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Abstract. Lagrangian cloud models (LCMs) are considered the future of cloud microphysical modeling. Compared to bulk1

models, however, LCMs are computationally expensive due to the typically high number of simulation particles (SIPs) nec-2

essary to represent microphysical processes such as collisional growth of hydrometeors successfully. In this study, the repre-3

sentation of collisional growth is explored in one-dimensional column simulations, allowing for the explicit consideration of4

sedimentation, complementing the authors’ previous study on zero-dimensional collection in a single grid box. Two variants5

of the Lagrangian probabilistic all-or-nothing (AON) collection algorithm are tested that mainly differ in the assumed spatial6

distribution of the droplet ensemble: The first variant assumes the droplet ensemble to be well-mixed in a predefined three-7

dimensional grid box (WM3D), while the second variant considers the (sub-grid) vertical position of the SIPs, reducing the8

well-mixed assumption to a two-dimensional, horizontal plane (WM2D). Since the number of calculations in AON depends9

quadratically on the number of SIPs, an approach is tested that reduces the number of calculations to a linear dependence (so-10

called linear sampling). All variants are compared to established Eulerian bin model solutions. Generally, all methods approach11

the same solutions, and agree well if the methods are applied with sufficiently high resolution (foremost the number of SIPs,12

and to a lesser extent time step and vertical grid spacing). Converging results were found for fairly large time steps, larger13

than those typically used in the numerical solution of diffusional growth. The dependence on the vertical grid spacing can14

be reduced if AON-WM2D is applied. The study also shows that AON-WM3D simulations with linear sampling, a common15

speed-up measure, converge only slightly slower compared to simulations with a quadratic SIP sampling. Hence, AON with16

linear sampling is the preferred choice when computation time is a limiting factor.17

Most importantly, the study highlights that results generally require a smaller number of SIPs per grid box for convergence18

than previous one-dimensional box simulations indicated. The reason is the ability of sedimenting SIPs to interact with a19

larger ensemble of particles when they are not restricted to a single grid box. Since sedimentation is considered in most com-20

monly applied three-dimensional models, the results indicate smaller computational requirements for successful simulations,21

encouraging a wider use of LCMs in the future.22
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1 Introduction1

Clouds are a fundamental part of the global hydrological cycle, responsible for the transport and formation of precipitation.2

While we expect a global increase in precipitation due to climate change, our knowledge on its spatial distribution, including3

even decreasing rainfall in some regions of the globe, is still uncertain (Boucher et al., 2013). The formation processes of4

precipitation are, however, reasonably understood and contain mechanisms that increase the size of hydrometeors. For liquid5

clouds, the coalescence of smaller cloud droplets is essential to form precipitating raindrops. In ice clouds, diffusional growth6

can produce precipitation-sized particles. The aggregation of ice crystals into larger clusters, snowflakes, also occurs frequently.7

And in mixed-phase clouds, ice crystals accrete supercooled liquid droplets forming graupel or hailstones.8

The representation of these microphysical processes in climate models is impelled by the available computational resources,9

requiring necessary idealisations. Primarily, this is the case for computationally efficient Eulerian bulk models that predict10

only a small number of statistical moments for each hydrometeor class (e.g., Kessler, 1969; Khairoutdinov and Kogan, 2000;11

Seifert and Beheng, 2001), with commensurate limitations for the representation of clouds and precipitation. Of course, more12

detailed cloud microphysics models have also been developed: Eulerian bin models represent cloud droplets on a mass grid that13

consists of hundreds of bins sampling the droplet size distribution (DSD) (e.g., Berry and Reinhardt, 1974; Tzivion et al., 1987;14

Bott, 1998; Simmel et al., 2002; Wang et al., 2007). But even these models exhibit limitations and idealisations. For instance,15

the coalescence of droplets is modelled as a Smoluchowski (1916) process, describing the mean evolution of an infinitely16

large, well-mixed droplet ensemble. But the underlying Smoluchowski equation (also called the kinetic collection equation or17

even the stochastic collection equation, although the equation is deterministic) inherently neglects correlations and stochastic18

fluctuations known to be an integral part of the process chain that leads to precipitation (Gillespie, 1972; Bayewitz et al., 1974;19

Kostinski and Shaw, 2005; Wang et al., 2006; Alfonso et al., 2008).20

In the last decade, Lagrangian cloud models (LCMs) emerged as a valid alternative to bin models (e.g., Andrejczuk et al.,21

2008; Shima et al., 2009; Sölch and Kärcher, 2010; Riechelmann et al., 2012; Arabas et al., 2015; Naumann and Seifert, 2015;22

Hoffmann et al., 2019). These models use Lagrangian particles, so-called simulation particles (SIPs) (Sölch and Kärcher, 2010)23

or superdroplets (Shima et al., 2009), each representing an ensemble of identical real droplets. Collisional growth in LCMs has24

recently been rigorously evaluated in box model simulations by Unterstrasser et al. (2017) (hereinafter abbreviated as U2017),25

who compared three algorithms documented in the literature: the remapping algorithm (RMA) by Andrejczuk et al. (2010),26

the average-impact algorithm (AIM) by Riechelmann et al. (2012), and the all-or-nothing algorithm (AON) concurrently de-27

veloped by Shima et al. (2009) and Sölch and Kärcher (2010). RMA and AIM are deterministic algorithms and, in theory,28

approach the Smoluchowski solution of a reference bin model. The actual convergence of the algorithms, however, was found29

to depend significantly on properties of the SIP ensemble and the chosen kernel. The probabilistic AON indicated much better30

convergence properties given the simulation outcome is averaged over sufficiently many instances. Furthermore, Dziekan and31

Pawlowska (2017) showed that AON approximates the stochastically complete Master equation including aforementioned cor-32

relations and stochastic fluctuations (Gillespie, 1972; Bayewitz et al., 1974). In fact, AON solutions are identical to the Master33

equation solutions (Alfonso and Raga, 2017) when the weighting factors (the number of real droplets represented by a SIP)34
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Table 1. List of frequently used abbreviations.

