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In this paper, Eslami et al. present a method based on wavelet transform and dynamic time 14 
warping (DTW) to characterize the quality of a machine-learning (ML) algorithm (convolutional 15 

neural network, CNN) for air quality forecasting (AQF). Using the example of two AQF 16 
applications, they show how wavelet transform and DTW can provide new insights into the 17 

strengths and weaknesses of the CNN model. 18 
Better understanding the potential and limitations of ML algorithms for AQF applications is a 19 
topic that is rapidly gaining importance given the explosion of ML applications in this area. This 20 

paper makes a valuable contribution to this discussion by presenting a powerful analytical tool 21 
that can effectively highlight conditions under which the employed ML algorithm fails to produce 22 

satisfactory results. As such, the manuscript is highly suitable for publication in GMD. However, 23 
in its current form there are still some issues regarding the main message of the paper and how 24 
wavelet transform and DTW can be used to improve error characterization of ML applications. 25 

For instance, the authors simultaneously say that the tested CNN models have ‘significant 26 

limitations’ and ‘show promising accuracy’, and generally seem to switch between the view that 27 
the ML model is either ‘bad’ or ‘good’. In reality, the CNN models – like chemical transport 28 
models – perform very well under some conditions and poorly under others. One of the powerful 29 

elements of the discussed statistical analysis tools is that they offer a method to identify these 30 
conditions and thus help the model developers better understand the strengths and limitations of 31 

the ML algorithms. This information also helps identify how the ML model might be improved, 32 
which is very powerful. The authors should stress this more clearly. 33 

Another point that needs more discussion is the time dimension. The used CNN models seem to 34 
use snapshots of time-series data as inputs (rather than a window of the time-series) and are thus 35 
not designed to learn temporal relationships. This should be stated more clearly, as it means that 36 
the wavelet transform and DTW offer an assessment of a feature that is not directly optimized by 37 
the ML algorithm (which is a good thing). 38 

 39 
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3.3. Discussion: 44 

Despite the enormous success of the convolutional neural network (CNN) algorithm in 45 
numerous applications, certain issues related to its applications in air quality forecasting (AQF) 46 
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require further analysis and discussion. Our main goal in this paper was to discuss some of these 47 
issues is a few practical applications. To discuss these issues analytically, we used wavelet 48 
transform and dynamic time warping (DTW) as powerful mathematical tools for time-series 49 
analysis and models. Based on the findings that were presented in the paper, these tools are 50 

beneficial not only in understanding the issues with machine learning models but also in fine-51 
tuning them to improve their performances with a scientific point of view. Awareness of the 52 
limitations in CNN models will enable scientists to develop more accurate regional or local air 53 
quality forecasting systems by identifying the affecting factors in high concentration episodes. 54 

Based on our findings in the base studies presenting the aforementioned CNN models, in 55 

both cases, the CNN model shows reasonable accuracy for ozone prediction, 24 hours in advance, 56 
in two geographical locations (the United States and South Korea). However, similar to other data-57 
driven prediction tools, in a CNN model, the out-of-sample prediction error is almost always 58 
greater than the in-sample prediction error. Thus, since both CNN models were designed as a real-59 

time air quality prediction models, the prediction error is inevitable, even though (i) both models 60 
were configured for optimum performance (based on the input or training samples), and (ii) in 61 

development of both models, cross-validation processes were followed to mitigate any systematic 62 
biases. However, the underperformance of the CNN model was dependent on several factors, 63 

including modeling configuration (e.g., the depth of CNN model), arrangements of input variables 64 
(e.g., number of previous days as inputs), the day of the week (e.g., weekdays versus weekdays), 65 
the hour of the day (e.g., daytime versus nighttime) (see Eslami et al. (2019a, 2019b, 2019c), Choi 66 

et al. (2019), Sayeed et al. (2020), and Lops et al. (2019), and the discussion within). 67 
Here, we discussed the general limitations of the CNN model in two common applications: 68 

(i) a real-time AQF model, and (ii) a post-processing tool in a dynamical AQF model (i.e., CMAQ). 69 
These examples are fundamentally different in terms of execution, one being a raw predictor 70 
(statistical approach) while the other being a post-processor (hybrid approach). Since both models 71 

are commonly being used as a real-time air quality prediction system, we discussed their issues 72 

individually to explain certain issues that one may encounter in executing either of them. Thus, it 73 
will provide both machine learning researchers and atmospheric scientists with multiple candidate 74 
models and analytical tools to develop any specific model of their choice.  75 

For one case (raw prediction model), we used the wavelet transform to determine the 76 
reasons behind the poor performance of CNN during the nighttime, cold months, and high ozone 77 

episodes. We find that when fine wavelet modes (hourly and daily) were relatively weak or when 78 
coarse wavelet modes (weekly) were strong, the CNN model produced less accurate forecasts. 79 

Since the CNN model has used only one precious day of air quality and meteorological parameters, 80 
neither the coarse patterns (e.g., weekly) were used as a prediction feature, nor any connection 81 
between different time-series windows (as is revealed in a wavelet transform analysis) was 82 
considered. Thus, the wavelet transform can be helpful as a complementary tool in filling these 83 
gaps in a CNN prediction model development. It should be noted that long short-term memory 84 

(LSTM) model can potentially incorporate some of the aforementioned time-dependencies (e.g., 85 
bi-daily or weekly). However, the focus of this study is to address such a limitation in a CNN 86 

model as the choice of the ML model. 87 
For the other case (post-processing model), we used the DTW distance analysis to compare 88 

post-processed results with their CMAQ counterparts (as a base model). For those CMAQ results 89 
with a consistent DTW distance from the observation, the post-processing approach properly 90 
addressed the CMAQ modeling bias with predicted IOAs exceeding 0.85. When the DTW distance 91 
of CMAQ-vs-observation is irregular, the post-processing approach is unlikely to perform 92 
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satisfactorily. Even though the CMAQ-CNN model has included several chemical components 93 
and meteorological variables as its inputs, there was no input feature representing CMAQ’s own 94 
accuracy. By comparing a history of CMAQ results in different geographical locations with 95 
available observation data, the DTW can provide an ‘irregularity’ index as an additional input 96 

feature. 97 
 98 
 99 
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- Page 4, line 100: ‘general inability of the machine learning model’ seems a bit too harsh. 106 
I suggest to rephrase this. 107 

