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Abstract. Temperature is a master parameter in the marine carbon cycle, exerting a critical control on the rate of biological 10 

transformation of a variety of solid and dissolved reactants and substrates. Although in the construction of numerical models of 

marine carbon cycling, temperature has been long-recognised as a key parameter in the production and export of organic matter at 

the ocean surface, it is much less commonly taken into account in the ocean interior. There, bacteria (primarily) transform sinking 

particulate organic matter into its dissolved constituents and thereby consume dissolved oxygen (and/or other electron acceptors 

such as sulphate) and release nutrients, which are then available for transport back to the surface. Here we present and calibrate a 15 

more complete temperature-dependent representation of marine carbon cycling in the cGENIE.muffin Earth system model, intended 

for both past and future climate applications. In this, we combine a temperature-dependent remineralisation scheme for sinking 

organic matter with a biological export production scheme that also includes a temperature-dependent limitation on nutrient uptake 

in surface waters (and hence phytoplankton growth). Via a parameter ensemble, we jointly calibrate the two parameterisations by 

statistically contrasting model projected fields of nutrients, oxygen, and the stable carbon isotopic signature (δ13C) of dissolved 20 

inorganic carbon in the ocean, with modern observations. 

We find that for the present-day, the temperature-dependent version shows as-good-as or better fit to data than the existing 

tuned non-temperature dependent version of the cGENIE.muffin.  The main impact of adding temperature-dependent 

remineralisation is in driving higher rates of remineralisation in warmer waters and hence a more rapid return of nutrients to the 

surface there -- stimulating organic matter production. As a result, more organic matter is exported below 80m in mid and low 25 

latitude warmer waters as compared to the standard model. Conversely, at higher latitudes, colder water temperature reduces the 

rate of nutrient supply to the surface as a result of slower in-situ rates of remineralisation.  

We also assess the implications of including a more complete set of temperature-dependent parameterisations by analysing 

a series of historical transient experiments. We find that between the pre-industrial and the present day, in response to a simulated 

air temperature increase of 0.9°C and ocean warming of 0.12°C (0.6°C in surface waters and 0.02°C in deep waters), a reduction in 30 

POC export at 80m of just 0.3% occurs. In contrast, with no assumed temperature-dependent biological processes, global POC 

export at 80m falls by 2.9% between the pre-industrial and present day as a consequence of ocean stratification and reduced nutrient 
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supply to the surface. This suggests that increased nutrient recycling in warmer conditions offsets some of the stratification-induced 

surface nutrient limitation in a warmer world, and that less carbon (and nutrients) then reaches the inner and deep ocean. This 

extension to the cGENIE.muffin Earth system model provides it with additional capabilities in addressing marine carbon cycling in 35 

warmer past and future worlds.   

1 Introduction 

The cycle of carbon through the ocean is dominated by the production, destruction, and transformation of both dissolved and 

particulate organic matter (DOM and POM, respectively) (Legendre et al., 2015; Heinze et al., 2015). The ‘biological carbon pump’  

(Fig. 1) is a principal mechanism, operating by removing carbon from the surface and mixed layer waters by phytoplankton 40 

photosynthesis and transferring it to the deep by the sinking of organic matter (see: Hülse et al., 2017 for a review). Export out of 

the near-surface euphotic zone is affected by photosynthesis rates (primary production), but is also affected by grazing, respiration 

and other food web processes (Steinberg and Landry, 2017; Mari et al., 2017). Of this export, only a fraction reaches the deep ocean 

through a series of processes involving feeding and remineralisation by microbes and other biota, modulated by sinking speeds and 

composition of the sinking matter itself (Bach et al., 2016; Rosengard et al., 2015; Turner, 2015). At the ocean floor, organic matter 45 

undergoes further microbial degradation and transformation before eventually forming sediments. Removing carbon from surface 

waters and storing it for centuries (intermediate depths), millennia (deep ocean), or multi-millennia (sediments) controls atmospheric 

CO2 levels which would otherwise be much higher (by ~150ppm to 200ppm) in the absence of this biological activity (Parekh et al 

2005, Sarmiento and Gruber, 2006). Ocean circulation generally acts against the biological pump, homogenising heterogeneity in 

the ocean interior and returning carbon (and nutrients) back to the surface. Surface-to-deep gradients and storage of carbon in the 50 

ocean is hence a function of the rate of ocean ventilation in conjunction with the rate of biological carbon export and the mean depth 

at which the organic matter is remineralised. 

To a first order, export of carbon out of the mixed layer in a warmer world will be reduced as a consequence of increased 

ocean stratification reducing nutrient re-supply to surface waters (Portner et al., 2014; Reusch and Boyd, 2013). At the same time, 

higher water temperatures will increase the metabolic rates of photosynthesising and respiring organisms (Brown et al., 2004). 55 

Because respiration is considerably more sensitive to temperature than photosynthesis, this may put further pressure on nutrient 

demand in surface waters affecting primary production and also, therefore, affecting the rate of carbon export (Boscolo-Galazzo et 

al 2018). However, the export of carbon and the ‘strength’ of the biological pump is only one of the pertinent factors in marine 

carbon cycling. Also important is the ‘efficiency’ of the biological pump – the fraction of exported carbon that reaches the inner 

ocean, or alternatively, the mean depth below the surface at which this carbon is remineralised, and dissolved inorganic carbon 60 

(DIC) returned to the ocean. A deeper mean remineralisation depth equates to a more ‘efficient’ biological carbon pump. The sub-

surface processes that affect the biological carbon pump efficiency are also temperature-dependent (Bendtsen et al., 2015; Turner 

2015; Boscolo-Galazzo et al 2018), complicating the net response of the biological carbon pump and carbon sequestration in the 

ocean interior to changes in global warming. 
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Until recently, few modelling studies considered sub-surface processes in the ocean carbon cycling response to temperature 65 

change (Yamamoto et al., 2018; Cao and Zhang 2017; Laufkotter et al., 2016; Segchneider and Bendtsen, 2013; Chikamoto et al 

2012). Hulse et al. (2017) presented an extensive review of how EMICs (Earth System Model of Intermediate Complexity) and box 

models treat ocean carbon cycle processes and summarised how inner ocean processes are less well constrained than surface 

processes in many models and how their treatment in models is much more variable. This is also the case for more complex ocean 

models, such as those participating in CMIP5 (Coupled Model Inter-comparison Project 5) and used to inform the recent IPCC 70 

assessment (Burd et al., 2016). Making inner ocean processes temperature-dependent in models has an impact on nutrient 

distribution and, therefore, on primary production (Tauscher and Oschlies, 2011) as well as biological pump efficiency (Laufkotter 

et al., 2017). 

