
Collection/Aggregation in a Lagrangian cloud microphysical model:
Insights from column model applications using LCM1D (v0.9)
Simon Unterstrasser1, Fabian Hoffmann2,3, and Marion Lerch1

1Deutsches Zentrum für Luft- und Raumfahrt (DLR) – Institut für Physik der Atmosphäre, Oberpfaffenhofen, 82234
Wessling, Germany.
2Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, Colorado,
USA
3NOAA Earth System Research Laboratory (ESRL), Chemical Sciences Division, Boulder, Colorado, USA

Correspondence: Simon Unterstrasser: simon.unterstrasser@dlr.de

Abstract. Lagrangian cloud models (LCMs) are considered the future of cloud microphysical modeling. However, LCMs are1

computationally expensive due to the typically high number of simulation particles (SIPs) necessary to represent microphysical2

processes such as collection/aggregation successfully. In this study, the representation of collection/aggregation is explored in3

one-dimensional column simulations, allowing for the explicit consideration of sedimentation, complementing the authors’4

previous study on zero-dimensional collection in a single grid box. Two variants of the Lagrangian probabilistic all-or-nothing5

(AON) collection algorithm are tested that mainly differ in the assumed spatial distribution of the droplet ensemble: The first6

variant assumes the droplet ensemble to be well-mixed in a predefined three-dimensional grid box (WM3D), while the second7

variant considers explicitly the vertical coordinate of the SIPs, reducing the well-mixed assumption to a two-dimensional,8

horizontal plane (WM2D). Since the number of calculations in AON depends quadratically on the number of SIPs, an approach9

is tested that reduces the number of calculations to a linear dependence (so-called linear sampling). All variants are compared10

to established Eulerian bin model solutions. Generally, all methods approach the same solutions, and agree well if the methods11

are applied with sufficiently high accuracy (foremost the number of SIPs, timestep, vertical grid spacing). However, it is found12

that the rate of convergence depends on the applied model variant. The dependence on the vertical grid spacing can be reduced13

if AON WM2D is applied. The study also shows that the AON simulations with linear sampling, a common speed-up measure,14

converges slower, as smaller timesteps are required to reach convergence compared to simulations with a quadratic dependence15

on the number of SIPs. Most importantly, the study highlights that results generally require a smaller number of SIPs per grid16

box for convergence than previous box simulations indicated. The reason is the ability of sedimenting SIPs to interact with17

an effectively larger ensemble of particles when they are not restricted to a single grid box. Since sedimentation is considered18

in most commonly applied three-dimensional models, the results indicate smaller computational requirements for successful19

simulations than previously assumed, encouraging a wider use of LCMs in the future.20
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1 Introduction1

Clouds are a fundamental part of the global hydrological cycle, responsible for the transport and formation of precipitation.2

While we expect a global increase in precipitation due to climate change, our knowledge on its spatial redistribution, including3

decreasing rainfall in some regions of the globe, is still uncertain (Boucher et al., 2013). The formation processes of precipi-4

tation are, however, reasonably understood and contain mechanisms that increase the size of hydrometeors. For liquid clouds,5

the coalescence of smaller cloud droplets is essential to form precipitating raindrops. In ice clouds, diffusional growth can6

produce precipitation-sized particles. The aggregation of ice crystals into larger clusters, snowflakes, also occurs frequently.7

And in mixed-phase clouds, ice crystals accrete supercooled liquid droplets forming graupel or hailstones.8

The representation of these microphysical processes in climate models is impelled by the available computational resources,9

requiring necessary idealizations. Primarily, this is the case for computationally efficient Eulerian bulk models that predict only10

a small number of statistical moments for each hydrometeor class (e.g., Kessler, 1969; Khairoutdinov and Kogan, 2000; Seifert11

and Beheng, 2001), with commensurate effects on the representation of clouds and precipitation. Of course, more detailed cloud12

microphysics models have been also developed: Eulerian bin models represent cloud droplets on a mass grid that consists of13

hundreds of bins sampling the droplet size distribution (DSD) (e.g., Berry and Reinhardt, 1974; Tzivion et al., 1987; Bott,14

1998; Simmel et al., 2002; Wang et al., 2007). But even these models exhibit limitations and idealizations. For instance, the15

coalescence of droplets is modeled as a Smoluchowski (1916) process, describing the mean evolution of an infinitely large,16

well-mixed droplet ensemble. The underlying Smoluchowski equation (also called the kinetic collection equation or even the17

stochastic collection equation, although the equation is deterministic), however, inherently neglects correlations and stochastic18

fluctuations known to be an integral part of the process chain that leads to precipitation (Gillespie, 1972; Bayewitz et al., 1974;19

Kostinski and Shaw, 2005; Wang et al., 2006; Alfonso et al., 2008).20

In the last decade, Lagrangian cloud models (LCMs) emerged as a valued alternative to bin models for the detailed model-21

ing of clouds (e.g., Andrejczuk et al., 2008; Sölch and Kärcher, 2010; Shima et al., 2009; Riechelmann et al., 2012; Arabas22

et al., 2015; Naumann and Seifert, 2015; Hoffmann et al., 2019). These models use Lagrangian particles, so-called simulation23

particles (SIPs) (Sölch and Kärcher, 2010) or superdroplets (Shima et al., 2009), each representing an ensemble of identical24

real droplets. Collection and aggregation in LCMs has recently been rigorously evaluated in box model simulations by Unter-25

strasser et al. (2017) (abbreviated as U2017 in the following), who compared three approaches documented in the literature: the26

remapping algorithm (RMA) by Andrejczuk et al. (2010), the average-impact algorithm (AIM) by Riechelmann et al. (2012),27

and the all-or-nothing algorithm (AON) developed by Shima et al. (2009) and Sölch and Kärcher (2010). RMA and AIM are28

deterministic algorithms and, in theory, approach the Smoluchowski solution of a reference bin model. The actual conver-29

gence of the algorithm, however, was found to depend significantly on properties of the SIP ensemble and the chosen kernel.30

The probabilistic AON indicated much better convergence properties, when it was averaged over sufficiently many instances.31

Furthermore, Dziekan and Pawlowska (2017) showed that AON approximates the stochastically complete Master equation in-32

cluding aforementioned correlations and stochastic fluctuations (Gillespie, 1972; Bayewitz et al., 1974). In fact, AON solutions33
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Table 1. List of abbreviations. (Am Ende Text nochmal durchgehen um auch durchgehend die Abkuerzungen zu benutzen)

AON All-or-nothing algorithm

BC boundary condition

DSD Droplet size distribution

GB Grid box

LCM Lagrangian cloud model

LWC Liquid wter content

SIP Simulation particle

U2017 Unterstrasser et al. (2017)

are identical to the Master equation solutions when the weighting factors (the number of real droplets represented by a SIP) are1

set to unity.2

However, many aspects of this relatively young modeling approach have not been tested thoroughly. One important message3

of our previous box simulations in U2017 aws that the representation of collection exhibits considerably more freedom in4

setting up a simulation than in bin models. Accordingly, in this study, we are going to extend the box simulations of U2017 by5

analyzing collection in a vertical column, including sedimentation, as it has been done in previous studies for Eulerian bulk and6

bin models (e.g., List et al., 1987; Tzivion (Tzitzvashvili) et al., 1989; Hu and Srivastava, 1995; Prat and Barros, 2007; Stevens7

and Seifert, 2008; Seifert, 2008). All simulations will use the AON collection algorithm since it outperformed RMA and AIM8

in the box simulations, and we do not expect that this general behavior is reversed here. The simulations will be compared9

to established Eulerian bin references. Note that although the following analysis focuses on cloud droplets, the results can be10

generalized for the LCM representation of ice crystal aggregation and the accretion of supercooled droplets. Therefore, we will11

use the term collection to address coalescence, aggregation, or accretion as we will focus on the numerical treatment, which is12

similar for all three process, and not on the physics. Moreover, we will use the term cloud droplets interchangeably with ice13

crystals to increase clarity in writing.14

The paper is structured as follows. First, Sec. 2 will give an overview on applied models, their foundations, and basic15

setup. The results are presented in Sec. 3, divided into validation studies (Sec. 3.1), highly idealized applications in which the16

column model emulates a box model (Sec. 3.2), process-level analysis of the applied algorithms (Sec. 3.3), and finally realistic17

applications (Sec. 3.4). The paper is concluded in Sec. 4.18

2 Numerical model and setup19

Two column models which consider collection and sedimentation have been implemented, the first one represents a traditional20

Eulerian bin scheme and the second model uses a particle-based approach. Before we describe both models in some detail,21

we will (sometimes pedantically) write out basic relations, which will help disentangling the effects of particular parameter22

variations later.23
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2.1 Basic relations and definitions1

We use a column with nz grid boxes (GBs). Each GB has the volume ∆V and a height of ∆z. The total column height is thus2

Lz = nz×∆z. (1)3

We define that the GB k with 1≤ k ≤ nz extends from zk−1 to zk := k×∆z, hence the GB with k = 1 is the lowest GB.4

The horizontal area of the column is given by5

∆A= ∆V/∆z. (2)6

The droplets are assumed to be spherical with a density of ρw = 1000kg/m3 and the mass-size relation is simply given by7

m=
4
3
πr3ρw. (3)8

Following Gillespie (1972) and Shima et al. (2009), the probability PWM3D
ij that one droplet with mass mi coalesces with9

one droplet with mass mj inside a small volume δV within a short time interval δt is given by10

pWM3D
ij =Kij δt δV

−1, (4)11

where Kij =K(mi,mj) or equivalently K(ri, rj). We suppose that δt is sufficiently small in order to assure pWM3D
ij ≤ 1.12

The hydrodynamic collection kernel is given by13

KWM3D(ri, rj) = Ec(ri, rj)π(ri + rj)2 |wsed,i−wsed,j |, (5)14

where wsed is the radius-dependent droplet fall speed and Ec = E×Ecoal is the collection efficiency, which is the product of15

the collision efficiency E and the coalescence efficiency Ecoal. In this study, we use the wsed-parametrisation of Beard (1976),16

the tabulated E-values of Hall (1980), and the coalescence efficiency Ecoal is assumed to be 1. The latter assumption is an17

oversimplification for large droplets with radii & 500µm for which Ecoal is significantly smaller than 1 (Beard and Ochs III,18

1984; Ochs III and Beard, 1984), but does not limit the generality of our findings.19

The average number of collisions from νi droplets of mass mi and νj droplets of mass mj (which are assumed to be20

well-mixed in the volume δV ) within time δt is21

νcoll =KWM3D
ij νi νj δt δV

−1, (6)22

or equivalently23

νcoll = Ec(ri, rj)π(ri + rj)2 |wsed,i−wsed,j |νi νj δV −1δt. (7)24

By dividing the above equation by δV , we obtain the common relationship in terms of concentrations, given by n= ν/δV ,25

ncoll = Ec(ri, rj)π(ri + rj)2 |wsed,i−wsed,j |ni nj δt. (8)26
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Sedimentation and collection are the only processes considered in this study, and any effects of diffusional growth are1

neglected. An exponential DSD is used to prescribe the cloud droplets in the beginning2

fm(m) =
DNC

m̄
exp

(
−m
m̄

)
. (9)3

As in U2017, Berry (1967) or Wang et al. (2007), we choose by default a mean mass m̄= LWC/DNC that corresponds4

to a mean droplet radius of r0 = 9.3µm and a droplet number concentration DNC = 2.97× 108 m−3 (resulting in a droplet5

mass concentration of LWC = 10−3 kg m−3). The function fm(m) is the number density function with respect to mass. The6

moments are defined as7

λl(t) =
∫
mlfm(m,t)dm, (10)8

with order l, which gives DNC = λ0,LWC = λ1 and Z = λ2. We will refer to the latter quantity as radar reflectivity since9

the radar reflectivity is proportional to λ2. For an exponential DSD, the moments can be expressed analytically as10

