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Responses to the comments of Referee #1: 8 

We would like to thank the reviewer for his/her time and effort for reviewing this manuscript. 9 

Please find below our responses. 10 

 11 
Referee #1:  12 

The paper provides two case studies critiquing CNN models trained for AQF applications. The 13 

first ML model is directly an estimator, the second is used as a corrector for a CMAQ model. The 14 

authors use wavelet modal decomposition and a shape-invariant distance metric as analysis tools 15 

to find discrepancies in the model predictions and trace them back to environmental factors. This 16 

analysis is valuable and interesting in itself. Both positive and negative results are provided. 17 

 18 

I encourage the authors to rethink the vision of this paper. What is the central thesis of the paper? 19 

Does CNNs work better as post-processing tools rather than raw predictors? Are model biases 20 

inevitable in these applications no matter the configuration? 21 

Response: 22 

To respond to your suggestion and comments, the following statements are offered: 23 

 Despite the enormous success of the convolutional neural network (CNN) algorithm in 24 

numerous applications, certain issues related to its applications in air quality forecasting (AQF) 25 

require further analysis and discussion. Our main goal in this paper was to discuss some of 26 

these issues is a few practical applications. In order to discuss these issues analytically, we 27 

used wavelet transform and dynamic time warping (DTW), as powerful mathematical tools for 28 

time-series analysis and models. Based on the findings that were presented in the paper, these 29 

tools are extremely helpful not only in understanding the issues with machine learning models 30 

but also in fine-tuning them to improve their performances with a scientific point of view. 31 

Awareness of the limitations in CNN models will enable scientists to develop more accurate 32 

regional or local air quality forecasting systems by identifying the affecting factors in high 33 

concentration episodes. 34 

 We discuss the general issues of the CNN model in two common applications: (i) a real-time 35 

AQF model, and (ii) a post-processing tool in a dynamical AQF model, the Community Multi-36 
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scale Air Quality Model (CMAQ). As the referee correctly stated, these examples are 37 

fundamentally different in terms of execution, one being raw predictor (statistical approach) 38 

while other being a post-processor (hybrid approach). Since both models are commonly being 39 

used as a real-time air quality prediction systems, we discussed their issues individually to 40 

broaden researchers’ view on certain issues that one may encounter in executing either of them. 41 

Thus, it will prove both machine learning researchers and atmospheric scientists with multiple 42 

candidate models and analytical tools to develop any specific model of their choice. 43 

 44 

The authors diagnose important limitations of CNN models trained on their data but very few 45 
thoughts are offered for interested researches as to how to fix these issues. (except maybe in the 46 

conclusions). For example if there is a significant difference in the accuracy of the model in 47 

nighttime vs daytime, how does a single model compare to two models trained separately on 48 
subsets of data (day/night). If your analysis shows hidden correlations between the error and RH% 49 

how can you incorporate that into the input data? 50 

 51 
When the model is not performing well, insufficient training (as suspected by authors) is only one 52 

possible cause. Another possibility may be under parametrization, such that the model is not 53 
complex enough to capture the details of special cases. I think providing error measures on the 54 
training data and comparing them with test data can illuminate the source of underperformance. 55 

 56 

Response: 57 

To respond to your suggestion and comments, following explanations are stated: 58 

 Based on our findings in the base studies presenting the aforementioned CNN models, in both 59 

cases, the CNN model shows promising accuracy for ozone prediction, 24 hours in advance, 60 

in both the United States and South Korea. However, similar to other data-driven prediction 61 

tools, in a CNN model, the out-of-sample prediction error is almost always greater than the in-62 

sample prediction error. Thus, since both CNN models were designed as a real-time air quality 63 

prediction models, the prediction error is inevitable, even though (i) both models were 64 

configured for optimum performance (based on the input or training samples), and (ii) in 65 

development of both models, careful cross-validation processes were followed to mitigate any 66 

systematic biases. In addition, a comprehensive explanation can be found in our previous 67 

works, including but not limited to, the potential reasons for underperformance of the CNN 68 

model, modeling configuration and fine-tuning processes, training and validation process, 69 

arrangements of input variables, scenarios to improve the modeling accuracy, etc. Please refer 70 

to Eslami et al. (2019a, 2019b, 2019c), Choi et al. (2019), Sayeed et al. (2020), and Lops et al. 71 

(2019), and the discussion within. The authors will be delighted to provide additional 72 

explanations if nessaccry to accommodate the referee’s comments and suggestions. 73 

 For one case (raw prediction model), we use the wavelet transform to determine the reasons 74 

behind the poor performance of CNN during the nighttime, cold months, and high ozone 75 

episodes. We find that when fine wavelet modes (hourly and daily) are relatively weak or when 76 
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coarse wavelet modes (weekly) are strong, the CNN model produces less accurate forecasts. 77 

For the other case (post-processing model), we use the DTW distance analysis to compare 78 

post-processed results with their CMAQ counterparts (as a base model). For CMAQ results 79 

that show a consistent DTW distance from the observation, the post-processing approach 80 

properly addresses the modeling bias with predicted IOAs exceeding 0.85. When the DTW 81 

distance of CMAQ-vs-observation is irregular, the post-processing approach is unlikely to 82 

perform satisfactorily. We are currently working on an individual study to use the findings of 83 

this study to fine-tune both CNN models. In our work-in-progress study, we will provide a 84 

practical approach in infusing scientific angel of air quality time-series into CNN prediction 85 

models using advanced analytical tools. 86 

 87 

The authors state on line 46 : "Inevitably, a consequence of such enthusiasm in the field is the risk 88 
of exaggerated expectations, fueled by results focusing on the general performance of ML models 89 

compared to that of conventional statistical models" and give their previous works as examples. 90 
At the very least this assertion needs a more detailed explanation. 91 

