+Configurations, 2017.

ECMWEF: ECMWEF, https://www.ecmwf.int, [Online; 05.08.2019], 2019a.

ECMWF: MARS User Documentation, https://software.ecmwf.int/wiki/display/UDOC/MARS+user+documentation, [Online; 05.08.2019],
2019b.

ECMWE: Forecasting system upgrade set to improve global weather forecasts, https://www.ecmwf.int/en/about/media-centre/news/2019/
forecasting-system-upgrade-set-improve- global-weather-forecasts, 2019c.

ECMWEF: Data spatial coordinate systems, https://www.ecmwf.int/en/forecasts/documentation-and-support/
data-spatial-coordinate-systems, accessed: August 26, 2019, 2019d.

ECMWF: MARS Catalogue, https://apps.ecmwf.int/mars-catalogue/, 2019e.

ECMWE: Changes in ECMWF model, https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf{-model, 2019f.

ECMWE: IFS Documentation, https://www.ecmwf.int/en/publications/ifs-documentation, 2019g.

ECMWEF: ERAS data documentation, https://confluence.ecmwf.int/display/CKB/ERAS5+data+documentation, 2015h.

ECMWEF: Parameter database, https://apps.ecmwf.int/codes/grib/param-db, 2019i.

ECMWEF: Ecaccess concepts, https://confluence.ecmwf.int/display/ECAC/Ecaccess+concepts, 2019;.

ECMWEF: ECMWF Web API Home, https://confluence.ecmwf.int/display/WEBAPI/ECMWF+Web+API+Home, 2019k.

ECMWFEF: What are the changes from ERA-Interim to ERA5?, 20191

ECMWE: Tutorials, https://confluence.ecmwf.int/display/METV/Tutorials, [Online; 18.12.2019], 2019m.

Foord, M. and the mock team: Mock object library, https://mock.readthedocs.io/en/latest/, 2019.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee,
D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., H6lm, E.,
Janiskovd, M., Keeley, S., Laloyaux, P., Lopez, P., Radnoti, G., de Rosnay, P., Rozum, 1., Vamborg, F., Villaume, S., and Thépaut, J.-N.:
The ERAS Global Reanalysis, Quart. J. Roy. Met. Soc., submitted, 2020.

38

https://www.ecmwf.int/node/8174
http://www.sphinx-doc.org/en/master/
https://doi.org/10.1256/qj.02.92
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1256/qj.02.92
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1256/qj.02.92
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1256/qj.02.92
https://cds.climate.copernicus.eu/api-how-to
https://confluence.ecmwf.int/display/CKB/ERA-Interim%3A+What+is+the+spatial+reference
https://confluence.ecmwf.int/display/CKB/ERA-Interim%3A+What+is+the+spatial+reference
https://confluence.ecmwf.int/display/CKB/ERA-Interim%3A+What+is+the+spatial+reference
https://confluence.ecmwf.int/display/CKB/ERA5%3A+What+is+the+spatial+reference
https://confluence.ecmwf.int/display/OIFS/4.2+OpenIFS%3A+Horizontal+Resolution+Configurations
https://confluence.ecmwf.int/display/OIFS/4.2+OpenIFS%3A+Horizontal+Resolution+Configurations
https://confluence.ecmwf.int/display/OIFS/4.2+OpenIFS%3A+Horizontal+Resolution+Configurations
https://www.ecmwf.int
https://software.ecmwf.int/wiki/display/UDOC/MARS+user+documentation
https://www.ecmwf.int/en/about/media-centre/news/2019/forecasting-system-upgrade-set-improve-global-weather-forecasts
https://www.ecmwf.int/en/about/media-centre/news/2019/forecasting-system-upgrade-set-improve-global-weather-forecasts
https://www.ecmwf.int/en/about/media-centre/news/2019/forecasting-system-upgrade-set-improve-global-weather-forecasts
https://www.ecmwf.int/en/forecasts/documentation-and-support/data-spatial-coordinate-systems
https://www.ecmwf.int/en/forecasts/documentation-and-support/data-spatial-coordinate-systems
https://www.ecmwf.int/en/forecasts/documentation-and-support/data-spatial-coordinate-systems
https://apps.ecmwf.int/mars-catalogue/
https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model
https://www.ecmwf.int/en/publications/ifs-documentation
https://confluence.ecmwf.int/display/CKB/ERA5+data+documentation
https://apps.ecmwf.int/codes/grib/param-db
https://confluence.ecmwf.int/display/ECAC/Ecaccess+concepts
https://confluence.ecmwf.int/display/WEBAPI/ECMWF+Web+API+Home
https://confluence.ecmwf.int/display/METV/Tutorials
https://mock.readthedocs.io/en/latest/

1175

1180

1185

1190

1195

1200

1205

Hittmeir, S., Philipp, A., and Seibert, P.: A conservative reconstruction scheme for the interpolation of extensive quantities in the Lagrangian
particle dispersion model FLEXPART, Geoscientific Model Development, 11, 2503-2523, https://doi.org/10.5194/gmd-11-2503-2018,
https://www.geosci-model-dev.net/11/2503/2018/, 2018.