In a warmer world, higher ocean temperatures should drive a greater fraction of remineralisation in the upper water column, 

facilitating increased carbon and nutrient return to the ocean surface. However, higher temperatures will also increase carbon loss 75 

at the surface due to lower CO2 solubility, while at the same time promoting biological carbon uptake. Furthermore, for a 

geologically rapid and transient warming at the surface such as is currently occurring, increased ocean stratification and hence 

reduce physical transport will occur. The multiple conflicting influences of temperature mean that even the sign of the feedback 

between greenhouse warming and ocean carbon cycling is, at the very least, unclear (Yamamoto et al 2018).  

To help tease apart the varying influences of temperatures on marine carbon cycling and atmospheric CO2, we present and 80 

calibrate a temperature-dependent representation of the biological pump in the current ‘muffin’ release of the cGENIE EMIC (Earth 

system Model of Intermediate Complexity) (Cao et al. 2009) (and see statement on ‘Code Availability’). Our calibrated 

configuration is intended for use in global biogeochemical cycling studies that require a fuller consideration of the role of 

temperature both in the geological past and the future. 

2 The cGENIE.muffin Earth system model framework 85 

The basic framework of the cGENIE EMIC consists of a 3D frictional-geostrophic approximation ocean circulation model (Edwards 

and Marsh, 2005), coupled to a 2D dynamic-thermodynamic sea-ice model (Marsh et al., 2011). As per previous calibrations of 

ocean biogeochemical cycles (e.g. Ridgwell et al., 2007), we employ the ocean circulation and sea-ice model on a 36 x 36 equal 

area grid (10 degrees of longitude and uniform in the sine of latitude) and couple these with a 2D energy-moisture-balance 

atmosphere model (Marsh et al., 2011) (an alternative to this – a 3D atmospheric general circulation model (Holden et al., 2016) 90 

also exists, but not employed in this study). We employ a commonly-used configuration with 16 vertical levels in the ocean and a 

present-day bathymetry following Cao et al. (2009). All physics parameters and boundary conditions controlling the climate system 

follow Cao et al. (2009). The representation of ocean carbon and other biogeochemical cycles together with ocean-atmosphere gas 

exchange, unless otherwise noted, also follow Cao et al. (2009), and are summarised in more detail below. The temperature-

dependent parameterisations that we substitute for the equivalent non temperature-dependent processes in Cao et al. (2009) are 95 

described in full in this paper.  
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It has been suggested that both increased grazing pressure (respiration process) by zooplankton, and primary production 

by phytoplankton (photosynthesis process), will have an impact on export production in a warmer world (Paul et al., 2015; Turner, 

2015). However, in the simplified biologically induced export flux (Maier-Reimer, 1993) scheme (Fig. 2) we apply in cGENIE, we 

cannot explicitly consider the impact of increased grazing pressure in the surface waters. Rather, we are interested in the wider 100 

question of the interaction of (any) temperature-dependent community production (as export production), with temperature-

dependent microbial remineralisation in the ocean interior, and its impact on the global ocean carbon cycle.  

We apply only the direct effect of temperature on large scale metabolic processes (plankton photosynthesis (growth) and 

microbial respiration). Other factors such as involving particle size distributions, particle density (Cram et al., 2018) and ‘ballasting’ 

(e.g. Wilson et al., 2012), and sinking speed (determined by particle characteristics) (McDonnell et al., 2015), are generally 105 

determined within the food web and may be considered to be secondary impacts of temperature dependence as a controller on 

community structure. In past-climates some of these community structures may have been significantly different. Recently Boyd et 

al. (2019) defined additional particle pumps in the ocean, involving eddy-subduction, diel vertical migration, mesopelagic migration 

and seasonal lipid pumps. Including these processes is outside the scope of this study where here we focus on the large-scale effect 

of temperature on metabolism in the ocean biological carbon pump.  110 

2.1 Standard, non-temperature-dependent model formulation 

In the original version of the biological uptake scheme, – ’BIOGEM’ (Ridgwell et al., 2007) – nutrients are taken out of the surface 

ocean layer according to several factors including light incidence, ice fraction, nutrient uptake limitation (Michaelis-Menten type), 

and a prescribed maximum uptake rate (Eq. 1). 

 115 

𝛤 = 𝑢0
𝑃𝑂4 .

𝑃𝑂4

𝑃𝑂4+𝐾𝑃𝑂4
 . (1 − 𝐴).

𝐼

𝐼0
         (1) 

Where: 

𝑢0
𝑃𝑂4  maximum uptake rate (mol kg-1 yr-1) 

𝑃𝑂4

𝑃𝑂4+𝐾𝑃𝑂4
   nutrient limitation term 

PO4  local nutrient concentration (mol kg-1) 120 

𝐾𝑃𝑂4    Michaelis Menten half saturation value (mol kg-1) 

1 − 𝐴  ice free fraction of sea surface 

𝐼

𝐼0
  light limitation (based on incidence angle) term 
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Here, the maximum uptake rate, (maximum rate of conversion of dissolved PO4, phosphate, into organic matter by phytoplankton), 125 

has a calibrated value of 9.0 x10-6 mol kg-1 yr-1 (Cao et al., 2009), while the calibrated Michaelis Menten half saturation value is 9.0 

×10-7 mol kg-1 (Cao et al., 2009). 