 108 
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 110 
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 112 

Response: Thanks. The figure citation in the text has been changed. 113 
 114 

- Page 6, line 201: Please provide the definition of index of agreement 115 
 116 
Response: The following statement has been added to the manuscript. 117 
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 120 
- Page 6, line 213: I’d be careful with the statement that NOx and VOC emissions are 121 

constant in time. These emissions have large diurnal and seasonal cycles. 122 
 123 

Response: Thanks for a good point. The following modification has been made in the 124 
manuscript. 125 

Compared with meteorological variables, emission sources from volatile organic compounds 126 
(VOCs) and NOx are experiencing less variability in time. Thus, meteorological variables play an 127 
important role in governing the variation of the ozone at different times throughout the year 128 

 129 
- Page 7, line 251ff: maybe worth mentioning here the potential of long short-term 130 

memory (LSTM) algorithms to incorporate time dependency in the training? 131 
 132 
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added Discussion section (Section 3.3, lines 476-479). 134 
It should be noted that long short-term memory (LSTM) model can potentially incorporate some 135 
of the aforementioned time-dependencies (e.g., bi-daily or weekly). However, the focus of this 136 
study in addressing such a limitation in a CNN model as the choice of the ML model. 137 
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Abstract: 145 

As the deep learning algorithm has become a popular data analytic technique, atmospheric 146 
scientists should have a balanced perception of its strengths and limitations so that they can provide a 147 
powerful analysis of complex data with well-established procedures. Despite the enormous success of the 148 
algorithm in numerous applications, certain issues related to its applications in air quality forecasting (AQF) 149 
require further analysis and discussion. This study addresses significant limitations of an advanced deep 150 
learning algorithm, the convolutional neural network (CNN), in two common applications: (i) a real-time 151 
AQF model, and (ii) a post-processing tool in a dynamical AQF model, the Community Multi-scale Air 152 
Quality Model (CMAQ). In both cases, the CNN model shows promising accuracy for ozone prediction 24 153 
hours in advance in both the United States and South Korea (with an overall index of agreement exceeding 154 
0.8). For the first case, we use the wavelet transform to determine the reasons behind the poor performance 155 
of CNN during the nighttime, cold months, and high ozone episodes. We find that when fine wavelet modes 156 
(hourly and daily) are relatively weak or when coarse wavelet modes (weekly) are strong, the CNN model 157 
produces less accurate forecasts. For the second case, we use the dynamic time warping (DTW) distance 158 
analysis to compare post-processed results with their CMAQ counterparts (as a base model). For CMAQ 159 
results that show a consistent DTW distance from the observation, the post-processing approach properly 160 
addresses the modeling bias with predicted IOAs exceeding 0.85. When the DTW distance of CMAQ-vs-161 
observation is irregular, the post-processing approach is unlikely to perform satisfactorily. Awareness of 162 
the limitations in CNN models will enable scientists to develop more accurate regional or local air quality 163 
forecasting systems by identifying the affecting factors in high concentration episodes. 164 

 165 

Keywords: machine learning, neural networks, atmospheric chemistry, air quality modeling.  166 
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1. Introduction: 167 

Currently, atmospheric scientists have shown significant interest in applying machine learning 168 
(ML) algorithms in their field, specifically for air quality forecasting, remote sensing data retrieval, and 169 
hurricane tracking. ML is a technique used for developing data-driven algorithms that learn to mimic human 170 
behavior on the basis of a prior example or experience. It is a tool that allows systems to more effectively 171 
deal with knowledge-intensive problems in complex domains, which occurs via learning that involves 172 
gathering information from a training dataset and using a certain logic to purposefully detect a pattern of 173 
behavior. The fundamental goal of ML models is to apply the detected patterns to make generalizations 174 
beyond the examples in the training set.  175 

Generalizations stemming from ML models provide a scope of improvement in a number of 176 
physical applications. Evidence of the growing interest in applying ML is the rapid increase in the number 177 
of scientific publications in this area, illustrated in Fig. S1. However, the focus of these studies was the 178 
general performance of the model ML models compared to that of conventional statistical models rather 179 
than identifying the shortcoming of such models in explaining the uncertainties of prediction models. Such 180 
examples can be found in studies by Eslami et al. (2019a, 2019b, 2019c), Choi et al. (2019), Sayeed et al. 181 
(2020), and Lops et al. (2019). To achieve more reasonable outcomes, we must first explore the current 182 
challenges we face when forecasting ambient air quality and then assess how or even whether ML models 183 
can address the challenges to produce more accurate forecasting. 184 

To develop a capable air quality forecasting tool, atmospheric scientists often turn to chemical 185 
transport models (CTMs) and statistical models, both of which use meteorological parameters and chemical 186 
precursors from previous atmospheric conditions to estimate the following conditions. A brief summary of 187 
these models appears in Zhang et al. (2012). Although CTMs, with their dynamical implementation of 188 
atmospheric chemistry and physics, have shown promise in forecasting, they are too computationally 189 
intensive for real-time operational forecasts. Thus, computationally efficient statistical models such as ML 190 
have emerged as alternative approaches. Unlike CTMs, however, these models mainly rely on data from a 191 
network of monitoring stations that are sparsely distributed and measure a limited number of meteorology 192 
and air quality variables (Eslami et al., 2019a). Given the complexity of the formation/depletion of air 193 
pollutants such as ozone, this limitation may be vital in predicting extreme events (Eslami et al., 2019b). 194 