Hoyer, S. and Hamman, J.: xarray: N-D labeled arrays and datasets in Python, Journal of Open Research Software, 5,
https://doi.org/10.5334/jors.148, http://doi.org/10.5334/jors.148, 2017.

Krekel, H.: pytest Documentation, Online, https://buildmedia.readthedocs.org/media/pdf/pytest/latest/pytest.pdf, 2019.

Lacchia, M.: radon 4.0.0 - Project description, https://pypi.org/project/radon/, 2019.

Laloyaux, P., Balmaseda, M., Dee, D., Mogensen, K., and Janssen, P.: A coupled data assimilation system for climate reanalysis, Quarterly
Journal of the Royal Meteorological Society, 142, 65-78, 2016.

Laloyaux, P, de Boisseson, E., Balmaseda, M., Bidlot, J.-R., Broennimann, S., Buizza, R., Dalhgren, P, Dee, D., Haimberger, L.,
Hersbach, H., Kosaka, Y., Martin, M., Poli, P., Rayner, N., Rustemeier, E., and Schepers, D.: CERA-20C: A Coupled Reanalysis
of the Twentieth Century, Journal of Advances in Modeling Earth Systems, 10, 1172-1195, https://doi.org/10.1029/2018MS001273,
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001273, 2018.

McKinney, W.: Data Structures for Statistical Computing in Python, in: Proceedings of the 9th Python in Science Conference, edited by
van der Walt, S. and Millman, J., pp. 51 — 56, 2010.

Palmer, T. N., Barkmeijer, J., Buizza, R., and Petroliagis, T.: The ECMWF Ensemble Prediction System, Meteorological Applications, 4,
301-304, https://doi.org/10.1017/S1350482797000649, 1997.

Pisso, I., Sollum, E., Grythe, H., Kristiansen, N., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink,
C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. E.,, Fouilloux, A., Brioude, J., Philipp, A., Seib-
ert, P., and Stohl, A.: The Lagrangian particle dispersion model FLEXPART version 10.3, Geoscientific Model Development Discussions,
2019, 1-67, https://doi.org/10.5194/gmd-2018-333, https://www.geosci-model-dev-discuss.net/gmd-2018-333/, 2019.

Ritchie, H., Temperton, C., Simmons, A., Hortal, M., Davies, T., Dent, D., and Hamrud, M.: Implementation of the Semi-Lagrangian Method
in a High—Resolution Version of the ECMWF Forecast Model, Mon. Weather Rev., 123, 489-514, 1995.

Simmons, A.J. and Burridge, D. M.: An Energy and Angular—Momentum Conserving Vertical Finite-Difference Scheme and Hybrid Vertical
Coordinates, Mon. Weather Rev., 109, 758-766, 1981.

Sneed, H. M., Seidl, R., and Baumgartner, M.: Software in Zahlen, Hanser, 2010.

Spillner, Andreas; Linz, T.: Basiswissen Softwaretest, dpunkt, 5th edn., 2012.

Stohl, A. and Seibert, P.: Accuracy of trajectories as determined from the conservation of meteorological tracers, Q. J. Roy. Meteor. Soc.,
125, 1465-1584, 1998.

Stohl, A., Wotawa, G., Seibert, P., and Kromp-Kolb, H.: Interpolation errors in wind fields as a function of spatial and temporal resolution
and their impact on different types of kinematic trajectories, J. Appl. Meteorol., 34, 2149-2165, 1995.

Stohl, A., Hittenberger, M., and Wotawa, G.: Validation of the Lagrangian particle dispersion model FLEXPART against large-scale tracer
experiment data, Atmospheric Environment, 32, 4245-4264, https://doi.org/10.1016/S1352-2310(98)00184-8, 1998.

Stohl, A., Haimberger, L., Scheele, M., and Wernli, H.: An intercomparison of results from three trajectory models, Meteorol. Applications,
8, 127-135, 2001.

Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version
6.2, Atmos. Chem. Phys., 5, 2461-2474, https://doi.org/10.5194/acp-5-2461-2005, 2005.

Thénault, S.: Pylint, https://www.pylint.org/, 2001.