 Nutrient uptake is instantaneously converted into organic matter export (both particulate organic matter (POM) and a 

fraction as dissolved organic matter (DOM)), and this represents community production (see Fig. 2). This production encompasses 

the entire surface food web, including the action of primary producers (phytoplankton) and the effect of consumers (e.g. grazers). 130 

In this export production model, increases in nutrient uptake are directly transferred to increased production of organic matter that 

sinks out of the surface layer (at 80m depth). In this single (PO4) nutrient scheme, dissolved inorganic carbon (DIC) is taken out of 

solution in the surface layer at a molar ratio of 106:1 to PO4and O2 at a ratio of - 138:1 with PO4 (Redfield et al., 1963). POM is 

partitioned into two fractions, which conceptually are: labile (fraction 1, ‘POM1’), and recalcitrant POM (fraction 2, ‘POM2’) 

(Ridgwell et al., 2007). POM sinks vertically out of the surface layer and settles with a given velocity (here: 125 m day-1). POM is 135 

remineralised throughout the water column using a prescribed remineralisation ‘curve’ reflecting the decay of POM as it sinks. The 

prescribed remineralisation ‘curve’ of relative sinking flux vs. depth (e.g. see: Hülse et al., 2017) is always adhered to (Eq. 2a for 

POM1, Eq. 2b for POM2). In the sinking curve, the relative flux at each layer (z) is calculated according to an exponential decay 

function (Ridgwell et al., 2007).  

 140 

𝐹𝑧
𝑃𝑂𝑀1 = 𝐹𝑧=ℎ𝑒

𝑃𝑂𝑀1. ((1 − 𝑟𝑃𝑂𝑀) + 𝑟𝑃𝑂𝑀. 𝑒𝑥𝑝 (
𝑧ℎ𝑒−𝑧

𝑙𝑃𝑂𝑀1))       (2a) 

𝐹𝑧
𝑃𝑂𝑀2 = 𝐹𝑧=ℎ𝑒

𝑃𝑂𝑀2. ((𝑟𝑃𝑂𝑀) + 𝑟𝑃𝑂𝑀. 𝑒𝑥𝑝 (
𝑧ℎ𝑒−𝑧

𝑙𝑃𝑂𝑀2
))        (2b) 

Where: 

𝐹𝑧=ℎ𝑒

𝑃𝑂𝑀
  POM exported out of the surface layer (at 80m) 

𝑙𝑃𝑂𝑀  length-scale (556m for POM1; 1x106m for POM2 – effectively infinite and hence no water column decay) 145 

𝑟𝑃𝑂𝑀  initial proportion of POM into fraction 2 (0.055) 

 

Any POM not remineralised within the water column is instead remineralised at the ocean floor – a ‘reflective’ boundary condition 

assumption (see Hulse et al. (2017) for discussion).  

2.2 Temperature dependent processes 150 

In the temperature-dependent version of biological export production, a temperature-dependent growth rate limiter is applied to a 

characteristic time-scale of ambient nutrient depletion (Eq. 3). A similar scheme but without temperature-dependent remineralisation 

has previously been applied by Meyer et al. (2016) for PO4-only uptake, and for 2 nutrients (PO4 and NO3) by Monteiro et al. (2012).  
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𝛤 = 𝑉𝑚𝑎𝑥 .
𝑃𝑂4

𝑃𝑂4+𝐾𝑃𝑂4
 . (1 − 𝐴).

𝐼

𝐼0
 . 𝛾𝑇 . 𝑃𝑂4        (3) 

Where: 155 

𝛾𝑇   temperature growth limitation term (see below) 

𝑉𝑚𝑎𝑥   maximum net depletion rate (yr-1) 

𝑃𝑂4   local PO4 concentration (mol kg-1) 

𝑃𝑂4

𝑃𝑂4+𝐾𝑃𝑂4
  nutrient limitation term 

𝐾𝑃𝑂4    Michaelis Menten half saturation value (mol kg-1) 160 

1 − 𝐴   ice-free fraction of cell 

𝐼

𝐼0
    light limitation (based on incidence angle) term 

 

Temperature growth limitation is represented by the Arrhenius equation, where T is local temperature (Eq. 4). 

𝛾𝑇 = 𝐴𝑒(𝑇
𝑏⁄ )            (4) 165 

The “Eppley curve” is often applied to model metabolic response to temperature change (Table 1). An improved fitted 

curve was proposed by Bissinger et al. (2008), with both being based on fitting the model to data from empirical studies.  The largest 

difference between the Bissinger curve and the Eppley curve is the value of A (Eq.4). It makes little difference which curve we use 

because we calibrate Vmax (Eq.3) which is also a multiplier for the temperature growth limitation term (in Eq. 4). We use the original 

Eppley et al. (1972) values for A and b (in Eq. 4) as per Monteiro et al. (2012). Both the Eppley and Bissinger curves gives a Q10 170 

value (where Q10 is the increase in the rate of the metabolic process with a 10°C increase in temperature) for nutrient uptake as 1.88 

(Bissinger et al. 2008).  

To calculate the remineralisation rate of POM, an Arrhenius-type equation is applied (as in John et al. 2014) (Eq. 5).  