Another challenge in predicting ozone concentration is the “external” relationships among 195 
predictors. For instance, as important meteorological parameters, temperature and solar radiation are 196 
synoptic factors, while the wind field is influenced by regional factors such as geography and urbanization. 197 
Such conditions particularly affect ozone variability since locally-produced NO2 emissions under certain 198 
meteorological circumstances lead to the formation of ozone that is later transported by the wind and 199 
detected by monitoring stations (Pan et al., 2015). Nevertheless, station-specific ML models use such 200 
chemical and meteorological variables as a footprint of local conditions.  201 

Although local emissions of ozone precursors are the dominant source of ozone, particularly in 202 
urban areas, ozone pollution arising from sources outside of a target region, such as background ozone, 203 
inevitably degrade local air quality (Camalier et al., 2007). The lack of measurable environmental variables 204 
that indicate the potential long-range transport of air pollutants poses an unprecedented challenge for a ML 205 
model to estimate ozone concentrations over downwind communities (Eslami et al., 2019a).  Because of 206 
the nonlinear spatial relationships between neighboring monitoring stations, ML models as operational real-207 
time forecasting systems produce relative uncertainty.  208 

A number of studies have proposed solutions addressing the above limitations of ML models. 209 
Eslami et al. (2019a) implement a deep convolutional neural network (CNN) (Krizhevsky et al., 2012) 210 
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model that uses hourly values of several meteorological and air pollution variables to predict hourly ozone 211 
concentrations 24 hours in advance. Even though the accuracy of the forecasting system guarantees a 212 
reasonable level of accuracy, it fails to address high ozone episodes owing to the infrequent occurrences of 213 
such events, which lead to the undertraining of the CNN model. In another study, Eslami et al. (2019b) 214 
propose a data ensemble approach that mitigates this issue by regularizing the training dataset toward 215 
capturing high ozone episodes. While the authors remove a significant portion of the underprediction biases 216 
of the CNN model, its predictions of ozone during the nighttime and on rainy days are unreliable. Sayeed 217 
et al. (2020) use historical data covering a longer period within a diverse geographical domain (Texas) to 218 
train a similar CNN model. Their results from stations for which fewer measurements are available, while 219 
more accurate, are prone to uncertainty. Using the outputs of air quality and meteorological forecast models 220 
to map the hourly ozone concentrations at station locations, Choi et al. (2019) train a similar deep CNN 221 
model, a spatially generalized model that bias-corrects ozone forecasts of the community multi-scale air 222 
quality (CMAQ) model for all monitoring stations in the EPA AirNow network. Even though the model 223 
significantly improved CAMQ forecasts, the bias-correction process and the unbalanced CMAQ modeling 224 
outputs are unclear.  225 

This paper discusses certain limitations of the machine learning model using wavelet transform and 226 
dynamic time warping (DTW). Wavelet transform is a powerful technique for analyzing the temporal 227 
variation of a time-series (Grinsted et al., 2004). Wavelet analysis uses an adjustable resolution to translate 228 
time-series data and then decomposes the data into a certain frequency level that cannot be achieved by 229 
other conventional methods such as Fourier analysis (Huang et al., 2010). DTW is a nonlinear technique 230 
that measures any alignment between two time-series (i.e., model prediction and observation in this study) 231 
by warping them to match their similarities (Berndt and Clifford, 1994). By introducing two applications 232 
of CNN in the real-time ozone forecasting system, we use these analytical tools to identify the source of 233 
the prediction biases of the CNN model. In this paper, we do not describe the forecasting results in detail 234 
but instead refer the reader to studies by Eslami et al. (2019a, 2019b), Choi et al. (2019), and Sayeed et al. 235 
(2020). 236 

 237 

2. Materials and Methods 238 

2.1. Deep convolutional neural networks: 239 

The deep CNN model (Krizhevsky et al., 2012) is a common deep learning architecture that has 240 
long been used in numerous applications (Deng and Yu, 2014; Schmidhuber, 2015; Goodfellow et al., 2016; 241 
Litjens et al., 2017; Chen et al., 2018; Kamilaris and Prenafeta-Boldú, 2018; Higham and Higham, 2019). 242 
Unlike other methods, the CNN model is capable of analyzing joint features and attaining greater accuracy 243 
on large-scale datasets. Deep CNNs can be trained to approximate smooth, highly nonlinear functions 244 
(LeCun et al., 2015), rendering them appropriate for analyzing nonlinear processes in the atmosphere. In 245 
addition, feature extraction using deep learning algorithms is more efficient than using other neural network 246 
methods, particularly when multiple hidden layers are structured (Krizhevsky et al., 2012).  247 

A schematic for the deep CNN used in this paper appears in Fig. 1. The figure shows the input layer 248 
of the CNN algorithm, which represents the normalized time series of all input variables. The normalization 249 
process prevents a steep cost function and averts one feature from overbearing others. A filter passes 250 
through a set of units located in a small neighborhood in the previous convolutional layer. With local 251 
receptive fields, neurons can extract the elementary features of inputs that are then combined with those of 252 
higher layers. The outputs of such a set of neurons constitute a feature map (see Fig. 3). At each position, 253 
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various types of units in different feature maps compute various types of features. A sequential 254 
implementation of this procedure for each feature map is used for scanning the input data with a single 255 
neuron in a local receptive field and storing the states of this neuron at corresponding locations in the feature 256 
map. The constrained units in a feature map perform the same operation on different instances in a time 257 
series, and several feature maps (with different weight vectors) can comprise one convolutional layer. Thus, 258 
multiple features can be extracted in each instance. Once a feature is detected, its exact “location” becomes 259 
less important as long as its approximate position relative to the other features is preserved (Krizhevsky et 260 
al., 2012; LeCun et al., 2015). 261 