λl,anal = (l− 1)! DNC m̄l, (11)11

where l! is the factorial of l.12

Using the terminology of Berry (1967), we introduce the mass density function with respect to the logarithm of droplet13

radius lnr14

gln r(r) = 3m2fm(m), (12)15

taking into account the transformation property of distributions (fy(y)dy = fx(x(y))dx).16

The DSD is usually discretised using exponentially increasing bin sizes. In analogy to U2017, the bin boundaries are defined17

by the masses18

mbb,p+1 =mbb,p 101/κ. (13)19

Note that many other studies use a factor of 21/s for discretisation. The parameters s and κ are related via s= κ log10(2)≈20

0.3κ.21

In an LCM, real droplets are represented by simulation particles (SIPs, also called super droplets). Each SIP has a discrete22

position (vertical coordinate zp in our column model applications) and represents νp identical real droplets with an individual23

droplet mass µp. The total droplet mass in a SIP is then νpµp. In conjunction with SIPs, we define that the terms low and high24

relate to the SIP vertical position and the terms small and large to the droplet mass µp. The number of SIPs in a GB is defined25

as NSIP,GB and the total SIP number is given by NSIP,tot =
∑nz
k=1 NSIP,GB(k).26

The moments λl of order l in a GB are computed via a simple summation27

λl,SIP =



NSIP,GB∑

p=1

νp µ
l
p



/

∆V , (14)28
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Figure 1. schematic plot of how a droplet dize distribution is discretized in a bin model and represented by a SIP (SImulation particle)

ensemble in a Lagrangian cloud model (LCM). The red and green stars shows two different realisations of a SIP ensemble.

Here and in the following, index p refers to any single bin or SIP. If we want to stress that the combination of two SIPs or bins1

matters, we use indices i and j. Index k is used for altitude and l for the order of the moments by convention.2

How to represent an ensemble of droplets in an Eulerian or Lagrangian cloud model? Their size distribution can be uniquely3

described in a bin model by simply accounting for each real droplet in its respective bin, where its boundaries are given by the4

bin model (see illustration in Fig. 1 top). In the Lagrangian approach, however, the weighting factor νi and the droplet mass µi5

can be chosen independently. Accordingly, there is no unique SIP representation of an ensemble of real droplets; two possible6

SIP ensemble realisations are illustrated in Fig. 1 bottom.7

Various techniques to generate a SIP ensemble in an LCM for a given (analytically prescribed) DSD exist (see section 2.1 in8

U2017). In this study, we use a SIP initialisation technique (termed "singleSIP-init" in U2017), for which Lagrangian collection9

algorithms, and in particular AON, achieved the best results in box model tests. In the singleSIP-init, the DSD, more specifically10

fm, is discretized in exponentially increasing mass intervals and a single SIP is generated for each bin (see section 2.1.1 in11

U2017 for details). The SIP weight is given by12

νp = fm(µp) ∆mbb,p∆V, (15)13

where µp is chosen randomly from the interval [mbb,p,mbb,p+1]. The generation of SIPs with νp below some threshold is14

discarded. Due to the probabilistic component, different realisations of SIP ensembles can be created for the same prescribed15

DSD, yet the init technique guarantees that the moments λl,SIP are close to λl,anal. The number of generated SIPs depends on16
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the width of the mass bins and hence on κ, as well as the other parameters of the prescribed DSD. A change of the "system1

size" ∆V does not change the number of SIPs, but simply leads to a rescaling of the SIP weights νi. For exponential DSD2

given above, around3

NSIP,GB = 5×κ (16)4

SIPs are initialised (the scaling factor depends on the width of DSD and the choice of the lower cut-off threshold). Finally note5

that if the DSD is prescribed in a specific GB, the position zp of each SIP is randomly chosen from [zk,zk+1]. Furthermore, δt6

and δV of the conceptual model take the values ∆t and ∆V in the numerical models.7

2.2 Eulerian column model8

Eulerian column models have been widely employed in cloud physics and the present bin implementation is conceptually9

similar to previous ones (e.g. Prat and Barros, 2007; Stevens and Seifert, 2008; Hu and Srivastava, 1995). We use exponentially10

increasing bin sizes as defined in Eq. 13. The smallest mass mbb,0 is chosen suitably small (corresponding roughly to a droplet11

radius of 1µm), and the grid resolution parameter s sufficiently large (4 by default), i.e. the mass doubles every four bins.12

The variable gln m = 1
3gln r will be discretized in mass space and used as a prognostic variable. The droplet mass concentra-13

tion in each bin p and height k is given by gp,k×d lnm and approximates
∫mbb,p+1

mbb,p
gln m(m,zk)d lnm. For each GB k, Bott’s14

exponential flux method (Bott, 1998, 2000) is used to solve the Smoluchowski. Bott’s method is a one-moment scheme and15

gln m is the only prognostic variable. In a second step, the mass concentrations are advected according to the classical advection16

equation17

d gln m

dt
= wsed

d gln m

dz
. (17)18

For its numerical solution, two different positive definite advection algorithms have been used. The first option is the classical19

first-order upwind scheme (known for its inherent numerical diffusivity). For wsed ≥ 0, it is simply given by20

gp,k(t+ ∆t) = gp,k(t) +
∆t
∆z

wsed(m̄bb,p)(gp,k+1(t)− gp,k(t)). (18)21

The above equation is solved independently for each bin p, where wsed is evaluated at the arithmetic bin center m̄bb,p =22

0.5 (mbb,p+1 +mbb,p) 1 . A second (better) option is the popular MPDATA algorithm, which is an iterative solver based on23

the upwind scheme, yet drastically reduces its diffusivity (Smolarkiewicz, 1984, 2006). By default, MPDATA is employed.24

Irrespective of the chosen advection solver, the prediction of the "new" gp,k depends on gp,k and gp,k+1 (i.e. the GB above25

the one of interest). For the prediction of gp,nz at the model top, it is necessary to prescribe some value gp,nz+1 which defines26

the upper boundary condition (this is detailed in section 2.4).27

If the prescribed ∆t is too large and the Courant-Friedrichs-Levy (CFL) criterion ∆t
∆zwsed(m̄bb,p)≤ rCFL < 1 is violated,28

subcyling is introduced. As wsed(m̄bb,p) does not change over the course of a simulation, the (bin-dependent) number of29

subcycles nsubc,p is determined in the beginning, such that rCFL = 0.5 holds for the reduced timestep ∆t
nsubc,p

.30

1Evaluating wsed at the geometric bin centers did not change the results.
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After one call of the Bott algorithm, nsubc,p calls of the selected advection algorithm with reduced time step ∆t
nsubc,p

follow1

for each bin p.2

The moments are computed by3

λl,BIN =
NBIN∑

p=1

gp,k (m̃bb,p)l−1 ln2
3 s

(19)4

as given in Eq. 48 of Wang et al. (2007), where m̃bb,p =mbb,p× 21/(2 s) is the geometric bin center.5

2.3 Lagrangian column model6

In a Lagrangian model, the inclusion of sedimentation (obeying the transport equation dz/dt=−wsed) is straightforward. For7

each SIP the particle position is updated via8

zp(t+ ∆t) = zp(t)−wsed(µp(t)) ∆t. (20)9

Unlike to Eulerian methods, sedimentation in a Lagrangian approach is independent of the chosen mesh and the time step is10

not restricted by numerical reasons. If zp becomes negative at some point in time, the SIP crossed the lower boundary and is11

removed.12

For the collection process, it assumed that each SIP belongs to a certain GB k obeying zk−1 ≤ zp < zk and that the real13

droplets of each SIP are well-mixed in the GB volume (WM3D). The collection process is treated with the probabilistic AON14

algorithm. In the regular version (see section 2.3.1), AON is called for each GB and accounts for all possible collisions among15

any two SIPs of the same GB. By construction, the information on the vertical position is irrelevant inside the regular AON,16

and is only used in the SIP-to-GB assignment.17

In the version with explicit overtakes (WM2D, see section 2.3.2), for any two SIPs (of the whole column) it is checked if18

the higher SIP (i.e. with larger zp) overtakes the lower SIP within the current time step. This may have several advantages:19

First, only 2D well-mixedness in a horizontal plane is assumed and possible size sorting effects within a GB are accounted20

for. Moreover, in Lagrangian methods the time step is not restricted by the CFL criterion and the largest SIPs may travel21

through more than one GB. In the classical approach, such a SIP can only collect SIPs from the GB where it was present in the22

beginning of the time step. In the second approach, collections can also occur across GB boundaries (see section 2.3.2).23

In the remainder of this paper, the classical approach is referred to as "3D Well-Mixed" (WM3D) AON and the new approach24

as AON-WM2D. Figure 2 sketches how the SIP properties (location, weighting factor, sedimentation speed) are interpreted in25

either approach. For simplicity, a single GB with one SIP pair is displayed.26

AON is probabilistic and an individual realisation does usually not reproduce the mean state as predicted by deterministic27

methods like Eulerian approaches. The extent of deviations from the mean state is exemplified in Fig. 15 of U2017 for a28

box model application of AON. Hence, the discussed AON results in the present study are usually ensemble averages over29

nrinst = 20 realisations.30

Pseudo-code of both algorithm implementations is given. For the sake of readability, the pseudo-code examples show easy-31

to-understand implementations. The actual codes of the algorithms are, however, optimised in terms of computational effi-32
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LCM WM2D WM3D

Figure 2. Grid box with a SIP pair in the LCM world (left) and its respective interpretation in the 2D Wellmixed (WM2D, center) and 3D

Wellmixed (WM3D, right) approach of the AON collection algorithm.
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Figure 3. Treatment of a collection between two SIPs in the All-Or-Nothing Algorithm (AON) algorithm, adopted from Fig. 2 of Unter-

strasser et al. (2017).

ciency. The style conventions for the pseudo-code examples are as follows: commands of the algorithms are written in upright1

font with keywords in boldface. Comments appear in italic font (explanations are enclosed by {} and headings of code blocks2

are in boldface).3

2.3.1 Regular AON collection algorithm (WM3D)4

Here we basically repeat the AON description of U2017 (their section 2.5).5

9
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Algorithm 1 Pseudo-code of the WM3D all-or-nothing algorithm (AON); style conventions are explained right before Sec-

tion 2.3.1 starts; rand() generates uniformly distributed random numbers ∈ [0,1]. This AON version is called independently for

each grid box.

1: INIT BLOCK

2: Given: Ensemble of SIPs of a specific grid box; Specify: ∆t

3: TIME ITERATION

4: while t<Tsim do

5: {Check each i− j-combination for a possible collection event}

6: for all i < j ≤NSIP do

7: Compute νcoll according to Eq. 7

8: νnew = min(νi,νj)

9: pcrit = νcoll/νnew

10: {Update SIP properties on the fly}

11: if pcrit > 1 then

12: MULTIPLE COLLECTION

13: {can occur when νi and νj differ strongly and be regarded as special case; see text for further explanation}

14: assume νi < νj , otherwise swap i and j in the following lines

15: {pcrit > 1 is equivalent to νcoll > νi}

16: {transfer νcoll droplets with µj from SIP j to SIP i, allow multiple collections in SIP i, i.e. one droplet of SIP i

collects more than one droplet of SIP j.}

17: SIP i collects νcoll droplets from SIP j and distributes them on νi droplets: µi = (νi µi + νcoll µj)/νi

18: SIP j loses νcoll droplets to SIP i: νj = νj − νcoll

19: else if pcrit >rand() then

20: RANDOM SINGLE COLLECTION

21: assume νi < νj , otherwise swap i and j in the following lines

22: {transfer νi droplets with µj from SIP j to SIP i}

23: SIP i collects νi droplets from SIP j: µi = µi +µj

24: SIP j loses νi droplets to SIP i: νj = νj − νi

25: end if

26: end for

27: t= t+ ∆t

28: end while

10

https://doi.org/10.5194/gmd-2019-343
Preprint. Discussion started: 11 February 2020
c© Author(s) 2020. CC BY 4.0 License.