39

https://doi.org/10.5194/gmd-11-2503-2018
https://www.geosci-model-dev.net/11/2503/2018/
https://doi.org/10.5334/jors.148
http://doi.org/10.5334/jors.148
https://buildmedia.readthedocs.org/media/pdf/pytest/latest/pytest.pdf
https://pypi.org/project/radon/
https://doi.org/10.1029/2018MS001273
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001273
https://doi.org/10.1017/S1350482797000649
https://doi.org/10.5194/gmd-2018-333
https://www.geosci-model-dev-discuss.net/gmd-2018-333/
https://doi.org/10.1016/S1352-2310(98)00184-8
https://doi.org/10.5194/acp-5-2461-2005
https://www.pylint.org/

1210 van Rossum, G., Warsaw, B., and Coghlan, N.: PEP 8 — Style Guide for Python Code, Online, https://www.python.org/dev/peps/pep-0008/,
2001.
Walt, S. v. d., Colbert, S. C., and Varoquaux, G.: The NumPy array: A structure for efficient numerical computation, Computing in Science
and Engineering, 13, 22-30, https://doi.org/10.1109/MCSE.2011.37, 2011.
Wolff, E.: Continuous Delivery. Der pragmatische Einstieg, Dpunkt Verlag, Heidelberg, 282 pp., 2014.
1215 Wotawa, G., Stohl, A., and Neininger, B.: The urban plume of Vienna: comparisons between aircraft measurements and photochemical
model results, Atmospheric Environment, 32, 2479 — 2489, https://doi.org/https://doi.org/10.1016/S1352-2310(98)00021-1, http://www.
sciencedirect.com/science/article/pii/S1352231098000211, 1998.

40

https://www.python.org/dev/peps/pep-0008/
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/https://doi.org/10.1016/S1352-2310(98)00021-1
http://www.sciencedirect.com/science/article/pii/S1352231098000211
http://www.sciencedirect.com/science/article/pii/S1352231098000211
http://www.sciencedirect.com/science/article/pii/S1352231098000211

Table 1. Overview of ECWMF data sets with associated parameters required in MARS requests (Berrisford et al., 2011; Laloyaux et al.,
2016; ECMWEF, 2019¢, h). DET-FC stands for “Deterministic forecast”, ENS-DA for “Ensemble data assimilation”, ENS-CF for “Ensemble

control forecast”, ENS-CV for “Ensemble validation forecast” and ENS-PF for “Ensemble perturbed forecast”. All times are in UTC, all

steps in hours. Dates are written as DD/MM/YYYY (day optional). Steps and members are written in the format of Start/End/Step. The

specifications for the operational data sets are valid for current data at the time of publication (except ENS-CV — deprecated since 8 August

2016). For details about resolution and other parameters which have changed in the course of time, see Table 2 and Table 3. The grid type

for the operational data (Tcoxxx) refers to the spectral cubic octahedral grid and for the reanalysis data (T xxx) refers to linear spherical

harmonics. The identification parameter “Dataset” is to be used by public users only. Note that there is also the ERA40 reanalysis; however,

as it has been superseded by ERA-Interim and ERAS and thus rarely used nowadays, it is not included here (but flex_extract should still be

applicable).
Operational data Reanalyses

DET-FC ENS-DA ENS-CF ENS-CV ENS-PF ERA-Interim ERAS CERA-20C
Period of data set availability

12/1985 22/06/2010 | 01/05/1994> 12/09/2006 12/09/2006> 01/1979 01/1979 09/1901

—ongoing - ongoing — ongoing —08/03/2016 — ongoing —12/2018 —ongoing* - 12/2010
Identification (MARS keywords)
Class od od od od od ei ea ep
Stream oper enda/elda’ enfo enfo enfo oper oper enda
Field type fc/an fc/an cf cv pf fc/an fc/an fc/an
Dataset - - - - - interim - cera20c
Time (where forecast starts or analysis is valid)
Forecast 00/12 06/18 00/12 00/12 00/12 00/12 06/18 18
Analysis 0/6/12/18 0/6/12/18 - - - 0/6/12/18 0/1/.../23 0/1/.../23
Step (available forecast steps)
Forecast 0/125/1 1/12/1 0/90/1 0/144/3 336 3/240/3° 0/18/1 3/24/3
3,6,127 93/144/3 150/360/6
150/360/6

Horizontal grid type and resolution, number of vertical levels
Grid® Tcol1279 Tco639 Tco639 Tco639 Tco639 Tr255 TL639 TL159

(0.07°) (0.141°) (0.141°) (0.141°) (0.141°) (0.75%) (0.25%) (1.25%)
Levels 137 137 91 91 91 60 137 91
Ensemble members - 0/50/1 - - 1/50/1 - - 1/10/1
Availability of 7 yes® yes no no no no yes yes

LFrom 22/06/2010 to 18/11/2013, ENS-DA was stored in stream ENDA, afterwards in stream ELDA.
2Exists since 11/1992, but the available dates were unregular in the beginning before 01/05/1994.

3The data set exists from 11/1992, but model level data are available only from 12/09/2006 on.

4 Available with a delay of ca. 3 months. Fast track data with shorter delay are now also available, but subject to possible revisions

5For public users, the forecast model level fields are not available.
6 Available as MARS parameter since 04/06/2008.
70n 11/06/2019, the steps changed from 1/12/1 to the single steps 3,6,12.

8See Table 4 for correspondence of grid types.