CNN uses a kernel of a given size to capture changes in the temporal variation of the input data by 262 
sweeping through time series. The various sections of the data are represented by feature maps. An 263 
additional layer performs local averaging, called “pooling,” and subsampling reduces the resolution of the 264 
feature map and the sensitivity of the output to possible shifts and distortions. This step could potentially 265 
discard important information (e.g., sudden ozone peaks) as explained in Sabour et al. (2017). Hence, this 266 
study uses the convolution layer without pooling. The feature maps are connected to a fully-connected 267 
layer, which helps us to map each feature of multiple inputs to the hourly ozone output (see Fig. 1).  268 

Compared to fully-connected multilayer perceptrons (MLPs) and recurrent neural networks (RNN), 269 
which have been extensively used as regression models, CNNs are attractive for several reasons. MLPs and 270 
RNNs are not explicitly designed to model variance within an estimation that results from a complex 271 
interaction between several inputs and outputs. While MLPs of sufficient size could indeed capture 272 
invariance, they require large networks with a large training set. Compared to the CNNs proposed in this 273 
study, RNNs are challenging to implement and computationally expensive (Eslami et al., 2019a; Sayeed et 274 
al., 2020; Lops et al., 2019).  275 

 276 

2.2. Wavelet transform: 277 

Wavelet transformation decomposes a signal into a scale frequency space, allowing the 278 
determination of the relative contributions of each temporal scale present within a signal (Mallet, 1989). 279 
Wavelet decompositions are powerful tools for analyzing the variation in signal properties across different 280 
resolutions of geophysical variables (Mallet, 1989; Grinsted et al., 2004; Foufoula-Georgiou and Kumar, 281 
2014). Using a fully scalable modulated window that shifts along with the signal, the wavelet transform 282 
overcomes the inability of the Fourier transform to represent a signal in the time and frequency domain at 283 
the same time (see Fig. S2 in the supplementary document). The spectrum is calculated for every position. 284 
After repeating the process, each time with a different window size, the results constitute a collection of 285 
time-frequency representations of the signal, all with different resolutions. The data are separated into 286 
multiresolution components, each of which is studied with a resolution that matches its scale (Aiazzi et al., 287 
2002). While high-resolution components capture fine-scale features in the signal, low-resolution 288 
components capture the coarse-scale features.  289 

As wavelet analysis represents any arbitrary (nonlinear) function by a linear combination of a set 290 
of wavelets or alternative basis functions, they are highly suitable for use as both an integration kernel for 291 
analysis to extract information about the process and a basis for representation or characterization of 292 
processes (Kaheil et al., 2008). Figure S3 in the supplementary document shows the hourly ozone time 293 
series of a monitoring station in downtown Seoul, South Korea, with a wavelet transform for the year 2017. 294 
Here, the wavelet transform exhibits strong power levels associated with period=24 and period=168 in the 295 
middle of the year, indicating dominant daily (24 hours) and weekly variation (168 hours).   296 
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 297 

2.3. Dynamic time warping: 298 

To assess the similarity between two time series, DTW expands or contracts a given time series to 299 
minimize the difference between the two of them (Berndt and Clifford, 1994). The advantage it has over 300 
Euclidean distance, a conventional distance analysis method, is that it highlights when a shift (e.g., a time 301 
lag) occurs between two time-steps in two time series (see Fig. S4 in the supplementary document). 302 
Euclidean distance takes pairs of data within the time series and compares them. DTW calculates the 303 
smallest distance between all points, matching one time-step to many counterpart steps on the linked time 304 
series (see Fig. S4). Owing to its nonlinear mapping capability, it is widely used in various domains, from 305 
time-series classification (Jeong et al., 2011) to bioinformatics (Giorgino, 2009), health signal processing 306 
(Tormene et al., 2009), and speech recognition (Berndt and Clifford, 1994).  307 

One benefit of DTW is that it will classify two time series of the same shape as similar even if their 308 
absolute values differ or if one time series contains large variability. Figure S5 compares the DTW distance 309 
between the observation time series and two prediction models for an ozone monitoring station in Texas. 310 
DTW detects the differences between CMAQ estimation and observation with the highest difference in the 311 
middle of 2014.    312 

 313 

3. Results and Discussion 314 

3.1. Case 1: CNN as a real-time ozone forecasting system 315 

In this case, we used the modeling experience reported in Eslami et al. (2019a). Briefly, the system 316 
employs a deep CNN model that uses an hourly variation of seven meteorological and two air quality 317 
parameters from the day before as inputs to predict hourly ozone concentrations on the following day for 318 
25 monitoring stations in Seoul, South Korea. Figures S7 and S8 show the accuracy of the CNN model 319 
(using the index of agreement (IOA)) and the time series comparison of average ozone concentrations 320 
between the observation and the CNN prediction, respectively. Note that IOA is a standardized measure of 321 
the degree of model prediction error and varies between 0 and 1. The agreement value of 1 indicates a 322 
perfect match, and 0 indicates no agreement at all. While the model maintained a proper level of prediction 323 
accuracy, it was prone to two main limitations: (i) Its performance at various times of the year varied (see 324 
Fig. S6); and (ii) nighttime predictions showed higher relative bias and lower modeling performance than 325 
daytime predictions (see Fig. S7). In general, wavelet transform can explain varying, time-dependent 326 
modeling performance; nevertheless, the significant difference between modeling performance during the 327 
daytime and the nighttime indicates an undertrained CNN model. 328 