𝑘(𝑇) = 𝐴𝑒
(

𝐸𝑎
𝑅𝑇⁄ )

           (5) 

Where: 175 

𝐸𝑎 Activation energy (J mol-1) 

𝑅  gas constant (J K-1 mol-1) 

𝑇 absolute temperature (K) 

𝐴 rate constant as T approaches infinity  

 180 

This rate is calculated for local temperature and applied to the local POM flux for each POM fraction individually. For both fractions, 

sinking rate is 125 m day-1, so for cGENIE’s non-uniform ocean depths, the fractional loss of POM due to remineralisation in each 

layer (z) is as Eq. 6.   
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∆𝐹𝑧
𝑃𝑂𝑀𝑛 = 𝑘(𝑇)𝑧

𝑃𝑂𝑀𝑛
. ∆𝑡(𝑧)           (6) 

 185 

Where n denotes POM fraction (either labile (1) or recalcitrant (2) - distinguished as these have different k(T) values), ∆𝑡(𝑧) is the 

time that sinking particles on average spend in layer z. 

3 Model tuning methodology 

In previous published applications of the cGENIE model, either a temperature dependence in export (e.g. Meyer et al., 2016) OR a 

temperature dependence in remineralisation (John et al., 2014) have been explored in addressing varying paleo questions. Or more 190 

commonly, neither (e.g. Ridgwell and Schmidt, 2010), have been used. Here, we now explore both temperature dependence in 

export and remineralisation scheme together (Table 2) and as a consequence, it is necessary to jointly re-tune the respective scaling 

factor in each scheme.  

We identify three parameters needing joint re-tuning: 1, The maximum nutrient uptake rate Vmax (Eq. 3) important for 

export production. 2, The activation energy, Ea(1) (Eq.5) (the minimum energy required for the transformation of organic carbon 195 

into inorganic carbon through respiration processes for the remineralisation of labile POC1, Particulate Organic Carbon type 1) 

where the labile POC1 dominates that exported from the surface.  3, The fraction of recalcitrant POC2 (denoted as rPOM Eq.2a and 

Eq.2b, note that in this paragraph values are described for carbon, but apply for nutrient as well) formed at the surface that plays a 

role in the down-column total POC flux and especially how much of the total POC reaches the very deep ocean.  

The Vmax range was chosen by testing the model while retaining the remineralisation version used in John et al. (2014), and 200 

selecting a range that gave a reasonable agreement with PO4 and O2 concentrations, at 4, 7 and 10. For the initial fraction of POC2, 

we took the John et al. (2014) version, and applied a testing range that encompassed a range 25-400% around this value (×0.25, 

×1.0, ×4.0). For the Ea(1) (Eq.5) setting, John et al. (2014) used the mid of a range of 50 to 60 kJ/mol for labile POC (range identified 

in Arndt et al. 2013). We use a lower and higher value of that range, and a selection of values nearer the mean (Table 3). Our 

ensemble hence consisted of 3 different choices for Vmax, 3 different choices for initial fraction of POC2, and 6 different choices for 205 

Ea(1), for a total of 3×3×5 = 45 different parameter combinations and hence model ensemble member experiments. Values for the 

two rate constants, A (Eq 5, for POC1 at 9×1011 yr-1, for POC2 at 1×1014 yr-1) that were calibrated for the modern ocean and the 

sinking speed of 125 m day-1 in John et al. (2014) are retained.  

Each of the 45 experiments in the ensemble are spun-up for ten thousand years with pre-industrial boundary conditions: 

the atmosphere restored to 280 ppm CO2 and -6.5 ‰ δ13CO2. Following on from each respective spin-up, each model ensemble 210 

member is then forced from year 1700 to 2010 in a transient simulation with atmospheric composition conforming to observed 

(rising) mean annual trends in CO2 and (falling) δ13CO2. This is because global datasets are based on modern (i.e. the past few 

decades) oceanographic observations, where (especially shallow) distributions of nutrients and oxygen may already have been 

impacted by historical warming, so model-data comparison with the model pre-industrial steady-state is arguably inappropriate. 

Direct atmospheric measurements and ice core data has shown that atmospheric δ13CO2 has dropped with increasing CO2 due to 215 
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fossil fuel emissions (that have a characteristic low δ13C) known as the Suess effect (Keeling, 1979; Rubino et al., 2013). This affects 

ocean δ13C in a non-uniform manner – affecting (in general) nearer-surface waters more strongly due to ocean physics and circulation 

patterns.  

3.1 Model-data comparison method 

For the model-data comparison, World Ocean Atlas 2009 (WOA 2009, Levitus et al. 2010) 5° data for phosphate (PO4) and dissolved 220 

oxygen (O2) was rescaled to a 10°x10° grid (with a simple linear upscaling) and to the cGENIE model depth scale by averaging 

over the data depth points that most closely correspond to the cGENIE ocean model depth layer distribution. This depth rescaling 

produces a global mean depth-uncertainty of 2.2% (of the targeted cGENIE depth). As a result the depth rescaling results in 

additional small uncertainties of ± 0.01µmols l-1 (at 1 standard deviation) for PO4, and ± 0.02 µmols l-1 for O2. The cGENIE model 

output from year 2010 of the transient experiments was also rescaled to 10°×10°, and converted to µmols l-1 (from mol kg-1 using 225 

modelled water density) for modelled O2 and PO4, for a direct comparison with the data. In all cases, latitudes higher than 80° were 

neglected. For PO4, we statistically compare the surface concentration, important for constraining nutrient uptake rates, and the 

global ocean distribution, which strongly reflects remineralisation and hence the strength and efficiency of the biological pump (plus 

ocean circulation). For dissolved O2, we statistically compare model and data between 283m to 411m (cGENIE ocean level 4 centred 

at 346m) as an indication of the dissolved oxygen depletion caused by remineralisation near the bottom of the mixed layer and how 230 

well the model can represent this. We also compare the global ocean dissolved oxygen distribution. Given that we are utilizing 

model-derived temperature distributions in the ocean to project nutrient and oxygen concentrations (plus δ13C distributions) which 

we then contrast with the respective observed data, we additionally re-grid temperature data (producing an uncertainty of ±0.1°C) 

in the same way as O2 and PO4 so as to enable us to elucidate biogeochemical biases arising from model-data temperature mismatch. 