 92 

 To address the referee’s comment on line 46, we changed the sentence as highlighted in the 93 

following, and we applied the changes in the manuscript: 94 

o However, the focus of these studies was the general performance of the model ML models 95 

compared to that of conventional statistical models rather than identifying the shortcoming 96 

of such models in explaining the uncertainties of prediction models. Such examples can be 97 

found in studies by Eslami et al. (2019a, 2019b, 2019c), Choi et al. (2019), Sayeed et al. 98 

(2020), and Lops et al. (2019). To achieve more reasonable outcomes, we must first explore 99 

the current challenges we face when forecasting ambient air quality and then assess how or 100 

even whether ML models can address the challenges to produce more accurate forecasting. 101 

 102 

Responses to the comments of Referee #2: 103 

Referee #2:  104 

This paper proposed a wavelet-based approach to evaluate the advantage and disadvantages of a 105 
typical deep learning model, convolutional neural network, in air quality forecasting (AQF). They 106 

used wavelet transform to identify the causes of the poor performances of CNN and find that when 107 
fine wavelet modes are relatively weak or coarse wavelet modes are strong, CNN forecasts will be 108 

less accurate. This finding is very important for the community to understand the drawbacks of 109 
deep learning and be aware of them when using it together with conventional numeric air quality 110 
models. The paper has a clear design and the proposed idea and the subsequent experiments are 111 
presented very well. 112 
 113 

Response: 114 

We would like to thank the reviewer for his/her time and effort for reviewing this manuscript. 115 
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Abstract: 11 
As the deep learning algorithm has become a popular data analytic technique, atmospheric 12 

scientists should have a balanced perception of its strengths and limitations so that they can provide 13 
a powerful analysis of complex data with well-established procedures. Despite the enormous 14 
success of the algorithm in numerous applications, certain issues related to its applications in air 15 
quality forecasting (AQF) require further analysis and discussion. This study addresses significant 16 
limitations of an advanced deep learning algorithm, the convolutional neural network (CNN), in 17 
two common applications: (i) a real-time AQF model, and (ii) a post-processing tool in a dynamical 18 
AQF model, the Community Multi-scale Air Quality Model (CMAQ). In both cases, the CNN 19 
model shows promising accuracy for ozone prediction 24 hours in advance in both the United 20 
States and South Korea (with an overall index of agreement exceeding 0.8). For the first case, we 21 
use the wavelet transform to determine the reasons behind the poor performance of CNN during 22 
the nighttime, cold months, and high ozone episodes. We find that when fine wavelet modes 23 
(hourly and daily) are relatively weak or when coarse wavelet modes (weekly) are strong, the CNN 24 
model produces less accurate forecasts. For the second case, we use the dynamic time warping 25 
(DTW) distance analysis to compare post-processed results with their CMAQ counterparts (as a 26 
base model). For CMAQ results that show a consistent DTW distance from the observation, the 27 
post-processing approach properly addresses the modeling bias with predicted IOAs exceeding 28 
0.85. When the DTW distance of CMAQ-vs-observation is irregular, the post-processing approach 29 
is unlikely to perform satisfactorily. Awareness of the limitations in CNN models will enable 30 
scientists to develop more accurate regional or local air quality forecasting systems by identifying 31 
the affecting factors in high concentration episodes. 32 

 33 
Keywords: machine learning, neural networks, atmospheric chemistry, air quality modeling.  34 
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1. Introduction: 35 
Currently, atmospheric scientists have shown significant interest in applying machine 36 

learning (ML) algorithms in their field, specifically for air quality forecasting, remote sensing data 37 
retrieval, and hurricane tracking. ML is a technique used for developing data-driven algorithms 38 
that learn to mimic human behavior on the basis of a prior example or experience. It is a tool that 39 
allows systems to more effectively deal with knowledge-intensive problems in complex domains, 40 
which occurs via learning that involves gathering information from a training dataset and using a 41 
certain logic to purposefully detect a pattern of behavior. The fundamental goal of ML models is 42 
to apply the detected patterns to make generalizations beyond the examples in the training set.  43 

Generalizations stemming from ML models provide a scope of improvement in a number 44 
of physical applications. Evidence of the growing interest in applying ML is the rapid increase in 45 
the number of scientific publications in this area, illustrated in Fig. S1. However, the focus of these 46 
studies was the general performance of the model ML models compared to that of conventional 47 
statistical models rather than identifying the shortcoming of such models in explaining the 48 
uncertainties of prediction models. Such examples can be found in studies by Eslami et al. (2019a, 49 
2019b, 2019c), Choi et al. (2019), Sayeed et al. (2020), and Lops et al. (2019). To achieve more 50 
reasonable outcomes, we must first explore the current challenges we face when forecasting 51 
ambient air quality and then assess how or even whether ML models can address the challenges to 52 
produce more accurate forecasting. 53 

To develop a capable air quality forecasting tool, atmospheric scientists often turn to 54 
chemical transport models (CTMs) and statistical models, both of which use meteorological 55 
parameters and chemical precursors from previous atmospheric conditions to estimate the 56 
following conditions. A brief summary of these models appears in Zhang et al. (2012). Although 57 
CTMs, with their dynamical implementation of atmospheric chemistry and physics, have shown 58 
promise in forecasting, they are too computationally intensive for real-time operational forecasts. 59 
Thus, computationally efficient statistical models such as ML have emerged as alternative 60 
approaches. Unlike CTMs, however, these models mainly rely on data from a network of 61 
monitoring stations that are sparsely distributed and measure a limited number of meteorology and 62 
air quality variables (Eslami et al., 2019a). Given the complexity of the formation/depletion of air 63 
pollutants such as ozone, this limitation may be vital in predicting extreme events (Eslami et al., 64 
2019b). 65 