"Figure 3 illustrates how a collection between two SIPs is treated. SIP i is assumed to represent fewer droplets than SIP j,1

i.e. νi < νj . Each real droplet in SIP i collects one real droplet from SIP j . Hence, SIP i contains νi = 4 droplets, now with2

mass µi +µj = 15. SIP j now contains νj − νi = 8− 4 = 4 droplets with mass µj = 9. Following Eq. (7), only νcoll = 2 pairs3

of droplets would, however, merge in reality. The idea behind this probabilistic AON is that such a collection event is realised4

only under certain circumstances in the model, namely such that the expectation values of collection events in the model and5

in the real world are the same. This is achieved if a collection event occurs with probability6

pcrit = νcoll/νi (21)7

in the model. Then, the average number of collections in the model,8

ν̄coll = pcritνi = (νcoll/νi)νi, (22)9

is equal to νcoll as in the real world. A collection event between two SIPs occurs if pcrit >rand(). The function rand() provides10

uniformly distributed random numbers ∈ [0,1]. Noticeably, no operation on a specific SIP pair is performed if pcrit <rand().11

The treatment of the special case νcoll/νi > 1 needs some clarification. This case is regularly encountered when SIPs with12

large droplets and small νi collect small droplets from a SIP with large νj . The large difference in droplet masses µ led to13

large kernel values and high νcoll with νi < νcoll < νj . [. . . ] If pcrit > 1, we allow multiple collections, as each droplet in14

SIP i is allowed to collect more than one droplet from SIP j. In total, SIP i collects νcoll droplets from SIP j and distributes15

them on νi droplets. A total mass of νcollµj is transferred from SIP j to SIP i and the droplet mass in SIPs i becomes µnew
i =16

(νi µi + νcoll µj)/νi. The number of droplets in SIP j is reduced by νcoll and νnew
j = νj − νcoll. Keeping with the example in17

Fig. 3 and assuming νcoll = 5, each of the νi = 4 droplets would collect νcoll/νi = 1.25 droplets. The properties of SIP i and18

SIP j are then νi = 4, µi = 17.25, νj = 3 and µj = 9. [. . . ] So far, we explained how a single i− j combination is treated19

in AON. In every time step, the full algorithm simply checks each i− j combination for a possible collection event. To avoid20

double counting, only combinations with i < j. Pseudo-code of the algorithm is given in Algorithm (1). The SIP properties are21

updated on the fly. If a certain SIP is involved in a collection event in the model and changes its properties, all subsequent22

combinations with this SIP take into account the updated SIP properties. [. . . ] For the generation of the random numbers, the23

well-proven (L’Ecuyer and Simard, 2007) Mersenne Twister algorithm by Matsumoto and Nishimura (1998) is used."24

The AON treatment of self-collections and of SIPs with equal weighting factors are described in U2017. In the simulations25

presented here these aspects are not relevant and thus omitted.26

The current implementation differs in several aspects from the version in Shima et al. (2009). First, they use a linear sampling27

approach (which will be described in subsection 2.3.3). Second, the weighting factors are considered to be integer numbers,28

whereas we use real numbers ν. Integer values are appropriate in discrete test cases of small sample volumes such as the29

validation test case in section 3 of Dziekan and Pawlowska (2017). For comparing AON with bin model references, usually30

continuous DSDs are prescribed. Then a SIP ensemble with real-values weighting factors is more appropriate. Third, multiple31

collections (MC) are differently treated. For pcrit = (νcoll/νi)> 1, either bpcritcνi or dpcriteνi droplets of SIP j merge with32

νi droplets of SIP i depending on the probability pcrit−bpcritc. This maintains the integer property of the SIP weights. As the33
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latter feature is not required in our approach, we deterministically merge pcritνi = νcoll droplets from SIP j with νi droplets1

of SIP i. This is computationally more efficient than the integer-preserving implementation. Test simulations showed that both2

MC treatments produce similar results.3

2.3.2 AON algorithm with explicit use of vertical coordinate (WM2D)4

We now introduce the AON version based on an idea by Sölch and Kärcher (2010) where the vertical position zp of the SIPs5

is explicitly considered. The approach and its implications will be detailed next. Pseudo-code of this AON variant is given in6

Algorithm 2.7

Unlike to the classical case where 3D well-mixedness has to be assumed, droplets of a SIP are now assumed to be well8

mixed on the x-y-plane at z = zp within the GB (horizontally well-mixed instead of the traditional isotropic assumption) and9

represent a "concentration" of n2D = ν/δA (units L−2, where L is a length scale). We introduce an adapted kernel definition10

where the relative velocity term |wsed,i−wsed,j | is dropped from Eq. 5:11

KWM2D
ij := Ec(ri, rj)π(ri + rj)2. (23)12

The AON algorithm is split into two steps:13

1. Based on the evaluation of the vertical positions zi and zj at times t and t+ ∆t, it is checked if SIP i overtakes SIP j14

within a time step ∆t. Given zi(t)≥ zj(t) (otherwise swap i and j) an overtake takes place in the time interval ∆t if15

zi(t+ ∆t)< zj(t+ ∆t).16

2. In case of such an overtake: Compute the average number of droplet collections by17

νcoll =KWM2D
ij νi νj ∆A−1. (24)18

Analogous to the classical implementation, a collection in the model is performed with a probability νcoll/νi and SIP i19

may collect νi from SIP j (in this step i and j are chosen, such that νi < νj).20

Similarly to the WM3D version, it happens that νcoll is larger than νi and multiple collections should be considered in the21

algorithm.22

Specifically to WM2D, it is also possible that a SIP interacts with other SIPs located not only in one but several GBs.23

Accordingly, it is not only necessary to check overtakes of other SIPs in the original GB (more specifically, SIPs that lie in the24

same GB at time t), but also the SIPs that are located underneath, depending on the prescribed time step. In a Lagrangian model,25

the time step choice is not numerically restricted by the CFL criterion and in particular the largest collecting drops may fall26

through several GBs during the time period ∆t. Hence, their collections are underrated unless potential overtakes are checked27

among all NSIP,tot SIPs of the entire column. In a naive implementation this would dramatically increase the computational28

costs. In the regular WM3D implementation, nz calls of AON with O(NSIP,GB2) (for simplicity lets assume NSIP,GB is the29

same in all GBs) give a total cost of nz×O(NSIP,GB2). Contrarily, AON-WM2D is called once for all SIPs of the column.30

Hence the cost is 1×O(NSIP,tot2) = nz2×O(NSIP,GB2) and a factor nz higher than the regular implementation. However,31

12
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Algorithm 2 Pseudo-code of the WM2D all-or-nothing algorithm (AON); style conventions are explained right before Sec-

tion 2.3.1 starts; rand() generates uniformly distributed random numbers ∈ [0,1]. This AON version is called once for the total

column.

1: INIT BLOCK

2: Given: Ensemble of SIPs of the total column, in particular also their positions Specify: ∆t

3: TIME ITERATION

4: while t<Tsim do

5: {Sort SIPs by position, the highest SIP will be the first SIP.}

6: Sort SIPs by position, such that zi(t)≥ zj(t) for i < j

7: {Check for overtakes}

8: for i= 1,NSIP,tot− 1 do

9: for j = i+ 1,NSIP,tot do

10: if zi(t+ ∆t)≥ zj(t) then

11: exit j-loop and proceed with next SIP i {if end position of SIP i is above departure point of SIPs j, then no

overtakes are possible for any remaining SIP j.}

12: end if

13: if zi(t+ ∆t)≥ zj(t+ ∆t) then

14: proceed with next SIP j {no overtake occured as SIP i is still above SIP j at t+ ∆t}

15: end if

16: {the above conditions guarantee that the following code is executed iff SIP i overtakes SIP j}

17: Compute νcoll according to Eq. 24 { instead of Eq. 7 as in the WM3D version}

18: {all the following operations are identical to the WM3D version and accompanying explanations are removed}

19: νnew = min(νi,νj)

20: pcrit = νcoll/νnew

21: if pcrit > 1 then

22: assume νi < νj , otherwise swap i and j in the following lines

23: µi = (νi µi + νcoll µj)/νi

24: νj = νj − νcoll

25: else if pcrit >rand() then

26: assume νi < νj , otherwise swap i and j in the following lines

27: µi = µi +µj

28: νj = νj − νi

29: end if

30: end for

31: end for

32: t= t+ ∆t

33: end while

13
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the WM2D implementation can be sped up by first sorting all SIPs by their position (if sorting is done independently in each1

GB, the complexity is nz×O(NSIP,GB log(NSIP,GB))), and second by taking into account that the final position zi(t+ ∆t)2

of the potentially overtaking SIP imust be below the initial position zj(t) of SIP j. Finding possible candidates for SIP iwithin3

the sorted SIP list can be stopped once a SIP j with zj(t)< zi(t+∆t) is encountered (see condition in line 10 of Algorithm 2).4

For the smallest SIPs, which often travel only a small distance inside a GB, the list of SIPs that may be overtaken is com-5

mensurately small and overtakes have to be checked for a fraction of SIPs of the GB only (that means the actual computational6

work is smaller than in the regular version). On the other hand, imagine the largest SIPs travel through three GBs, then over-7

takes have to be tested for roughly three times more SIPs than in the regular version. Moreover, testing for overtakes (step 1)8

is computationally less demanding than calculating the potential collections (step 2). In WM3D we have always the workload9

of step 2 for all tested combinations, whereas in WM2D only the cheaper step 1 is executed in case of no overtake.10

Besides the weaker assumption of 2D well-mixedness, the present approach is actually more intuitive (even though it may11

first be regarded counter-intuitive by those who are familiar with traditional Eulerian grid-based approaches). Moreover, this12

approach complies better with the Lagrangian paradigm of a grid-free description (the present approach is independent of nz13

and ∆z, yet some horizontal "mixing area" ∆A has to defined, over which the droplets of a SIP are assumed to be dispersed).14

For more sophisticated kernels, including, e.g., turbulence enhancement, the present approach may not be adopted easily15

as the driving mechanism for collisions to occur in the current model is differential sedimentation (see also discussions on16

cylindrical vs. spherical formulations of kernels in (Saffman and Turner, 1956) and Wang et al. (1998, 2005)).17

Finally, we shortly summarize the differences between the WM2D and WM3D approach. The standard kernel KWM3D as18

given by Eq. 5 has units L3/T (where L and T are a length and time scale, resp.). Multiplying it by concentrations ni and19

nj (units L−3) one obtains the rate of a concentration increase of merged droplets (L−3/T ) which is finally multiplied by δt20

(unit T ) to obtain ncoll (see Eq. 8). Since SIPs represent droplet concentrations of ni = νi/δV and nj = νj/δV , Eq. 7 follows.21

