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Abstract. Temperature is a master parameter in the marine carbon cycle, exerting a critical control on the rate of biological 10 

transformation of a variety of solid and dissolved reactants and substrates. Although in the construction of numerical models of 

marine carbon cycling, temperature has been long-recognised as a key parameter in the production and export of organic matter at 

the ocean surface, its role in the ocean interior is much less frequently accounted for. There, bacteria (primarily) transform sinking 

particulate organic matter (POM) into its dissolved constituents and consume dissolved oxygen (and/or other electron acceptors 

such as sulphate). The nutrients and carbon thereby released then become available for transport back to the surface, influencing 15 

biological productivity and atmospheric pCO2, respectively. Given the substantial changes in ocean temperature occurring in the 

past, as well as in light of current anthropogenic warming, appropriately accounting for the role of temperature in marine carbon 

cycling may be critical to correctly projecting changes in ocean deoxygenation as well as the strength of feedbacks on atmospheric 

pCO2. 

Here we extend and calibrate a temperature-dependent representation of marine carbon cycling in the cGENIE.muffin 20 

Earth system model, intended for both past and future climate applications. In this, we combine a temperature-dependent 

remineralisation scheme for sinking organic matter with a biological export production scheme that also includes a dependence on 

ambient seawater temperature. Via a parameter ensemble, we jointly calibrate the two parameterisations by statistically contrasting 

model projected fields of nutrients, oxygen, and the stable carbon isotopic signature (δ13C) of dissolved inorganic carbon in the 

ocean, with modern observations. We additionally explore the role of temperature in the creation and recycling of dissolved organic 25 

matter (DOM) and hence its impact on global carbon cycle dynamics. 

We find that for the present-day, the temperature-dependent version shows as-good-as or better fit to data than the existing 

tuned non temperature-dependent version of the cGENIE.muffin. The main impact of accounting for temperature-dependent 

remineralisation of POM is in driving higher rates of remineralisation in warmer waters, in turn driving a more rapid return of 

nutrients to the surface and thereby stimulating organic matter production. As a result, more POM is exported below 80m but on 30 

average reaches shallower depths in mid and low latitude warmer waters, as compared to the standard model. Conversely, at higher 

latitudes, colder water temperature reduces the rate of nutrient resupply to the surface and POM reaches greater depth on average 
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as a result of slower sub-surface rates of remineralisation. Further adding temperature-dependent DOM processes changes this 

overall picture only a little, with a slight weakening of export production at higher latitudes. 

As an illustrative application of the new model configuration and calibration, we take the example of historical warming 35 

and briefly assess the implications for global carbon cycling of accounting for a more complete set of temperature-dependent 

processes in the ocean. We find that between pre-industrial (ca. 1700) and present (year 2010), in response to a simulated air 

temperature increase of 0.9°C and an associated projected mean ocean warming of 0.12°C (0.6°C in surface waters and 0.02°C in 

deep waters), a reduction in particulate organic carbon (POC) export at 80m of just 0.3% occurs (or 0.7% including a temperature-

dependent DOM response). However, due to this increased recycling nearer the surface, the efficiency of the transfer of carbon 40 

away from the surface (at 80m) to the deep ocean (at 1040m) is reduced by 5%. In contrast, with no assumed temperature-dependent 

processes impacting production or remineralisation of either POM or DOM, global POC export at 80m falls by 2.9% between the 

pre-industrial and present day as a consequence of ocean stratification and reduced nutrient resupply to the surface. Our analysis 

suggests that increased temperature-dependent nutrient recycling in the upper ocean has offset much of stratification-induced 

restriction in its physical transport. 45 

1 Introduction 

The cycle of carbon through the ocean is dominated by the production, destruction, and transformation of both dissolved and 

particulate organic matter (DOM and POM, respectively) (Legendre et al., 2015; Heinze et al., 2015). The ‘biological carbon pump’  

(Fig. 1) is central in this – acting through phytoplankton growth to remove carbon (and nutrients) from the surface and mixed layer 

waters, and subsequently transferring it to the deep, principally via the sinking of POM (see: Hülse et al., 2017 for a review) and to 50 

a lesser extent, via the subduction of DOM. Export of POM out of the near-surface euphotic zone is principally controlled by 

photosynthesis rates (primary production) together with zooplankton grazing, respiration, and other food web processes (Steinberg 

and Landry, 2017; Mari et al., 2017). Of this export, only a fraction ultimately reaches the deep ocean as the initial export flux is 

filtered through a series of further processes and transformations involving feeding and remineralisation by microbes and other 

biota, and further modulated by sinking speeds and composition of the sinking matter itself (Bach et al., 2016; Rosengard et al., 55 

2015; Turner, 2015). At the ocean floor, organic matter undergoes further microbial degradation and transformation before the 

residual is buried in accumulating marine sediments. Removing carbon from surface waters and storing it for centuries (intermediate 

depths), millennia (deep ocean), or multi-millennia (sediments) exerts an important control on atmospheric pCO2, which would 

otherwise be some 150ppm to 200ppm higher than present in the absence of any biological activity in the ocean (Parekh et al 2005, 

Sarmiento and Gruber, 2006). Ocean circulation generally acts against the biological pump, geochemically homogenising the ocean 60 

interior and returning carbon (and nutrients) back to the surface. Surface-to-deep geochemical gradients and storage of carbon in 

the ocean is hence a function of the rate of ocean ventilation in conjunction with the rate of biological export of carbon from the 

surface and importantly, the rate at which the organic matter is remineralised in the ocean interior. 
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To a first order, export of carbon out of the mixed layer in a warming world will be reduced as a consequence of increased 

ocean stratification reducing nutrient re-supply to surface waters (Portner et al., 2014; Reusch and Boyd, 2013). It is worth noting 65 

that, from the point of view of biology the efficiency in the use of carbon and nutrients arguably results in lower export of organic 

matter (as that matter is utilised more “efficiently”); from the point of view of the efficiency of the carbon pump, of removing carbon 

from the surface and delivering it to the inner ocean, the inverse is true. However, the export of carbon is only one of the pertinent 

factors in marine carbon cycling. Also important is the ‘transfer efficiency’ of the biological pump – the fraction of exported carbon 

that reaches the inner ocean, or alternatively, the mean depth below the surface at which this carbon is remineralised, and dissolved 70 

inorganic carbon (DIC) returned to the ocean. A deeper mean remineralisation depth equates to a more transfer-efficient biological 

carbon pump. The sub-surface processes that affect the biological carbon pump efficiency are also temperature-dependent (Bendtsen 

et al., 2015; Turner 2015; Boscolo-Galazzo et al 2018), complicating the net response of the biological carbon pump and carbon 

sequestration in the ocean interior to changes in global warming.  

Not all ocean biogeochemical models and associated global carbon cycle studies account for temperature controls on (and 75 

hence efficiency of) the biological carbon pump (some that do include: Kvale et al., 2019; Yamamoto et al., 2018; Cao and Zhang 

2017; Laufkotter et al., 2016; Kvale et al., 2015; Segchneider and Bendtsen, 2013; Chikamoto et al. 2012; Moore et al. 2002). Hulse 

et al. (2017) presented an extensive review of how EMICs (Earth System Model of Intermediate Complexity) and box models treat 

ocean carbon cycle processes and summarised how inner ocean processes are less well constrained than surface processes in many 

models and how their treatment in models is much more variable. This is also the case for more complex ocean models, such as 80 

those participating in CMIP5 (Coupled Model Inter-comparison Project 5) and used to inform the recent IPCC assessment (Bopp et 

al.2013, Burd et al., 2016). However, temperature-dependency of inner ocean processes has been found to have an important impact 

on nutrient distribution and, therefore, on primary production (Tauscher and Oschlies, 2011) as well as biological pump efficiency 

(Laufkotter et al., 2017), arguing for the necessity of their inclusion in models. 