Another challenge in predicting ozone concentration is the “external” relationships among 66 
predictors. For instance, as important meteorological parameters, temperature and solar radiation 67 
are synoptic factors, while the wind field is influenced by regional factors such as geography and 68 
urbanization. Such conditions particularly affect ozone variability since locally-produced NO2 69 
emissions under certain meteorological circumstances lead to the formation of ozone that is later 70 
transported by the wind and detected by monitoring stations (Pan et al., 2015). Nevertheless, 71 
station-specific ML models use such chemical and meteorological variables as a footprint of local 72 
conditions.  73 

Although local emissions of ozone precursors are the dominant source of ozone, 74 
particularly in urban areas, ozone pollution arising from sources outside of a target region, such as 75 
background ozone, inevitably degrade local air quality (Camalier et al., 2007). The lack of 76 
measurable environmental variables that indicate the potential long-range transport of air 77 
pollutants poses an unprecedented challenge for a ML model to estimate ozone concentrations 78 
over downwind communities (Eslami et al., 2019a).  Because of the nonlinear spatial relationships 79 
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between neighboring monitoring stations, ML models as operational real-time forecasting systems 80 
produce relative uncertainty.  81 

A number of studies have proposed solutions addressing the above limitations of ML 82 
models. Eslami et al. (2019a) implement a deep convolutional neural network (CNN) (Krizhevsky 83 
et al., 2012) model that uses hourly values of several meteorological and air pollution variables to 84 
predict hourly ozone concentrations 24 hours in advance. Even though the accuracy of the 85 
forecasting system guarantees a reasonable level of accuracy, it fails to address high ozone 86 
episodes owing to the infrequent occurrences of such events, which lead to the undertraining of 87 
the CNN model. In another study, Eslami et al. (2019b) propose a data ensemble approach that 88 
mitigates this issue by regularizing the training dataset toward capturing high ozone episodes. 89 
While the authors remove a significant portion of the underprediction biases of the CNN model, 90 
its predictions of ozone during the nighttime and on rainy days are unreliable. Sayeed et al. (2020) 91 
use historical data covering a longer period within a diverse geographical domain (Texas) to train 92 
a similar CNN model. Their results from stations for which fewer measurements are available, 93 
while more accurate, are prone to uncertainty. Using the outputs of air quality and meteorological 94 
forecast models to map the hourly ozone concentrations at station locations, Choi et al. (2019) 95 
train a similar deep CNN model, a spatially generalized model that bias-corrects ozone forecasts 96 
of the community multi-scale air quality (CMAQ) model for all monitoring stations in the EPA 97 
AirNow network. Even though the model significantly improved CAMQ forecasts, the bias-98 
correction process and the unbalanced CMAQ modeling outputs are unclear.  99 

This paper discusses the general inability of the machine learning model using wavelet 100 
transform and dynamic time warping (DTW). Wavelet transform is a powerful technique for 101 
analyzing the temporal variation of a time-series (Grinsted et al., 2004). Wavelet analysis uses an 102 
adjustable resolution to translate time-series data and then decomposes the data into a certain 103 
frequency level that cannot be achieved by other conventional methods such as Fourier analysis 104 
(Huang et al., 2010). DTW is a nonlinear technique that measures any alignment between two 105 
time-series (i.e., model prediction and observation in this study) by warping them to match their 106 
similarities (Berndt and Clifford, 1994). By introducing two applications of CNN in the real-time 107 
ozone forecasting system, we use these analytical tools to identify the source of the prediction 108 
biases of the CNN model. In this paper, we do not describe the forecasting results in detail but 109 
instead refer the reader to studies by Eslami et al. (2019a, 2019b), Choi et al. (2019), and Sayeed 110 
et al. (2020). 111 
 112 

2. Materials and Methods 113 
2.1. Deep convolutional neural networks: 114 

The deep CNN model (Krizhevsky et al., 2012) is a common deep learning architecture 115 
that has long been used in numerous applications (Deng and Yu, 2014; Schmidhuber, 2015; 116 
Goodfellow et al., 2016; Litjens et al., 2017; Chen et al., 2018; Kamilaris and Prenafeta-Boldú, 117 
2018; Higham and Higham, 2019). Unlike other methods, the CNN model is capable of analyzing 118 
joint features and attaining greater accuracy on large-scale datasets. Deep CNNs can be trained to 119 
approximate smooth, highly nonlinear functions (LeCun et al., 2015), rendering them appropriate 120 
for analyzing nonlinear processes in the atmosphere. In addition, feature extraction using deep 121 
learning algorithms is more efficient than using other neural network methods, particularly when 122 
multiple hidden layers are structured (Krizhevsky et al., 2012).  123 
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A schematic for the deep CNN used in this paper appears in Fig. 3. The figure shows the 124 
input layer of the CNN algorithm, which represents the normalized time series of all input 125 
variables. The normalization process prevents a steep cost function and averts one feature 126 
overbearing others. A filter passes through a set of units located in a small neighborhood in the 127 
previous convolutional layer. With local receptive fields, neurons can extract the elementary 128 
features of inputs that are then combined with those of higher layers. The outputs of such a set of 129 
neurons constitute a feature map (see Fig. 3). At each position, various types of units in different 130 
feature maps compute various types of features. A sequential implementation of this procedure for 131 
each feature map is used for scanning the input data with a single neuron in a local receptive field 132 
and storing the states of this neuron at corresponding locations in the feature map. The constrained 133 
units in a feature map perform the same operation on different instances in a time series, and 134 
several feature maps (with different weight vectors) can comprise one convolutional layer. Thus, 135 
multiple features can be extracted in each instance. Once a feature is detected, its exact “location” 136 
becomes less important as long as its approximate position relative to the other features is 137 
preserved (Krizhevsky et al., 2012; LeCun et al., 2015). 138 