AON All-Or-Nothing algorithm

BC boundary condition

DNC droplet number concentration

DSD droplet size distribution

GB grid box

LCM Lagrangian cloud model

LWC liquid water content

MC multiple collection

SIP Simulation particle

SUPP supplement

U2017 Unterstrasser et al. (2017)

approach unity. The name AON was introduced in U2017. Note that in the literature, the term super-droplet method (SDM) is1

not used such that it refers to the class of particle-based microphysics models in general, but to the particular model introduced2

in Shima et al. (2009). Hence, AON with linear sampling (this will be explained later) is typically referred to as SDM method3

(Shima et al., 2019).4

However, many aspects of this relatively young modelling approach in cloud physics have not been tested thoroughly.5

One important message of our previous box simulations in U2017 was that the representation of collisional growth exhibits6

considerably more freedom in setting up a simulation than in bin models. Accordingly, in this study, we are going to extend7

the box simulations of U2017 by analysing collisional growth in a vertical column, including sedimentation, as it has been8

done in previous studies for Eulerian bulk and bin models (e.g., List et al., 1987; Tzivion (Tzitzvashvili) et al., 1989; Hu9

and Srivastava, 1995; Prat and Barros, 2007; Stevens and Seifert, 2008; Seifert, 2008). All simulations will use the AON10

algorithm since it outperformed RMA and AIM in the box simulations, and we do not expect that this general behaviour is11

reversed here. The simulations will be compared to established Eulerian bin references. U2017 demonstrated that numerical12

convergence is harder to achieve for typical liquid cloud kernels (Long, 1974; Hall, 1980) than for a typical aggregation kernel13

with constant aggregation efficiency. Hence, the present study focuses on cloud droplet coalescence as benchmarking exercise.14

But we expect that the results can be generalised for the LCM representation of ice crystal aggregation and the accretion of15

supercooled droplets. We will use the term collection, comprising coalescence, aggregation, and accretion, as we focus on the16

numerical treatment, which is similar for all these processes, and not on their particular physics.17

The paper is structured as follows. First, Sec. 2 will give an overview on the applied models, their foundations, and basic18

setup. The results are presented in Sec. 3, divided into highly idealised applications in which the column model emulates a19

box model (Sec. 3.1), process-level analysis of the applied algorithms (Sec. 3.2), and finally realistic applications (Sec. 3.3).20

The paper is concluded in Sec. 4. The Appendix presents pure-sedimentation test cases. The supplement (SUPP from now on)21

contains additional material and figures (enumerated as S1, S2, and so on)22
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2 Numerical model and setup1

Two column models, which consider collection and sedimentation, have been implemented, the first one represents a traditional2

Eulerian bin scheme and the second model uses a particle-based approach. Before we describe both models in some detail, we3

will write down basic relations, which will help disentangling the effects of particular parameter variations later.4

2.1 Basic relations and definitions5

We use a column with nz grid boxes (GBs). Each GB has the volume ∆V and a height of ∆z. The total column height is thus6

Lz = nz×∆z. (1)7

We define that the GB k with 1≤ k ≤ nz extends from zk−1 to zk := k×∆z, hence the GB with k = 1 is the lowest GB.8

The horizontal area of the column is given by9

∆A= ∆V/∆z. (2)10

Throughout this study, we implicitly assume that air density ρair is constant in time and space.11

The droplets are assumed to be spherical with a density of ρw = 1000kg/m3 and the mass-size relation is simply given by12

m=
4

3
πr3ρw. (3)13

Following Gillespie (1972) and Shima et al. (2009), the probability PWM3D
ij that one droplet with mass mi coalesces with14

one droplet with mass mj inside a small volume δV within a short time interval δt is given by15

pWM3D
ij =Kij δt δV

−1, (4)16

where the collection kernel Kij can be expressed as a function of droplet radii, K(ri, rj), or equivalently droplet masses,17

K̃(mi,mj). We suppose that δt is sufficiently small in order to assure pWM3D
ij ≤ 1.18

The hydrodynamic collection kernel, driven by differences in the droplet vertical velocity, is given by19

KWM3D(ri, rj) = Ec(ri, rj)π(ri + rj)
2 |wsed,i−wsed,j |, (5)20

where wsed is the size-dependent droplet fall speed and Ec = E×Ecoal is the collection efficiency, which is the product21

of the collision efficiency E and the coalescence efficiency Ecoal. In this study, we use the wsed-parametrisation of Beard22

(1976), the tabulated E-values of Hall (1980), and the coalescence efficiency Ecoal is assumed to be 1. The last assumption23

is an oversimplification for large droplets with radii & 500µm for which Ecoal is significantly smaller than 1 (Beard and24