In the WM2D approach, the kernel KWM2D as given by Eq. 23 has units L2. Multiplying it by "2D" concentrations n2D,i22

and n2D,j (units L−2) one obtains the collected 2D concentration n2D,coll (units L−2). Since SIPs represent "2D" droplet23

concentrations of n2D,i = νi/δA and nj = ν2D,j/δA, Eq. 24 follows. A collection can only occur, if a larger droplet (or SIP) i24

overtakes a smaller droplet (or SIP) j. First, zi > zj and wsed,i >wsed,j must hold and second the overtake time ∆tOT :=25

(zi− zj)× (wsed,i−wsed,j)−1 must fulfill ∆tOT ≤ δt. One can define the overtake probability pOT being 0 for ∆tOT > δt26

and 1 for ∆tOT ≤ δt, and the "2D" collection probability pWM2D
ij =KWM2D

ij δA−1. Simulations will demonstrate that the27

WM2D and WM3D formulations are statistically equivalent under certain conditions, i.e. pOT × pWM2D equals pWM3D.28

2.3.3 Linear sampling variant29

The regular AON variant can be sped up by introducing a linear sampling technique (LinSamp) as done in Shima et al. (2009)30

or Dziekan and Pawlowska (2017). bNSIP/2c combinations of pairs i−j are randomly picked, where each SIP appears exactly31

in one pair (if NSIP is odd, one SIP is ignored). As only a subset of all possible combinations is numerically evaluated, the32

extent of collisions is underestimated. To compensate for this, the probability pcrit (or equivalently νcoll) is upscaled by a33
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scaling factor1

γcorr =NSIP(NSIP− 1)/(2 bNSIP/2c) (25)2

to guarantee an expectation value as desired. Clearly, this reduces the computational complexity of the algorithm fromO(NSIP
2)3

to O(NSIP). Multiple collections are more likely than in the regular quadratic implementation. The LinSamp variant becomes4

the preferred choice ifNSIP is large. If νcoll is larger than both, νi and νj , all AON versions as introduced so far would produce5

negative weights. In order to prevent this, νcoll is artificially reduced to 0.99max(νi,νj) in such a case. This limiter is applied6

in all AON implementations, but is particularly significant in the LinSamp version due to the upscaling of pcrit. Moreover, note7

that LinSamp can be reasonably used only in conjunction with AON-WM3D, not AON-WM2D.8

2.4 Boundary condition9

At the lower boundary droplets leave the domain according to their fall speed. Using the LCM, the moment outflow Fl,out is10

determined by accumulating the contributions νp(µp)l of all SIPs p that cross the lower boundary z = 0m. Due to the discrete-11

ness of the crossings, instantaneous fluxes are actually averages of the past 200s. Using the bin model, Fl,out is diagnosed by12

13

Fl,out =
NBIN∑

p=1

gp,k=1 (m̃bb,p)l−1wsed(m̃bb,p)
ln10
3κ

. (26)14

At the model top, the simplest condition is to have a zero influx. In this case, the column integrated droplet mass will decrease15

once a non-zero flux across the lower boundary occurs. To realize a zero-influx condition in the Eulerian model, the mass16

concentrations at the ghost cell level nz+1 are simply set to zero. In the Lagrangian model, a zero influx condition is naturally17

implemented when no new SIP are created at the top of the column.18

In both models, also a non-zero influx at the model top can be prescribed. One variant is to use periodic boundary conditions.19

In the Lagrangian approach this is done by increasing the height zp of affected SIPs by Lz, once their height drops below 0.20

In the Eulerian model, gp,nz+1 is identified with gp,1. A second non-zero influx variant is a prescribed size distribution that21

is advected into the domain with its respective fall speed. In the bin model, the prescribed DSD simply defines the gi,nz+1-22

values. In the Lagrangian model, new SIPs have to be introduced close to the model top. For this, a new SIP ensemble is drawn23

from the prescribed DSD at each time step using the SingleSIP-init method. In order to place the SIPs in the column, it is24

considered how far it would fall at most from the model top during one timestep: z∆(p) = wsed,p×∆t. In a straightforward25

implementation, one would create one SIP from each bin with a position znew,p uniformly drawn from [Lz,Lz− z∆(p)] and26

weighting factor νnew,p = νp× (z∆(p)/∆z). This implementation has, however, several undesirable side-effects. For small,27

slowly falling SIPs z∆(p) is much smaller than ∆z. Applying this procedure in every time step leads to ∆z/z∆(p) SIPs per GB28

in the end. Hence, we refine this procedure by creating a SIP with probability z∆(p)/∆z, a weighting factor νnew,p = νp and29

znew,p ∈ [Lz,Lz− z∆(p)]. Note that if z∆(p)/∆z > 1, then either bz∆(p)/∆zc or dz∆(p)/∆ze SIPs are created depending30

on the probability (z∆(p)/∆z)−bz∆(p)/∆zc. This establishes a similar spatial SIP occurrence across the size spectrum with31

one SIP per GB and bin on average. Moreover, SIP numbers do not scale any longer with ∆t.32

15

https://doi.org/10.5194/gmd-2019-343
Preprint. Discussion started: 11 February 2020
c© Author(s) 2020. CC BY 4.0 License.



2.5 Terminology1

Before we start discussing the results, we outline the terminology of the various model versions. On a first level, we differentiate2

between Eulerian (BIN) and Lagrangian approaches (LCM), which can be both applied in a box (0D) or column model (1D)3

framework. By default, BIN uses the MPDATA advection algorithm (clearly only in 1D) and Bott’s collection algorithm.4

Alternatively, MPDATA can be replaced by the 1st order upstream scheme (US1) and Bott’s collection algorithm by Wang’s5

(Wang). The Lagrangian model versions differ only in the way AON is employed. By default, 3D well-mixedness (WM3D)6

is assumed and a quadratic sampling (QuadSamp) of the SIP combinations is used. Those simulations are also referred to as7

"regular". A second type of QuadSamp simulation assumes 2D well-mixedness (WM2D). Linear sampling of SIP combinations8

can be alternatively used for the WM3D-version. Accordingly, only the terms "regular", "WM2D" and "LinSamp" refer to a9

specific type of simulation, while "QuadSamp" and "WM3D" may denote options in several simulations ("QuadSamp" can be10

used with WM3D and WM2D, and "WM3D" can be used with QuadSamp and LinSamp).11

By switching off sedimentation in the column model source code (as done in section 3.2), box model results are produced in12

each GB. In order to distinguish the latter simulations from AON box model results in U2017 they are refered to as "noSedi"13

(implicitly assuming WM3D).14

3 Results15

3.1 Validation exercises: pure sedimentation16

Before we start comparing collection in column model applications, we highlight the differences introduced by the different17

numerical treatment of the sedimentation process. Two simple setups with an influx of an exponential DSD with r0 = 50µm is18

prescribed. In the first case the domain is initially empty and fills over time (EmptyDom). In the second case, the upper half of19

the domain is filled and LWC and DNC decrease linearly to zero from the domain top to the domain middle (HalfDom). Fig. 420

shows the vertical profiles of normalised zeroth (left) and second (right) moments for EmptyDom (top) and HalfDom (bottom).21

Because of the lack of numerical diffusion, the solid LCM curves show the exact results, except for the error introduced by22

discretizing the influx DSD with a probabilistic approach. Each panel showcases a convincing agreement between the Eulerian23

and Lagrangian approach. Only the BIN-US1 solutions are slightly smeared out. The small wiggles in the LCM curves originate24

from the probabilistic influx condition. Even though the above agreement is favourable, it might be that the advection errors of25

differently sized droplets compensate each other in the Eulerian approaches. Hence in a second validation step, the computation26

of mass profiles is confined to certain droplet size ranges. Figure 5 shows such vertical profiles for EmptyDom. We see that27

for all four size ranges, the BIN results are smeared out relative to LCM. For the smallest size ranges both BIN versions are28

equally "bad" (top left panel). For the three remaining panels, the MPDATA curves (dashed) are closer to the LCM reference29

than the US1 curves (dotted). On the other hand, the MPDATA curves in the bottom right panel show some wiggles. Overall, the30

agreement between LCM and BIN-MPDATA is good. The discrepancies introduced by the different sedimentation treatment31

seem to be small enough to focus on the collection process in the following comparisons.32
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Figure 4. Pure Sedimentation test case: Comparison of BIN and LCM (solid) advection. BIN uses either MPDATA (dashed) or 1st order

Upstream scheme (dotted). EmptyDom (upper row) and HalfDom (lower row) setup are used with an exponential distribution with r0 =

50µm as influx condition. Displayed are vertical profiles of normalised zeroth and second moment at the indicated points in time.

3.2 Box model emulation simulations1

3.2.1 Regular AON version2

In this section, we choose a column model setup that is supposed to produce results that are similar to box model results. For3

this, we initialise the default DSD in all GBs of the column and use periodic boundary conditions. In LCM1D, different SIP4

ensemble realisations of this DSD are initialised in each GB.5

The deterministic bin column model predicts identical DSDs in all GBs, as in each GB the divergence of the sedimentation6

flux is zero. Hence, for this specific setup, the attained BIN1D results are identical to those of a corresponding BIN0D model7

or the data of Wang et al. (2007, see their Tables 3 and 4).8
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Figure 5. Pure Sedimentation test case: Comparison of BIN and LCM advection. EmptyDom setup with an exponential distribution with

r0 = 50µm as influx condition. Displayed are vertical profiles of normalised mass within specified size ranges (see on top of each panel) at

the indicated points in time. Note that most panels use different y-axis ranges and do not show all six points in time.

In LCM1D, the combination of homogeneous initial conditions and periodic BCs results in statistically identical results1

across all GBs. However, the averaged results may not be the same as in LCM0D, as lucky droplets/SIPs can collect other2

droplets/SIPs not only from a single GB as in LCM0D, but from any GB (depending on how fast they fall), creating potentially3

larger and/or faster growing lucky droplets/SIPs than in LCM0D. In other words, the number of SIPs interacting with each4

other is increased in LCM1D. This, as we will show below, accelerates the convergence of the simulations.5

Within the LCM1D-implementation, pure box model results can be obtained by switching off sedimentation. Without sed-6

imentation, the GBs of the column are not interconnected and the collection process proceeds independently. In the follow-7

ing, we refer to those simulations as "noSedi". By default, we use nz = 50 GBs with ∆z = 10m (giving a column height of8

Lz = 500m), ∆V = 1m3,∆z = 10m,∆t= 10s and κ= 40 throughout section 3.2. The results are averaged over nrinst = 209

realisations. AON-WM3D is employed in LCM1D and sedimentation is switched on unless noted (for better discrimination10

18
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Figure 6. BoxModelEmul setup: Temporal evolution of column-averagedDNC andZ over one hour for various time steps ∆t (see inserted

legend for ∆t-values in seconds). All other parametes take the default values as given in the caption of Fig. 7.

from the noSedi, those simulations will be referred to as "full"). Moreover, the regular AON-WM3D version uses a quadratic1

sampling of SIP combinations (referred to as "QuadSamp").2

Figure 6 shows the temporal evolution of column-averaged LCM1D moments λl (l = 0 and 2) over one hour for various time3

steps ∆t. The box model data serve as orientation in this and following Figures 6-9. We find that in terms of λ0 and λ2 LCM1D4

results converge for ∆t≤ 10s. The noSedi simulations show a similar time step dependence (not shown). Hence, AON works5

surprisingly well for large time steps; a fact that was already shown with the AON box model (see Fig. 18 of U2017).6

Next, we discuss the sensitivity to more physical and numerical parameters. We found that convergence is usually more7

easily reached for higher moments than for λ0 (not shown). Hence in the following, we confine our analysis to the most8