For assessing water column profiles, we defined a set of ocean regions, shown in Figure 3. These regions are similar to 235 

those used by Weber et al. (2016), but with some regions reduced in size or separated (Subtropical Pacific limited to South Pacific 

and North Indian Ocean added). This was done so that within each region ocean water characteristics are broadly similar (including 

temperature, nutrients, oxygen, salinity) as well as particle fluxes being similar (as Weber et al. 2016). We compare the model 

distribution of δ13C of DIC with data from Schmittner et al. (2013) by grouping this data into regions (Fig. 3) and creating 

representative (mean with standard deviation) down-column profiles for δ13C for visual comparison with model outputs in the 240 

matching region. 

4 Model-data and model-model comparison 

4.1 Tuning the temperature-dependent version – model vs. data 

We first assess model skill in simulating the temperature distribution in the ocean, given its critical importance in the temperature-

dependent calculations of metabolic processes (Fig. 4). We find a generally good model fit to ocean temperature data in mid and 245 

low latitudes near-surface waters, and in capturing the first order patterns in benthic temperatures. At high latitudes, cGENIE shows 
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larger differences as compared with observations, due to deficiencies in modelled ocean circulation and/or surface climate. For 

instance, the temperature discrepancy throughout the water column in the North Atlantic may be due to an overly-strong AMOC 

(Atlantic Meridional Overturning Circulation) in the model that delivers too high a volume of warmer surface waters to depth. For 

the North Pacific, the model underestimation of surface and near-surface temperatures by cGENIE likely reflects insufficient surface 250 

stratification and too-deep winter-time mixing of the upper water column.   

The simulation results (year 2010 of the transient experiments) are shown in Fig. 5 on Taylor diagrams for their fit to 

observed distributions of dissolved PO4 and O2 in the ocean. Points in Fig. 5 are shaded according to the Ea(1) (Eq.5) value, which 

has the strongest control on PO4 and O2 distribution of the three variables. The overall best-fit to the data for the final CBRU setting 

was selected as Vmax = 10, Ea(1) = 54 kJ mol-1, initial fraction POC2 = 0.008, where the best-fit is determined as the setting with the 255 

combined overall lowest RMSE for the PO4 and O2 distributions.  

Surface nutrients are important in constraining export production. Fig. 6 shows cross-plots for surface PO4 concentration 

for the best fit CBRU and the standard model for the selected ocean regions. The addition of temperature dependence in CBRU 

generally increases the surface nutrient concentration and is in better agreement with data than the standard model. The high surface 

nutrient regions, Antarctic and the North Pacific, are lower than data in all model cases and this is likely due to the lack of iron 260 

limitation in this version of the model, as biological activity removes too much nutrient from the surface waters. In these regions, 

the temperature-dependent version shows slightly better fit to data than the standard model, as the colder surface water reduces 

nutrient uptake rates. However, the very lowest nutrient regions (e.g. some south Pacific and some west tropical Atlantic) are slightly 

higher compared to data for CBRU the temperature dependent version.  

4.2 Performance of the temperature-dependent model compared to the standard model 265 

 We contrast the performance of the existing tuned, but non temperature-dependent BIOGEM scheme (CB), with the new tuned 

temperature dependent scheme (CBRU). Regional water-column profile model outputs for CBRU and CB are plotted against PO4 

from WOA 2009 (Levitus et al. 2010) in Fig. 7. In both schemes, the model was tuned according to its fit to PO4 and both CBRU 

and CB show a good fit to data. Some differences can be seen between CBRU and CB in surface mid and low latitude waters, e.g. 

in the North Indian Ocean and Eastern Tropical Pacific, where nutrients are higher in CBRU in better agreement with data. In higher 270 

latitude waters model-data differences may be more related to ocean circulation, as for temperature (Fig. 4), with CB and CBRU 

very similar in Southern Ocean and North Pacific and CBRU slightly better in the North Atlantic.   

We find that the addition of temperature dependent microbial processes generally increases surface nutrient concentrations 

(as shown in Fig. 8) compared to the standard model (except for the very high southern latitudes). This is especially the case in the 

low-nutrient gyres with up to 4-times higher PO4 concentration in CBRU than in CB. In the deeper ocean, nutrient concentration is 275 

reduced in the temperature-dependent version except for the North Atlantic (where higher surface nutrients are delivered to the deep 

via the AMOC) and the high Southern latitudes (with slightly higher PO4 than the standard model).  

The distribution of dissolved oxygen also provides information about the biological pump. Photosynthesis removes CO2 

from ocean waters and adds O2, where respiration does the opposite. In surface waters and the mixed layer, ventilation with the 
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atmosphere also results in higher oxygen concentration. As a general pattern, respiration progressively reduces dissolved oxygen 280 

concentrations down the water column until a minimum is reached. Below that depth – the ‘oxygen minimum zone’ (OMZ) – ocean 

circulation reintroduces more oxygenated water masses (ventilated from higher latitude and colder surface waters), slightly 

increasing dissolved oxygen concentrations again with further depth. In the Antarctic zone (Fig. 9), circulation patterns appear to 

dominate oxygen content (as CB and CBRU are very similar, but fairly dissimilar to data indicators). The North Pacific region also 

shows offsets between model and data for O2, PO4 and temperature, also suggesting a circulation difference. In low latitude waters 285 

CBRU shows a better fit to data between the surface and 500m than CB, suggesting that oxygen depletion rates due to respiration 

are better described here. Overall, the intensity of the OMZ in both CB and CBRU are in reasonable agreement with data, although 

in low and mid latitudes warmer waters the OMZ occurs higher in the water column in CBRU than CB. 