CNN uses a kernel of a given size to capture changes in the temporal variation of the input 139 
data by sweeping through time series. The various sections of the data are represented by feature 140 
maps. An additional layer performs local averaging, called “pooling,” and subsampling reduces 141 
the resolution of the feature map and the sensitivity of the output to possible shifts and distortions. 142 
This step could potentially discard important information (e.g., sudden ozone peaks), as explained 143 
in Sabour et al. (2017). Hence, this study uses the convolution layer without pooling. The feature 144 
maps are connected to a fully-connected layer, which helps us to map each feature of multiple 145 
inputs to the hourly ozone output (see Fig. 1).  146 

Compared to fully-connected multilayer perceptrons (MLPs) and recurrent neural 147 
networks (RNN), which have been extensively used as regression models, CNNs are attractive for 148 
several reasons. MLPs and RNNs are not explicitly designed to model variance within an 149 
estimation that results from a complex interaction between several inputs and outputs. While MLPs 150 
of sufficient size could indeed capture invariance, they require large networks with a large training 151 
set. Compared to the CNNs proposed in this study, RNNs are challenging to implement and 152 
computationally expensive (Eslami et al., 2019a; Sayeed et al., 2020; Lops et al., 2019).  153 
 154 
2.2. Wavelet transform: 155 

Wavelet transformation decomposes a signal into a scale frequency space, allowing the 156 
determination of the relative contributions of each temporal scale present within a signal (Mallet, 157 
1989). Wavelet decompositions are powerful tools for analyzing the variation in signal properties 158 
across different resolutions of geophysical variables (Mallet, 1989; Grinsted et al., 2004; Foufoula-159 
Georgiou and Kumar, 2014). Using a fully scalable modulated window that shifts along with the 160 
signal, the wavelet transform overcomes the inability of the Fourier transform to represent a signal 161 
in the time and frequency domain at the same time (see Fig. S2 in the supplementary document). 162 
The spectrum is calculated for every position. After repeating the process, each time with different 163 
window sizes, the results constitute a collection of time-frequency representations of the signal, 164 
all with different resolutions. The data are separated into multiresolution components, each of 165 
which is studied with a resolution that matches its scale (Aiazzi et al., 2002). While high-resolution 166 
components capture fine-scale features in the signal, low-resolution components capture the 167 
coarse-scale features.  168 
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As wavelet analysis represents any arbitrary (nonlinear) function by a linear combination 169 
of a set of wavelets or alternative basis functions, they are highly suitable for use as both an 170 
integration kernel for analysis to extract information about the process and a basis for 171 
representation or characterization of processes (Kaheil et al., 2008). Figure S3 in the 172 
supplementary document shows the hourly ozone time series of a monitoring station in downtown 173 
Seoul, South Korea, with a wavelet transform for the year 2017. Here, the wavelet transform 174 
exhibits strong power levels associated with period=24 and period=168 in the middle of the year, 175 
indicating dominant daily (24 hours) and weekly variation (168 hours).   176 
 177 
2.3. Dynamic time warping: 178 

To assess the similarity between two time series, DTW expands or contracts a given time 179 
series to minimize the difference between the two of them (Berndt and Clifford, 1994). Advantage 180 
it has over Euclidean distance, a conventional distance analysis method, is that it highlights when 181 
a shift (e.g., a time lag) occurs between two time-steps in two time series (see Fig. S4 in the 182 
supplementary document). Euclidean distance takes pairs of data within the time series and 183 
compares them. DTW calculates the smallest distance between all points, matching one time-step 184 
to many counterpart steps on the linked time series (see Fig. S4). Owing to its nonlinear mapping 185 
capability, it is widely used in various domains from time-series classification (Jeong et al., 2011) 186 
to bioinformatics (Giorgino, 2009), health signal processing (Tormene et al., 2009), and speech 187 
recognition (Berndt and Clifford, 1994).  188 

One benefit of DTW is that it will classify two time series of the same shape as similar 189 
even if their absolute values differ or if one time series contains large variability. Figure S5 190 
compares the DTW distance between the observation time series and two prediction models for an 191 
ozone monitoring station in Texas. DTW detects the differences between CMAQ estimation and 192 
observation with the highest difference in the middle of 2014.    193 
 194 