All things being equal, higher ocean temperatures should drive a greater fraction of remineralisation to occur in the upper 85 

water column, facilitating increased carbon and nutrient return to the ocean surface. Higher surface temperature will also increase 

the ability of phytoplankton to take up and assimilate the resulting increased nutrient availability and hence re-export POM, although 

grazing pressure would also increase. However, higher temperatures also lower the solubility of CO2 at the surface and hence loss 

to the atmosphere. Furthermore, for a geologically rapid and transient warming at the surface such as is currently occurring, 

increased ocean stratification and reduced physical transport of carbon and nutrients back to the surface will occur. The multiple 90 

conflicting influences of temperature mean that even the net sign of the feedback between greenhouse warming and ocean carbon 

cycling is uncertain (Yamamoto et al 2018). How carbon fixed at the surface is recycled via partitioning into DOM rather than 

exported as POM, and the rate at which DOM itself is recycled back into dissolved carbon and nutrients as temperatures rise adds 

another complicating layer of temperature response and feedback. 

To help tease apart the varying influences of temperature on marine carbon cycling and atmospheric CO2, we present and 95 

calibrate a temperature-dependent representation of the biological pump in the current ‘muffin’ release of the cGENIE EMIC (Earth 

system Model of Intermediate Complexity) (Cao et al. 2009) (and see statement on ‘Code Availability’). Our calibrated 



4 

 

configuration is intended for use in global biogeochemical cycling studies that require a fuller consideration of the role of 

temperature both in the geological past and the future. For completeness, we additionally develop and test a pair of parameterisations 

for temperature-dependency in the production and decay of DOM. 100 

2 The cGENIE.muffin Earth system model framework (STND) 

The basic framework of the cGENIE EMIC consists of a 3D frictional-geostrophic approximation ocean circulation model (Edwards 

and Marsh, 2005), coupled to a 2D dynamic-thermodynamic sea-ice model (Marsh et al., 2011). As per previous calibrations of 

ocean biogeochemical cycles (e.g. Ridgwell et al., 2007), we employ the ocean circulation and sea-ice model on a 36 x 36 equal 

area grid (10 degrees of longitude and uniform in the sine of latitude), and couple these with a 2D energy-moisture-balance 105 

atmosphere model (EMBM) (Marsh et al., 2011) (an alternative to this – a 3D atmospheric general circulation model (Holden et al., 

2016) also exists, but is not employed in this study). For traceability, we employ a commonly-used physical configuration with 16 

vertical levels in the ocean and a present-day bathymetry following Cao et al. (2009) and retain all physics parameter values and 

boundary conditions controlling the climate system. The representation of the ocean carbon and other biogeochemical cycles 

together with ocean-atmosphere gas exchange, unless otherwise noted, also follow Cao et al. (2009), and are summarised in more 110 

detail below. The various temperature-dependent parameterisations that we substitute for the equivalent non temperature-dependent 

processes in Cao et al. (2009) are described in full in this paper.  

It is likely that both increased grazing pressure by zooplankton, and primary production by phytoplankton will have an 

impact on export production in a warmer world (Paul et al., 2015; Turner, 2015). However, in the simplified biologically induced 

export flux (Maier-Reimer, 1993) scheme (Fig. 2) that we apply in cGENIE, we cannot explicitly consider the impact of increased 115 

grazing pressure in the surface waters. Regardless, we are interested in the wider question of the interaction of (any) temperature-

dependent community production (as export production), with temperature-dependent microbial remineralisation in the ocean 

interior, and its impact on the global ocean carbon cycle. We hence represent only the direct effect of temperature on large scale 

metabolic processes (plankton photosynthesis (growth) and microbial respiration). Other factors such as involving particle size 

distributions, particle density (Cram et al., 2018) and ‘ballasting’ (e.g. Wilson et al., 2012), and sinking speed (determined by particle 120 

characteristics) (McDonnell et al., 2015), are generally determined within the food web and may be considered to be of secondary 

importance in the context of the gross role of temperature in global carbon cycling. Recently, Boyd et al. (2019) defined additional 

particle pumps in the ocean, involving eddy-subduction, diel vertical migration, mesopelagic migration and seasonal lipid pumps. 

These processes are also outside the scope of this study, particularly in the absence of a sufficiently high resolution ocean circulation 

model component, the absence of (fully coupled GCM) ocean-atmosphere dynamics and inter-annual variability, and without an 125 

explicit ecosystem including multiple trophic layers and explicit zooplankton behaviours.  
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2.1 Standard, non-temperature-dependent model formulation (STND) 

In the original version of the biological uptake scheme (Ridgwell et al., 2007), nutrients are taken out of the surface ocean layer 

according to several factors including light incidence, ice fraction, nutrient uptake limitation (Michaelis-Menten type), and a 

prescribed maximum uptake rate (Eq. 1). In this, Γ, the net nutrient uptake (mol PO4 kg-1 yr-1) and hence net primary production in 130 

the surface ocean layer of the model, is described as: 

 

𝛤 = 𝑢0
𝑃𝑂4 .

𝑃𝑂4

𝑃𝑂4+𝐾𝑃𝑂4
 . (1 − 𝐴𝑖𝑐𝑒).

𝐼

𝐼0
         (1) 

where: 

𝑢0
𝑃𝑂4  maximum uptake rate (mol kg-1 yr-1) 135 

𝑃𝑂4

𝑃𝑂4+𝐾𝑃𝑂4
   nutrient limitation term 

PO4  local nutrient concentration (mol kg-1) 

𝐾𝑃𝑂4    Michaelis Menten half saturation value (mol kg-1) 

1 − 𝐴𝑖𝑐𝑒 ice free fraction of sea surface (𝐴𝑖𝑐𝑒  being the ice-covered fraction of a grid cell) 

𝐼

𝐼0
  light limitation (based on incidence angle) term 140 

 

Here, a maximum uptake rate, (maximum rate of conversion of dissolved PO4, phosphate, into organic matter by phytoplankton) is 

prescribed, and is assigned a calibrated value of 9.0 x10-6 mol kg-1 yr-1 (Cao et al., 2009), while the calibrated Michaelis Menten 

half saturation value is 9.0 ×10-7 mol kg-1 (Cao et al., 2009). 

 Nutrient uptake is instantaneously converted into organic matter export, both particulate organic matter (POM) and a 145 

fraction as dissolved organic matter (DOM), in a ratio of 1:2 following Najjar et al. (2007), and this represents community production 

(see Fig. 2). This production encompasses the entire surface food web, including the action of primary producers (phytoplankton) 

and the effect of consumers (e.g. grazers). In this export production model, dissolved inorganic carbon (DIC) is taken out of solution 

in the surface layer at a molar ratio of 106:1 to PO4 and O2 at a ratio of - 138:1 with PO4 (Redfield et al., 1963). POM is partitioned 

into two fractions, which conceptually are: labile (fraction 1, ‘POM1’), and recalcitrant POM (fraction 2, ‘POM2’) (Ridgwell et al., 150 

2007). POM sinks vertically out of the surface layer and settles with a given velocity (here: 125 m day-1). POM is remineralised 

throughout the water column using a prescribed remineralisation ‘curve’ reflecting the decay of POM as it sinks, first using dissolved 

oxygen and then sulphate. The prescribed remineralisation ‘curve’ of relative sinking flux vs. depth (e.g. see: Hülse et al., 2017) is 

always adhered to (Eq. 2a for POM1, Eq. 2b for POM2). In the sinking curve, the relative flux at each layer (z) is calculated 

according to an exponential decay function (Ridgwell et al., 2007).  155 
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𝐹𝑧
𝑃𝑂𝑀1 = 𝐹𝑧=ℎ𝑒

𝑃𝑂𝑀1. ((1 − 𝑟𝑃𝑂𝑀) + 𝑟𝑃𝑂𝑀. 𝑒𝑥𝑝 (
𝑧ℎ𝑒−𝑧

𝑙𝑃𝑂𝑀1))       (2a) 

𝐹𝑧
𝑃𝑂𝑀2 = 𝐹𝑧=ℎ𝑒

𝑃𝑂𝑀2. ((𝑟𝑃𝑂𝑀) + 𝑟𝑃𝑂𝑀. 𝑒𝑥𝑝 (
𝑧ℎ𝑒−𝑧

𝑙𝑃𝑂𝑀2))        (2b) 

where: 

𝐹𝑧=ℎ𝑒

𝑃𝑂𝑀
  POM exported out of the surface layer (at 80m) 160 

𝑙𝑃𝑂𝑀  length-scale (556m for POM1; 1x106m for POM2 – effectively infinite and hence no water column decay) 

𝑟𝑃𝑂𝑀  initial proportion of POM into fraction 2 (0.055) 

 

Any POM not remineralised within the water column is instead remineralised at the ocean floor – a ‘reflective’ boundary condition 

assumption (see Hulse et al. (2017) for discussion). DOM is degraded with a lifetime of 0.5 years following Najjar et al. (2007). 165 

2.2 Temperature-dependent processes (TDEP) 

In an alternative representation of biological export production in the model, a temperature-dependent growth rate limiter is applied 

to a characteristic time-scale of ambient nutrient depletion (Eq. 3). A similar scheme (but without the addition of temperature-

dependent remineralisation in the ocean) has previously been applied by Meyer et al. (2016) for PO4-only uptake, and for 2 nutrients 

(PO4 and NO3) by Monteiro et al. (2012). In this, net nutrient uptake (mol PO4 kg-1 yr-1) is: 170 

𝛤 = 𝑉𝑚𝑎𝑥 .
𝑃𝑂4

𝑃𝑂4+𝐾𝑃𝑂4
 . (1 − 𝐴𝑖𝑐𝑒).