4.3 Tracing Carbon-13  

Carbon-13 data are widely used as indicators of ocean circulation and of changes in that circulation over time (Lynch-Stieglitz 290 

2003). Water masses have characteristic carbon-13 signatures, so changes in δ13C measured at any one location may be at least 

partially attributed to changes in the water sources. The biological pump also affects the δ13C of ocean waters. The process of 

photosynthesis fractionates the carbon that is exchanged (from the dissolved inorganic to the organic form); carbon-12 is 

preferentially taken up, leaving more carbon-13 in the surface waters (Schmittner et al. 2013). As summarized by Kirtland Turner 

and Ridgwell (2016), fractionation between POC (and DOC) and δ13C of CO2(aq) in cGENIE is a function of the CO2(aq) 295 

concentration and based on an approximation of the model of Rau et al. (1996) (Ridgwell, 2001). This gives rise to a spatial 

distribution in the δ13C of exported organic carbon, with lower (more negative values) at higher latitudes, and higher (less negative) 

value towards the equator, primarily reflecting the temperature control on the concentration of CO2(aq) in surface waters. The mean 

flux-weighted δ13C of POC is around -23‰ for the pre-industrial period, and around -26‰ by the year 2010 due to the Suess effect. 

As POC is remineralised in the water column, low δ13C carbon is released into the water, modifying the ambient δ13C of DIC.  300 

The regional mean and standard deviation of data δ13C, and model CBRU and CB are shown in Fig. 10. For all regions, 

general patterns are similar to those seen in O2 concentration, except the Antarctic zone. Benthic and deep water absolute δ13C 

values are generally similar to data for both model settings. The model-data offset in mid-depth waters (~800m) in the sub-Antarctic 

zone may be due to a reduced Antarctic intermediate waters contribution in the model. This may explain similar model-offsets at 

this depth in the South and East-Tropical Pacific regions. In warm surface waters, δ13C reduces more quickly with depth in CBRU 305 

than CB, as nutrient recycling is occurring faster.  

4.4 POC export and implications for biological carbon pump efficiency 

The inclusion of a temperature dependence term in remineralisation strongly affects export production via the rate of nutrient 

recycling, and fundamentally affects the efficiency of the biological carbon pump. To demonstrate the impact of each varied 

parameter, the export flux of POC (measured at 80m) for every simulation (not only the best-fit CBRU) is shown in Fig. 11. With 310 

a lower activation energy requirement (low Ea(1) value), less energy is needed for the remineralisation process to occur, this means 
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nutrients are returned to surface waters more quickly, production is higher, and so POC flux at 80m is higher. Conversely, the higher 

the Ea(1) value, the more energy is required to remineralise organic carbon. So, at higher Ea(1), proportionally more organic carbon 

reaches depth making surface processes less important. The fraction of the POC exported that is recalcitrant and the maximum 

nutrient uptake rate at the surface becomes less important as Ea(1) increases. 315 

The remineralisation curves for each ocean region is shown in Fig. 12 for the best fit CBRU and CB model for POC (in gC 

m-2 yr-1). CBRU and CB have differing initial POC export fluxes with lower latitude warmer waters showing higher export in CBRU 

due to the increased nutrient recycling there. A dataset of POC flux (Mouw et al. 2016a) is overlaid on the remineralisation curves 

(Fig. 12). In both model configurations, the measured Antarctic zone POC flux at shallow and intermediate depths (< 1500m) is 

significantly lower than in the model. We do not apply iron limitation in the Southern Ocean (or elsewhere), which would limit 320 

productivity and POC export, and could explain some of the mismatch at shallower depths. However, the measured flux at depth 

appears well represented. In deeper waters elsewhere, measured POC flux in warmer regions (e.g. East tropical Pacific, North Indian, 

East Tropical Atlantic) is generally higher than in the model. This likely reflects additional processes that may increase POC fluxes 

to depth such as ballasting by minerals (Klaas and Archer, 2002; Wilson et al 2012) and the lower reactivity of POC associated with 

increased recycling in low latitude plankton ecosystems (Aumont et al., 2017). 325 

Overall, the pattern of the efficiency of the transfer of particles from 80m to 1040m (Fig. 13) in CBRU is similar to that 

found in Weber et al. (2016), where efficiency of transfer is essentially a measure of the rate of remineralistion; what fraction of the 

POC exported at 80m reaches 1040m. Colder waters show higher transfer efficiency, with the lowest transfer efficiency seen in the 

sub-tropical gyres. The CB model has a fixed decay rate for all locations, so the transfer efficiency at any particular depth has a 

global uniform value. 330 

It should be noted that here we have included all available data from Mouw et al. (2016a) without any attempt to ensure 

these data are representative of the annual mean (where the model output represents the annual mean). POC flux measurements can 

be highly dependent on time of year and number of data measurement points available. Some of the model-data mismatch may then 

be due to a mis-match between the interval in time represented by the data, and the annual mean of the model. For instance, blooms, 

which are not well represented in the model, may explain some of the very high POC flux values (for example 0.2 gC m-2 yr-1) in 335 

the North Atlantic and hence why the model annual mean appears to underestimate the flux. 

5 Implications of including temperature-dependent microbial processes 

This temperature-dependent version of the cGENIE model treats two large scale processes of the biological carbon pump. Firstly, 

nutrient uptake rates due to the metabolic temperature dependence of photosynthesising marine biota; secondly remineralisation 

rates of sinking particulate organic matter due to the metabolic temperature dependence of respiring marine biota feeding on that 340 

sinking organic matter. The calibrated temperature response of the respiration-based mechanism of remineralisation in the water 

column is more sensitive to temperature change (a mean Q10 of 2.28 over 0°C to 26°C, from Eq.5 using 54 kJ mol-1 for Ea(1)) than 

the photosynthesis-based one (the Eppley curve has a Q10 of 1.88, in Eq. 3 and 4, Bissinger et al. 2008), in agreement with 
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fundamental studies (Brown 2004). Historical temperature rise, which we induced in the cGENIE.muffin Earth system model by 

prescribing the observed CO2 transient in the atmosphere, provides an illustrative example of the role and importance of including 345 

sufficient temperature-dependent processes in models. In this section we therefore discuss in more detail the transient differences 

between CB and CBRU model configurations.  