Ochs III, 1984; Ochs III and Beard, 1984), but does not limit the generality of our findings. For the computation of wsed,25

ρair = 1.225kg/m3 is assumed analogously to Bott (1998) as this enables conclusive comparisons with bin and box model26

results.27
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The average number of collisions from νi droplets of mass mi and νj droplets of mass mj (which are assumed to be1

well-mixed in the volume δV ) within time δt is2

νcoll =KWM3D
ij νi νj δt δV

−1, (6)3

or equivalently4

νcoll = Ec(ri, rj)π(ri + rj)
2 |wsed,i−wsed,j |νi νj δV −1δt. (7)5

By dividing the above equation by δV , we obtain the common relationship in terms of concentrations, given by n= ν/δV ,6

ncoll = Ec(ri, rj)π(ri + rj)
2 |wsed,i−wsed,j |ni nj δt. (8)7

Sedimentation and collisional growth are the only processes considered in this study, and any effects of diffusional growth8

are neglected.9

An exponential DSD is used to prescribe the cloud droplets in the beginning10

fm(m) =
DNC

m̄
exp

(
−m
m̄

)
. (9)11

As in U2017, Berry (1967), or Wang et al. (2007), we choose by default a mean mass m̄= LWC/DNC that corresponds to12

a mean droplet radius of rinit = 9.3µm and a droplet number concentration DNC init = 2.97× 108 m−3 (resulting in a droplet13

mass concentration of LWC init = 10−3 kg m−3). The function fm(m) is the number density function with respect to mass.14

The moments are defined as15

λl(t) =

∫
mlfm(m,t)dm, (10)16

with order l, which gives DNC = λ0,LWC = λ1 and Z = λ2. We will refer to Z as radar reflectivity since the radar reflec-17

tivity is proportional to λ2.18

For an exponential DSD, the moments can be expressed analytically as19

λl,anal = (l− 1)! DNC m̄l. (11)20

Using the terminology of Berry (1967), we introduce the mass density function with respect to the logarithm of droplet21

radius lnr22

gln r(r) = 3m2fm(m), (12)23

taking into account the transformation property of distributions (fy(y)dy = fx(x(y))dx).24

The DSD is usually discretised using exponentially increasing bin sizes. In analogy to U2017, the bin boundaries are defined25

by the masses26

mbb,p+1 =mbb,p 101/κ. (13)27
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Figure 1. Schematic plot of how a droplet size distribution is discretised in a bin model and represented by a SIP (SImulation Particle)

ensemble in a Lagrangian cloud model (LCM). The red and green stars shows two different realisations of a SIP ensemble.

Note that many other studies use a factor of 21/s for discretisation. The parameters s and κ are related via s= κ log10(2)≈1

0.3κ.2

In an LCM, real droplets are represented by simulation particles (SIPs, also called super droplets). Each SIP has a discrete3

position (vertical coordinate zp in our column model applications) and represents νp identical real droplets with an individual4

droplet mass µp. The total droplet mass in a SIP is then νpµp. In conjunction with SIPs, we define that the terms "low" and5

"high" relate to the SIP vertical position, whereas "small" and "large" relate to the droplet mass µp. The number of SIPs in a6

GB is defined as NSIP,GB and the total SIP number is given by NSIP,tot =
∑nz
k=1 NSIP,GB(k).7

The moments λl of order l in a GB are computed via a simple summation8

λl,SIP =

NSIP,GB∑
p=1

νp µ
l
p

/∆V , (14)9

Here and in the following, index p refers to any single bin or SIP. If we want to stress that the combination of two SIPs or bins10

matters, we use indices i and j. Index k is used for altitude and l for the order of the moments by convention.11

How to represent an ensemble of droplets in an Eulerian or Lagrangian cloud model? Their size distribution can be uniquely12

described in a bin model by simply accounting for each real droplet in its respective bin, where its boundaries are given by the13

bin model (see illustration in Fig. 1 top). In the Lagrangian approach, however, the weighting factor νi and the droplet mass µi14
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can be chosen independently. Accordingly, there is no unique SIP representation of an ensemble of real droplets; two possible1

SIP ensemble realisations are illustrated in Fig. 1 bottom.2

Various techniques to generate a SIP ensemble in an LCM for a given (analytically prescribed) DSD exist (see section 2.1 in3

U2017). In this study, we use a SIP initialisation technique (termed "singleSIP-init" in U2017), for which Lagrangian collection4

algorithms, and in particular AON, achieved the best results in box model tests. In the singleSIP-init, the DSD, more specifically5

fm, is discretised in exponentially increasing mass intervals and a single SIP is generated for each bin (see section 2.1.1 in6

U2017 for details). The SIP weight is given by7

νp = fm(µp) ∆mbb,p∆V, (15)8

where µp is chosen randomly from the interval [mbb,p,mbb,p+1). The generation of SIPs with νp below some threshold is9

discarded. Due to the probabilistic component, different realisations of SIP ensembles can be created for the same prescribed10