3. Results and Discussion 195 
3.1. Case 1: CNN as a real-time ozone forecasting system 196 

In this case, we used the modeling experience reported in Eslami et al. (2019a). Briefly, 197 
the system employs a deep CNN model that uses an hourly variation of seven meteorological and 198 
two air quality parameters from the day before as inputs to predict hourly ozone concentrations on 199 
the following day for 25 monitoring stations in Seoul, South Korea. Figures S7 and S8 show the 200 
accuracy of the CNN model (using the index of agreement (IOA)) and the time series comparison 201 
of average ozone concentrations between the observation and the CNN prediction, respectively. 202 
While the model maintained a proper level of prediction accuracy, it was prone to two main 203 
limitations: (i) Its performance at various times of the year varied (see Fig. S6); and (ii) nighttime 204 
predictions showed higher relative bias and lower modeling performance than daytime predictions 205 
(see Fig. S7). In general, wavelet transform can explain varying, time-dependent modeling 206 
performance; nevertheless, the significant difference between modeling performance during the 207 
daytime, and the nighttime indicates an undertrained CNN model. 208 
 209 
3.1.1. Time-dependent model performance: 210 
 The performance of the CNN model is directly dependent on how well the model 211 
understands the relationship between the inputs (meteorology and ozone precursors) and output 212 
(ozone concentration). While emission sources from volatile organic compounds (VOCs) and NOx 213 
are relatively constant in time, meteorological variables govern the variation of the ozone at 214 
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different times throughout the year (Choi, 2014; Pan et al., 2019). Temperature, wind speed, and 215 
relative humidity (RH) are among the most important meteorological parameters affecting ozone 216 
variation.  217 

Figure 2 shows the wavelet power transform of the aforementioned meteorological 218 
variables for 2017. Since we used an hourly time series to calculate the wavelet powers, both the 219 
index and the period are in hours. The figure also locates five time periods, which indicates 220 
significant performance variations. From Fig. S6, the CNN model underperformed during weeks 221 
3-9 and 44-51, labeled the “Worst CNN results” in Fig. 2. For weeks 14-22 and 42-44, the CNN 222 
model showed the best forecasting results. Between weeks 29 and 33, the CNN model produced 223 
significant underestimations, labeled “Large under-prediction” in Fig. 2. The figure shows strong 224 
wavelet powers during a 24-hour (daily) period for all variables, the results of strong diurnal 225 
variation of these parameters, which are directly or indirectly controlled by sunlight (e.g., 226 
temperature, relative humidity, etc.). While the wavelet powers for wind speed were generally 227 
larger than RH, the temperature showed lower but more consistent daily modes. This finding is 228 
important since the CNN model can more accurately detect specific “patterns” in the temperature 229 
than those in the wind speed and RH. Thus, when the daily modes are stronger in temperature, the 230 
CNN model likely performs better. In contrast, when the daily modes of the meteorological 231 
variables are relatively weak, the CNN model performs poorly (see Fig. 2).  232 

The large coarse modes in the wind speed and RH lead to significant over and 233 
underestimation of the CNN model. Figure S8 shows the polar frequency (influenced by the wind 234 
speed) of the CNN modeling bias in various months. As the figure shows, while southwesterly 235 
winds in August 2017 were associated with relatively large underpredictions boosted by pollution 236 
transport from the Incheon area, north-northwesterly winds with air coming from less urbanized 237 
regions were allied with notable overpredictions.  238 

Figure S9 compares the CNN model predictions with observational data for the seasons 239 
with respect to levels of RH. The figure shows the largest differences in the CNN model 240 
predictions (both over and underpredictions) when the level of RH was close to the extreme (very 241 
high and very low). This finding was particularly evident for the summer months when the model 242 
showed poor performance at capturing high ozone episodes. This finding underscores the 243 
importance of coarse models from the wavelet analysis during the warm months. Directly 244 
indicating the over or underpredictions by the model through these modes, however, is 245 
challenging. For instance, Fig. S10 shows one high ozone episode in July 2017, when the daily 246 
ozone peak exceeded 90ppb on two continuous days at most stations. Here, the overprediction of 247 
the CNN model was associated with high RH while the underprediction was linked to low RH, 248 
indicating more complexity among the relationships between meteorological factors and ozone 249 
formation or depletion.   250 

  Another reason for the poor performance of the CNN model during the selected time 251 
period was the relatively large coarse modes (period > 24 hours). The CNN model received 252 
information about only the last day; hence, it was unable to address the bi-daily and weekly trends 253 
with the input data. For instance, for time periods with large underpredictions, coarse modes in the 254 
wind speed were even larger than the daily modes. Thus, employing a longer history would 255 
adequately explain the relationship between wind speed and ozone. In the comparison of the 256 
average wavelet powers in various periods (from daily to weekly modes) of CNN predictions and 257 
observational data, Fig. 3 shows that the powers for both time series match periods of 258 
approximately 24 hours. After 32 hours, however, the wavelet power of the CNN model shrinks 259 
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to a relatively constant power while that for the observation reaches local extremums at around 3, 260 
5, and 7 days. 261 

Although wavelet analysis indicates that modes coarser than 24 hours are important 262 
components of the ozone time series, their relationship to CNN model accuracy can be 263 
complicated. Figure 4 compares wavelet powers for both fine and coarse modes with a correlation 264 
coefficient (r) in 25 ozone stations in Seoul. For stations closer to the downtown area (i.e., those 265 
with station numbers under 11), the fine modes had fewer wavelet powers than those for stations 266 
in less urbanized areas, indicating that the relationship between ozone concentrations with local 267 
emissions was evident in the less urbanized areas than it was in the other areas. The coarse modes, 268 
however, varied from station-to-station with relatively higher coarse wavelet power for those in 269 
less urbanized areas. Nonetheless, no evidence points to a clear relationship between either coarse 270 
or fine wavelet modes and the accuracy of the model. Figure 4 shows that the CNN model generally 271 
performed better for stations close to downtown Seoul. Because Seoul has only one meteorological 272 
station, these stations had accessed to more realistic weather parameters in their training/prediction 273 
process. 274 