Between the years 1700 and 2010, global mean air temperature in cGENIE increases by 0.94°C. In turn, warming at the 

ocean surface induces stratification in the water column, reducing nutrient re-supply to the surface from subsurface waters. In the 

CB model, this results in a pronounced drop in POC export at 80m (Fig. 14). In CBRU this effect is largely offset by the intensified 350 

recycling of nutrients in warmer surface and near-surface waters. However, the transfer efficiency is affected in CBRU, with a drop 

of over 5% in the proportion of POC exported at 80m that reaches 1040m. The largest transfer efficiency drops are seen in low and 

mid latitude waters (Fig. 15). This reduction in biological pump transfer efficiency is a result of increased rates of remineralisation 

in the warming water column, principally in surface and near-surface waters (while whole (volumetrically-weighted) ocean warming 

is 0.12°C over this period, 0.6°C occurs on a global mean basis in surface waters, and 0.02°C in deepest waters). 355 

Between simulation pre-industrial and present-day model states, we found a significantly smaller drop in POC flux at 80m 

when temperature dependence was included (CBRU) compared to the standard model (CB). Global POC flux at 80m reduces by 

0.3% between pre-industrial and present-day in CBRU, but with increases in the Southern Ocean of around 10% and in the tropics 

of around 1%, suggesting an increase in NPP (Net Primary Productivity) in the tropics. Kwiatkowski et al. (2017) identified a 

reduction in NPP with warming in the tropical ocean of 3±1% per degree of warming, based on responses to ENSO (El Nino 360 

Southern Oscillation) which is on face value inconsistent with our simulation of a possible increase in NPP in the tropics. Their 

estimate utilised satellite based NPP products from data on chlorophyll and light incidence, and found that in no data-constraint did 

NPP increase in the tropics (although the data constraint varied according to the NPP product used). However, Behrenfeld et al. 

(2015) noted that a reduction in chlorophyll does not necessarily represent a reduction in productivity, due to photoacclimation. The 

satellite based NPP products do not account or correct for this effect, so may well underestimate NPP in warming conditions. In an 365 

earlier study, Taucher and Oschlies (2011) found an increased NPP when temperature dependence was included in modelled future 

projections. Laufkotter et al. (2017) found that when including a temperature-dependence and oxygen content-dependent 

remineralisation, NPP increased on warming due to intensified nutrient recycling in near-surface water. They suggested this was 

largely due to an initial positive bias in surface ocean nutrients. In a second set-up they reduced nutrient recycling in surface waters 

and find little impact on NPP between the temperature sensitive and temperature independent model in a future projection to 2100 370 

CE.  

Most of the regional variability in the flux of POC in the deep sea was explained via particle size and the effect of 

temperature on remineralisation in a study by Cram et al. (2018), with oxygen concentration providing only a small improvement 

(by reducing nutrient recycling in the Eastern Tropical Pacific). Cavan et al (2017) concluded that the large oxygen minimum zone 

in the Eastern Tropical North Pacific reduces the rate of remineralisation due to the almost complete absence of zooplankton particle 375 

disaggregation within, and provides a negative feedback to warming. Particle size plays a role in sinking speeds, as larger particles 

sink faster (generally), and particle size is a factor in export and transfer efficiency (Mouw et al 2016b). The version of cGENIE we 
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used does not account for particle size and has a fixed sinking speed globally. The lack of particle size variability and oxygen 

concentration’s role in remineralisation may explain some of the increased POC flux at 80m that the model shows since the pre-

industrial period in tropical waters. This tropics POC export increase may also be partly due to initial higher nutrient concentrations 380 

compared to data, or to the increased remineralisation rates re-supplying nutrients to the surface. In summary, projected and 

predicted changes in NPP in low-nutrient warm waters are still subject to large uncertainties (Turner et al. 2015, Cross et al. 2015). 

There is also still uncertainty as to the causes and even patterns in POC flux differences in different ocean regions (Henson 

et al., 2012; Marsay et al., 2015; Weber et al., 2016; Cram et al., 2018). We find the patterns of transfer efficiency (Fig. 13) for 

CBRU are in broad agreement with Marsay et al. (2015) and Weber et al. (2016). This transfer efficiency is not dependent on surface 385 

waters NPP patterns or on how much POC is exported at 80m in cGENIE, however, the absolute amount of carbon reaching the 

deep ocean does depend on NPP and export. On warming since the pre-industrial period we found a reduced POC flux at 80m as 

well as a reduction in transfer efficiency, combining to produce a reduction in the strength of the biological carbon pump with 

warming. This further implies an increased carbon pump strength in cooler climates, as per Heinze et al. (2016). 

6 Summary 390 

Substituting temperature-dependent organic matter export and remineralisation parameterisations into cGENIE.muffin, changes 

patterns of nutrient, dissolved oxygen, and carbon-13 distributions in the ocean compared to the standard model. Although both 

model variants are tuned in some way to observed PO4 and O2 distributions, substantive differences between models occur in 

response to warming since the pre-industrial period. In response to warming, inclusion of temperature-dependence ameliorates 

stratification-induced surface nutrient limitations by increasing nutrient recycling nearer to the surface. As a corollary, less carbon 395 

and nutrients are delivered to the deep. On cooling, the inverse is expected with more nutrients and carbon reaching depth, and a 

more efficient ocean carbon pump. Hence temperature-dependency of the biological pump may act as a positive feedback on 

atmospheric CO2 concentrations and climate change. 