DSD, yet the initialisation technique guarantees that the moments λl,SIP are close to λl,anal. The number of generated SIPs11

depends on the width of the mass bins and hence on κ, as well as the other parameters of the prescribed DSD. A change of12

the "system size" ∆V does not change the number of SIPs, but simply leads to a rescaling of the SIP weights νi. For the13

exponential DSD given above, around14

NSIP,GB = 5×κ (16)15

SIPs are initialised (the scaling factor depends on the width of DSD and the choice of the lower cut-off threshold). Finally16

note that if the DSD is prescribed in a specific GB, the position zp of each SIP in this GB is randomly chosen from [zk,zk+1).17

Furthermore, δt and δV of the conceptual model take the values ∆t and ∆V in the numerical models.18

2.2 Eulerian column model19

Eulerian column models have been widely employed in cloud physics and the present bin implementation is conceptually20

similar to previous ones (e.g. Prat and Barros, 2007; Stevens and Seifert, 2008; Hu and Srivastava, 1995). We use exponentially21

increasing bin sizes as defined in Eq. 13. The smallest mass mbb,0 is chosen suitably small (corresponding roughly to a droplet22

radius of 1µm), and the grid resolution parameter s sufficiently large (4 by default), i.e. the mass doubles every four bins.23

The variable gln m = 1
3gln r will be discretised in mass space and used as a prognostic variable. The droplet mass concen-24

tration in each bin p and height k is given by gp,k ×d lnm and approximates
∫mbb,p+1

mbb,p
gln m(m,zk)d lnm. For each GB k,25

Bott’s exponential flux method (Bott, 1998, 2000) is used to solve the Smoluchowski equation. Bott’s method is a one-moment26

scheme and gln m is the only prognostic variable. Alternatively, the collection algorithm by Wang et al. (2007) is employed,27

which additionally employs a prognostic equation for the droplet number concentrations in each bin.28

In a second step, the mass concentrations are advected vertically according to the classical advection equation29

∂ gln m

∂t
= wsed

∂ gln m

∂z
. (17)30
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For its numerical solution, two different positive definite advection algorithms have been used. The first option is the classical1

first-order upwind scheme (known for its inherent numerical diffusivity). For wsed ≥ 0, it is simply given by2

gp,k(t+ ∆t) = gp,k(t) +
∆t

∆z
wsed(m̄bb,p)(gp,k+1(t)− gp,k(t)). (18)3

The above equation is solved independently for each bin p, where wsed is evaluated at the arithmetic bin centre m̄bb,p =4

0.5(mbb,p+1 +mbb,p). 1 A second option is the popular MPDATA algorithm, which is an iterative solver based on the upwind5

scheme, yet drastically reduces its diffusivity (Smolarkiewicz, 1984, 2006). By default, the basic MPDATA with two passes is6

employed as described in section of 2.1 of Smolarkiewicz and Margolin (1998).7

Irrespective of the chosen advection solver, the prediction of the "new" gp,k depends on gp,k and gp,k+1 (i.e. the GB above8

the one of interest). For the prediction of gp,nz at the model top, it is necessary to prescribe the value gp,nz+1, which defines9

the upper boundary condition (this is detailed in section 2.4).10

If the prescribed ∆t is too large and the Courant-Friedrichs-Levy (CFL) criterion ∆t
∆zwsed(m̄bb,p)≤ rCFL < 1 is violated,11

subcyling is introduced. As wsed(m̄bb,p) does not change over the course of a simulation, the (bin-dependent) number of12

subcycles nsubc,p is determined in the beginning, such that rCFL = 0.5 holds for the reduced time step ∆t
nsubc,p

.13

After one call of Bott’s algorithm, nsubc,p calls of the selected advection algorithm with reduced time step ∆t
nsubc,p

follow for14

each bin p.15

The moments are computed by16

λl,BIN =

NBIN∑
p=1

gp,k (m̃bb,p)
l−1 ln2

3 s
(19)17

as given in Eq. 48 of Wang et al. (2007), where m̃bb,p =mbb,p× 21/(2 s) is the geometric bin centre.18

2.3 Lagrangian column model19

In a Lagrangian model, the inclusion of sedimentation (obeying the transport equation dz/dt=−wsed) is straightforward. For20

each SIP the particle position is updated via21

zp(t+ ∆t) = zp(t)−wsed(µp(t)) ∆t. (20)22

Unlike in Eulerian methods, sedimentation in a Lagrangian approach is independent of the chosen mesh and the time step is23

not restricted by numerical reasons. If zp becomes negative at some point in time, the SIP crossed the lower boundary and is24

removed.25

For the collection process, it assumed that each SIP belongs to a certain GB k obeying zk−1 ≤ zp < zk and that the real26

droplets of each SIP are well-mixed in the GB volume (WM3D). The collection process is treated with the probabilistic AON27

algorithm. In the regular version (see section 2.3.1), AON is called for each GB and accounts for all possible collisions among28

1Evaluating wsed at the geometric bin centres did not change the results.
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𝝂𝒊 = 𝟑
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𝒘𝒊 𝚫𝐭

LCM WM2D WM3D

Figure 2. Grid box with a SIP pair in the LCM world (left) and its respective interpretation in the 2D well-mixed (WM2D, centre) and 3D

well-mixed (WM3D, right) approach of the AON collisional growth algorithm.

any two SIPs of the same GB. By construction, the information on the vertical position is irrelevant inside the regular AON,1

and is only used in the SIP-to-GB assignment.2

In the version with explicit overtakes (WM2D, see section 2.3.2), for any two SIPs (of the whole column) it is checked if3

the higher SIP (i.e. with larger zp) overtakes the lower SIP within the current time step. This may have several advantages:4