"critical" quantity, and Fig. 7 displays the λ0-evolution for various sensitivity experiments. Even though we analyse the results9

in some detail, we want to mention that the observed differences are in principle not substantial. In fact, results differ often10

much more due to a different collection kernel or slightly varied initial DSDs (see section 3.2.4). Nevertheless, the analysis11

will help to understand more deeply how collection works in an LCM with AON. This pronounced effort is justified, as12

precipitation initiation is still not fully understood and a well-validated Lagrangian approach may lead to new insights (Dziekan13

and Pawlowska, 2017; Grabowski et al., 2019).14

In a first simple step, we vary nz (see first row of Fig. 7), which changes two aspects of the numerical setup. The number15

of GBs over which interactions can occur and secondly the height of the column. This implicitly changes the time it takes16

for SIPs to fall through the total column and hence changes the "recycling" time scale Lz/wsed. Together with nz, nrinst is17

varied such that nz×nrinst is always 1000. Accordingly, all simulation results are averaged over the same number of GBs and18

we avoid that simulations with smaller nz produce noisier data. In the noSedi-simulations (panel a), the moment evolution is19

not affected by varying (nz, nrinst). This is trivial, as in any case the average is taken over 1000 independent GBs. At least,20

these results demonstrate that averaging over that many GBs suffices by far to produce robust averages. In the full simulations21
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Figure 7. BoxModelEmul setup: Temporal evolution of column-averaged moment λ0 (i.e. droplet concentration) over one hour. The default

setting is nz = 50,nrinst = 20,∆V = 1m3,∆t= 10s,∆z = 10m,κ= 40 and Lz = nz×∆z. The microphysical parameters of the initial

exponential droplet size distribution are LWC = 1g/m3, r0 = 9.3µm and DNC = 297cm−3 as in many previous studies (Berry, 1967;

Wang et al., 2007). The parameter or parameter pair that is varied is written on top of each panel and the legend lists the parameter values

for the different colours. If further parameters (besides the varied parameter) take non-default values, it is indicated in a black box. In any

case, the total number of GBs is nrinst×nz = 1000. By default, sedimentation is switched on. Simulations without sedimentation and

independent rain formation in each GB (identical to a box model treatment) are labelled as "noSedi" (appear only in the left column).

(panel b), the λ0-decrease is more pronounced and the various setups produce nearly identical results (except for the case with1

nz = 2, which is in between the other full simulations and the noSedi simulations). From this finding alone one may argue that2

the collection process is more efficient in LCM1D than in LCM0D.3
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The second row shows a variation of κwhich reveals qualitatively different convergence properties of the noSedi simulations1

(panel c) and the full simulations (panel d). In the noSedi simulations, an increase of κ (and NSIP ; see extra legend for2

according NSIP -values) leads to a faster decrease of λ0. Large differences between κ= 5 and 40 simulations are apparent;3

above κ= 40, an increase of κ leads only to marginal improvements. Also for the highest κ, the λ0-values remain slightly4

above the bin reference. For the smallest κ-value, only 24 SIPs are created according to Eq. 16 and interactions among that few5

computational particles overemphasize the impact of correlations. It is well-known that for small ensembles of real droplets6

correlations become important (Bayewitz et al., 1974; Wang et al., 2006). Analougusly, we introduced correlations in our7

numerical approach by using too few computational particles. We believe that this hinders the formation of lucky droplets and8

fewer droplets get collected (hence λ0 is larger for smaller κ). Another more technical explanation is that the νp-distribution9

of the SIP ensemble is such that the formation of lucky SIPs is not supported. Ideally, there is a reservoir of SIPs with small10

ν-values which can become lucky SIPs. There might be too few SIPs with small ν for small κ.11

Contrarily, the full simulations (panel d) give nearly identical results independent of κ. We obtain converged results with12

as few as 24 SIPs in each GB. Compared to κ= 200 with 1000 SIPs, the simulations are a factor 402 faster. The reason for13

the much faster convergence in terms of NSIP,GB is that the GBs are interconnected which effectively raises the number of14

potential collision partners. Drops with radius 100 and 500µm have fall speeds of around 0.7m s−1 and 4m s−1, respectively.15

Thus it takes them around 14s and 2.5s to fall through a ∆z = 10m-GB and they enter a new GB every few time steps given16

∆t= 10s.17

How strongly SIPs are interconnected across GBs in LCM1D should depend also on geometrical properties of the column. In18

the next setup, we investigate the κ-sensitivity in a column with nz = 10 and ∆z = 100m instead of nz = 50 and ∆z = 10m19

(panel e). Then, SIP interactions can occur only across 10 GBs and overall five times fewer SIPs are present in the column than20

for the default case with nz = 50. Moreover, the domain is stretched by increasing ∆z to 100m, which increases the residence21

time of a SIP in a GB by a factor 10, slowing down additionally SIP interactions across GBs. Those two changes introduce a22

weak κ-dependence, yet much weaker than in the corresponding noSedi-simulations (panel c).23

In a technical experiment, sedimentation is turned off, but SIPs are randomly redistributed inside the column after each time24

step (panel f) similar to Schwenkel et al. (2018). Again, we find converged results for small κ-values down to 5 (panel f).25

This elucidates that convergence is improved once some process exchanges SIPs between GBs, may it be for physical reasons26

like sedimentation or by an artificial operation as the randomized SIP re-location. We speculate that in full 2D/3D LCM-27

simulations turbulent motions and sedimentation increase the SIP exchange across GBs and hence may additionally increase28

the performance of AON. The two latter simulation series are promising, as they suggest that in a column model (and probably29

also 2D/3D model) convergence is potentially reached with fewer SIPs per GB than in a box model. Nevertheless the tests30

also highlight that convergence with κ depends on many circumstances and convergence tests are prerequisite to any LCM31

simulation with AON.32

In bin models, the Smoluchowski equation, which is strictly valid only for an infinite volume and hence an infinite number33

of well-mixed droplets, is solved. Accordingly, only concentrations are prescribed in bin model algorithms. Neither ∆V nor34

the absolute number of droplets is considered in this approach. At least in the limit of all SIPs having weighting factor ν = 1,35
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the AON algorithm solves the master equation (Dziekan and Pawlowska, 2017) which takes into account ∆V and results may1

depend on the actual number of involved droplets. Clearly, correlations (which are accounted for in the master equation) are2

larger in smaller volumes (Bayewitz et al., 1974; Wang et al., 2006; Alfonso and Raga, 2017).3

For the given SIP-initialisation procedure, NSIP,GB depends solely on the chosen κ-values and is independent of ∆V . By4

construction, a ∆V -variation does not affect at all the simulation results, as all SIP weights are simply rescaled. Indeed, we5

obtain nearly bit-identical results for a ∆V -variation. To explore the ∆V -sensitivity in our LCM1D, the SIP-init procedure has6

to be adapted. In the adapted version the SIP number increases proportionally with ∆V as it would in reality. As computational7

requirements increase quadratically withNSIP,GB , the variation of ∆V andNSIP,GB can be performed only for a small range8

of ∆V -values. ∆V is increased by a factor of five or ten. As a base case, we use the simulations with κ= 20 and κ= 1009

and define ∆V := 1m3. The fourth row shows results for the noSedi (panel g) and the full simulations (panel h). Apparently,10

the noSedi-simulations with larger ∆V converge to the solution we obtained before by using a sufficiently large κ. In full11

simulations, a ∆V -variation has basically no effect. The κ= 100,∆V = 10m3-simulation considered on average collisions12

between 5000 SIPs in each GB. Yet, the results are basically identical to the case κ= 5,∆V = 1m3 with 24 SIPs in each GB13

(which runs nearly 40000 times faster).14

In the present simulations where SIPs with weights ν > 1 are used, variations of the numerical parameter κ and the physical15

parameter ∆V are interconnected and their effects cannot be disentangled. Hence, the AON algorithm can only answer whether16

correlations matter in systems with a certain number of SIPs. These correlations are not necessarily the correlations one would17

see in a real system with millions to billions of real droplets. Nevertheless, the last sensitivity series implies that at least in our18

model system the importance of correlations are likely the same in a system with NSIP,GB = 24 and with NSIP,GB ≈ 5000.19

Assuming that the importance of correlations in a real system with billions of droplets is similar to that of a system with 500020

SIPs, the latter finding demonstrates that LCMs can capture the collection process with astonishingly few SIPs.21

The noSedi κ-sensitivity series as shown in panel c) was already presented in Fig. 18 of U2017. There it was found that for22

high enough κ the LCM0D results lie below the BIN0D reference contradictory to the present noSedi simulations. The reason23

for this inconsistency is a programming bug in the LCM0D-AON version used in U2017. The Hall/Long kernel values are24

stored in look-up tables and were wrongly accessed (overestimating the actual mass of the involved droplets by 2%). Hence,25

the collection process proceeded more rapidly in U2017. Despite this flaw, the main findings of U2017 remain valid. Yet the26

more rapid collection of LCM0D-AON in U2017 should clearly not be attributed to conceptual differences of AON and BIN27

algorithms.28

3.2.2 AON with linear sampling29

Figure 8 displays again the λ0-evolution in ∆t- and κ-sensitivity studies, now f or the WM3D version with linear sampling30

(LinSamp). The left/right column of the figure shows results without/with sedimentation. For the default time step of ∆t= 10s,31

results do not converge and are far off the desired result (first row). Reducing the time step to ∆t= 1s increases the number of32

tested collisions by a factor of 10. This seems to be a crucial point as the results now converge (second row); for the noSedi-case33

only for the highest κ-values, for the full simulation for any κ.34
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Figure 8. BoxModelEmul setup: The plots are analogous to Fig. 7 (all setup parameters are listed in that caption), now simulations with

linear sampling (as described in section 2.3.3) are depicted. The left column shows noSedi simulations, the right column shows LCM1D

simulations..

Finally, ∆t is varied between 1 and 20s. This is roughly the ∆t-range for which the QuadSamp simulations produced1

more or less converged results. Here, we find convergence only for time steps as small as 5s. We attribute this "delayed" ∆t-2

convergence to the fact that SIP combinations, where νcoll is limited to 0.99max(νi,νj), occur too often and that this "limiter"3

effect becomes negligible only for small enough time steps.4

In general, we find that switching off sedimentation in the LinSamp simulations deteriorates the convergence properties, as5

already seen in the QuadSamp simulations.6
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Figure 9. BoxModelEmul setup: The plots are analogous to Fig. 7 (all setup parameters are listed in that caption), now simulations with

explicit overtakes and a 2D well-mixed assumption (as described in section 2.3.2) are depicted. In the top panel overtakes are considered only

between SIPs inside the same GB, whereas the other panels show the regular version where overtakes are tested for all SIPs of the column.

.