𝐼

𝐼0
 . 𝛾𝑇 . 𝑃𝑂4        (3) 

where: 

𝛾𝑇   temperature growth limitation term (see below) 

𝑉𝑚𝑎𝑥   maximum net depletion rate multiplier (yr-1) 

𝑃𝑂4   local PO4 concentration (mol kg-1) 175 

𝑃𝑂4

𝑃𝑂4+𝐾𝑃𝑂4
  nutrient limitation term 

𝐾𝑃𝑂4    Michaelis Menten half saturation value (mol kg-1) 

1 − 𝐴𝑖𝑐𝑒  ice-free fraction of cell 

𝐼

𝐼0
    light limitation (based on incidence angle) term 

 180 

Temperature growth limitation is represented by the Arrhenius equation, where T is local temperature (Eq. 4). 

𝛾𝑇 = 𝑎𝑒(𝑇
𝑏⁄ )            (4) 
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This is the “Eppley curve”, commonly applied to model metabolic response to temperature change (Table 1). An improved 

fitted curve was proposed by Bissinger et al. (2008) (the LPD or Liverpool Plankton Database curve), with both being based on 

fitting the model to data from empirical studies.  The largest difference between the Bissinger curve and the Eppley curve is the 185 

value of a (Eq. 4, Table 1). It makes little difference which curve we use because we calibrate Vmax (Eq. 3) which is also a multiplier 

for the temperature growth limitation term (in Eq. 4). We use the original Eppley et al. (1972) values for a (0.59) and b (75.80), and 

as per Monteiro et al. (2012). Both the Eppley and Bissinger curves gives a Q10 value (where Q10 is the increase in the rate of the 

metabolic process with a 10°C increase in temperature) for nutrient uptake as 1.88 (Bissinger et al. 2008).  

To calculate the remineralisation rate of POM (mol yr-1), an Arrhenius-type equation is applied (as in John et al., 2014) 190 

(Eq. 5).  

𝑘(𝑇) = 𝛽𝑃𝑂𝑀𝑛𝑒(
−𝐸𝑎

𝑅𝑇⁄ )
           (5) 

where: 

𝐸𝑎 Activation energy (J mol-1) 

𝑅  gas constant (J K-1 mol-1) 195 

𝑇 absolute temperature (K) 

𝛽𝑃𝑂𝑀𝑛 rate constant for POM remineralisation (yr-1) as T approaches infinity (for each POM fraction) 

 

This rate is calculated in each ocean layer (and model grid point) according to the local temperature, POM flux, and for each of the 

two POM fractions. For both fractions, sinking rate is assumed to be 125 m day-1 (Ridgwell, 2001), so for cGENIE’s non-uniform 200 

ocean depths, the fractional loss of POM due to remineralisation in each layer (z) is as Eq. 6.  

  

∆𝐹𝑧
𝑃𝑂𝑀𝑛 = 𝑘(𝑇)𝑧

𝑃𝑂𝑀𝑛
. ∆𝑡(𝑧)           (6) 

 

where n denotes POM fraction (either labile (1) or recalcitrant (2) - distinguished as these have different k(T) values), ∆𝑡(𝑧) is the 205 

time that sinking particles on average spend in layer z. 

 We will describe and evaluate the impact of processes accounting for the influence of temperature on both the production 

(ratioed to POM) and degradation of DOM, as part of the Discussion section. 

3 Model tuning methodology 

In previous published applications of the cGENIE model, either a temperature dependence in calculating export (but not ocean 210 

interior mineralisation) (e.g. Meyer et al. 2016, Monteiro et al. 2012) OR a temperature dependence in remineralisation (but not 

biological productivity) (John et al., 2014) have been utilised in addressing varying paleo questions. More commonly, neither have 

been utilised (e.g. Ridgwell and Schmidt, 2010). Here, we explore both temperature dependencies together (Table 2). Although in 
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John et al. (2014) the temperature-dependent remineralisation scheme was calibrated to approximate the global mean POM decay 

profile in the default model (i.e. Ridgwell et al., 2007) under pre-industrial boundary conditions, here we adopt a more formal re-215 

tuning against observations of the primary scaling factors in each scheme.  

We identify three primary parameters requiring joint re-tuning: 1, the maximum nutrient uptake rate Vmax (Eq. 3) that scales 

export production. 2, the activation energy, Ea(1) (Eq.5) (the minimum energy required for the transformation of organic carbon 

into inorganic carbon through respiration processes for the remineralisation of labile POC1, Particulate Organic Carbon type 1) 

where the labile POC1 dominates the export from the surface. 3, the fraction of recalcitrant POC2 (denoted as rPOM Eq.2a and 220 

Eq.2b) formed at the surface that reaches the very deep ocean.  

The Vmax range was chosen by running a series of test simulations (a 10k year spin up with pre-industrial boundary 

conditions followed by the historical transient simulation forced with CO2 data to the present day) varying Vmax while retaining the 

temperature-dependent remineralisation scheme adopted in John et al. (2014). From these results we selected a range of values for 

the multiplier Vmax that gave a reasonable agreement with PO4 and O2 distributions; these Vmax values are 4, 7 and 10. For the initial 225 

fraction of POC2, we took the John et al. (2014) value (with POC2 fraction of 0.008), and applied a range that encompassed 25% 

to 400% around that value. For the Ea(1) (Eq.5) setting, John et al. (2014) used a value of 55 kJ/mol, the median of a range of 50 to 

60 kJ/mol for labile POC identified in Arndt et al. (2013). We test a series of values for Ea(1) within the range (Table 3). Our 

ensemble hence consisted of 3 different choices for Vmax, 3 different choices for initial fraction of POC2, and 5 different choices for 

Ea(1), for a total of 3×3×5 = 45 different parameter combinations and hence model ensemble member experiments. Values for the 230 

two rate constants, βPOMn (Eq 5, for POC1 at 9×1011 yr-1, for POC2 at 1×1014 yr-1) that were calibrated for the modern ocean and the 

sinking speed of 125 m day-1 in John et al. (2014) are retained.  

Each of the 45 experiments in the ensemble are spun-up for ten thousand years under pre-industrial boundary conditions: 

atmospheric pCO2 is restored to 280 ppm and with a δ13CO2 isotopic value of -6.5 ‰. To contrast the model ensemble members 

with observations, model-data comparison based on a simulated pre-industrial steady-state creates a mis-match because global 235 

datasets are based on modern (i.e. the past few decades) oceanographic observations, where (especially shallow) distributions of 

nutrients and oxygen have already been impacted by historical warming. Therefore, following on from each respective spin-up, each 

model ensemble member is then forced from year 1700 to 2010 in a transient simulation with atmospheric composition conforming 

to the observed mean annual trend in CO2. Direct atmospheric measurements and ice core data has shown that atmospheric δ13CO2 

has dropped with increasing CO2 due to fossil fuel emissions (that have a characteristic low δ13C) known as the Suess effect (Keeling, 240 

1979; Rubino et al., 2013). This affects ocean δ13C in a non-uniform manner – impacting (in general) nearer-surface waters more 

strongly due to ocean physics and circulation patterns. We hence additionally force atmospheric composition in the transient 

simulations with declining δ13CO2 (Francey et al., 1999). 