 275 
3.1.2. Low modeling performance during the nighttime: 276 

In their discussion of several air quality forecasting models that incorporated machine 277 
learning algorithms, including CNN, deep neural networks, and decision trees, Eslami et al. 278 
(2019a) and Eslami et al. (2019b) claimed that the algorithms encounter a significant modeling 279 
bias while estimating air quality concentrations during the nighttime. This bias reduced the 280 
prediction accuracy of nighttime ozone concentrations, compared to daytime concentrations, by 281 
more than 20%. A similar issue is also encountered by CTMs, even those with complex physical 282 
and chemical equations that explain the diurnal variation of ozone concentrations. 283 

 One reason for this modeling bias was likely the result of variation among the 284 
meteorological inputs during the nighttime. Although their absolute values were generally higher 285 
they were during the daytime, the relative frequency of variation was more pronounced during the 286 
nighttime, causing a discontinuity in the learning process of the CNN model. Since both daytime 287 
and nighttime hours were inputs, the CNN model minimized the cost function that contained 288 
“normalized” errors during both daytime and nighttime hours (the cost function was the mean 289 
squared errors or 24-hour ozone predictions at each step). Generally, there are more daytime hours 290 
than nighttime hours (see Fig. S11). Also, the accumulation of NO2 concentrations for these 291 
extreme cases was mainly due to stagnant atmospheric conditions with wind speeds close to their 292 
yearly minimum values (see Fig. S12a for scatter plots with levels of wind speeds). As a result, 293 
the CNN model was vulnerable to characteristic bias in nighttime ozone estimations. As a 294 
customized cost function could be a potential solution to this limitation, it requires further 295 
investigation.    296 

The performance of the CNN model in predicting nighttime ozone concentrations also 297 
suffered because of the misinterpretation of extreme conditions of the input parameters. Figure 5 298 
shows scatter plots that compare CNN predictions and observations by the levels of two important 299 
ozone precursors (NO2 concentrations) and meteorological variables (RH%) separated into 300 
daytime and nighttime. The NO2 concentration was generally higher during the nighttime when 301 
the ozone concentration was near zero for extreme NO2 values because of conditions amenable to 302 
ozone depletion with the absence of sunlight. Unable to capture this relationship, however, the 303 
CNN model overestimated these cases (See Fig. 5a).    304 
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In contrast to the above-mentioned overestimated events, Fig. 5b showed an 305 
underestimation of nighttime ozone when the level of RH% was generally high, primarily during 306 
warm days. A similar pattern occurred when the surface pressure was accounted for (Fig. S12b). 307 
Such underestimated events occurred for two reasons. One is that high (or low) levels of RH% and 308 
surface pressure generally occur at about the same time during the early morning (or late afternoon) 309 
when the planetary boundary layer (PBL) is at its lowest (or highest) level during the day. In these 310 
extreme conditions, the earlier sunrise (or later sunset) during the summer months established a 311 
condition that elevated ozone concentrations. As these events normally occurred only during short 312 
periods of time, the CNN model was not sufficiently trained to capture these relationships. 313 

     314 
3.2. Case 2: CNN as a post-processing tool in a real-time ozone forecasting system: 315 

In this case, a generalized bias-correction CNN model introduced by Choi et al. (2019) was 316 
used. Their model is a computationally efficient deep learning-based model that produces more 317 
reliable numerical results. The authors used a deep CNN model to map ozone precursors from 318 
CMAQ and meteorological parameters from the weather research and forecasting (WRF) model 319 
(as input variables) to observe hourly ozone concentrations at a monitoring station (as a target). 320 
Their model, the CMAQ-CNN model, significantly improves the performance of the CMAQ 321 
model in both accuracy and bias. Figures S13 shows the statistical improvements (in correlation, 322 
root mean squared error, and standard deviation) of the CMAQ-CNN model over the CMAQ 323 
model (as a base model) in different months. Figure S14 compares the daily maximum ozone 324 
estimated by CMAQ and CMAQ-CNN in 48 states for which the CMAQ-CNN significantly 325 
moderated the overpredictions of the CMAQ.  326 

It was clear that the likelihood of the CMAQ-CNN model producing accurate results was 327 
strongly associated with the quality of CMAQ forecasts; when CMAQ forecasted hourly ozone 328 
concentrations with a station-specific yearly IOA more than 0.5, the IOA of the CMAQ-CNN 329 
model was more than 0.8 for most cases. The probability of such accuracy was generally unrelated 330 
to that of the CMAQ model. For instance, the CMAQ-CNN model was unable a reach the yearly 331 
IOA=0.8 even though the CMAQ IOA was more than 0.7 (e.g., EPA #101 Tennessee: CMAQ 332 
IOA=0.7; CMAQ-CNN IOA=0.78). In some cases, however, the yearly IOA following the post-333 
processing approach was less than 0.7 (e.g., EPA #1011 California: CMAQ-CNN IOA=0.63). 334 
Here, we used the distance analysis from DTW to explain (i) why CMAQ-CNN produced 335 
satisfactory results at some stations but not others, and (ii) why it performed poorly at some 336 
stations. 337 

 338 
3.2.1. Satisfactory post-processing scenarios: 339 

Figure 6 shows the time-series of CMAQ, CMAQ-CNN, and observed daily ozone 340 
concentrations at three EPA stations. These stations were selected because the IOA accuracy of 341 
the CMAQ-CNN model was either more than 0.9 (Fig. 6a and 6b) or 20% more than that of CMAQ 342 
(Fig. 6c). Figure 7 compares the DTW distance analysis of CMAQ and CMAQ-CNN for the same 343 
stations. These are three typical cases of satisfactory improvement by the CMAQ-CNN post-344 
processing approach: 345 
Figures 6-7(a): Observed ozone concentrations in this California location were higher at the 346 

beginning of the ozone season, followed by relatively steady values ranging 347 
between 20-40ppb. After May, however, CMAQ significantly overestimated daily 348 
ozone concentrations. The overestimation was more pronounced at the end of the 349 
ozone season, resulting in an overall IOA accuracy of 0.73. The DTW distance 350 
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analysis showed a consistent distance between CMAQ predictions and observed 351 
values. Because of this consistency, the CMAQ-CNN model recognized the bias 352 
trends in CMAQ, boosting its prediction accuracy by 0.17, even though the large 353 
distance from the CMAQ predictions (mean distance=0.52) mirrored a relatively 354 
significant overestimation in the CMAQ-CNN post-processed results.  355 