41

Table 2. List of the evolution of the spatial resolution of the IFS operational forecasts. Changes are marked in bold. The ensemble data are

usually provided with higher resolution for Lag A (1-10 d) than for Lag B (10-15 d). The first part of each entry is the horizontal resolution

marked with a “T” for spectral representation; with “T” representing the linear and “Tco” the cubic octahedral representation. The second

part, marked with “L”, is the number of vertical model levels. In the case of ensembles, the number N of members is written in front of the

resolution as N*. Source: Palmer et al. (1997); Buizza et al. (2003); ECMWEF (2019c, e, f, g).

DET-FC ENS-DA ENS-CF ENS-CV ENS-PF
20/04/1983 | T106L16
13/05/1986 | T106L19
17/09/1991 | T213L19
17/19/1991 | T213L31
01/05/1994 | T213L31 T63L19
10/12/1996 | T213L31 T159L31
01/04/1998 | T319L31 T159L31
09/03/1999 | T319L50 T159L31
12/10/1999 | T319L60 T159L40
21/112000 | T511L60 T255L40
01/02/2006 | T799L91 Lag A T399L62
Lag B T255L62
12/09/2006 | T799L91 Lag A 2#T399L62 | Lag A 50+*T399L62
Lag B 2#T255L62 | Lag B 50¥T255L62
26/01/2010 | T1279L91 Lag A T639L62 | Lag A 2*T639L62 | Lag A 50*T639L62
Lag B T319L62 | Lag B 2*T319L62 | Lag B 50*T319L62
22/06/2010 | T1279L91 25%T399L91 | Lag A T639L62 | Lag A 2*T639L62 | Lag A 50¥T639L62
Lag B T319L62 | LagB 2*T319L62 | LagB 50+*T319L62
01/11/2011 | T1279L91 25¥T399L91 | Lag A T639L62 | Lag A 2*T639L62 | Lag A SO*T639L62
Lag B T319L62 | LagB 2*T319L62 | LagB 50*T319L62
25/06/2013 | TI1279L137 | 25+*T399L137 | Lag A T639L62 | Lag A 2*T639L62 | Lag A S0¥T639L62
Lag B T319L62 | LagB 2*T319L62 | LagB 50*T319L62
19/11/2013 | TI1279L137 | 25*T399L137 | Lag A T639L62 | Lag A 2*T639L91 | Lag A S0*T639L62
Lag B T319L62 | LagB 2*T319L91 | Lag B 50+T319L62
20/11/2013 | TI279L137 | 25%*T399L137 | Lag A T639L91 | Lag A 2*T639L91 | Lag A 50*T639L91
Lag B T319L62 | LagB 2*T319L91 | LagB 50*T319L91
08/03/2016 | Tcol279L137 | 25%Tco639L137 | Tco639L91 deprecated 50*Tc0639L91
11/06/2019 | Tco1279L137 | 50%Tco639L137 | Tco639L91 deprecated 50%T 0639191

42

Table 3. List of the evolution of forecast steps and forecast start times for data sets DET-FC and ENS-CF. “Lag s” denotes different temporal

resolution for forecast ranges s; “#steps” is the total number of steps. Source: (ECMWEF, 2019¢)

DET-FC ENS-CF

#steps Lagl Lag?2 Lag 3 #steps Lag 1 Lag?2 Lag 3

01/04/1985 | 20' 12/240/12 01/04/1994 | 33 0/12/3 18/120/6 132/240/12
forecast start time 12 UTC forecast start time 12 UTC

01/07/1985 | 30 6/144/6 156/240/12 31/07/1997 | 55 0/12/3 18/120/6 132/504/12
15/11/1990 | 32 3/12/3 18/144/6 150/240/12 || 09/06/1999 | 65 0/12/3 18/240/6 252/504/12
20/01/1999 | 42 3/12/3 18/240/6 25/03/2003 two forecast start times per day: 0/12 UTC
12/09/2000 two forecast start times per day: 0/12 UTC 29/09/2004 | 63 0/240/6 252/504/6
24/10/2000 | 52 3/72/3 78/240/6 13/09/2006 | 85 0/132/3 138/240/6 252/504/12
29/06/2005 | 85 0/132/3 138/240/6 252/504/12 || 22/06/2015 four forecast times per day: 0/6/12/18 UTC
05/10/2005 | 87 0/144/3 150/240/6 ~ 252/504/12 || " 49 (6/18 UTC) 0/144/3
14/03/2006 | 57 0/96/3 102/240/6 23/11/2016 | 145 (0/12UTC) 0/90/1 93/144/3 150/260/6
13/09/2006 | 65 0/144/3 150/240/6 " 109 (6/18UTC) 0/90/1 93/144/3
16/11/2011 | 125 0/90/1 93/144/3 150/240/6 - -

1 Only surface fields.

43

Table 4. Approximate correspondences between spectral, Gaussian, and latitude / longitude grid resolutions. Source: ECMWF (2017, 2019d,

e); Berrisford et al. (2011); Laloyaux et al. (2016). For the spectral grid the truncation number is denoted by “T” where the subscript “q

6 9

means quadratic grid and “1” means linear grid. The quadratic grid can not be selected with flex_extract. The corresponding reduced Gaussian

grids are denoted by “N” followed by the number of lines between the pole and the equator. The new octahedral grid is denoted by “Tco”,

meaning “spectral cubic octahedral”; they correspond to a octahedral reduced Gaussian grid, denotes with an “O”.