3.1 Model-data comparison method 

For the model-data comparison, World Ocean Atlas 2009 (WOA 2009, Levitus et al. 2010) 5° gridded climatological data for 245 

phosphate (PO4) and dissolved oxygen (O2) was interpolated to a 10°x10° grid (with a simple linear upscaling), and then to the 
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cGENIE model depth scale by averaging over the data depth points that most closely correspond to the cGENIE ocean model depth 

layer distribution. This depth rescaling produced a global mean depth-uncertainty of 2.2% (of the targeted cGENIE depth). The 

depth rescaling resulted in minor additional uncertainties of ± 0.01µmols l-1 (at 1 standard deviation) for PO4, and ± 0.02 µmols l-1 

for dissolved O2 in addition to the error inherent in the gridded climatology product. For a direct comparison with the data, cGENIE 250 

model output from year 2010 of the transient experiments was also interpolated to 10°×10°, and converted to units of µmols l-1 

(from mol kg-1 using modelled water density) to match the units of the WOA data. Latitudes higher than 80° were neglected due to 

higher uncertainties in both data and model outputs. For PO4, we statistically compared the surface concentration, important for 

constraining nutrient uptake rates, as well as the global ocean distribution, which strongly reflects remineralisation and hence the 

strength and efficiency of the biological pump (plus ocean circulation). For dissolved O2, we statistically compared model and data 255 

between 283m to 411m (cGENIE ocean level 4 centred at 346m) as an indication of the dissolved oxygen depletion caused by 

remineralisation near the bottom of the mixed layer and how well the model can represent this. As with phosphate, we additionally 

compared the model global ocean dissolved oxygen distribution with data. Finally, given that we are utilizing model-derived 

temperature distributions in the ocean to project nutrient and oxygen concentrations (plus δ13C distributions) which we then contrast 

with the respective observed data, we interpolated temperature data (producing an uncertainty of ±0.1°C) in the same way as O2 and 260 

PO4 so as to elucidate biogeochemical biases arising from model-data temperature mismatch. 

To evaluate the model skill, we compared model to data standard deviation (SD), calculated the centred root mean square 

(CRMSD) difference between model and data, and calculated model-data correlation, these parameters can then be presented on a 

Taylor plot. On this plot the general proximity of the model point to the data point indicates the goodness of fit, as well as a providing 

a visual comparison of how the changing parameters affect the model skill.  265 

For assessing water column profiles, we defined a set of ocean regions as shown in Figure 3. These regions are similar to 

those used by Weber et al. (2016), but with some regions reduced in size or separated (Subtropical Pacific limited to South Pacific 

and North Indian Ocean added). This was done so that within each region, ocean water characteristics (including temperature, 

nutrients, oxygen, salinity) as well as particle fluxes (as Weber et al. 2016) are broadly similar. We compare the model distribution 

of δ13C of DIC with data from Schmittner et al. (2013) by grouping this data into regions (Fig. 3) and creating representative (mean 270 

with standard deviation) down-column profiles for δ13C for visual comparison with model outputs in the matching region. In all 

cases, model output units are converted to match those of the data for model data comparison, which do not always match those 

units used in section 2. 

4 Model-data and model-model comparison 

4.1 Tuning the temperature-dependent version – model vs. data 275 

We first assess model skill in simulating the temperature distribution in the ocean, given its critical importance in the temperature-

dependent calculations of metabolic processes (Fig. 4). We find a generally reasonable model fit to ocean temperature data in mid 

and low latitude near-surface waters, and in capturing the first order patterns in benthic temperatures. At high latitudes, cGENIE 
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shows larger differences as compared with observations due to deficiencies in modelled ocean circulation and/or the surface climate 

as simulated in the simple 2D EMBM. For instance, the temperature discrepancy throughout the water column in the North Atlantic 280 

may be due to an overly-strong AMOC (Atlantic Meridional Overturning Circulation) in the model that delivers too high a volume 

of warmer surface waters to depth. For the North Pacific, the model overestimation of near-surface temperatures by cGENIE likely 

reflects insufficient surface stratification; too-deep downwards mixing transporting too-warm surface waters to mid depths in this 

location.   

The ensemble simulation results (year 2010 of the transient experiments) for the ocean geochemistry are shown in Fig. 5 285 

on Taylor diagrams for their fit to observed distributions of dissolved PO4 and O2 in the ocean. Points in Fig. 5 are shaded according 

to the Ea(1) (Eq.5) value, which has the strongest control on PO4 and O2 distribution of the three variables. The overall best-fit to 

the data for the final TDEP setting was selected as Vmax = 10, Ea(1) = 54 kJ mol-1, initial fraction POC2 = 0.008, where the best-fit 

is determined as the setting with the combined overall lowest CRMSD for the PO4 and O2 distributions. The CRMSD for each 

variable is shown on Fig. 5 as the radial distance from the data point (the radial axis coloured green). In general the parameter value 290 

combinations with lowest CRMSD values corresponds with highest correlations in the model fit to data (Fig 5).  The statistics for 

the STND and best fit TDEP are listed in Table 4. 

4.2 Performance of the temperature-dependent model compared to the standard model 

In this section we evaluate and compare the performance of the existing tuned, but non temperature-dependent biological scheme 

(STND), to the new tuned temperature-dependent scheme (TDEP).  295 

 Figure 6 shows cross-plots for surface PO4 concentration (an important constraint on export production) for the best fit 

TDEP and the standard model for the selected ocean regions. The addition of temperature dependence in TDEP generally increases 

surface PO4 concentrations and comes into better agreement with data than the standard model (STND). The high surface nutrient 

regions, Antarctic and the North Pacific, are lower than data in all model cases and this is likely due to the lack of iron limitation in 

this version of the model, as biological activity removes too much nutrient from the surface waters. However, in these regions, the 300 

temperature-dependent version shows a slightly better fit to data than does the standard model, as the colder surface water reduces 

nutrient uptake rates. In contrast, the lowest nutrient regions (e.g. some south Pacific and some east tropical Atlantic) have slightly 

higher PO4 concentrations compared to data in TDEP. 

Regional water-column profile model outputs for TDEP and STND are plotted against PO4 data (Levitus et al. 2010) in 

Fig. 7. In both schemes, the model was tuned according to its fit to PO4 (as well as O2) and both TDEP and STND show a visually 305 

reasonable fit to data. Some differences can be seen between TDEP and STND in surface mid and low latitude waters, e.g. in the 

north Indian Ocean and eastern tropical Pacific, where nutrients are higher in TDEP in better agreement with data. In higher latitude 

waters, model-data mismatch may be more closely related to ocean circulation (as for temperature, Fig. 4) with STND and TDEP 

distribution very similar to each other in the Southern Ocean and North Pacific, but with and TDEP a better fit to data in the North 

Atlantic.   310 
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With the exception of the high southern latitudes (higher than ~ 60°S), the addition of temperature-dependent microbial 

processes generally increases surface nutrient concentrations (as shown in Fig. 8 a and b) as compared to the standard model. This 

is particularly apparent in the low-nutrient gyres, with up to 4-times higher PO4 concentrations in TDEP as compared to in STND 

(Fig. 8b). In the deeper ocean (Fig 8 c and d), nutrient concentrations are reduced in the temperature-dependent version except for 

in the North Atlantic (where higher surface nutrients are delivered to the deep via the AMOC) and the high Southern latitudes (with 315 

slightly higher PO4 than the standard model).  

The distribution of dissolved oxygen also provides important information about the biological pump. Photosynthesis 

removes CO2 from ocean waters and adds O2 (where CO2 and O2 are also exchanged with the atmosphere at the surface ocean), 

while respiration does the opposite. As a general pattern, respiration progressively reduces dissolved oxygen concentrations down 

the water column until a minimum is reached. Below that depth – the ‘oxygen minimum zone’ (OMZ) – ocean circulation 320 

reintroduces more oxygenated water masses from below. Dissolved oxygen concentrations then slightly increase again with further 

depth as the flux of organic matter and hence respiration declines, and oxygen is supplied through deep ocean circulation and via 

ventilation at the poles. In the Antarctic zone (Fig. 9), circulation patterns appear to dominate oxygen content (as STND and TDEP 

are very similar, but fairly dissimilar to data indicators). The North Pacific region also shows offsets between model and data for 

O2, PO4 and temperature, also suggesting deficiencies in simulated deep ocean circulation. In low latitude waters, TDEP shows a 325 

better fit to data between the surface and 500m than STND, suggesting that oxygen depletion rates due to respiration are better 

described here. Overall, the intensity of the OMZ in both STND and TDEP appear visually in reasonable agreement with data, 

although in low and mid latitudes warmer waters the OMZ occurs higher in the water column in TDEP than STND. 