 329 

3.1.1. Time-dependent model performance: 330 

 The performance of the CNN model is directly dependent on how well the model understands the 331 
relationship between the inputs (meteorology and ozone precursors) and output (ozone concentration). 332 
Compared with meteorological variables, emission sources from volatile organic compounds (VOCs) and 333 
NOx are experiencing less variability in time. Thus, meteorological variables play an important role in 334 
governing the variation of the ozone at different times throughout the year (Choi, 2014; Pan et al., 2019). 335 
Temperature, wind speed, and relative humidity (RH) are among the most important meteorological 336 
parameters affecting ozone variation.  337 
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Figure 2 shows the wavelet power transform of the aforementioned meteorological variables for 338 
2017. Since we used an hourly time series to calculate the wavelet powers, both the index and the period 339 
are in hours. The figure also locates five time periods, which indicates significant performance variations. 340 
From Fig. S6, the CNN model underperformed during weeks 3-9 and 44-51, labeled the “Worst CNN 341 
results” in Fig. 2. For weeks 14-22 and 42-44, the CNN model showed the best forecasting results. Between 342 
weeks 29 and 33, the CNN model produced significant underestimations, labeled “Large under-prediction” 343 
in Fig. 2. The figure shows strong wavelet powers during a 24-hour (daily) period for all variables, the 344 
results of strong diurnal variation of these parameters, which are directly or indirectly controlled by sunlight 345 
(e.g., temperature, relative humidity, etc.). While the wavelet powers for wind speed were generally larger 346 
than RH, the temperature showed lower but more consistent daily modes. This finding is important since 347 
the CNN model can more accurately detect specific “patterns” in the temperature than those in the wind 348 
speed and RH. Thus, when the daily modes are stronger in temperature, the CNN model likely performs 349 
better. In contrast, when the daily modes of the meteorological variables are relatively weak, the CNN 350 
model performs poorly (see Fig. 2).  351 

The large coarse modes in the wind speed and RH lead to significant over and underestimation of 352 
the CNN model. Figure S8 shows the polar frequency (influenced by the wind speed) of the CNN modeling 353 
bias in various months. As the figure shows, while southwesterly winds in August 2017 were associated 354 
with relatively large underpredictions boosted by pollution transport from the Incheon area, north-355 
northwesterly winds with air coming from less urbanized regions were allied with notable over predictions.  356 

Figure S9 compares the CNN model predictions with observational data for the seasons with 357 
respect to levels of RH. The figure showed the largest differences in the CNN model predictions (both over 358 
and underpredictions) when the level of RH was close to the extreme (very high and very low). This finding 359 
was particularly evident for the summer months when the model showed poor performance at capturing 360 
high ozone episodes. This finding underscores the importance of coarse models from the wavelet analysis 361 
during the warm months. Directly indicating the over or underpredictions by the model through these 362 
modes, however, is challenging. For instance, Fig. S10 shows one high ozone episode in July 2017, when 363 
the daily ozone peak exceeded 90ppb on two continuous days at most stations. Here, the overprediction of 364 
the CNN model was associated with high RH, while the underprediction was linked to low RH, indicating 365 
more complexity among the relationships between meteorological factors and ozone formation or depletion.   366 

  Another reason for the poor performance of the CNN model during the selected time period was 367 
the relatively large coarse modes (period > 24 hours). The CNN model received information about only the 368 
last day; hence, it was unable to address the bi-daily and weekly trends with the input data. For instance, 369 
for time periods with large underpredictions, coarse modes in the wind speed were even larger than the 370 
daily modes. Thus, employing a longer history would adequately explain the relationship between wind 371 
speed and ozone. In the comparison of the average wavelet powers in various periods (from daily to weekly 372 
modes) of CNN predictions and observational data, Fig. 3 shows that the powers for both time series match 373 
periods of approximately 24 hours. After 32 hours, however, the wavelet power of the CNN model shrinks 374 
to a relatively constant power while that for the observation reaches local extremums at around 3, 5, and 7 375 
days. 376 

Although wavelet analysis indicates that modes coarser than 24 hours are important components of 377 
the ozone time series, their relationship to CNN model accuracy can be complicated. Figure 4 compares 378 
wavelet powers for both fine and coarse modes with a correlation coefficient (r) in 25 ozone stations in 379 
Seoul. For stations closer to the downtown area (i.e., those with station numbers under 11), the fine modes 380 
had fewer wavelet powers than those for stations in less urbanized areas, indicating that the relationship 381 
between ozone concentrations with local emissions was evident in the less urbanized areas than it was in 382 
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the other areas. The coarse modes, however, varied from station-to-station with relatively higher coarse 383 
wavelet power for those in less urbanized areas. Nonetheless, no evidence points to a clear relationship 384 
between either coarse or fine wavelet modes and the accuracy of the model. Figure 4 shows that the CNN 385 
model generally performed better for stations close to downtown Seoul. Because Seoul has only one 386 
meteorological station, these stations had access to more realistic weather parameters in their 387 
training/prediction process. 388 

 389 

3.1.2. Low modeling performance during the nighttime: 390 

In their discussion of several air quality forecasting models that incorporated machine learning 391 
algorithms, including CNN, deep neural networks, and decision trees, Eslami et al. (2019a) and Eslami et 392 
al. (2019b) claimed that the algorithms encounter a significant modeling bias while estimating air quality 393 
concentrations during the nighttime. This bias reduced the prediction accuracy of nighttime ozone 394 
concentrations, compared to daytime concentrations, by more than 20%. A similar issue is also encountered 395 
by CTMs, even those with complex physical and chemical equations that explain the diurnal variation of 396 
ozone concentrations. 397 

 One reason for this modeling bias was likely the result of variation among the meteorological 398 
inputs during the nighttime. Although their absolute values were generally higher they were during the 399 
daytime, the relative frequency of variation was more pronounced during the nighttime, causing a 400 
discontinuity in the learning process of the CNN model. Since both daytime and nighttime hours were 401 
inputs, the CNN model minimized the cost function that contained “normalized” errors during both daytime 402 
and nighttime hours (the cost function was the mean squared errors or 24-hour ozone predictions at each 403 
step). Generally, there are more daytime hours than nighttime hours (see Fig. S11). Also, the accumulation 404 
of NO2 concentrations for these extreme cases was mainly due to stagnant atmospheric conditions with 405 
wind speeds close to their yearly minimum values (see Fig. S12a for scatter plots with levels of wind 406 
speeds). As a result, the CNN model was vulnerable to characteristic bias in nighttime ozone estimations. 407 
As a customized cost function could be a potential solution to this limitation, it requires further 408 
investigation.    409 