Spectral

Gaussian Grid

Lat/Lon

Tq63
TL95
Tq106
TL159
Tq213
Tr.255
TL319
TL399
Ti511
TL639
TL799
TL1023
Tco639
TL1279
Tcol279

N48
N48
N80
N80
N160
N128
N160
N200
N256
N320
N400
N512
0640
N640
01280

209 km
209 km
125 km
125 km
63 km
78 km
63 km
50 km
39 km
31 km
25 km
20 km
18 km
16 km
9 km

1.875°
1.875°
1.125°
1.125°
0.5625°
0.75°(%)
0.5625°
0.45°
0.352°
0.25°(*)
0.225°
0.1758°
0.141°
0.1406°
0.07°

(*) As GRIBL1 only supports three decimals, ECMWF

recommends to round the resolutions to 0.75%in the case
of ERA-Interim (exact value: 0.703125°) and to 0.25° for
ERAS (exact value: 0.28125) (ECMWF, 20164, b). See

also Table 1.

44

Table 5. Directory structure of the flex_extract v7.1 root directory.

File / subdirectory ‘ Content ‘ Description
Documentation/ ‘ html/ ‘ offline version of documentation
For_developers/ Flowcharts source and PNG files of flow diagrams
FORD source files for Fortran code documentation
Sphinx source files for documentation
.x1ls, x.sh, = documentation files, scripts and info for developers
Run/ Control/ contains all example CONTROL files
Jobscripts/ empty after distribution download; later contains korn shell job scripts
Workspace/ not present before first local retrieval; contains downloaded data in local mode
ECMWE_ENV contains info about user credentials
run.sh top-level script to start flex_extract
run_local.sh top-level script to start flex_extract in local mode
Source/ Fortran complete Fortran program incl. makefiles
Python Python source files
Pythontest Python unit tests
Templates/ installscript.template template for the installation on ECMWEF server
calc_etadot_nml.template | namelist template for the calc_etadot program
ECMWF_ENV.template template for the ECMWF user credentials
ecmwf_gribl_table_128 table for the assigment of parameter names and ids
jobscript.template job script template for ECMWF batch mode before the installation took place
submitscript.template job script template after installation (now includes settings such as version numbe
Testing/ Installation data for an installation check
Regression regression test cases
CODE_OF_CONDUCT .md rules for contribution to flex_extract
LICENSE.md full licence text
README . md short introduction to flex_extract
setup.sh installation script

45

Table 6. Necessary account registrations per user and application mode for each data set. The registration procedure is indicated by numbers

1-3 and explained below.

Member-state user Public user
Data sets
Remote Gateway Local Local
Operational 1 1 1,2 -
ERA-Interim 1 1 1,2 2
CERA-20C 1 1 1,2 2
ERA5S 1 1 3 3

No. Registration procedure

1 Access as a member-state user. Account granted by the
Computing Representative. Credentials have to be pro-
vided during installation.

2 Access through the ECMWF Web APIL. One needs to
sign in at the ECMWF Web API and to configure the
ECMWEF key as described (ECMWF, 2019k). Member-
state users can sign in with their credentials. Public
users have to register for obtaining an account.

3 Access through the CDS API (Copernicus, 2019). Reg-
istration at CDS and configuration of the CDS key

needed.

Table 7. Software dependencies for flex_extract in all application modes.

Python Fortran
Python3 gfortran' / CrayPE ftn®
numpy fftw3

genshi emoslib

ecCodes for Python (>=v2.13.0) ecCodes for Fortran

'Remote mode / gateway mode on ecgate, and local mode. 2Remote mode

gateway mode on cca / ccb.

46

setup_controldata

False

gueue = None P! |submit

v

print "FLEX_EXTRACT JOB
check input/output path SCRIPT IS SUBMITTED!"

v

get_mars_data

print "PRINTING
MARS_REQUEST.csv
DONE!"

request = 0 or
request = 2

prepare_flexpart

v

print "FLEX_EXTRACT
IS DONE!"

v

normal_exit

End

Figure 3. Flow diagram for the local application mode. If queue # None, flex_extract was started in remote or gateway mode and
Fig. 2 applies. This is marked by the submit block. In the case of request == 1, flex_extract skips the retrieval and post-processing
steps and just writes the mars_request.csv file. Within the local mode, the retrieval (get_mars_data) and post-processing

(prepare_flexpart) parts are executed. Symbols as in Fig. 2.