All in all, convergence in the LinSamp simulations is reached only for smaller ∆t relative to the QuadSamp simulations.1

Hence, the potential benefit of the reduced computational cost may be outweighed by the stronger requirements on ∆t. In2

particular, in full 2D/3D LCMs also condensation/deposition and sedimentation has then to be solved more often unless subcy-3

cling is introduced. Whether LinSamp or QuadSamp is in the end more efficient in a full 2D/3D LCM may depend also on the4

simulated cloud type and the complexity of the LCM (inclusion of aerosol physics, chemistry or different hydrometeor types,5

e.g. as in Jaruga and Pawlowska, 2018; Brdar and Seifert, 2018). And indeed, Dziekan et al. (2019) presents 2D and 3D LCM6

simulations using the LinSamp approach and they see convergence only for a rather small time step of dt= 0.1s, which is7

probably caused by the slow convergence of LinSamp.8

3.2.3 AON version with explicit overtakes9

Next, we will discuss results of the AON-WM2D version with explicit overtakes. Figure 9 displays again the temporal evolution10

of λ0. For the chosen setup with homogeneous initial conditions and periodic boundary conditions, 3D well-mixedness of the11

SIPs is expected to be maintained over the course of the simulation. Hence, the AON-WM3D and AON-WM2D version are12
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Figure 10. BoxModelEmul setup: The plots are analogous to Fig. 7 (all setup parameters are listed in that caption) and the sensitivity to κ

is depicted for simulations with initial LWC = 1.5 g/m3. The left and right panel juxtapose noSedi and full simulations.

supposed to produce similar outcomes. Panel a shows results for the version where only intra-GB overtakes are considered.1

Results are far off the benchmark curve, only for the smallest time step of ∆t= 0.5s they tend to approach the reference. Panel2

b shows the same ∆t-variation (down to ∆t= 2s) for the version where overtakes are considered across the full column. In3

the present example, it was also necessary to check for overtakes across the periodic boundary. Then, convergence is reached4

for ∆t≤ 10s, very similar to the regular AON-WM3D version. The bottom row shows a slight dependence on κ, yet AON5

WM2D results seem to converge to the WM3D-results.6

Overall, we can conclude that the feasibility and correct implementation of the WM2D-variant was demonstrated, with the7

caveat that overtakes have to be considered in the full column.8

3.2.4 Microphysical and bin model sensitivities9

So far, all simulations were initialised with the same initial DSD, the same collection kernel, and the results are compared to10

the same bin reference. Accordingly, in this section, we perform simulations with modified LWC,r0 and DNC. Moreover,11

we highlight the effect of the employed kernel on the AON performance. And finally, we also present bin model sensitivities12

(namely, we switch from Bott’s algorithm to Wang’s algorithm and vary the bin resolution and the time step).13

In a first experiment, we increase LWC by a factor of 1.5 and do again a κ-sensitivity test (Fig. 10). We keep DNC fixed14

and hence the mean radius is r0 = 9.3µm× 1.5(1/3) = 10.7µm. Compared to the base case with LWC = 1g/m3, λ0 starts to15

decrease after 20 minutes (instead of 40 min) and λ0 decreases below 104 cm−3 (instead of 106 cm−3). In the full simulations16

(right panel), we again find results nearly independent of κ. In the noSedi-sims (left panel), fewer SIPs are necessary to obtain17

reasonable results compared to the base case (see Fig 7c).18

In a next step, the characteristics of the initial DSD are more flexibly varied for fixed κ= 40. For such a κ-value the noSedi-19

simulation of the base case was considerably off the reference. Figure 11 shows the temporal evolution of the mean diameter,20

λ0 and λ2 (from top to bottom) over 100min. Simulations with the Bott model are contrasted with the regular AON-WM3D,21
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Figure 11. BoxModelEmul setup: Figure analogous to Fig. 7 (all setup parameters are listed in that caption), now displaying also the

temporal evolution of the mean diameter (top row) and the second moment λ2 (bottom row) additional to λ0 (middle row). Variations of

the initial size distribution parameters LWC = λ1(t= 0), r0 and DNC = λ0(t= 0) are performed. The first and second column show a

variation of LWC (see inserted legend) for either fixed DNC or r0. The third column shows a DNC-variation for fixed LWC. Four

different models are used (AON-WM3D, AON-WM2D, noSedi and BIN1D; see legend in top right panel).

Figure 12. BoxModelEmul setup: The plots are analogous to Fig. 7 (all setup parameters are listed in that caption) and the sensitivity to κ

is shown for simulations with the Hall kernel. The left and right panel juxtapose noSedi and full simulations. Unlike to previous plots, the

y-axis uses a linear scale.

AON-WM2D and AON-noSedi. The first two columns show simulations for a variation of the initial LWC0 = λ1(t0), for1

either fixed droplet number or fixed mean radius. The right-most column shows a variation of the initial droplet number. The2
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Figure 13. BoxModelEmul setup: The plots are analogous to Fig. 7. The left and right panel juxtapose BIN results with Bott’s and Wang’s

algorithms. The default parameters are s= 4 and dt= 10s. Unlike to the AON case, the choice of nz is irrelevant.

default value (denoted as "1" in the legend) is scaled by factor of 1.5,2.0 or 2.5 (for a LWC-variation) and 0.5,0.7 or 1.5 (for1

a DNC-variation). We find for most cases, that the three model versions produce very similar λ2-evolutions. The bin model2

predicts in all cases slightly higher droplet numbers λ0 than the AON version. The WM2D are in between the WM3D and the3

bin model. As a consequence, the mean droplet diameter increases the fastest with the WM3D version.4

Figure 12 shows simulations where the Long kernel is replaced by the Hall kernel. The decrease in DNC occurs at a slower5

rate (the y-scale now uses a linear scale). For the full simulations (right), we obtain perfect agreement for any chosen κ-value.6

Moreover, convergence with κ in the noSedi-simulations (left) is less critical than in the base case and results converge for7

κ≥ 40.8

We conclude the box model emulation section by showing sensitivities of the bin model approach. For this, we vary the bin9

resolution s and the time step for the base case with LWC = 1g/m3 and Long kernel. The default time step is again dt= 10s10

and the bin resolution is s= 4. The left and right column of Fig. 13 show results obtained with Bott’s and Wang’s algorithm,11

respectively. The black reference curve in Figs. 6 to 9 are data from Wang’s algorithm with s= 16 and dt= 1s and is also added12

to the present plot for orientation. We find that Bott’s algorithm converges for s≥ 2. For higher resolutions, Wang’s algorithm13

does not produce stable results for dt≥ 10s and the time step had to be reduced (see inserted legend, for the combination of14

s and dt). For s≥ 8 results have converged to the reference. The second row shows the time step dependency for a medium15

resolution of s= 4. Bott’s results are reliable for dt as high as 100s and converge for dt≤ 20s. On the other hand, Wang’s16

algorithm requires dt≤ 10s and convergence is reached for dt≤ 5s. Overall, we can conclude that both algorithms converge17

to the same values, given a sufficiently high s and low dt is chosen. As Bott’s algorithm seems to be more robust than Wang’s18
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Figure 14. BoxModelEmul setup: Time series of number of events in the various AON implementation. Shown are the number of tested

SIP combinations, of overtakes, of no collection, of a single collection, of a multiple collection in every time step. Additionally, the number

of limiter cases, where ncoll had to be artificially reduced, is shown (occurs only in the LinSamp-panel). The parameter setup is given in the

text. In the WM2D-panel, the dotted lines show the case with dz = 10m. In the LinSamp-panel, the dotted lines show the 1s-simulation.

The displayed numbers can be below unity, as averages over 20 instances are shown.

algorithm, all following bin model simulations are carried out with this algorithm. Comparing the various collection algorithms,1

we find that Bott’s algorithm has the least requirements in terms of bin resolution and time step as we have converged results2

for t up to 100s and s as low as 2. AON simulations may converge for κ= 5 (corresponds roughly to s= 2) and dt= 10s if3

GBs of the column are sufficiently interconnected and averaging over several realisations is done. Wang’s algorithm produces4

correct solutions for s= 4 and dt= 5s, yet increasing the bin resolution has to be done hand in hand with a reduction of the5

time step.6

3.3 Analysis of the "algorithmic interior"7

Now, we turn the attention to the processes in the "algorithmic interior" of the various AON versions. Figure 14 and Tab. 2 give8

an example of how often collections occur in the model. For AON-WM2D, also the number of overtakes is given. The listed9

numbers give a rough indication of the importance of the various events (overtake, no collection, single collection, multiple10

collection, limiter), yet we want to note the caveat that the relative importance changes with a change of the parameter setup.11

Here, results are shown for the specific setup with nz = 20,nrinst = 10,∆V = 1m3,∆t= 5s,∆z = 50m and κ= 40. The12

figure shows qualitatively the number of occurences as a function of time, whereas the table gives aggregate values for three13

20 min blocks and the total 60 min simulation period. In both WM3D versions (regular QuadSamp and LinSamp), the number14

of tested SIP combinations N comb is constant over time. Clearly, the LinSamp value is smaller by a factor of 200 (=NSIP).15

For the WM2D-approach, on the other hand, N comb increases over time as the DSD gets more mature and larger droplets fall16
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Table 2. BoxModelEmul setup: Number of events for various AON model variants for the parameter setup given in the text. Ncomb

is the number of tested SIP combinations and NLI is the number of limiter cases, where ncoll had to be artificially reduced. Moreover,

ηOT ,ηNO,ηSI and ηMU specify the number of overtakes, no collections, single collections and multiple collections divided by Ncomb. The

two last columns shows summed up pcrit (summed over all times and SIP combinations/overtakes) and the average pcrit. For each model

variant, the first three rows show aggregate values over three time periods (0− 20min,20− 40min and 40− 60min) and the fourth row

values for the full time period.

Model variant tested SIP overtakes no single multiple limiter
∑
pcrit p̄crit

combinations collection collection collection event

Ncomb ηOT ηNO ηSI ηMU NLI

9.44e7 - 100.0% 0.0% 0.0% 0 2.91e4 3.08e-4

block #1 9.44e7 - 97.0% 1.2% 1.8% 0 4.25e7 4.50e-1

AON WM3D 9.45e7 - 91.2% 2.5% 6.3% 0 1.95e8 2.06e0

2.83e8 - 96.1% 1.3% 2.7% 0 2.38e8 8.38e-1

1.49e6 13.9% 12.7% 0.8% 0.3% 0 2.70e4 1.30e-1

block #2 3.83e6 34.7% 11.9% 4.5% 17.8% 0 3.64e7 2.74e1

AON WM2D 1.77e7 44.1% 12.1% 6.4% 25.3% 0 2.15e8 2.75e1

2.30e7 40.6% 12.2% 5.8% 22.5% 0 2.52e8 2.69e1

3.64e6 28.6% 27.7% 0.7% 0.0% 0 2.85e4 2.74e-2

block #3 1.53e7 43.9% 22.0% 6.5% 14.9% 0 3.62e7 5.37e0

AON WM2D, dz = 10m 8.89e7 47.5% 23.9% 8.4% 15.0% 0 1.79e8 4.24e0

1.08e8 46.4% 23.8% 7.9% 14.5% 0 2.15e8 4.31e0

4.76e5 - 98.0% 1.6% 0.5% 0 2.89e4 6.07e-2

block #4 4.76e5 - 90.9% 2.2% 6.9% 122 3.48e7 7.32e1

AON WM3D, LS 4.76e5 - 76.3% 3.2% 20.5% 1343 3.21e8 6.75e2

1.43e6 - 88.4% 2.3% 9.3% 1465 3.56e8 2.49e2

2.38e6 - 99.3% 0.6% 0.1% 0 3.31e4 1.39e-2

block #5 2.38e6 - 93.0% 1.7% 5.3% 14 4.45e7 1.87e1

AON WM3D, LS, dt= 1s 2.38e6 - 84.6% 2.1% 13.3% 24 2.14e8 8.99e1

7.14e6 - 92.3% 1.5% 6.2% 38 2.58e8 3.62e1

faster. Relative to the regular WM3D, N comb of WM2D is at any time smaller. In the beginning of the simulation, possible1

overtakes occur among relatively few SIPs; much fewer on average than there are in a GB, hence the total N comb is around a2

factor 60 smaller (in the first 20 minutes; 9.44 · 107 vs. 1.49 · 106). Even towards the end of the simulation, many SIPs are still3

small and travel through a small fraction of the GB. Only few SIPs grow to rain drop size and travel distances of order ∆z. The4

table shows that the total (time-integrated) N comb is more than a factor 12 smaller for WM2D than for WM3D (2.30 · 107 vs.5
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2.83·108). This demonstrates the numerical efficiency of the current WM2D implementation despite a theoretically unfavorable1

computational complexity with a factor nz higher N comb compared to the regular WM3D version. Moreover, the workload per2

time step is constant in the WM3D-versions and determined solely by NSIP. In the WM2D-version, the workload depends3

additionally on the properties of the DSD and also on ∆z. If ∆z is reduced by a factor of 5 (see block #3 in the table), N comb4

roughly increases by the same factor.5

In the table, the ratios ηNO,ηSI and ηMU (find their definitions in the caption of the table) add up to 100% for WM3D6