Figures 6-7(b): Here, the trend in ozone concentrations followed a U-shaped curve in the ozone 356 
season because of strong summer winds coming from the large bodies of water 357 
near Florida (the North Atlantic Ocean and the Gulf of Mexico). For this station, 358 
CMAQ accurately predicted this trend throughout the ozone season with a 359 
relatively constant bias from July to September. As a result, the overall accuracy 360 
of the IOA was 0.84 for the CMAQ prediction. The CMAQ was also consistent 361 
with the DTW analysis, with two distance gaps in July and September (at the 362 
beginning and the end of the CMAQ overestimation period). The CMAQ-CNN 363 
model, recognizing the adequate performance of the base model in its post-364 
processing algorithm, further improved the IOA accuracy of CMAQ by around 365 
10%.  366 

Figures 6-7(c): The trend of observed ozone showed a steady decrease in this northeastern state 367 
because of the significantly cooler summer and fall months. This trend, along with 368 
the fewer ozone emission sources surrounding this station, resulted in the 369 
formation of less ozone during the ozone season. The CMAQ model overestimated 370 
ozone concentrations by more than 50% during most of the season with a relatively 371 
large mean DTW distance (0.62). The CMAQ-CNN model was able to address 372 
this issue because of the consistency of the bias trend in CMAQ predictions (see 373 
left panel for DTW distance). Thus, overall, the accuracy of IOA improved by 0.2.  374 

The satisfactory post-processing results using the CMAQ-CNN model were mainly 375 
characterized by the regularity of the bias trend in CMAQ as the base model for training the CNN 376 
model. As shown by the DTW distance analysis, when the DTW distance of CMAQ predictions 377 
from observed values was consistent throughout the ozone season, the CNN model was able to 378 
improve the CMAQ results to a reliable level (IOA>0.8). To test this hypothesis, we used the 379 
CMAQ-CNN post-processing approach in typical unsatisfactory scenarios. 380 
 381 
3.2.2. Unsatisfactory post-processing scenarios: 382 

Figure 8 compares the time series of ozone observations with the CMAQ and CMAQ-CNN 383 
models at three selected EPA stations. For all of these stations, the CMAQ-CNN model failed to 384 
reach a reliable IOA accuracy level of 0.8, while the accuracy of the CMAQ model improved. 385 
Figure 9 represents the DTW distance analysis of the two models and the ozone observation for 386 
the same stations. Unsatisfactory improvement by the CMAQ-CNN model occurred in the 387 
following three cases:  388 
Figures 8-9(a): The ozone trend in this station fluctuated throughout the ozone season with 389 

frequent spikes in May, July, and October, primarily the result of biomass burning 390 
(Choi et al., 2016). While the CMAQ model predicted ozone concentrations with 391 
a relatively small bias (IOA=0.7), the bias trend varied from time to time—that is, 392 
trends of under and overpredictions changed frequently. A footprint of these 393 
trends, that is, changes in the path of the distance trend, is evident in the DTW 394 
analysis. This inconsistency was mirrored in the equivalent DTW analysis for the 395 
CMAQ-CNN model by a consistent distance trend, resulting in an unsatisfactory 396 
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IOA accuracy level (IOA=0.78) with an increased mean DTW distance (0.89 397 
compared to 0.74 for the CMAQ time series). 398 

Figures 8-9(b): The trend in this California location was a relatively constant concentration of 399 
ozone generally ranging between 10-30ppb. The CMAQ model significantly 400 
overpredicted ozone concentrations throughout the entire time period, mostly the 401 
result of the proximity of this station to the Pacific Ocean (San Diego County), 402 
which controls the variation in the daily ozone concentration (Pan et al., 2017). 403 
The DTW distance analysis shows a significant, yet steady spike in distance 404 
between CMAQ and the observation. Thus, even though the CMAQ-CNN 405 
significantly improved the accuracy of the CMAQ model (IOA=0.63 compared to 406 
CMAQ IOA=0.44), the large distance accounted for the underperformance of the 407 
post-processing approach. That also mirrored the consistent distance in the 408 
CMAQ-CNN distance trend (see the right panel). 409 

Figures 8-9(c): In this station, the ozone concentration followed an infrequent trend with lows and 410 
highs spread indiscriminately across the ozone season, the result of several factors 411 
affecting air pollution in this region, including biomass burning, a strong frontal 412 
system, and other conditions. As a result, the CMAQ model underperformed with 413 
substantial overestimation during most of the time period (IOA=0.55). In addition, 414 
the bias of the CMAQ model did not follow as clear a trend as the DTW distance 415 
analysis. The CMAQ-CNN model improved the prediction results by more than 416 
10% with a reduced DTW distance (0.27 vs. 0.35 for the CMAQ time series). 417 
Nevertheless, the varying ozone trend accompanying the inconsistency in the 418 
prediction bias trend resulted in the low overall accuracy of the IOA of the CMAQ-419 
CNN for this station (IOA=0.67). 420 