First, only 2D well-mixedness in a horizontal plane is assumed and possible size sorting effects within a GB are accounted5

for. Moreover, in Lagrangian methods the time step is not restricted by the CFL criterion and the largest SIPs may travel6

through more than one GB. In the classical approach, such a SIP can only collect SIPs from the GB where it was present in the7

beginning of the time step. In the second approach, collections can also occur across GB boundaries (see section 2.3.2).8

In the remainder of this paper, the classical approach is referred to as AON-regular and the new approach as AON-WM2D.9

Figure 2 sketches how the SIP properties (location, weighting factor, sedimentation speed) are interpreted in either approach.10

For simplicity, a single GB with one SIP pair is displayed.11

AON is probabilistic and an individual realisation does usually not reproduce the mean state as predicted by deterministic12

methods like Eulerian approaches. The extent of deviations from the mean state is exemplified in Fig. 15 of U2017 for a13

box model application of AON. Hence, the discussed AON results in the present study are usually ensemble averages over14

nrinst = 20 realisations.15

Pseudo-code of both algorithm implementations is given. For the sake of readability, the pseudo-code examples show easy-16

to-understand implementations. The actual codes of the algorithms are, however, optimised in terms of computational effi-17

ciency. The style conventions for the pseudo-code examples are as follows: commands of the algorithms are written in upright18

font with keywords in boldface. Comments appear in italic font (explanations are enclosed by {} and headings of code blocks19

are in boldface).20

2.3.1 Regular AON algorithm (AON-regular)21

Here we basically repeat the AON description of U2017 (their section 2.5).22
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Algorithm 1 Pseudo-code of the regular all-or-nothing (AON) algorithm; style conventions are explained right before Sec-

tion 2.3.1 starts; rand() generates uniformly distributed random numbers ∈ [0,1). This AON version is called independently

for each grid box.

1: INIT BLOCK

2: Given: Ensemble of SIPs of a specific grid box; Specify: ∆t

3: TIME ITERATION

4: while t<Tsim do

5: {Check each i− j-combination for a possible collection event}

6: for all i < j ≤NSIP do

7: Compute νcoll according to Eq. 7

8: νnew := min(νi,νj)

9: pcrit := νcoll/νnew

10: {Update SIP properties on the fly}

11: assume νi < νj , otherwise swap i and j in all following lines

12: if pcrit > 1 then

13: {can occur when νi and νj differ strongly and be regarded as special case; see text for further explanation}

14: if νcoll > νj then

15: LIMITER

16: {Special treatment necessary, otherwise the new νj would be negative}

17: {Limit νcoll to νj , then νi droplets with mass (νi µi + νj µj)/νi remain}

18: {Distribute those droplets among SIPs i and j; use a 60%,40%-partitioning}

19: µj := (νi µi + νj µj)/νi and µi := µj

20: νj := 0.6 νi and νi := 0.4 νi

21: else

22: MULTIPLE COLLECTION

23: {pcrit > 1 is equivalent to νcoll > νi}

24: {transfer νcoll droplets with µj from SIP j to SIP i, allow multiple collections in SIP i, i.e. one droplet of

SIP i collects more than one droplet of SIP j}

25: SIP i collects νcoll droplets from SIP j and distributes them on νi droplets: µi := (νi µi + νcoll µj)/νi

26: SIP j loses νcoll droplets to SIP i: νj := νj − νcoll

27: end if

28: else if pcrit >rand() then

29: RANDOM SINGLE COLLECTION

30: {transfer νi droplets with µj from SIP j to SIP i}

31: SIP i collects νi droplets from SIP j: µi := µi +µj

32: SIP j loses νi droplets to SIP i: νj := νj − νi

33: end if

34: end for

35: t := t+ ∆t

36: end while 10
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Figure 3. Treatment of a collection between two SIPs in the All-Or-Nothing Algorithm (AON) algorithm, partially adopted from Fig. 2 of

Unterstrasser et al. (2017).

"Figure 3 illustrates how a collection between two SIPs is treated. SIP i is assumed to represent fewer droplets than SIP j,1

i.e. νi < νj . Each real droplet in SIP i collects one real droplet from SIP j . Hence, SIP i contains νi = 4 droplets, now with2

mass µi +µj = 15. SIP j now contains νj − νi = 8− 4 = 4 droplets with mass µj = 9. Following Eq. (7), only νcoll = 2 pairs3

of droplets would, however, merge in reality. The idea behind this probabilistic AON is that such a collection event is realised4

only under certain circumstances in the model, namely such that the expectation values of collection events in the model and5

in the real world are the same. This is achieved if a collection event occurs with probability6

pcrit = νcoll/νi (21)7

in the model. Then, the average number of collections in the model,8

ν̄coll = pcritνi = (νcoll/νi)νi, (22)9

is equal to νcoll as in the real world. A collection event between two SIPs occurs if pcrit >rand(). The function rand() provides10

uniformly distributed random numbers ∈ [0,1]. Noticeably, no operation on a specific SIP pair is performed if pcrit <rand().11