47

(a) Remote mode
Local server ECMWEF server

ECMWF_ENV

server

jobscript.template submit.py

retrieves MARS data and
produces final FLEXPART
input files

ectrans

output GRIB files

(b) Gateway mode

Local server cess- ECMWEF server
job- job.ksh (e.g. ecgate)
CONTROL_XX it I_
submit.py
ECMWEENV, submit.py y retrieves
send to ver MARS data and
P N ECMWF produces final
jobscript.template server ELEXPART
jobksh I output GRIB files Rl
- ectrans
- ectrans
ectrans target directory
(c) Local mode
Local server HTTP request Mars archive
run_local.sh I IPublic datasets
retrieval GRIB files
submit, ECMWF *
CONTROL_XX Py Web APl
CDS API
get_mars_data.py ’_. services
target directory N
transfer GRIB files
calc_etadot prepare_flexpart.py
output GRIB files

Figure 4. General overview of the work flows and work locations in the different application modes: (a) remote, (b) gateway, and (c) local

mode. The files and scripts used in each mode are outlined.

48

Table 8. Part 1 of the overview of CONTROL file parameters. A more detailed description on parameter handling, setting and value ranges is

given in the supplemental material.

Parameter

Default value

Format

Description

Time section

START_DATE None String [YYYYMMDD] first day of retrieval period

END_DATE None String [YYYYMMDD] last day of retrieval period
DATE_CHUNK 3 Integer number of days within one MARS request
DTIME None Integer time step

BASETIME None Integer end time for half-day retrievals

Data section

CLASS None String [xx] data set class identifier in MARS archive
DATASET None String public data set identifier

STREAM None String [xxxx] identifier for forecasting stream
NUMBER " OFF’ String [i/to/i] ensemble member numbers

EXPVER 1 Integer experiment number

FORMAT " GRIBL1' String output format of GRIB fields

Data fields section

TYPE None list of strings [xx XX ...Xxx] list of field type per TIME

TIME None list of strings [xx XX ...xx] list of times

STEP None list of strings [xx XX ...xx] list of forecast steps corresponding to TIME

MAXSTEP None Integer maximum forecast step

Flux data fields section

ACCTYPE None String type of the flux forecast fields

ACCTIME None String [i/i] forecast times of flux fields

ACCMAXSTEP None Integer maximum forecast step of flux fields

RRINT 0 Integer switch to select method for precipitation disaggregation
Domain section

GRID None String [i/i] horizontal resolution on longitude/latitude grid

RESOL None String horizontal resolution of spectral grid

SMOOTH 0 Integer spectral truncation of 7) on Gaussian grid

LEFT None String longitude of lower left domain corner

LOWER None String latitude of lower left domain corner

UPPER None String latitude of upper right domain corner

RIGHT None String longitude of upper right domain corner

LEVEL None Integer maximum number of vertical levels

LEVELIST None String [start/to/end] definition of vertical levels

Vertical velocity section

GAUSS 0 Integer switch to calculate 7

ACCURACY 24 Integer number of bits per value in GRIB coded fields

OMEGA 0 Integer switch to retrieve w from MARS

OMEGADIFF 0 Integer switch to calculate w and dp /Ot from continuity equation
ETA 0 Integer switch to read 7 from MARS

ETADIFF 0 Integer switch to calculate 77 and Dp, / Dt from continuity equation
DPDETA 1 Integer switch to select multiplication of 7) by 9p/90n
ETAPAR 77 Integer GRIB parameter id for 17/9p/9n

49

Table 8. Part 2 of the overview of CONTROL file parameters.

Parameter Default value Format Description

General section

DEBUG 0 Integer switch to save the temporary files

REQUEST 0 Integer switch to create the file mars_requests.csv

PUBLIC 0 Integer switch to select public Web API access

OPER 0 Integer switch to prepare operation job script

ECSTORAGE 0 Integer switch to store results in ECFS file system

ECTRANS 0 Integer switch to transfer final files to local system

PREFIX "EN’ String front string in file names before the date string

ECFSDIR *ectmp:/SUSER/ String destination directory on ECFS file system
econdemand/’

MAILFAIL [SUSER’] List of strings list of emails to send log files to

MAILOPS [SUSER’] List of strings list of emails to send log files to

Additional data section

CWC 0 Integer switch to retrieve total cloud water content
DOUBLEELDA 0 Integer switch to manually double ensemble member number
ADDPAR None String [p1/p2/.../pn] additional surface fields to retrieve
Table 9. Description of the parameters stored in file ECMWEF_ENV.
Default o
Parameter Format Description
value
ECUID None String ~ ECMWF user id
ECGID None String ECMWF group id
DESTINATION None String ectrans association
GATEWAY None String name or ip address of member gateway server

50

Table 10. Overview of templates used in flex_extract.

They are stored in the Templates directory.