The performance of the CNN model in predicting nighttime ozone concentrations also suffered 410 
because of the misinterpretation of extreme conditions of the input parameters. Figure 5 shows scatter plots 411 
that compare CNN predictions and observations by the levels of two important ozone precursors (NO2 412 
concentrations) and meteorological variables (RH%) separated into daytime and nighttime. The NO2 413 
concentration was generally higher during the nighttime when the ozone concentration was near zero for 414 
extreme NO2 values because of conditions amenable to ozone depletion with the absence of sunlight. 415 
Unable to capture this relationship, however, the CNN model overestimated these cases (See Fig. 5a).    416 

In contrast to the above-mentioned overestimated events, Fig. 5b shows an underestimation of 417 
nighttime ozone when the level of RH% was generally high, primarily during warm days. A similar pattern 418 
occurred when the surface pressure was accounted for (Fig. S12b). Such underestimated events occurred 419 
for two reasons. One is that high (or low) levels of RH% and surface pressure generally occur at about the 420 
same time during the early morning (or late afternoon) when the planetary boundary layer (PBL) is at its 421 
lowest (or highest) level during the day. In these extreme conditions, the earlier sunrise (or later sunset) 422 
during the summer months established a condition that elevated ozone concentrations. As these events 423 
normally occurred only during short periods of time, the CNN model was not sufficiently trained to capture 424 
these relationships. 425 
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     426 

3.2. Case 2: CNN as a post-processing tool in a real-time ozone forecasting system: 427 

In this case, a generalized bias-correction CNN model introduced by Choi et al. (2019) was used. 428 
Their model is a computationally efficient deep learning-based model that produces more reliable numerical 429 
results. The authors used a deep CNN model to map ozone precursors from CMAQ and meteorological 430 
parameters from the weather research and forecasting (WRF) model (as input variables) to observe hourly 431 
ozone concentrations at a monitoring station (as a target). Their model, the CMAQ-CNN model, 432 
significantly improves the performance of the CMAQ model in both accuracy and bias. Figures S13 shows 433 
the statistical improvements (in correlation, root mean squared error, and standard deviation) of the CMAQ-434 
CNN model over the CMAQ model (as a base model) in different months. Figure S14 compares the daily 435 
maximum ozone estimated by CMAQ and CMAQ-CNN in 48 states for which the CMAQ-CNN 436 
significantly moderated the over predictions of the CMAQ.  437 

It was clear that the likelihood of the CMAQ-CNN model producing accurate results was strongly 438 
associated with the quality of CMAQ forecasts; when CMAQ forecasted hourly ozone concentrations with 439 
a station-specific yearly IOA of more than 0.5, the IOA of the CMAQ-CNN model was more than 0.8 for 440 
most cases. The probability of such accuracy was generally unrelated to that of the CMAQ model. For 441 
instance, the CMAQ-CNN model was unable a reach the yearly IOA=0.8 even though the CMAQ IOA was 442 
more than 0.7 (e.g., EPA #101 Tennessee: CMAQ IOA=0.7; CMAQ-CNN IOA=0.78). In some cases, 443 
however, the yearly IOA following the post-processing approach was less than 0.7 (e.g., EPA #1011 444 
California: CMAQ-CNN IOA=0.63). Here, we used the distance analysis from DTW to explain (i) why 445 
CMAQ-CNN produced satisfactory results at some stations but not others, and (ii) why it performed poorly 446 
at some stations. 447 

 448 

3.2.1. Satisfactory post-processing scenarios: 449 

Figure 6 shows the time-series of CMAQ, CMAQ-CNN, and observed daily ozone concentrations 450 
at three EPA stations. These stations were selected because the IOA accuracy of the CMAQ-CNN model 451 
was either more than 0.9 (Fig. 6a and 6b) or 20% more than that of CMAQ (Fig. 6c). Figure 7 compares 452 
the DTW distance analysis of CMAQ and CMAQ-CNN for the same stations. These are three typical cases 453 
of satisfactory improvement by the CMAQ-CNN post-processing approach: 454 

Figures 6-7(a): Observed ozone concentrations in this California location were higher at the beginning of 455 
the ozone season, followed by relatively steady values ranging between 20-40ppb. After 456 
May, however, CMAQ significantly overestimated daily ozone concentrations. The 457 
overestimation was more pronounced at the end of the ozone season, resulting in an 458 
overall IOA accuracy of 0.73. The DTW distance analysis showed a consistent distance 459 
between CMAQ predictions and observed values. Because of this consistency, the 460 
CMAQ-CNN model recognized the bias trends in CMAQ, boosting its prediction 461 
accuracy by 0.17, even though the large distance from the CMAQ predictions (mean 462 
distance=0.52) mirrored a relatively significant overestimation in the CMAQ-CNN post-463 
processed results.  464 

Figures 6-7(b): Here, the trend in ozone concentrations followed a U-shaped curve in the ozone season 465 
because of strong summer winds coming from the large bodies of water near Florida (the 466 
North Atlantic Ocean and the Gulf of Mexico). For this station, CMAQ accurately 467 
predicted this trend throughout the ozone season with a relatively constant bias from July 468 
to September. As a result, the overall accuracy of the IOA was 0.84 for the CMAQ 469 
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prediction. The CMAQ was also consistent with the DTW analysis, with two distance 470 
gaps in July and September (at the beginning and the end of the CMAQ overestimation 471 
period). The CMAQ-CNN model, recognizing the adequate performance of the base 472 
model in its post-processing algorithm, further improved the IOA accuracy of CMAQ by 473 
around 10%.  474 