The treatment of the special case νcoll/νi > 1 needs some clarification. This case is regularly encountered when SIPs with12

large droplets and small νi collect small droplets from a SIP with large νj . The large difference in droplet masses µ led to13

large kernel values and high νcoll with νi < νcoll < νj . [. . . ] If pcrit > 1, we allow multiple collections, as each droplet in14

SIP i is allowed to collect more than one droplet from SIP j. In total, SIP i collects νcoll droplets from SIP j and distributes15

them on νi droplets. A total mass of νcollµj is transferred from SIP j to SIP i and the droplet mass in SIPs i becomes µnew
i =16

11



(νi µi + νcoll µj)/νi. The number of droplets in SIP j is reduced by νcoll and νnew
j = νj − νcoll. Keeping with the example in1

Fig. 3 and assuming νcoll = 5, each of the νi = 4 droplets would collect νcoll/νi = 1.25 droplets. The properties of SIP i and2

SIP j are then νi = 4, µi = 17.25, νj = 3 and µj = 9. [. . . ] So far, we explained how a single i− j combination is treated3

in AON. In every time step, the full algorithm simply checks each i− j combination for a possible collection event. To avoid4

double counting, only combinations with i < j. Pseudo-code of the algorithm is given in Algorithm (1). The SIP properties are5

updated on the fly. If a certain SIP is involved in a collection event in the model and changes its properties, all subsequent6

combinations with this SIP take into account the updated SIP properties. [. . . ] For the generation of the random numbers, the7

well-proven (L’Ecuyer and Simard, 2007) Mersenne Twister algorithm by Matsumoto and Nishimura (1998) is used."8

The AON treatment of collection of droplets within one SIP, as well as the collection of two SIPs with equal weighting9

factors are described in U2017. In the simulations presented here these aspects are not relevant and thus omitted.10

The current implementation differs in several aspects from the version in Shima et al. (2009). First, they use a linear sampling11

approach (which will be described in subsection 2.3.3). Second, the weighting factors are considered to be integer numbers,12

whereas we use real numbers ν. Integer values are appropriate in discrete test cases of small sample volumes such as the13

validation test case in section 3 of Dziekan and Pawlowska (2017). For comparing AON with bin model references, usually14

continuous DSDs are prescribed. Then a SIP ensemble with real-values weighting factors is more appropriate in our opinion.15

Third, multiple collections (MC) are differently treated. For pcrit = (νcoll/νi)> 1, either bpcritcνi or dpcriteνi droplets of SIP j16

merge with νi droplets of SIP i depending on the probability pcrit−bpcritc. This maintains the integer property of the SIP17

weights. As the latter feature is not required in our approach, we deterministically merge pcritνi = νcoll droplets from SIP j18

with νi droplets of SIP i. This is computationally more efficient than the integer-preserving implementation. Test simulations19

showed that both MC treatments produce similar results.20

2.3.2 AON algorithm with explicit use of vertical coordinate (AON-WM2D)21

We now introduce the AON version based on an idea by Sölch and Kärcher (2010) where the vertical position zp of the SIPs22

is explicitly considered. The approach and its implications will be detailed next. Pseudo-code of this AON version ("WM2D")23

is given in Algorithm 2.24

Unlike to the classical case where 3D well-mixedness has to be assumed, droplets of a SIP are now assumed to be well25

mixed on the x− y-plane at z = zp within the GB (horizontally well-mixed instead of the traditional well-mixed assumption26

for the entire three-dimensional GB) and represent a "concentration" of n2D = ν/δA (units L−2, where L is a length scale).27

We introduce an adapted kernel definition where the relative velocity term |wsed,i−wsed,j | is dropped from Eq. 5:28

KWM2D
ij := Ec(ri, rj)π(ri + rj)

2. (23)29

The AON algorithm is split into two steps:30

1. Based on the evaluation of the vertical positions zi and zj at times t and t+ ∆t, it is checked if SIP i overtakes SIP j31

within a time step ∆t. Given zi(t)≥ zj(t) (otherwise swap i and j) an overtake takes place in the time interval ∆t if32

zi(t+ ∆t)< zj(t+ ∆t).33
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Algorithm 2 Pseudo-code of the AON-WM2D; style conventions are explained right before Section 2.3.1 starts; rand() gener-

ates uniformly distributed random numbers ∈ [0,1). This AON version is called once for the total column.

1: INIT BLOCK

2: Given: Ensemble of SIPs of the total column, in particular also their positions Specify: ∆t

3: TIME ITERATION

4: while t<Tsim do

5: {Sort SIPs by position, the highest SIP will be the first SIP.}

6: Sort SIPs by position, such that zi(t) ≥ zj(t) for i < j

7: {Check for overtakes}

8: for i= 1,NSIP,tot − 1 do

9: for j = i+ 1,NSIP,tot do

10: if zi(t+ ∆t) ≥ zj(t) then

11: exit j-loop and proceed with next SIP i {if end position of SIP i is above departure point of SIP j, then no

overtakes are possible for any remaining SIP j.}

12: end if

13: if zi(t+ ∆t) ≥ zj(t+ ∆t) then

14: proceed with next SIP j {no overtake occurred as SIP i is still above SIP j at t+ ∆t}

15: end if

16: {the above conditions guarantee that the following code is executed if and only if SIP i overtakes SIP j}