4.3 Tracing Carbon-13  

In studying paleo climates and, in particular, past states of ocean circulation and carbon cycling, carbon-13 data is widely used as a 330 

tracer (Lynch-Stieglitz 2003). Surface waters have characteristic carbon-13 signatures with a pronounced mostly latitudinal gradient, 

so changes in δ13C measured at any one location on the ocean floor may be at least partially attributed to changes in the strength and 

location of deep-water formation. The biological pump also affects the δ13C signature of seawater. The process of photosynthesis 

fractionates the carbon that is exchanged (from the dissolved inorganic to the organic form); carbon-12 is preferentially taken up, 

leaving more carbon-13 in the surface waters (Schmittner et al. 2013). As summarized by Kirtland Turner and Ridgwell (2016), in 335 

the cGENIE model, fractionation between POC (and DOC) and δ13C of CO2(aq) in cGENIE is a function of the CO2(aq) 

concentration and based on an approximation of the model of Rau et al. (1996) (Ridgwell, 2001). This gives rise to a spatial 

distribution in the δ13C of exported organic carbon, with lower (more negative values) at higher latitudes, and higher (less negative) 

values towards the equator, primarily reflecting the temperature control on the concentration of CO2(aq) in surface waters. The mean 

flux-weighted δ13C of POC is around -23‰ for the pre-industrial period, and around -26‰ by the year 2010 due to the impact of 340 

increasing CO2(aq) on organic carbon 13C fractionation as well as the Suess effect. As POC is remineralised in the water column, 

low δ13C carbon is released, modifying the ambient δ13C of DIC. The δ13C of the ocean interior then represents a balance between 
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the input of light δ13C via the biological pump, and the ingress of heavier δ13C supplied in deep waters and ultimately sourced from 

high latitudes at the surface. 

The regional mean and standard deviation of data δ13C, and model TDEP and STND are shown in Fig. 10. For almost all 345 

regions, the broad patterns are similar to those seen in dissolved O2 concentration, with benthic and deep-water absolute δ13C values 

generally similar to data for both model configurations. One exception is the Antarctic zone where δ13C shows a good fit to data 

indicators nearer the surface, where modelled oxygen shows a poorer fit to data nearer the surface. The offset in mid-depth waters 

(~800m) in the sub-Antarctic zone may be due to a reduced Antarctic intermediate waters contribution in the model. This may also 

explain similar model-offsets at this depth in the South and East-Tropical Pacific regions. In warm surface waters, δ13C reduces 350 

more quickly with depth in TDEP than STND, as nutrient recycling is occurring faster.  

4.4 POC export and implications for biological carbon pump efficiency 

The inclusion of a temperature-dependence term in remineralisation strongly affects both the export of POM via changes in the rate 

of nutrient recycling, as well as the efficiency of the biological carbon pump. To demonstrate the impact of each varied parameter, 

the export flux of POC (modelled at 80m) for every simulation (not only the best-fit TDEP) is shown in Fig. 11. With a lower 355 

activation energy requirement (low Ea(1) value), less energy is needed for the remineralisation process to occur, this means nutrients 

are returned to surface waters more quickly, production is higher, and so POC flux at 80m is higher. Conversely, the higher the 

Ea(1) value, the more energy is required to remineralise organic carbon. So, at higher Ea(1), proportionally more organic carbon 

reaches depth making surface processes less important. The fraction of the POC exported that is recalcitrant and the maximum 

nutrient uptake rate at the surface becomes less important as Ea(1) increases. This trend occurs because there is no variation in ocean 360 

temperature between runs in Figure 11 a), i.e., atmospheric CO2 and climate are fixed. It is important to note however that a larger 

Ea(1) leads to a larger sensitivity of remineralisation rates to changes in temperature, e.g., a higher Q10 (Fig. 11 b) and c)). The Q10 

for remineralisation rates in Figure 11 ranges from below 2.3 (Ea(1) = 53 kJ mol-1)  to over 2.5 (Ea(1) = 60 kJ mol-1) for a change in 

temperature from 0°C to 10°C (Fig. 11 c). 

The remineralisation curves for each ocean region are shown in Fig. 12 for the best fit TDEP and STND model for POC 365 

(in gC m-2 d-1). TDEP and STND have differing initial POC export fluxes with lower latitude warmer waters showing higher export 

in TDEP due to the increased nutrient recycling there. A dataset of POC flux (Mouw et al. 2016a) is overlaid on the remineralisation 

curves (Fig. 12). In both model configurations, the measured Antarctic zone POC flux at shallow and intermediate depths (< 1500m) 

is significantly lower than in the model. We do not account for iron limitation in the Southern Ocean (or elsewhere) in this particular 

configuration of the cGENIE model, which would tend to act to limit productivity and POC export there and hence could potentially 370 

explain some of the mismatch we observe at shallower depths. In general, the measured flux at depth appears reasonably represented 

with the exception of warmer regions, where the measured POC flux (e.g. east tropical Pacific, North Indian, east Tropical Atlantic) 

is generally higher than in the model. This likely reflects additional processes that may increase POC fluxes to depth such as 

ballasting by minerals (Klaas and Archer, 2002; Wilson et al 2012) and the lower reactivity of POC associated with increased 

recycling in low latitude plankton ecosystems (Aumont et al., 2017). 375 
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Overall, the pattern of the efficiency of the transfer of particles from 80m to 1040m (Fig. 13) in TDEP is similar to that 

found in Weber et al. (2016), where efficiency of transfer is essentially a measure of the rate of remineralistion; what fraction of the 

POC exported at 80m that reaches 1040m. Colder waters show higher transfer efficiency, with the lowest transfer efficiency seen 

in the sub-tropical gyres. The STND model has a fixed decay rate for all locations, so the transfer efficiency at any particular depth 

has a global uniform value. The global export-weighted mean remineralisation depth for STND is 627m, and for TDEP 378m ± 380 

236m.  

It should be noted that here we have included all available data from Mouw et al. (2016a) without any attempt to ensure 

these data are representative of the annual mean (where the model output represents the annual mean). POC flux measurements can 

be highly dependent on time of year and number of data measurement points available. Some of the model-data mismatch may then 

be due to a mis-match between the interval in time represented by the data, and the annual mean of the model. For instance, blooms, 385 

which are not well represented in the model, may explain some of the very high POC flux values (for example 0.2 gC m-2 d-1) in the 

North Atlantic and hence why the model annual mean appears to underestimate the flux. 

 

5 Implications of including temperature-dependent microbial processes 

5.1 The role of temperature in the marine carbon cycle response to historical warming 390 

In this study we have focussed on the two main components of the biological carbon pump. Firstly, nutrient uptake rates due to the 

metabolic temperature-dependence of photosynthesising marine biota; secondly remineralisation rates of sinking particulate organic 

matter due to the metabolic temperature-dependence of respiring marine biota feeding on that sinking organic matter. We find that 

the calibrated temperature response of the respiration-based mechanism of remineralisation in the water column is more sensitive 

to temperature change (a mean Q10 of 2.28 over a range of temperatures from 0°C to 26°C, from Eq.5 using 54 kJ mol-1 for Ea(1)) 395 

than the photosynthesis-based one (the Eppley curve has a Q10 of 1.88, in Eq. 3 and 4, Bissinger et al. 2008), in agreement with 

fundamental studies (Brown 2004). Historical temperature rise, which we induced in the cGENIE.muffin Earth system model by 

prescribing the observed CO2 in the atmosphere, provides an illustrative example of the role and importance of including sufficient 

temperature-dependent processes in models. In this section we therefore discuss in more detail the transient differences between 

STND and TDEP model configurations.  400 

Between the years 1700 and 2010, global mean air temperature in cGENIE increases by 0.94°C. In turn, warming at the 

ocean surface induces stratification in the water column, reducing nutrient re-supply to the surface from subsurface waters. In the 

STND model, this results in a pronounced drop in POC export at 80m of 2.9% (Fig. 14), in agreement with the average of the 