Figures 6-7(c): The trend of observed ozone showed a steady decrease in this northeastern state because 475 
of the significantly cooler summer and fall months. This trend, along with the fewer ozone 476 
emission sources surrounding this station, resulted in the formation of less ozone during 477 
the ozone season. The CMAQ model overestimated ozone concentrations by more than 478 
50% during most of the season with a relatively large mean DTW distance (0.62). The 479 
CMAQ-CNN model was able to address this issue because of the consistency of the bias 480 
trend in CMAQ predictions (see left panel for DTW distance). Thus, overall, the accuracy 481 
of IOA improved by 0.2.  482 

The satisfactory post-processing results using the CMAQ-CNN model were mainly characterized 483 
by the regularity of the bias trend in CMAQ as the base model for training the CNN model. As shown by 484 
the DTW distance analysis, when the DTW distance of CMAQ predictions from observed values was 485 
consistent throughout the ozone season, the CNN model was able to improve the CMAQ results to a reliable 486 
level (IOA>0.8). To test this hypothesis, we used the CMAQ-CNN post-processing approach in typical 487 
unsatisfactory scenarios. 488 

 489 

3.2.2. Unsatisfactory post-processing scenarios: 490 

Figure 8 compares the time series of ozone observations with the CMAQ and CMAQ-CNN models 491 
at three selected EPA stations. For all of these stations, the CMAQ-CNN model failed to reach a reliable 492 
IOA accuracy level of 0.8, while the accuracy of the CMAQ model improved. Figure 9 represents the DTW 493 
distance analysis of the two models and the ozone observation for the same stations. Unsatisfactory 494 
improvement by the CMAQ-CNN model occurred in the following three cases:  495 

Figures 8-9(a): The ozone trend in this station fluctuated throughout the ozone season with frequent 496 
spikes in May, July, and October, primarily the result of biomass burning (Choi et al., 497 
2016). While the CMAQ model predicted ozone concentrations with a relatively small 498 
bias (IOA=0.7), the bias trend varied from time to time—that is, trends of under and over 499 
predictions changed frequently. A footprint of these trends, that is, changes in the path of 500 
the distance trend, is evident in the DTW analysis. This inconsistency was mirrored in the 501 
equivalent DTW analysis for the CMAQ-CNN model by a consistent distance trend, 502 
resulting in an unsatisfactory IOA accuracy level (IOA=0.78) with an increased mean 503 
DTW distance (0.89 compared to 0.74 for the CMAQ time series). 504 

Figures 8-9(b): The trend in this California location was a relatively constant concentration of ozone 505 
generally ranging between 10-30ppb. The CMAQ model significantly overpredicted 506 
ozone concentrations throughout the entire time period, mostly the result of the proximity 507 
of this station to the Pacific Ocean (San Diego County), which controls the variation in 508 
the daily ozone concentration (Pan et al., 2017). The DTW distance analysis shows a 509 
significant yet steady spike in the distance between CMAQ and the observation. Thus, 510 
even though the CMAQ-CNN significantly improved the accuracy of the CMAQ model 511 
(IOA=0.63 compared to CMAQ IOA=0.44), the large distance accounted for the 512 
underperformance of the post-processing approach. That also mirrored the consistent 513 
distance in the CMAQ-CNN distance trend (see the right panel). 514 

Figures 8-9(c): In this station, the ozone concentration followed an infrequent trend with lows and highs 515 
spread indiscriminately across the ozone season, the result of several factors affecting air 516 
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pollution in this region, including biomass burning, a strong frontal system, and other 517 
conditions. As a result, the CMAQ model underperformed with substantial overestimation 518 
during most of the time period (IOA=0.55). In addition, the bias of the CMAQ model did 519 
not follow as clear a trend as the DTW distance analysis. The CMAQ-CNN model 520 
improved the prediction results by more than 10% with a reduced DTW distance (0.27 vs. 521 
0.35 for the CMAQ time series). Nevertheless, the varying ozone trend accompanying the 522 
inconsistency in the prediction bias trend resulted in the low overall accuracy of the IOA 523 
of the CMAQ-CNN for this station (IOA=0.67). 524 

Unlike the satisfactory cases, the unsatisfactory post-processing results using the CMAQ-CNN 525 
model stemmed from the inconsistency in the bias trend found by the DTW distance analysis. Another 526 
influential factor was the variability of observed ozone concentrations. Because of the frequent variation in 527 
the observational data, it was more complicated to train the CMAQ-CNN model so that it addressed the 528 
bias in the CMAQ model. The geographical location of a station was also an important factor in the 529 
improvement level of the post-processing approach. Proximity to the large body of water and/or sources 530 
from biomass burning during the ozone season were among the influential geographical features. Also, as 531 
Figs. 8-9 show, the DTW distances of the CMAQ-CNN predictions from the observed ones followed a 532 
consistent trend. Therefore, the information in Figs. 6-7 indicate that a secondary post-processing model 533 
might be a possible solution to boosting prediction accuracy. 534 

 535 

3.3. Discussion: 536 

Despite the enormous success of the convolutional neural network (CNN) algorithm in numerous 537 
applications, certain issues related to its applications in air quality forecasting (AQF) require further 538 
analysis and discussion. Our main goal in this paper was to discuss some of these issues is a few practical 539 
applications. To discuss these issues analytically, we used wavelet transform and dynamic time warping 540 
(DTW) as powerful mathematical tools for time-series analysis and models. Based on the findings that were 541 
presented in the paper, these tools are extremely helpful not only in understanding the issues with machine 542 
learning models but also in fine-tuning them to improve their performances with a scientific point of view. 543 
Awareness of the limitations in CNN models will enable scientists to develop more accurate regional or 544 
local air quality forecasting systems by identifying the affecting factors in high concentration episodes. 545 