17: Compute νcoll according to Eq. 24 {instead of Eq. 7 as in the WM3D version}

18: {all the following operations are identical to the WM3D version and accompanying explanations are removed}

19: νnew := min(νi,νj)

20: pcrit := νcoll/νnew

21: assume νi < νj , otherwise swap i and j in all following lines

22: if pcrit > 1 then

23: {for brevity, the LIMITER-block is left out in this code listing}

24: µi := (νi µi + νcoll µj)/νi

25: νj := νj − νcoll

26: else if pcrit >rand() then

27: µi := µi +µj

28: νj := νj − νi

29: end if

30: end for

31: end for

32: t := t+ ∆t

33: end while
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2. In case of such an overtake: Compute the average number of droplet collections by1

νcoll =KWM2D
ij νi νj ∆A−1. (24)2

Analogous to the classical implementation, a collection in the model is performed with a probability νcoll/νi and SIP i3

may collect νi from SIP j (in this step i and j are chosen, such that νi < νj).4

Similarly to the WM3D version, it happens that νcoll is larger than νi and multiple collections are also considered in AON-5

WM2D.6

Specifically to WM2D, it is also possible that a SIP interacts with other SIPs located not only in one but several GBs.7

Accordingly, it is not only necessary to check overtakes of other SIPs in the original GB (more specifically, SIPs that lie in the8

same GB at time t), but also the SIPs that are located underneath, depending on the prescribed time step.9

In a Lagrangian model, the time step choice is not numerically restricted by the CFL criterion and in particular the largest10

collecting drops may fall through several GBs during the time period ∆t. Hence, their collections are underrated unless poten-11

tial overtakes are checked among all NSIP,tot SIPs of the entire column. Even if the CFL criterion is obeyed, SIPs close to the12

lower GB boundary will mostly collect SIPs from the GB underneath. Hence, seeking collision candidates only in the present13

GB is never a good choice.14

In a naive implementation, this would dramatically increase the computational costs. In the regular (WM3D) version, nz calls15

of AON with O(NSIP,GB
2) (for simplicity lets assume NSIP,GB is the same in all GBs) give a total cost of nz×O(NSIP,GB

2).16

Contrarily, AON-WM2D is called once for all SIPs of the column. Hence the cost is 1×O(NSIP,tot
2) = nz

2×O(NSIP,GB
2) and17

a factor nz higher than the regular AON version. However, the WM2D version can be sped up by first sorting all SIPs by their18

position (if sorting is done independently in each GB, the complexity is nz×O(NSIP,GB log(NSIP,GB))), and second by taking19

into account that the final position zi(t+ ∆t) of the potentially overtaking SIP i must be below the initial position zj(t) of20

SIP j. Finding possible candidates for SIP i within the sorted SIP list can be stopped once a SIP j with zj(t)< zi(t+ ∆t) is21

encountered (see condition in line 10 of Algorithm 2).22

For the smallest SIPs, which often travel only a small distance inside a GB, the list of SIPs that may be overtaken is com-23

mensurately small and overtakes have to be checked for a fraction of SIPs of the GB only (that means the actual computational24

work is smaller than in the regular version). On the other hand, imagine the largest SIPs travel through three GBs, then over-25

takes have to be tested for roughly three times more SIPs than in the regular version. Moreover, testing for overtakes (step 1)26

is computationally less demanding than calculating the potential collections (step 2). In WM3D we have always the workload27

of step 2 for all tested combinations, whereas in WM2D only the cheaper step 1 is executed in case of no overtake.28

Besides the weaker assumption of 2D well-mixedness, the present approach is actually more intuitive (even though it may29

first be regarded counter-intuitive by those who are familiar with traditional Eulerian grid-based approaches). Moreover, this30

approach complies better with the Lagrangian paradigm of a grid-free description (the present approach is independent of nz31

and ∆z, yet some horizontal "mixing area" ∆A has to defined, over which the droplets of a SIP are assumed to be dispersed).32

In the regular AON, the aspect ratios of the grid box do not matter, only the grid box volume ∆V enters the computations.33

In WM2D, on the other hand, the value of ∆V is insignificant and ∆A enters the computations. In a column model with34
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sedimentation, results also depend on ∆z as it determines the travel time through a grid box. Note that a variation of ∆z can1

implicitly change also ∆V or ∆A.2

For more sophisticated kernels, including, e.g., turbulence enhancement, the present approach may not be adopted easily as3

the driving mechanism for collisions to occur in the current model is differential sedimentation. Related to this are studies on4

cylindrical vs. spherical formulations of kernels in Saffman and Turner (1956) and Wang et al. (1998, 2005). A possible route5

to consider the effects of subgrid-motions on collision in LCMs has recently been presented by Krueger and Kerstein (2018).6

Their one-dimensional approach is able to represent droplet clustering and turbulence-induced relative droplet velocities in a7

realistic manner, and its implementation in already applied LCM subgrid-scale models (e.g. Hoffmann et al., 2019; Hoffmann8

and Feingold, 2019) is deemed straightforward. However, further research is required on how the limited number of SIPs in9

current LCM applications may corrupt the correct representation of such processes.10