7 Model code availability 

The specific version used of the cGENIE.muffin model used in this paper is tagged as release v0.9.7, and has been assigned a DOI: 400 

10.5281/zenodo.3559853. The code is hosted on GitHub and can be obtained by cloning: 

https://github.com/derpycode/cgenie.muffin 

changing the directory to cgenie.muffin and then checking out the specific release: 

$ git checkout v0.9.7 

Configuration files for the specific experiments presented in the paper can be found in the directory: 405 

genie-userconfigs\MS\crichtonetal.GMD.2019 
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Details of the experiments, plus the command line needed to run each one, are given in the readme.txt file in that directory. All other 

configuration files and boundary conditions are provided as part of the release. 

A manual, detailing code installation, basic model configuration, plus an extensive series of tutorials covering various aspects of 

muffin capability, experimental design, and results output and processing, is provided on GitHub. The latex source of the manual, 410 

along with pre-built PDF file can be obtained, by cloning: 

https://github.com/derpycode/muffindoc 

 

The muffin manual contains instructions for obtaining, installing, and testing the code, plus how to run experiments.  Specifically: 

Section 1.1 (Installation, configuration, basic usage) – Provides a basic over-view of the software environment required for installing 415 

and running muffin. Section 1.2.2 – provides a basic over-view of cloning and testing the code. 

Section 1.3 – Provides a basic guide to running experiments (also see 1.6 and 1.7). 

Section 1.4 – provides a basic introduction to model output (much more detail is given in Section  12). 

HOW-TO Chapter – Provides a detailed guide to cloning the code and configuring both an Ubuntu (18.04) and a MacOS software 

environment, including netCDF library installation, plus running a basic test.  420 
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 Rate constant as T 

approaches infinity 

Multiplier constant 

for T 

 A 1/b 

Eppley et al. 1972 0.59 0.0633 

Bissinger et al. 2008 0.81 0.0631 

Table 1, Values for variables in eqn 2  
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Description 

CB x x   Standard model 

CBRU x x x x Temperature-dependent model 

Table 2, Model settings, processes included in each set-up. Column numbering corresponds to numbering in figure 1. 

 

Variable Values applied 

Vmax 4,7,10 

POC fraction 2 (recalcitrant) 0.002, 0.008, 0.032 

Ea1 (labile fraction) x103J/mol 53, 54, 55, 56, 60 

Table 3, setting for variables in CBRU (temperature dependent). Values in bold are those used in John et al. 2014. 575 
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Figure 1, Simplified schematic of the ocean biological pump and dissolved nutrient movements, and the two temperature-dependent 

processes that are considered in this study 1. Nutrient uptake rates, 2. Remineralisation. In the style of U.S. DOE (2008). We do not model 

sediments in this study, but it appears in the figure for completeness.  580 
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Figure 2. In the export production model, no mechanistic consideration of mixed player plankton respiration vs photosynthesis (GPP) 

temperature dependence can be considered, but microbial respiration vs community production can be considered, as well as nutrient 

recycling nearer the surface. 

 585 

 

 

 

 

 590 

Figure 3, Selected ocean regions for model-data comparison (on a 10x10 degree grid, with land masses overlaid for indication), based on 

Weber et al. (2016) and WOA 2009 data. 
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Figure 4, Temperature (°C) per depth by region for model and data (mean and standard deviation). Data WOA 2009 (Levitus et al. 2010). 595 

 

 

Figure 5, Taylor diagrams for model fit to data for PO4 and O2 concentrations, showing standard deviation (standard deviation is not 

normalised), correlation and root means squared error (RMSE). Data WOA 2009 (Levitus et al. 2010). 

  600 
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Figure 6, Cross plot for surface (0m to 80m) PO4 concentrations (µmol l-1) for data and model labelled by ocean region. Data WOA 2009 

(Levitus et al. 2010) 

 

Figure 7, PO4 (µmol l-1) per depth by region for model and data (mean and standard deviation). Data WOA 2009 (Levitus et al. 2010). CB 

is standard model, CBRU is temperature dependent model. 605 

 

 

Figure 8, Normalised difference in PO4 concentration in best-fit CBRU compared to CB (both present-day, note scale difference). CB is 

standard model, CBRU is temperature dependent model. 
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 610 

Figure 9, Dissolved O2 (µmol l-1) per depth by region for model and data (mean and standard deviation). Data WOA 2009 (Levitus et al. 

2010). CB is standard model, CBRU is temperature dependent model. 

 

Figure 10, δ13C of DIC (‰ VPDB) per depth by region for model and data (mean and standard deviation). Data from Schmittner et al. 

(2013). CB is standard model, CBRU is temperature dependent model. 615 
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Figure 11, Global POC flux (GtC yr-1) at 80m. Standard model is shown as a black cross, Temperature-dependent model are circles. Best 

fit CBRU setting double circled. CB is standard model, CBRU is temperature dependent model. 

 

Figure 12, POC flux (gC m-2 yr-1) for model (mean and standard deviation) and data. Data Mouw et al., 2016a. CB is standard model, 620 
CBRU is temperature dependent model. 
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Figure 13, Model POC transfer efficiency (also here used as a measure of biological carbon pump efficiency) for CB (left) and best fit 

CBRU (right). The fraction of POC exported at 80m that reaches 1040m for the year 2010. 625 

 

Figure 14, POC export at 80m, % change w.r.t the year 1700. CB is standard model, CBRU is temperature dependent model. 

 

 

Figure 15, Biological pump “transfer efficiency” (the proportion of POC exported at 80m that reaches 1040m) % change with respect to 630 
1700 CE. Global mean change per year (left) w.r.t 1700; latitudinal change at the year 2010 w.r.t 1700 (right). CBRU is temperature 

dependent model. 
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