Template

Description

calc_etadot_nml.template

ecmwf_env.template

installscript.template

jobscript.template

submitjob.template

Used to create a Fortran namelist file called fort.4. It will be
created in the Python part and contains controlling options for
calc_etadot. (See Table 14)

Used to create the ECMWF_ENV file within application modes gateway
and remote.

Used to create the file compilejob. ksh during the installation pro-
cess for the application modes remote and gateway.

Used to create the template submit job.template in the installa-
tion process. A couple of parameters are set, such as the user creden-
tials and the flex_extract version number.

Used to create the actual job script file called job . ksh for the execu-

tion of flex_extract in the application modes remote and gateway.

Table 11. Overview of parameters to be set in the setup . sh script for installation. In remote and local mode for member-state users, the

file ECMWF_ENV will be created, hence the parameters from Table 9 must also be set in the setup . sh script.

Parameter Default value Format Description
TARGET None String defines location and therefore the application mode
MAKEFILE None String Makefile for compiling calc_etadot

JOB_TEMPLATE jobscript.template

INSTALLDIR SHOME on ECMWEF servers; pwd in local mode String root path for flex_extract working directory

CONTROLFILE CONTROL_ERAS

String batch job template for gateway and remote mode

String input file with parameter settings

51

Table 12. Overview of the parameter to be set in the run« . sh script. In order to provide a complete list, some already defined parameters

from Tables 8 and 11 are repeated here. In the case of a special format, a sample format is given in parentheses; f denotes a floating-point

number.
Parameter Default value Format Description
START_DATE None String (YYYYMMDD) first day of retrieval period
END_DATE None String (YYYYMMDD) last day of retrieval period
DATE_CHUNK 3 Integer number of days within one MARS request
BASETIME None Integer end time for half-day retrievals
STEP None blank separated list of numbers list of forecast steps of corresponding retrieval times
LEVELIST None String (start/to/end) defines list of vertical levels
JOB_CHUNK None Integer number of days to be retrieved within a single job
AREA - String (f/t//f) domain defined as north/west/south/east
PUBLIC 0 Integer set to 1 for using public access mode
INPUTDIR None String path to temporary working directory
OUTPUTDIR None String path where final output files are stored
PPID None Integer parent process id of the job (only for debugging)

JOB_TEMPLATE
QUEUE
CONTROLFILE
RRINT
REQUEST

OPER

DEBUG

submit job.tenStliage

None

String

CONTROL_ERAS String

0

0
0
0

Integer

Integer

Integer

Integer

job template file for ECMWF batch queue

in case of non-local mode, the ECMWF server name

input file with parameter settings

set to 1 to select new method for precipitation disaggregation
set to 1 to create the file mars_requests.csv

set to 1 for operational mode (job script)

set to 1 to save the temporary files

Table 13. List of flux fields retrieved by flex_extract and the disaggregation schemes (precip: Eq. 1 or Sect. 3.6.2, flux: Eq. 4) applied.

Short Name Unit Disaggregation
name
LSp large-scale precipitation m precip
CP convective precipitation m precip
SSHF surface sensible heat flux ~ Jm ™2 flux
EWSS eastward turbulent Nm~2s flux
surface stress
NSSS northward turbulent Nm™?s flux
surface stress
SSR surface net solar Jm™? flux

radiation

precipitation rate

e——e interpolated precipitation
original precipitation info

0

Figure 5. Example of disaggregation scheme as implemented in older versions of flex_extract for an isolated precipitation event lasting one
time interval (thick blue line). The amount of original precipitation after de-accumulation is given by the blue-shaded area. The green circles
represent the discrete grid points after disaggregation. FLEXPART interpolates linearly between them as indicated by the green line and the

green-shaded area. Note that supporting points for the interpolation are shifted by half a time interval compared to the other meteorological

1 2 3 time

fields. From Hittmeir et al. (2018).

precipitation rate

o—o0
interpolated precipitation

original precipitation info

| | (N

0

+% + 3 time

WIN

1 2

Figure 6. As Figure 5, but with the new interpolation scheme using additional sub-grid points. From Hittmeir et al. (2018).

grid dimensions and extent.

Table 14. Overview of options controlling calc_etadot. Note that the resolution of the latitude-longitude grid is given implicitly by the

Parameter Description Remarks
maxl grid dimension — longitudes
maxb grid dimension — latitudes
mlevel grid dimension — number of levels
mlevelist list of levels to be given in MARS request notation like 1 /to/91
mnauf number of spectral coefficients in input
data
metapar GRIB ID of vertical velocity in output standard FLEXPART expects =77
rlo0 Western border of domain in degree
rlol Eastern border of domain in degree
rla0 Southern border of domain in degree
rlal Northern border of domain in degree
momega if 1, w is calculated from 7 and output for testing the accuracy of calculated 7 if no 1 from
MARS is available
momegadiff if 1, calculated w is compared with w from
MARS
mgauss if 1, evaluate continuity equation on GG
msmooth if # 0, apply spectral smoothing by clip-
ping at given truncation
meta if 1, use 7 from input.
metadiff if 1 and meta=0, 7 needs to be available for testing the accuracy of 7 calculation
from MARS and this is compared with
calculated 7
mdpdeta if 1, give), as output with the current version of FLEXPART, only =1 is use-

ful; future versions might used 7).