(QuadSamp and LinSamp). In the regular WM3D version, only 1.3% and 2.7% of all tested combination lead to a single7

or multiple collection. So, for most combinations pcrit is close to zero and makes a collection unlikely. On the other hand,8

for favourable SIP combinations pcrit can be far above 1 (imagine a SIP combination with νi = 106,νj = 102 and νcoll = 1049

yielding pcrit = 100). This also explains the somewhat surprising fact that the average p̄crit is close to unity (= 0.83, see right-10

most column). The PDF (probability density function) of all pcrit-values is strongly right-skewed (not shown). In the LinSamp11

case, single and multiple collections occur in 2.3% and 9.3% of the tested combinations. Collections are more likely as p̄crit12

is larger due to the upscaling. Moreover, νcoll had to be artificially reduced in NLI ≈ 1400 cases. Note that such limiter cases13

do not appear in the QuadSamp simulations. In the LinSamp version, NLI can be cut down by choosing a smaller time step14

(see fourth block in table). Using dt= 1s leads to 5 times smaller pcrit-values, increases ηNO, and decreases ηSI and ηMU .15

Limiter cases appear only in 38 of all combinations. For clarification, pcrit of a single SIP combination scales with dt−1; from16

this, however, does not follow that the listed p̄crit-values of the two LinSamp simulation differ by a factor of 10, as the DSDs17

and SIP ensembles/weights evolve differently in the two simulations.18

Finally, we focus on the WM2D-version (block #2). Here, the sum of ηNO,ηSI and ηMU yields ηOT , and not 100% as19

before. In the end, around 40% of all tested SIP combinations undergo an overtake. This quite large fraction comes from the20

fact that the DSD (or more precisely the size distribution of the SIPs) features a strong bimodal spectrum. So most tested21

combinations are combinations between a large collector SIP i and a small SIP j with zi > zj . Tested SIP combinations fulfill22

by design zi(t+ ∆t)< zj(t). For small SIPs j, zj(t+ ∆t) = zj(t+ ∆t)− ε holds. As ε is a small distance, it is likely that23

zi(t+∆t)< zj(t+∆t) is fulfilled, i.e. SIP i overtakes SIP j. In more than every second overtake, a multiple collection occurs24

(i.e. ηMU/ηOT = 0.56). In one eights/one third of the overtakes a single/no collection happens. So the relative importance of25

the various events is quite different compared to the regular AON and also p̄crit is three times larger (2.69 vs. 0.83). Note that26

Changing dz in the WM2D-simulation (block #3) also affects the relative occurences of no/single/multiple collections.27

In all five setups we find, that in the end more multiple collections than single collections appeared. Except for the LinSamp28

version with dt= 10s, the simulations converge. Clearly, the occurence of multiple collections in a simulation does not nec-29

essarily deteriorate the simulation results. It is certainly not the case, that the time step choice or adaptation must be such that30

multiple collections barely appear in a simulation. The present analysis only shows a correlation between the appearance of31

limiter cases and a non-converged simulation. Strictly speaking, we cannot even say that the limiter cases are the reason for the32

failure.33

Several of the above findings may hold only for the specific setup used here. To put the findings into a broader context,34

we next derive scaling relations for basic numerical quantities and, in particular, discuss their sensitivity to the time step and35
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the number of SIPs. For a simplified presentation, we limit ourselves to the WM3D versions with QuadSamp and LinSamp1

and assumed converged simulation results and no limiter events. Moreover, we assume that an increase of NSIP leads to an2

uniform decrease of all SIP weights νp.3

For the following basic quantities we have4

νp ∝
1

NSIP
; nt∝ 1

δt
; Ncombs ∝NSIP α; γcorr ∝NSIP β , (27)5

where γcorr is the correction factor defined in Eq. 25. For QuadSamp α= 2,β = 0 and for LinSamp α= 1,β = 1.6

Accordingly,7

νcoll ∝
1

NSIP
2 × δt, (28a)8

νsum :=
nt,Ncombs∑

(νcoll γcorr)∝
NSIP

α+β

NSIP
2 = 1, and (28b)9

p̄crit :=
1

Ncombs nt

nt,Ncombs∑
(νcoll/νp γcorr)∝NSIP β−1 δt. (28c)10

In all versions νsum is independent of NSIP and δt. Clearly, νsum should have the same value (not only the same asymptotic11

behavior) across all AON versions in order to obtain consistent results. The average probability p̄crit scales, not surprisingly,12

linearly with δt. For QuadSamp, p̄crit is inversely proportional to NSIP and an increase of NSIP decreases the occurence of13

multiple collections and limiter events. In the LinSamp case, p̄crit is independent of NSIP (as already pointed out by Shima14

et al., 2009, end of their section 5.1.3) implying that an increase of NSIP does not decrease the number of multiple collections15

and limiter events. Nevertheless, anNSIP -increase is also beneficial in LinSamp as it increases the number of trials and reduces16

the variance of the results.17

3.4 Full column model simulations18

The box model emulation simulations presented in Sec. 3.2 used an academic and irrealistic setup, not yet exploiting the19

capabilities of a column model framework. The following two subsections treat realistic setups.20

3.4.1 Half domain setup21

We initialise droplets in the upper half of a 4km column. In each GB the mean radius of the DSD is fixed at the default value22

r0 = 9.3µm. LWC (and with it DNC) decreases linearly from 3 g/m3 at the model top to zero at z = 2km. At the model23

top, a constant influx of a DSD with LWC = 3 g/m3 is prescribed which guarantees a smooth profile over time. Otherwise, a24

discontinuity would occur at the top-most GB which may raise problems in the bin model.25

The further settings are nz = 400, ∆z = 10m, ∆t= 10s, nrinst = 20, κ= 40. Figure 15 shows the temporal evolution of26

the mean diameter and the moments λ0,λ1 and λ2. Due to the influx condition, the total mass increases during the first 10 min-27

utes, barely visible in the third panel. During this period, however, collection is already efficiently reducing the droplet number.28

This is accompanied by an increase of the mean diameter and radar reflectivity. Soon after, the first droplets reach the surface,29
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Figure 15. HalfDomLinDec setup: Temporal evolution ofDmean and column-averaged moments λ0,λ1 and λ2 for various model versions

(see inserted legend; "LS" is short for linear sampling). .

the mass declines rapidly, and the whole column is more or less washed out after 30 minutes. We find an excellent agreement1

among the three model versions BIN1D, AON-WM3D and AON-WM2D. Using LinSamp in AON-WM3D, agreement with2

the other models is reached only if the time step is reduced (here from ∆t= 10s to 1s).3

Figure 16 shows vertical profiles ofDNC,LWC,Z andNSIP,GB for times t= 0,10min,20min,30min and 60min. In the4

upper half, droplet number is roughly homogeneously distributed and decreases over time. In the lower half, droplet number5

concentrations are several orders of magnitude smaller than in the upper half and increase over time. The profile of the radar6

reflectivity shows the highest values after 10 minutes with a pronounced peak in the middle of the domain. Soon after, the7

Z-profiles become smooth and increase monotonically towards the surface. The sedimentation flux also increases towards the8

surface and hence λ2-values decrease over time.9
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Figure 16. HalfDomLinDec setup: Vertical profiles of moments λ0,λ1,λ2 and NSIP,GB for various model versions (AON-WM3D, AON-

WM2D, Bin; see color legend in left-most panel) and times (0,10,20,30,60min; see linestyle legend in right-most panel).

Figure 17. HalfDomLinDec setup: Size distribution glnr for various model versions and times as in Fig. 16 (see legends there).

In the upper half, NSIP,GB is fairly constant over altitude and time with around 200 SIPs. As the LWC is initially highest1

at the model top, collections are most frequent there. Most likely, SIPs from that layer turn into collector SIPs and fall through2

the total column. Consistently, NSIP,GB decreases over time close to the model top. Yet overall, only a small fraction of the3

SIPs becomes rain drops eventually (see e.g. Fig. 4 in U2017) and hence the SIP number is substantially smaller in the lower4

half. There, each GB is populated roughly by 10 SIPs. Despite this rather small value, convergence in DNC and Z seems to5

be ubiquitous.6

Figure 17 depicts column-averaged DSDs for various points in time. The precipitation mode develops rapidly, and 2 to 3mm-7

sized drops are produced within 10 minutes. Those drops soon reach the surface and remove a significant amount of liquid8
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Figure 18. HalfDomLinDec setup: Temporal evolution of column-averaged moments λ0 and λ2 for various model versions (AON WM2D,

left; AON WM3D, middle; Bin, right). Each panel shows a variation of the vertical resolution ∆z (see legend). In LCM simulations, SIP

numbers for ∆z = 100m and 50m-simulations are increased to the level of the ∆z = 10m-simulation. The right column shows MPDATA

(solid) and US1 (dotted) results.

water from the column. Due to this wash-out effect, the rain drops cannot grow that large any longer and the precipitation1

mode peaks at smaller sizes at later times. Overall, the agreement between the three model versions is remarkable given the2

completely different numerics of the Eulerian and Lagrangian approach.3

Next, the vertical resolution ∆z is varied in all three model versions. Even though this sounds like a banal sensitivity study,4

the effect of a ∆z-variation has different implications in the various model variants and the differences are rather subtle. First,5

∆z affects the number of GBs nz and with it the total SIP number NSIP,tot (as NSIP,GB is unchanged with the standard6

SIP init technique). To eliminate this unwanted numerical side effect in LCM1D, we increase NSIP,GB proportionally to ∆z7

(analogous to the ∆V -sensitivity tests in section 3.2). Second, the advection by sedimentation changes in BIN as the CFL8

number changes and the subcycling has to be adapted. In LCM1D, the SIP transport by sedimentation is independent of the9

assumed grid and clearly unaffected by a ∆z-variation. Third, there is a physical effect as ∆z determines the layer depth of the10

well-mixed volume (effective only in AON-WM3D and BIN).11

It follows that the results of the AON WM2D version should be independent of ∆z. Moreover, the AON-WM3D variant can12

be used to determine if the size (more specifically the depth) of the well-mixed volume is a crucial parameter. In bin models in13

general, the latter effect could not easily be singled out as sedimentation numerics also change with ∆z.14

Figure 18 depicts the evolution of λ0 and λ2 for ∆z ranging from 2m to 100m. As expected, the AON WM2D simulations15

are not at all affected by ∆z (left column). The middle column shows the AON-WM3D simulations. The ∆z = 10m simulation16

usesNSIP,GB = 200 and the ∆z = 100m-simulationNSIP,GB = 2000. Hence, a factor 100 more SIP combinations are tested17

for possible collections in the latter case. Nevertheless, the results are basically identical, implying that the depth of the well-18

mixed volume has a negligible impact on the extent of collections in the present example. The right column shows the BIN19

results which are again basically identical, using the MPDATA scheme (solid) and the 1st order upwind scheme (dotted). The20
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Figure 19. EmptyDom setup: Vertical profiles of moments λ0,λ2,Dmean and NSIP,GB for various model versions (see legend). Depicted

are the times t= 30 and 60 minutes (solid, dotted).