CMIP5 models (Bopp et al., 2013). However, the transfer efficiency is additionally affected in TDEP, with a drop of over 5% in the 

proportion of POC exported at 80m that reaches 1040m (equivalent to a shoaling of the global mean remineralisation depth of 16m) 405 

(Fig 15). This reduction in biological pump transfer efficiency is a result of increased rates of remineralisation in the warming water 

column, principally in surface and near-surface waters (while whole, volumetrically-weighted, ocean warming is 0.12°C over this 
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period, 0.6°C occurs on a global mean basis in surface waters, and 0.02°C in deepest waters). The result is that for TDEP this 

stratification-induced nutrient-limitation effect on export is largely offset by the intensified recycling of nutrients in warmer surface 

and near-surface waters. 410 

Between simulated pre-industrial and present-day model states, we found a substantially smaller drop in POC flux at 80m 

when temperature dependence was included (TDEP) compared to the standard model (STND). Global POC flux at 80m reduces by 

0.3% between pre-industrial and present-day in TDEP, but with increases in the Southern Ocean of around 10% and in the tropics 

of around 1%, suggesting an increase in NPP (Net Primary Productivity) in the tropics. Kwiatkowski et al. (2017) identified a 

reduction in NPP with warming in the tropical ocean of 3±1% per degree of warming, based on responses to ENSO (El Nino 415 

Southern Oscillation) which on face value is inconsistent with our simulation of a possible increase in NPP in the tropics. Their 

estimate utilised satellite based NPP products from data on chlorophyll and light incidence, and they found that in no data-constraint 

did NPP increase in the tropics (although the data constraint varied according to the NPP product used). However, Behrenfeld et al. 

(2015) noted that a reduction in chlorophyll does not necessarily represent a reduction in productivity, due to photoacclimation. The 

satellite based NPP products do not account or correct for this effect, so may well underestimate NPP in warming conditions. In an 420 

earlier study, Taucher and Oschlies (2011) found an increased NPP when temperature dependence was included in modelled future 

projections. Laufkotter et al. (2017) also found that when including a temperature-dependence and oxygen content-dependent 

remineralisation, NPP increased on warming due to intensified nutrient recycling in near-surface water. However, they suggested 

this was largely due to an initial positive bias in surface ocean nutrients. In a second model set-up, they reduced nutrient recycling 

in surface waters and find little impact on NPP between the temperature sensitive and temperature independent model in a future 425 

projection to 2100 CE.  

In this study we make no distinction between dissolved oxygen and sulphate in terms of controlling the remineralisation 

rate of POC (unlike, for instance, Laufkotter et al. 2017). Cavan et al (2017) concluded that the large oxygen minimum zone in the 

Eastern Tropical Pacific reduces the rate of remineralisation due to the almost complete absence of zooplankton particle 

disaggregation within, and provides a negative feedback to warming. However, Cram et al. (2018) explained most of the regional 430 

variability in the flux of POC in the deep sea via particle size and the effect of temperature on remineralisation, with oxygen 

concentration providing a small improvement (by reducing nutrient recycling in the Eastern Tropical Pacific). Particle size plays a 

role in sinking speeds, as larger particles sink faster (generally), and particle size is a factor in export and transfer efficiency (Mouw 

et al 2016b). The configuration of cGENIE we employ here does not account for particle size and has a fixed sinking speed globally 

(by default, 125 m d-1). The lack of particle size variability and oxygen concentration’s role in remineralisation may explain some 435 

of the increased POC flux at 80m that the model shows since the pre-industrial period in tropical waters. This tropical POC export 

increase may also be partly due to initial higher nutrient concentrations compared to data, or to the increased remineralisation rates 

re-supplying nutrients to the surface, but may also be linked to changes in DOM cycling (see section 5.2). Predicted changes (and 

changes that may have already occurred) in NPP in low-nutrient warm waters are still subject to large uncertainties (Turner et al. 

2015, Cross et al. 2015). 440 
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There is also still uncertainty as to the causes, and even patterns, in POC flux differences across different ocean regions 

(Henson et al., 2012; Marsay et al., 2015; Weber et al., 2016; Cram et al., 2018). We find the patterns of transfer efficiency (Fig. 

13) for TDEP are in broad agreement with Marsay et al. (2015) and Weber et al. (2016). This transfer efficiency is not dependent 

on surface waters NPP patterns or on how much POC is exported at 80m in cGENIE, however, the absolute amount of carbon 

reaching the deep ocean does depend on NPP and export. On warming since the pre-industrial period we found a reduced POC flux 445 

at 80m as well as a reduction in transfer efficiency, combining to produce a reduction in the strength of the biological carbon pump 

with warming. This further implies an increased carbon pump strength in cooler climates, as per Heinze et al. (2016).  

We note that circulation states and upwelling/downwelling changes can also have an impact on the distribution of carbon, 

oxygen and nutrients between the surface and the deep (Kvale et al 2019, Loptien and Dietze 2019), and are also model-dependent. 

Circulation changes are small between the pre-industrial and the present-day compared to the simulations in Kvale et al (2019) 450 

where very high CO2 (up to 1200ppm) and high surface temperature results in large ocean circulation pattern changes; increased 

nutrient storage in the deep ocean was due to longer residence time of deep ocean water in that study (see Chikamoto et al. 2008 for 

the effect of Atlantic Overturning Circulation shutdown in cGENIE). In our study we have found that the temperature-dependent 

biological pump offsets some of the effects of physical ocean response to warming (in increased near-surface nutrient recycling, so 

offsetting the effect of increased ocean stratification that otherwise reduces surface nutrients in the STND simulation). However, 455 

this is not to suggest that a temperature-dependent biological pump could offset the effect of extreme changes in circulation, such 

as an AMOC shutdown, or for far more extreme warming scenarios than that applied here. We do not test such scenarios here.  

5.2 Temperature and the cycle of dissolved organic matter in the ocean  

In this paper and associated model calibration, we have focussed on the role of temperature in the production and fate of POM. 

However, the relative partitioning of primary production into DOM (rather than POM) together with its mean residence time at (or 460 

close to) the ocean surface, modulates nutrient recycling. Temperature-sensitivity of these 2 processes thereby adds an additional 

set of feedbacks between climate and the biological carbon pump.  

To explore the wider role of temperature in the marine carbon cycle and as a further option in the model, we add a similar 

temperature-dependence to the remineralisation of DOM as for POM (Equation 5): 

𝑘(𝑇)𝐷𝑂𝑀 = 𝛽𝐷𝑂𝑀𝑒(
−𝐸𝑎

𝑅𝑇⁄ )
           (7) 465 

where 𝐸𝑎 is the activation energy and is assigned a value of 54000 J mol-1, and 𝑅 and 𝑇 are the gas constant (J K-1 mol-1) and absolute 

temperature (K), respectively. 𝑘(𝑇)𝐷𝑂𝑀  is the rate constant (year-1) controlling the decay of DOM and replaces the previous fixed 

lifetime value of 2.0 year-1.  

The assumption that the same activation energy applies to DOM as for POM (i.e. setting βDOM = 9.0 x 1011 in Eq. 7) leads 

to a global mean DOM lifetime of approximately 0.02 years, compared to the value of 0.5 years in the standard model (Ridgwell et 470 

al., 2007) that follows Naijar et al. (2007). This might: (i) reflect a different mean quality (and hence a different activation energy) 

of the organic matter assumed to constitute DOM as opposed to POM; and/or (ii) reflect the dispersed nature of DOM versus the 
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more concentrated POM and/or differences in the associated bacterial biomass; and/or (iii) that the assumed sinking speed of 125 

m d-1 is simply too unrealistically fast. However, to simplify the model re-tuning of the DOM cycle, we only adjust the value of 

βDOM. For a fixed production fraction of 0.66, setting βDOM = 1.16 x 1010 gives a mean (flux weighted) DOM lifetime in the model 475 

that matches the fixed 0.5 year value of the original model configuration. 

 The production of DOM (vs. POM) is also likely to be influenced by ambient temperature. Dunne et al. (2005) describe a 

multiple linear regression analysis of observed ocean surface properties, as well as primary and export production, across a range 

of different ocean environments, and deduce a role for sea surface temperature in predicting the observed particle export ratio. 