54

Table 15. Determination of the method for obtaining 7 in calc_etadot as a funtion of control parameters (see also Table 14). GG stands

for Gaussian grid. The names of the corresponding regression tests (see Sect. 5.4) are also given

Method mgauss meta Test name

Continuity eq. on 0 0 latlon
lat-lon grid

Continuity eq. on GG 1 0 gauss
Use 7 from input 0 1 etadot
(Program will stop 1 1 -

with ERROR)

Table 16. List of fort files generated by the Python part to serve as input for the Fortran program, and the output file of calc_etadot.

If the optional fields were not extracted, the corresponding files are empty.

Number | Content

Input to the Fortran program calc_etadot

10 U and V wind components

11 temperature

12 logarithm of surface pressure

13 divergence (optional)

16 surface fields

17 specific humidity

18 surface specific humidity (reduced Gaussian)

19 vertical velocity (pressure) (optional)

21 eta-coordinate vertical velocity (optional)

22 total cloud water content (optional)

Output from Fortran program calc_etadot

15 U and V wind components, 7, temperature,
surface pressure, specific humidity

55

Table 17. List of model level parameters FLEXPART requires to run and the availability in the different data sets (ECMWF, 2019e, i). The
cloud-water content fields are optional. The divergence and logarithm or surface pressure fields are only necessary for the calculation of the
vertical velocity when 7 is not available directly. These fields are not transferred to the FLEXPART input files. FC stands for “forecast” and

AN for “analysis”.

Variables Short Parameter Unit Operational | ERA-Interim ERAS CERA-20C
name ID

FC AN | FC AN FC AN | FC AN
Temperature T 130 K X X X X X X X X
Specific humidity 0 133 kgkg ™! X X X X X X X X
U — wind component U 131 ms ! X X X X X X X X
V — wind component \Y 132 ms ! X X X X X X X X
Eta-coordinate vertical etadot | 77 st x2 x2 - - X X X X
velocity
Divergence D 155 kgm ™2 X X X X X X X X
Specific cloud liquid water clwc 246 kgkg ! X X X X X X X X
content
Specific cloud ice water ciwe 247 kgkg ™! X X X X X X X X
content
Logarithm of surface Insp 152 - x) x) (x) x) x x| ® x)
pressure’'

!Only available on model level 1.
2 Available from 4 June 2008 onward.

56

Table 18. List of surface level parameters FLEXPART requires to run and their availability from different data sets (ECMWF, 2019e, i). FC
stands for “forecast” and AN for “analysis”. Special or future versions of FLEXPART or pre/post-processing software may require additional

surface level fields which are not listed here.

Variables Short | Parameter Unit Operational | ERA-Interim ERA5 CERA-20C
name | ID
FC AN | FC AN FC AN | FC AN
2 metre temperature 2t 167 K X X X X X X X X
2 metre dewpoint 2d 168 K X X X X X X X X
temperature
10 metre U wind 10u 165 ms~! X X X X X X X X
component
10 metre V wind 10v 166 ms™* X X X X X X X X
component
Geopotential z 129 m 2572 X X X X X X X X
Land-Sea Mask lsm 172 0—-1 X X X X X X X X
Mean sea level pressure msl 151 Pa X X X X X X X X
Snow depth sd 141 m of w. eq. X X X X X X X X
Standard deviation of sdor | 160 - - X - X - X - X
orography
Surface pressure sp 134 Pa - X X X - X X X
Total cloud cover tcc 164 0—-1 X X X X X X X X
Convective precipitation cp 143 m X - X - X - X -
Large-scale precipitation 1lsp 142 m X - X - X - X -
Surface sensible heat flux sshf | 146 Jm~?2 X - X - X - X -
Eastward turbulent surface ewss | 180 Nm™2s X - X - X - X -
stress
Northward turbulent nsss | 181 Nm™2s X - X - X - X -
surface stress
Surface net solar radiation ssr 176 Jm™? X - X - X - X -
Forecast surface roughness' fsr 244 m X - - - X X X X
'Necessary in CERA-20C due to missing surface roughness parameter
Table 19. Basic metrics.

Version LOC SLOC Comments Multi Blank

7.0.4 2538 1820 346 13 374

7.1 7543 2842 1072 2265 1397

57

Table 20. Ranks of cyclomatic complexity (CC) taken from the manual of the Python package radon (Lacchia, 2019).

CCscore Rank Risk

1-5 A low — simple block
6-10 B low — well structured and stable block
11-20 C moderate — slightly complex block
21-30 D more than moderate — more complex block
31-40 E high — complex block, alarming

41+ F very high — error-prone, unstable block

58