slight deviations in λ0 may be due to the fact, that in a bin model the vertical redistribution by sedimentation is also affected1

by ∆z. Due to stability issues, the time step (for collection) had to be reduced from ∆t= 10s to 1s for US1. Then, reasonable2

results are achieved for ∆z ≥ 10m. For the highest resolution ∆z = 2m, however, numerical instabilities are still present (see3

outlier curve). This is a clear indication for the superiority of MPDATA in BIN.4

3.4.2 Empty domain setup5

In this section, the 4km deep column is initially devoid of droplets and a time-constant influx of a DSD with r0 = 16.9µm and6

LWC = 6g/m3 is prescribed. As in the box model emulation setup, the according DNC is 297cm−3.7

Over time the column fills with droplets, a distinct size sorting is established and DSDs at a specific altitude are expected to8

be rather narrow. Hence, choosing a too coarse vertical resolution may result in overestimating collections as the droplets are9

not supposed to be well-mixed within such deep GBs. In such a case, the AON WM2D variant has a conceptional advantage as10

it does not assume well-mixedness in the vertical direction. The chosen setup specifically aims at demonstrating the possible11

improvement of this. Again, the further parameter settings are nz = 400, ∆z = 10m, ∆t= 10s, nrinst = 20, κ= 40.12

Figure 19 shows vertical profiles at t= 30 and 60 minutes. After 30 minutes the cloud roughly covers the top half of the13

column. Below z = 2km, fewer than 0.1 SIPs are present in each GB of LCM1D. This implies that only in 1 or 2 out of14

the 20 realisations SIPs grow sufficiently large to fall that far. This also explains the jagged λ2-profiles in the lower part.15

Below a certain altitude, no SIPs are present at all and hence no mean droplet diameter could be diagnosed. BIN produces16

non-zero mass and number all the way down to the bottom and allows computing a smooth Dmean-profile. As the predicted17

droplet masses become vanishingly small, the derivedDmean-values in the lower part are, however, meaningless. Anyhow, this18

small discrepancy between BIN and LCM1D is a transient phenomenon. Once the cloud is fully developed, the profiles match19

perfectly (see dotted curve for t= 60min). Remarkable is the fact that on average well below 10 SIPs populate GBs in the20
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Figure 20. EmptyDom setup: Temporal evolution of Dmean and column-averaged moments λ0 and λ2 for various model versions (see

legend).

lower domain half. Nevertheless, the LCM1D results seem to be converged. SIPs at those altitudes are large (Dmean > 400µm)1

and fall fast, which fosters a strong SIP exchange across GBs and is beneficial to convergence (see section 3.2).2

Figure 20 shows the temporal evolution of the mean diameter, column-averaged DNC and Z. Within the first 10 minutes,3

DNC increases quickly. Soon after, collection becomes effective and DNC reaches a quasi steady state. The radar reflectivity4

increases within the first 60 minutes and then also reaches a quasi steady state. The only discrepancy between the various5

models are slightly larger DNC-values with LCM1D. The reason for this is elucidated next.6

Fig. 21 shows the ∆z-dependence of the DNC and Z-evolution in the different models. For ∆z = 50 and 100m, the SIP7

numbers in LCM1D have been upscaled to maintainNSIP,tot-values comparable to the ∆z = 10m-simulation (as already done8

in the HalfDom-setup). The Z-evolution (second row) is found to be basically independent of ∆z in all three models. For the9

DNC-evolution, we find also no ∆z-dependence in the WM2D-model as intended. However, in WM3D and BIN model, DNC10

levels off at different values depending on ∆z. This latter behavior is most likely caused by an interaction of the unresolved11

size sorting and the hence larger range of potential collection partners in AON-WM3D and BIN. Apparently, this results in12

changes in the rate with which the smallest droplets are collected by larger droplets, as indicated by the substantial effect of13

this process on DNC but not on Z.14
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Figure 21. EmptyDom setup: Temporal evolution of column-averaged moments λ0 and λ2 for various model versions (AON-WM2D, left;

AON-WM3D, middle; Bin, right). Each panel shows a variation of the vertical resolution ∆z (see legend). In LCM simulations, SIP numbers

for ∆z = 100m and 50m-simulations are increased to the level of the ∆z = 10m-simulation.

For ∆z = 100m and ∆z = 10m, Figure 22 shows the DNC-evolution of the WM3D-model with different parameter set-1

tings. The green curves shows the default case from before, where the ∆z = 100m-simulation uses a "10x" higher NSIP,GB-2

value. We used LinSamp instead of QuadSamp (red), further decreased the time step from ∆ = 10s to 1s or used for both3

resolutions the same NSIP,GB-value (which reduces NSIP,tot of the ∆z = 100m-simulation by a factor of ten). In all cases,4

the ∆z-dependence appears consistently in all parameter settings.5

This undesired ∆z-dependence in BIN and WM3D seems to showcase the superiority of the AON-WM2D implementation.6

However, the ∆z-dependence does not affect higher moments of the DSD, e.g., Z (Figs. 20 and 21) or the accumulated size7

distribution of all droplets that crossed the lower boundary (Fig. 23). Accordingly, precipitation-related quantities seem to be8

unaffected by changes in the vertical grid spacing. On the other hand, most of the ∆z-effect can be attributed to changes in the9

DNC within the top most 100− 200m of the column (Fig. 19), which might affect the radiative properties of the considered10

cloud. Anyhow, we cannot definitely answer the question, whether using the AON-WM2D approach has any practical benefits11

over the classical 3D well-mixed approaches based on the presented results. Further research is required.12

13

4 Summary and conclusions14

Collection, i.e., the coalescence, accretion, and aggregation of hydrometeors, is an important process for the development15

of precipitation in liquid-, mixed-, and ice-phase clouds, respectively. Moreover, aggregation leads to irregular ice crystal16

shapes affecting the cloud radiative properties. The correct representation of these processes in cloud microphysical models17

is, therefore, of utmost importance. In this study, we investigated and validated the representation of collection in LCMs, a18

relatively new approach that uses simulation particles, so-called SIPs or superdroplets, to represent cloud microphysics.19
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Figure 22. EmptyDom setup: Temporal evolution of column-averaged moments λ0 and λ2 for the AON-WM3D model. Results for various

parameter settings (see legend) are depicted for ∆z = 100m (solid) and ∆z = 10m (dotted).

Figure 23. EmptyDom setup: Size distribution of all droplets that crossed the lower boundary. AON-WM3D (dotted) and AON-WM2D

(solid) results for various vertical resolutions ∆z are displayed (see inserted legend for the color coding).

This study is a continuation of U2017, in which we analyzed various representations of collection in LCMs using zero-1

dimensional box model simulations. Here, this analysis is extended to one-dimensional column simulations that allow consid-2

ering the effects of sedimentation explicitly. This study focuses on the AON collection algorithm (Shima et al., 2009; Sölch3

and Kärcher, 2010) that outperformed other collection approaches, as assessed in our previous study (U2017). Two variants of4

AON are applied that differ in the assumed distribution of droplets represented by a SIP: In WM3D, the droplets are assumed5

to be well-mixed within a three-dimensional volume (which is typically identical to the GB of the dynamical model coupled6

to the LCM). In WM2D, the height coordinate of each SIP is used explicitly, and the droplets represented by a SIP are as-7

sumed to be well-mixed only within a two-dimensional, horizontal plane. Accordingly, collections are only considered if a SIP8
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overtakes another one during a timestep. Furthermore, two variants of AON-WM3D are tested that differ in the number of SIP1

combinations that need to be tested during collection. In its simplest form, AON-WM3D depends quadratically on the number2

of SIPs since every SIP may interact with any other SIP inside a GB (QuadSamp). Additionally, Shima et al. (2009) introduced3

an approach that depends only linearly on the number of SIPs by appropriately scaling collection probabilities (LinSamp).4

All results are compared to established Eulerian bin model results (Bott, 1998; Wang et al., 2007). Accordingly, the capability5

of Lagrangian and Eulerian approaches to advect a droplet ensemble due to sedimentation is tested first — neglecting the6

influence of collection. Since numerical diffusion is inherent to any Eulerian advection problem, i.e., also sedimentation, its7

impact might impede any conclusions drawn from the collection simulations. However, by using an appropriate advection8

scheme (MPDATA, Smolarkiewicz, 1984), numerical diffusion can be reduced to an acceptable degree in the sense that the9

present simulations focus on the differences driven by collection numerics.10

To bridge the gap to U2017, the behavior of box model simulations is emulated in the column model. This is done by11

initialising each GB of the column with the same droplet size distribution and applying cyclic boundary conditions at the12

surface and the top. By using this framework, we were able to show that sedimentation increases the model convergence13

rate significantly compared to box model simulations without sedimentation, i.e., significantly fewer SIPs are required in the14

column model. The reason for this behavior is that the largest and hence fastest falling droplets are no longer confined to the15

same GB and to the same potential collection partners, hence increasing the ensemble of potential collection partners. A similar16

observation has been made by Schwenkel et al. (2018), who used randomized motions between individual GBs. Overall, these17

results indicate that a simulation with only 24 SIPs per GB can yield reasonable results if (i) these SIPs are able to move18

between GBs and (ii) the SIP weighting factors are ideally chosen in the beginning by using an approriate SIP initialisation19

technique.20

A generally good agreement of the LCM results with the bin reference has been found for all AON variants. However,21

they reveal distinct differences in their numerical and computational requirements. LinSamp demands a shorter timestep than22

QuadSamp as a result of the upscaled collection probabilities to avoid SIPs with a zero (or even negative) weighting factor.23

And indeed, fully coupled LCM applications with AON and LinSamp are reported to require a relatively short timestep to24

reach convergence (e.g., Dziekan et al., 2019). Accordingly, these strong restrictions on the timestep might cancel out the25

computational benefit gained by the reduced number of SIP combinations that need to be tested in LinSamp. This indicates26

that the simpler QuadSamp might be a valuable alternative to LinSamp as long as the number of SIPs is not prohibitively high.27

We further compared the computational requirements for the WM2D and WM3D implementations of AON. We found that28

WM2D requires to check for overtakes in the entire column, not only in the GB in which the SIP is located, as is the case for29

WM3D. However, this seeming disadvantage is turned into an advantage, since only a minority of SIPs overtakes other SIPs.30

Accordingly, the overall number of calculations necessary for the application of WM2D is reduced compared to WM3D. The31

physical reason for this effect is the typical bimodal structure of droplet spectra, which consist of only a few large droplets that32

sediment and collect other droplets efficiently, while the remaining droplets are usually too small to sediment and collect other33

droplets.34
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Finally, we applied these approaches to two more realistic column cases. While both cases use a prescribed inflow of droplets1

from the top, the first case is initialised with a linearly increasing liquid water content, and the second case is completely devoid2

of any initial droplets. Overall, the agreement of AON-WM3D, AON-WM2D, and the bin references is remarkable. Only in3

the second case, which is designed to be heavily prone to size-sorting, a dependence on the vertical grid spacing is detectable4

for WM3D and the bin reference, which both assume the droplets to be well-mixed within a GB, while the WM2D results are5

found to be completely independent of the vertical grid spacing.6

All in all, this study has shown that the representation of collection in LCMs using AON with WM3D and WM2D reproduces7

established Eulerian bin results successfully. This ability, of course, depends foremost on the number of SIPs and the applied8

timestep as already indicated in previous zero-dimensional box model studies. Compared to these zero-dimensional studies, the9

application of an LCM in a column decreases the required number of SIPs significantly. The consequently lower computational10

costs raise hopes to use LCMs more frequently in large-scale, multidimensional models in the future.11
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