Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF 5-year value: 5.768
IF 5-year
CiteScore value: 8.9
SNIP value: 1.713
IPP value: 5.53
SJR value: 3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
h5-index value: 51
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: model evaluation paper 09 Mar 2020

Submitted as: model evaluation paper | 09 Mar 2020

Review status
A revised version of this preprint is currently under review for the journal GMD.

Using wavelet transform and dynamic time warping to identify the limitations of the CNN model as an air quality forecasting system

Ebrahim Eslami, Yunsoo Choi, Yannic Lops, Alqamah Sayeed, and Ahmed Khan Salman Ebrahim Eslami et al.
  • Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA

Abstract. As the deep learning algorithm has become a popular data analytic technique, atmospheric scientists should have a balanced perception of its strengths and limitations so that they can provide a powerful analysis of complex data with well-established procedures. Despite the enormous success of the algorithm in numerous applications, certain issues related to its applications in air quality forecasting (AQF) require further analysis and discussion. This study addresses significant limitations of an advanced deep learning algorithm, the convolutional neural network (CNN), in two common applications: (i) a real-time AQF model, and (ii) a post-processing tool in a dynamical AQF model, the Community Multi-scale Air Quality Model (CMAQ). In both cases, the CNN model shows promising accuracy for ozone prediction 24 hours in advance in both the United States and South Korea (with an overall index of agreement exceeding 0.8). For the first case, we use the wavelet transform to determine the reasons behind the poor performance of CNN during the nighttime, cold months, and high ozone episodes. We find that when fine wavelet modes (hourly and daily) are relatively weak or when coarse wavelet modes (weekly) are strong, the CNN model produces less accurate forecasts. For the second case, we use the dynamic time warping (DTW) distance analysis to compare post-processed results with their CMAQ counterparts (as a base model). For CMAQ results that show a consistent DTW distance from the observation, the post-processing approach properly addresses the modeling bias with predicted IOAs exceeding 0.85. When the DTW distance of CMAQ-vs-observation is irregular, the post-processing approach is unlikely to perform satisfactorily. Awareness of the limitations in CNN models will enable scientists to develop more accurate regional or local air quality forecasting systems by identifying the affecting factors in high concentration episodes.

Ebrahim Eslami et al.

Interactive discussion

Status: final response (author comments only)
Status: final response (author comments only)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Login for Authors/Topical Editors] [Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Ebrahim Eslami et al.

Ebrahim Eslami et al.


Total article views: 337 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
220 91 26 337 25 30 25
  • HTML: 220
  • PDF: 91
  • XML: 26
  • Total: 337
  • Supplement: 25
  • BibTeX: 30
  • EndNote: 25
Views and downloads (calculated since 09 Mar 2020)
Cumulative views and downloads (calculated since 09 Mar 2020)

Viewed (geographical distribution)

Total article views: 296 (including HTML, PDF, and XML) Thereof 291 with geography defined and 5 with unknown origin.
Country # Views %
  • 1



No saved metrics found.


No discussed metrics found.
Latest update: 23 Sep 2020
Publications Copernicus