Although the Dunne et al. (2005) regression based on temperature and net primary productivity has previously been employed by 480 

Ma and Tian (2014) to formulate the production of DOM vs. POM (and co-incidentally, also in a version of the cGENIE Earth 

system model), the default biological scheme of ‘induced fluxes’ (Maier-Reimer, 1993) does not provide a value of primary 

productivity – required by the regression model. Additionally, the default configuration of the ocean circulation model does not 

calculate a mixed layer depth – required to convert between units for primary production in the regression formula. Dunne et al. 

(2005) also provide an alternative and slightly improved regression model based on mixed layer Chla concentrations (and 485 

temperature), but this would require use of the Ward et al. (2018) ‘ECOGEM’ ecological model component in the cGENIE Earth 

system model, and outside the scope of this present study. 

Rather than attempt to reformulate (and re-fit) the Dunne et al. (2005) regression model as a function of the environmental 

parameters simulated by the cGENIE model, we simply extract the temperature sensitivity term in isolation (while recognising that 

is was derived by Dunne et al. (2005) jointly alongside primary production (or Chla)) in order to derive a temperature-dependent  490 

equation for the partitioning of POM vs. total organic matter export (DOM+POM), : 

 

𝛾 = 𝑐 − 𝑑𝑇      𝑓𝑜𝑟 0.04 <  <  0.72     (8) 

 

where d is the temperature sensitivity of 0.0101 °C-1 from Dunne et al. (2005), and c is a constant (0.512), whose value is chosen 495 

such that the global mean (production-weighted) export of DOM vs. POM occurs in a 2:1 ratio (i.e.  = 0.34). 

 This completes the implementation of an option for temperature-dependency in both the creation and remineralisation of 

DOM, with the exception that the two parameterisations interact, and in order to configure cGENIE such that the mean production 

fraction of DOM and mean lifetime both align with the values (0.66 and 0.5 years, respectively) in the original model (i.e. Ridgwell 

et al., 2007; Cao et al., 2009), we make a final adjustment to: βDOM = 1.32 x 1010  (and keeping the initial calibrated value of a = 500 

0.512 in Eq. 8). 

 A further simulation (a pre-industrial spin-up followed by a transient simulation forced by CO2 and δ13CO2 data-indicated 

changes from 1700 to the year 2010) - called TDEP+TDOM - was conducted that includes the best fit TDEP parameters but now adds 

the temperature-dependent production and decay of DOM as described above. For the present day, TDEP+TDOM slightly improves 

the model fit to oxygen distribution compared to TDEP, with lower CRMSD and higher correlation, whilst model fit to PO4 is 505 

slightly worsened (Table 4). 
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 The inclusion of temperature-dependent DOM processes also affects the response of ocean carbon cycling to historical 

warming. The global mean export-weighted remineralisation depth for the present-day in TDEP+TDOM is 399m +- 255m (21m deeper 

than TDEP), and the change in depth since 1700 is a shallowing of 16m (the same as for TDEP). Slightly less POC is exported at 

80m in TDEP+TDOM compared to TDEP by 2010 (Fig.14), indicating that although increases in surface nutrient recycling (due to 510 

temperature-dependent POC processes) significantly offsets the effects of warming-induced ocean stratification in TDEP, this is 

counterbalanced but to a lesser extent by temperature dependence in DOM production and remineralisation in TDEP+TDOM. 

In response to warming and compared to STND and TDEP, TDEP+TDOM exhibits a slightly increased global DOM 

production ratio (the fraction of organic matter produced that is dissolved rather than particulate, as Fig 1) driven by temperature-

dependent DOM production (table 5). This is countered, however, with a (global) shorter DOM lifetime at the surface driven by 515 

temperature-dependent DOM remineralisation. The net result is a decline of 0.74% in the mean global surface DOM concentration 

between 1700 and 2010 CE in TDEP+TDOM. In comparison, there is an increase of 0.54% in mean global surface DOM concentration 

for TDEP and a decrease of 2.07% in STND (Tables 5 and 6). 

Appendix figures A1 and A2 provide a view of the spatial changes in DOM dynamics taking place between 1700 and 2100, 

and for each DOM process being individually temperature-enabled as well as both together. A summary is that the effect of 520 

temperature-dependent DOM is to increase the DOM production ratio in low latitudes, and decrease the production ratio in high 

latitudes compared to TDEP, with historical warming resulting in a general increase in DOM production between 1700 and 2010 in 

TDEP+TDOM. The TDEP+TDOM DOM lifetime at the surface is decreased in low latitudes and increased in high latitudes compared to 

TDEP, with a general decrease in DOM lifetime in response to historical warming, and more pronounced in higher latitudes. 

TDEP+TDOM has lower surface DOM concentrations in the tropics compared to TDEP in the present day. Since 1700, surface DOM 525 

concentration has increased in the southern high latitudes in all model configurations, but TDEP+TDOM results in a slight decreased 

surface DOM concentration in the tropics, compared to a slight increase in TDEP.  

Overall, the combined effects of temperature-dependent POM and DOM processes still results in a smaller reduction in 

modelled POC export at 80m compared to STND (Fig. 14 a) of 0.7% since 1700, although when only POM processes are enable as  

temperature-dependent, the decrease is smaller still (0.3%). Compared to TDEP: the TDEP+TDOM shows lower export production in 530 

mid and high latitudes (Fig. 14 b) but affects almost no change in transfer efficiency of the biological pump (Fig 15). 

6 Summary 

The STND and TDEP variants of the cGENIE.muffin model are tuned to observed PO4 and O2 distributions and achieve comparable 

statistical fits to ocean climatologies. However, substituting temperature-dependent particulate organic matter (POM) export and 

remineralisation parameterisations into cGENIE.muffin changes the patterns of PO4, dissolved oxygen, and carbon-13 distributions 535 

in the ocean compared to the standard model, and substantive differences between models occur in response to warming since the 

pre-industrial period. Specifically, in response to warming, inclusion of a temperature-dependency on the production and 

remineralisation of POM increases the efficiency of nutrient and carbon recycling to the surface. In the case of a transient and 
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geologically-rapid warming, this temperature-driven increase in recycling is sufficient to largely offset a decrease in nutrient re-

supply due to enhanced physical stratification of the upper ocean, leaving global POM export relatively unaffected by historical 540 

warming. Additionally accounting for temperature-dependency in both the production and remineralisation of dissolved organic 

matter (DOM) further modifies the global carbon cycle response to historical warming, but to a much lesser extent than did the 

inclusion of POM-linked processes. Finally, the temperature-dependent biological pump results in a large reduction in the efficiency 

of the transfer of carbon from the surface to the deep ocean over the historical period simulation compared to the standard model.  

Appendix A, Further information on the temperature-dependent DOM 545 

We combined the processes of temperature-dependent uptake and remineralisation for the POC driven biological pump as each 

process has been individually applied in previous published work. However, for the newly developed temperature-dependent DOM 

processes we show here (for each model configuration discussed in the text) the separate effects of temperature-dependent DOM 

production and temperature-dependent DOM remineralisation mapped as global surface distributions for: DOM production ratio, 

DOM lifetime, and DOM surface concentration (Fig A1). We further show for each parameter the anomaly at 2010 with respect to 550 

the year 1700 (Fig A2).  

7 Model code availability 

The specific version used of the cGENIE.muffin model used in this paper is tagged as release v0.9.13, and has been assigned a DOI: 

10.5281/zenodo.3999080. The code is hosted on GitHub and can be obtained by cloning: 

https://github.com/derpycode/cgenie.muffin 555 

changing the directory to cgenie.muffin and then checking out the specific release: 

$ git checkout v0.9.13 

Configuration files for the specific experiments presented in the paper can be found in the directory: 

genie-userconfigs\MS\crichtonetal.GMD.2020 

Details of the experiments, plus the command line needed to run each one, are given in the readme.txt file in that directory. All other 560 

configuration files and boundary conditions are provided as part of the release. 

A manual, detailing code installation, basic model configuration, plus an extensive series of tutorials covering various aspects of 

muffin capability, experimental design, and results output and processing, is provided on GitHub. The latex source of the manual, 

along with pre-built PDF file can be obtained, by cloning: 

https://github.com/derpycode/muffindoc 565 
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 Rate constant as T 

approaches infinity 

(a) 

Multiplier 

constant for T 

(1/b) 

Reference 

Eppley curve 0.59 0.0633 Eppley et al. 1972 

LPD curve 0.81 0.0631 Bissinger et al. 2008 

Table 1, Values for variables in Eq. 4  
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Description 

STND      Standard model 

TDEP      Temperature-dependent POM model 

TDEP+TDOM      Temperature-dependent POM and DOM model 

Table 2, Model settings, processes included in each set-up. Column numbering corresponds to numbering in figure 1. 