Based on our findings in the base studies presenting the aforementioned CNN models, in both 546 
cases, the CNN model shows reasonable accuracy for ozone prediction, 24 hours in advance, in two 547 
geographical locations (the United States and South Korea). However, similar to other data-driven 548 
prediction tools, in a CNN model, the out-of-sample prediction error is almost always greater than the in-549 
sample prediction error. Thus, since both CNN models were designed as a real-time air quality prediction 550 
models, the prediction error is inevitable, even though (i) both models were configured for optimum 551 
performance (based on the input or training samples), and (ii) in development of both models, cross-552 
validation processes were followed to mitigate any systematic biases. However, the underperformance of 553 
the CNN model was dependent on several factors, including modeling configuration (e.g., the depth of 554 
CNN model), arrangements of input variables (e.g., number of previous days as inputs), the day of the week 555 
(e.g., weekdays versus weekdays), the hour of the day (e.g., daytime versus nighttime) (see Eslami et al. 556 
(2019a, 2019b, 2019c), Choi et al. (2019), Sayeed et al. (2020), and Lops et al. (2019), and the discussion 557 
within). 558 

Here, we discussed the general limitations of the CNN model in two common applications: (i) a 559 
real-time AQF model, and (ii) a post-processing tool in a dynamical AQF model (i.e., CMAQ). These 560 
examples are fundamentally different in terms of execution, one being a raw predictor (statistical approach) 561 
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while the other being a post-processor (hybrid approach). Since both models are commonly used as a real-562 
time air quality prediction system, we discussed their issues individually to explain specific issues that one 563 
may encounter in executing either of them. Thus, it will provide both machine learning researchers and 564 
atmospheric scientists with multiple candidate models and analytical tools to develop any specific model 565 
of their choice.  566 

For one case (raw prediction model), we used the wavelet transform to determine the reasons behind 567 
the poor performance of CNN during the nighttime, cold months, and high ozone episodes. We find that 568 
when fine wavelet modes (hourly and daily) were relatively weak or when coarse wavelet modes (weekly) 569 
were strong, the CNN model produced less accurate forecasts. Since the CNN model has used only one 570 
precious day of air quality and meteorological parameters, neither the coarse patterns (e.g., weekly) were 571 
used as a prediction feature, nor any connection between different time-series windows (as is revealed in a 572 
wavelet transform analysis) was considered. Thus, the wavelet transform can be helpful as a complementary 573 
tool in filling these gaps in a CNN prediction model development. It should be noted that long short-term 574 
memory (LSTM) model can potentially incorporate some of the aforementioned time-dependencies (e.g., 575 
bi-daily or weekly). However, the focus of this study is to address such a limitation in a CNN model as a 576 
choice of the ML model. 577 

For the other case (post-processing model), we used the DTW distance analysis to compare post-578 
processed results with their CMAQ counterparts (as a base model). For those CMAQ results with a 579 
consistent DTW distance from the observation, the post-processing approach properly addressed the 580 
CMAQ modeling bias with predicted IOAs exceeding 0.85. When the DTW distance of CMAQ-vs-581 
observation is irregular, the post-processing approach is unlikely to perform satisfactorily. Even though the 582 
CMAQ-CNN model has included several chemical components and meteorological variables as its inputs, 583 
there was no input feature representing CMAQ’s own accuracy. By comparing a history of CMAQ results 584 
in different geographical locations with available observation data, the DTW can provide an ‘irregularity’ 585 
index as an additional input feature.  586 

4. Conclusion: 587 

Various applications of deep learning algorithms, particularly convolutional neural networks, have 588 
universally been applied in the field of atmospheric sciences, especially in air quality forecasting systems. 589 
Although such applications supported easy-to-use, computationally-efficient frameworks and flexible 590 
capabilities appeared to generate accurate prediction results, the risk of exaggerated expectations may be a 591 
cause for concern. In an effort to elucidate both the advantages and limitations of deep learning models in 592 
air quality forecasting (AQF) systems, this paper addressed several common issues raised by the use of 593 
these models. 594 

To explore the limitation, we chose two applications of two similar CNN models. (i) CNN as an 595 
independent real-time AQF; and (ii) CNN as a post-processing model of a state-of-the-art dynamical model, 596 
the Community Multi-scale Air Quality Model (CMAQ). For both cases, the CNN model resulted in an 597 
acceptable 24-hour in advance, hourly ozone concentration prediction with an index of agreement (IOA) of 598 
more than 0.8 for two networks of monitoring stations in South Korea and the United States. We selected 599 
two powerful statistical data analytic techniques—wavelet transform and dynamic time warping (DTW)—600 
to identify the limitations of the proposed models in both cases. By applying these techniques, researchers 601 
find discrepancies in the input data and their temporal trends and thus gain awareness of the limitations of 602 
deep learning models. 603 
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When the CNN model was used as a real-time AQF system in South Korea, it underperformed 604 
during both cold months and high ozone episodes. In these scenarios, we found that the fine wavelet modes 605 
(daily and hourly) were relatively weaker than they were in other conditions. Also, when the coarse modes 606 
were strong, the predictions of the CNN model were fraught with a large number of errors. We also found 607 
that the model underperformed during the nighttime hours, the results of an undertrained model and extreme 608 
values of the input parameters during the nighttime. 609 

 For the post-processing CNN model, the level of improvement depended on the DTW distance of 610 
the CMAQ model to the observations. When the calculated distance followed a consistent trend, the post-611 
processing model was able to address the bias of CMAQ, independent from its accuracy level or error range. 612 
When such consistency was absent or when observed ozone varied frequently, however, the errors in the 613 
CMAQ model were mirrored in the results of the post-processing model. 614 

Given this discussion of the limitations of deep learning models, we suggest that researchers 615 
configure their deep learning models based on temporal trends within the input parameters, geographical 616 
locations, and variation frequency of target pollutants. To predict ambient hourly ozone concentrations, we 617 
have restricted our discussions to a multi-output regression problem in supervised settings. While our study 618 
approach might be valid for other supervised algorithms, we leave a detailed study of other supervised 619 
methods for future work. 620 
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