Unlike the satisfactory cases, the unsatisfactory post-processing results using the CMAQ-421 
CNN model stemmed from the inconsistency in the bias trend found by the DTW distance analysis. 422 
Another influential factor was the variability of observed ozone concentrations. Because of the 423 
frequent variation in the observational data, it was more complicated to train the CMAQ-CNN 424 
model so that it addressed the bias in the CMAQ model. The geographical location of a station 425 
was also an important factor in the improvement level of the post-processing approach. Proximity 426 
to the large body of water and/or sources from biomass burning during the ozone season were 427 
among the influential geographical features. Also, as Figs. 8-9 show, the DTW distances of the 428 
CMAQ-CNN predictions from the observed ones followed a consistent trend. Therefore, the 429 
information in Figs. 6-7 indicate that a secondary post-processing model might be a possible 430 
solution to boosting prediction accuracy. 431 
 432 

4. Conclusion: 433 
Various applications of deep learning algorithms, particularly convolutional neural 434 

networks, have universally been applied in the field of atmospheric sciences, especially in air 435 
quality forecasting systems. Although such applications supported easy-to-use, computationally-436 
efficient frameworks and flexible capabilities appeared to generate accurate prediction results, the 437 
risk of exaggerated expectations may be a cause for concern. In an effort to elucidate both the 438 
advantages and limitations of deep learning models in air quality forecasting (AQF) systems, this 439 
paper addressed several common issues raised by the use of these models. 440 

To explore the limitation, we chose two applications of two similar CNN models. (i) CNN 441 
as an independent real-time AQF; and (ii) CNN as a post-processing model of a state-of-the-art 442 
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dynamical model, the Community Multi-scale Air Quality Model (CMAQ). For both cases, the 443 
CNN model resulted in an acceptable 24-hour in advance, hourly ozone concentration prediction 444 
with an index of agreement (IOA) of more than 0.8 for two networks of monitoring stations in 445 
South Korea and the United States. We selected two powerful statistical data analytic techniques—446 
wavelet transform and dynamic time warping (DTW)—to identify the limitations of the proposed 447 
models in both cases. By applying these techniques, researchers find discrepancies in the input 448 
data and their temporal trends and thus gain awareness of the limitations of deep learning models. 449 

When the CNN model was used as a real-time AQF system in South Korea, it 450 
underperformed during both cold months and high ozone episodes. In these scenarios, we found 451 
that the fine wavelet modes (daily and hourly) were relatively weaker than they were in other 452 
conditions. Also, when the coarse modes were strong, the predictions of the CNN model were 453 
fraught with a large number of errors. We also found that the model underperformed during the 454 
nighttime hours, the results of an undertrained model, and extreme values of the input parameters 455 
during the nighttime. 456 
 For the post-processing CNN model, the level of improvement depended on the DTW 457 
distance of the CMAQ model to the observations. When the calculated distance followed a 458 
consistent trend, the post-processing model was able to address the bias of CMAQ, independent 459 
from its accuracy level or error range. When such consistency was absent or when observed ozone 460 
varied frequently, however, the errors in the CMAQ model were mirrored in the results of the post-461 
processing model. 462 

Given this discussion of the limitations of deep learning models, we suggest that 463 
researchers configure their deep learning models based on temporal trends within the input 464 
parameters, geographical locations, and variation frequency of target pollutants. To predict 465 
ambient hourly ozone concentrations, we have restricted our discussions to a multi-output 466 
regression problem in supervised settings. While our study approach might be valid for other 467 
supervised algorithms, we leave a detailed study of other supervised methods for future work. 468 
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 577 
Figure 1. Schematic of the deep CNN model in our approach. 578 
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 583 
 584 
Figure 2. Wavelet power transform of (a) temperature, (b) wind speed, and (c) RH% for 2017 in 585 
Seoul, South Korea. 586 
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 588 
Figure 3. Wavelet power for various time periods (modes) for CNN predictions and observations. 589 
 590 
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 592 
 593 

 594 
Figure 4. Relationship between (a) fine and (b) coarse wavelet power modes and correlation 595 
coefficients in all stations in Seoul, South Korea. 596 
  597 

(a) Wavelet powers for fine modes (less than 24 hours) 

(b) Wavelet powers for coarse modes (more than 24 hours) 
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 599 

 600 
Figure 5. Scatter plots comparing CNN predictions and observations with respect to levels of (a) 601 
NO2 concentrations and (b) RH%. 602 
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 606 

 607 
Figure 6. Comparison of the time series of CMAQ and CMAQ-CNN predictions for EPA 608 
stations (a) #3001 (California), (b) #33 (Florida), and (c) #4 (Vermont).  609 
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 612 
Figure 7. Comparison of the distance analysis of CMAQ and CMAQ-CNN predictions for EPA 613 
stations (a) #3001 (California), (b) #33 (Florida), and (c) #4 (Vermont). 614 
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 618 
Figure 8. Comparison of the distance analysis of CMAQ and CMAQ-CNN predictions for EPA 619 
stations (a) #101 (Tennessee), (b) #1011 (California), and (c) #9008 (Oklahoma). 620 
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 623 
Figure 9. Comparison of the distance analysis of CMAQ and CMAQ-CNN predictions for EPA 624 
stations (a) #101 (Tennessee), (b) #1011 (California), and (c) #9008 (Oklahoma).  625 

(a) 

(b) 

(c) 


	gmd-2019-346-author_response-version2.pdf (p.1-3)
	CNN_limitation_revised_draft_06182020.pdf (p.4-26)
	1. Introduction:
	2. Materials and Methods
	2.1. Deep convolutional neural networks:

	3. Results and Discussion
	4. Conclusion:
	References