 745 

Parameter Values applied 

Vmax 4,7,10 

POC fraction 2 (recalcitrant) 0.002, 0.008, 0.032 

Ea(1) (labile fraction) x103J/mol 53, 54, 55, 56, 60 
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Table 3, settings for parameters in TDEP (temperature-dependent). Values in bold are those applied in John et al. 2014. 

 

 
Standard Deviation CRMSD correlation 
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Whole ocean PO4 0.8072 0.8072 0.7386 0.7606 0.2208 0.2043 0.2113 0.9236 0.9227 0.9177 

Surface PO4 0.6026 0.5009 0.4452 0.3921 0.1699 0.1820 0.2130 0.9350 0.9294 0.9274 

Whole ocean O2 1.6461 1.5154 1.3900 1.4522 0.5476 0.5501 0.5356 0.8670 0.8615 0.8703 

O2 283m to 411m 1.7285 1.3724 1.6531 1.6142 0.8145 0.8443 0.8200 0.7551 0.7660 0.7746 

Table 4, Statistics for the fit of the model to phosphate and oxygen distribution in the present day for the STND, TDEP (best-fit) and 

TDEP+TDOM simulations. Statistics shown as standard deviation (SD) in μmol/l, centred root mean square difference (CRMSD) in μmol/l, 

and correlation to data. TDEP+TDOM is described in section 5.2. 750 

  
DOM production 

ratio 

surface DOM lifetime 

(yr) 

Surface DOM 

concentration 

(mol/kg) 

STND 0.6600 0.5000 11.5 x 10-6 

TDEP 0.6600 0.5000 17.7 x 10-6 

TDEP +DOMtprod 0.6685 0.5000 20.3 x 10-6 

TDEP +DOMtremin 0.6600 0.4753 13.9 x 10-6 

TDEP+TDOM 0.6677 0.4907 13.4 x 10-6 

Table 5, Present (2010) DOM parameters. 

  
DOM production 

ratio change (%) 

surface DOM lifetime 

change (%) 

Surface DOM 

concentration change 

(%) 

STND 0.00 0.00 -2.07 

TDEP 0.00 0.00 0.54 

TDEP+DOMtprod 0.99 0.00 2.89 

TDEP+DOMtremin 0.00 -4.38 -2.52 

TDEP+TDOM -0.33 -0.75 -0.74 

Table 6, Anomaly (as %) DOM parameters for 2010 with respect to 1700. 
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Figure 1, Simplified schematic of the ocean biological pump and dissolved nutrient movements, and the two temperature-dependent 

processes that are considered in this study 1. Nutrient uptake rate, 2. Remineralisation rate. In the style of U.S. DOE (2008). We do not 755 
model sediments in this study, but it appears in the figure for completeness.  

 

Figure 2. Schematic of biological pump processes showing where cGENIEs export production operates. In the export production model, 

no mechanistic consideration of the effects of temperature within the mixed-layer (i.e. GPP vs NPP vs community production) can be 

considered, but heterotrophic respiration (as remineralisation) vs community production (as export production) can be considered, as 760 
well as nutrient recycling. In this study we apply temperature dependency to Organic Matter production and remineralisation that drives 

the biological carbon pump. We do not model burial in this version of cGENIE (but it is here for completeness). In this cGENIE 

configuration, the nutrient is phosphate. Dashed line indicates the cycling (and re-supply due to circulation) of nutrients. Solid lines 

indicates the cycling of carbon. 
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 765 

 

Figure 3, Selected ocean regions for model-data comparison (on a 10x10 degree grid, with land masses overlaid for indication), based on 

Weber et al. (2016) and WOA 2009 data (Levitus et al., 2010). 

 

 770 

Figure 4, Temperature (°C) per depth by region for model and data (mean and standard deviation). Data from WOA 2009 (Levitus et al., 

2010). 
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Figure 5, Taylor diagrams for model fit to data for PO4 and O2 concentrations, showing standard deviation (standard deviation is not 775 
normalised), correlation and centred root means squared difference (RMSD). Data from WOA 2009 (Levitus et al., 2010). The best fit 

TDEP setting is double circled. 

 

  

Figure 6, Cross plot for surface (0m to 80m) PO4 concentrations (µmol l-1) for data and model labelled by ocean region. Data from WOA 780 
2009 (Levitus et al., 2010) 
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Figure 7, PO4 (µmol l-1) per depth by region for model and data (mean and standard deviation). Data from WOA 2009 (Levitus et al., 

2010). STND is standard model, TDEP is temperature-dependent model. 
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Figure 8, Difference in PO4 concentration in best-fit TDEP compared to STND, a) and b) surface waters (0m to 80m), c) and d) deep 

waters 1738m to 2100m). Left a) and c) absolute difference (mol/kg), right b) and d) normalised difference. All are the present-day, note 

scale difference on normalised difference between surface and deep. STND is standard model, TDEP is temperature-dependent model. 
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Figure 9, Dissolved O2 (µmol l-1) per depth by region for model and data (mean and standard deviation). Data from WOA 2009 (Levitus 

et al., 2010). STND is standard model, TDEP is temperature-dependent model. 
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Figure 10, δ13C of DIC (‰ VPDB) per depth by region for model and data (mean and standard deviation). Data from Schmittner et al. 

(2013). STND is standard model, TDEP is temperature-dependent model. 
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Figure 11, Global POC flux (Pg C yr-1) at 80m (a) and the effect of activation energy on (b) remineralisation rate and (c) Q10 (for a 0°C 

to 10°C change). In a) STND model is shown as a black cross, TDEP model are circles. Best fit TDEP setting is double circled. STND is 800 
standard model, TDEP is temperature-dependent model. Colours in a) reflect those used in figure 5. 

 

 

Figure 12, POC flux (gC m-2 d-1) for model (mean and standard deviation) and data. Data from Mouw et al. (2016a). STND is standard 

model, TDEP is temperature-dependent model. 805 
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Figure 13, Model POC transfer efficiency (also used as a measure of biological carbon pump efficiency here) for STND (top) and best fit 

TDEP (bottom). Transfer efficiency is the fraction of POC exported at 80m that reaches 1040m, for the year 2010. Global transfer 

efficiency value for STND is 0.208. 810 

 

 

Figure 14, POC export at 80m, % change with respect to (w.r.t) the year 1700, a) global mean POC export at 80m, b) latitudinal mean 

POC export change at 2100 w.r.t. 1700CE. STND is standard model, TDEP is temperature-dependent model, TDEP+TDOM is temperature-

dependent POM and DOM and is described in section 5.2. 815 
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Figure 15, TDEP biological pump “transfer efficiency” (the proportion of POC exported at 80m that reaches 1040m) % change with 

respect to 1700 CE., a) global mean change per year  w.r.t 1700; b) latitudinal change at the year 2010 w.r.t 1700 . STND is standard 

model, TDEP is temperature-dependent model, TDEP+TDOM is temperature-dependent POM and DOM and is described in section 5.2. 820 
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Figure A1, Surface ocean DOM production ration, DOM lifetime and DOM concentration for the modelled present day (year 2010). 

Labelled simulations include those discussed in the main text (STND, TDEP and TDEP+TDOM), TDEP+TDOM labelled here as  825 
TDEPTDOM(PROD+REMIN) for clarity. Also mapped is DOM production and remineralisation temperature dependence separately applied as 

TDEP+TPROD DOM TDEP+TREMIN DOM). 
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Figure A2, Anomalies for the present day against the year 1700 for surface ocean DOM production ratio, DOM lifetime and DOM 

concentration for the modelled present day. Labelled simulations include those discussed in the main text (STND, TDEP and TDEP+TDOM), 830 
TDEP+TDOM labelled here as  TDEPTDOM(PROD+REMIN) for clarity. Also mapped is DOM production and remineralisation temperature 

dependence separately applied as TDEP+TPROD DOM TDEP+TREMIN DOM). 

 