Finally, we shortly summarise the differences between the WM2D and WM3D approach. The standard kernel KWM3D11

as given by Eq. 5 has units L3/T (where L and T are a length and time scale, resp.). Multiplying it by concentrations ni12

and nj (units L−3), one obtains the rate of a concentration increase of merged droplets (L−3/T ) which is finally multiplied13

by δt (unit T ) to obtain ncoll (see Eq. 8). Since SIPs represent droplet concentrations of ni = νi/δV and nj = νj/δV , Eq. 714

follows. In the WM2D approach, the kernel KWM2D as given by Eq. 23 has units L2. Multiplying it by "2D" concentrations15

n2D,i and n2D,j (units L−2) one obtains the collected 2D concentration n2D,coll (units L−2). Since SIPs represent "2D" droplet16

concentrations of n2D,i = νi/δA and nj = ν2D,j/δA, Eq. 24 follows. A collection can only occur, if a larger droplet (or SIP) i17

overtakes a smaller droplet (or SIP) j. First, zi > zj and wsed,i >wsed,j must hold and second the overtake time ∆tOT :=18

(zi− zj)× (wsed,i−wsed,j)
−1 must fulfil ∆tOT ≤ δt. One can define the overtake probability pOT being 0 for ∆tOT > δt19

and 1 for ∆tOT ≤ δt, and the "2D" collection probability pWM2D
ij =KWM2D

ij δA−1. Simulations in SUPP demonstrate that the20

WM2D and WM3D formulations are statistically equivalent, i.e. pOT× pWM2D equals pWM3D, under certain conditions (see21

Fig. S9).22

From a technical point of view, it might be challenging to implement the WM2D-version in full 2D/3D cloud models, as one23

has to keep track of all SIPs in a grid box column. If domain decomposition is used in vertical direction, collision candidates24

had to be searched across multiple processors.25

2.3.3 Linear sampling version (AON-LinSamp)26

The regular AON version can be sped up by introducing a linear sampling technique (LinSamp) as done in Shima et al. (2009)27

or Dziekan and Pawlowska (2017). bNSIP/2c combinations of pairs i−j are randomly picked, where each SIP appears exactly28

in one pair (if NSIP is odd, one SIP is ignored). As only a subset of all possible combinations is numerically evaluated, the29

extent of collisions is underestimated. To compensate for this, the probability pcrit (or equivalently νcoll) is upscaled by a30

scaling factor31

γcorr =NSIP(NSIP− 1)/(2 bNSIP/2c) (25)32
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to guarantee an expectation value as desired. Clearly, this reduces the computational complexity of the algorithm fromO(NSIP
2)1

toO(NSIP). Multiple collections are more likely than in the regular AON version. The LinSamp version becomes the preferred2

choice if NSIP is large.3

If νcoll is larger than both, νi and νj , all AON versions as introduced so far would produce negative weights. In order to4

prevent this, νcoll is artificially reduced to νj in such a case (let us assume that νi < νj). The standard procedure would then5

produce a SIP j with zero weight, which allows splitting the updated SIP i with weight νi (the weight νi remains unchanged6

during the update) into two SIPs. We choose a 60%,40%-partitioning and the operations are as follows:7

µj := (νi µi + νj µj)/νi (26a)8

µi := µj (26b)9

νj := 0.6 νi (26c)10

νi := 0.4 νi (26d)11

SUPP demonstrates that it is critical how the limiter is implemented. We thank reviewer S. Shima for pointing us to a12

better limiter implementation which has been already described in Shima et al. (2009). There, a 50%,50%-partitioning was13

implemented. We avoid this equal splitting as it produces two identical SIPs. In our implementation with floating point weights,14

SIPs with identical weights are extremely rare and no special care is taken of this. Hence, including an operation that produces15

identical weights is unfavourable. The dependence of the AON-LinSamp performance on the limiter definition is showcased in16

SUPP (Figs. S3 to S7, S15, S16 and Table S1).17

Employing a limiter is recommended for all AON versions (even though we never encountered a limiter event in QuadSamp-18

simulations), but it is particularly significant in the LinSamp version due to the upscaling of pcrit. Moreover, note that LinSamp19

can be reasonably used only in conjunction with AON-WM3D, not AON-WM2D.20

In addition to the favourable linear computational complexity, LinSamp can be easily parallelised, in particular on shared-21

memory multi-processor architectures as used by Arabas et al. (2015) or Dziekan et al. (2019). Once the SIP pairs are deter-22

mined in the beginning of each time step, each processor treats a subset of SIP pairs. After an collection event, SIP properties23

are updated on the fly. By the way, the need to do updates on the fly precludes simple parallelisation strategies in the quadratic24

sampling version, where all SIPs are interconnected.25

2.4 Boundary condition26

At the lower boundary, droplets leave the domain according to their fall speed. Using the LCM, the moment outflow Fl,out is27

determined by accumulating the contributions νp(µp)l of all SIPs p that cross the lower boundary z = 0m. Due to the discrete-28

ness of the crossings, instantaneous fluxes are actually averages of the past 200s. Using the bin model, Fl,out is diagnosed by29

30

Fl,out =

NBIN∑
p=1

gp,k=1 (m̃bb,p)
l−1wsed(m̃bb,p)

ln10

3κ
. (27)31
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Table 2. Summary of AON versions.

AON feature QuadSamp LinSamp

WM3D AON-reg AON-LinSamp

WM2D AON-WM2D n.a.

WM3D, noSedi AON-noSedi AON-LinSamp-noSedi

At the model top, the simplest condition is to have a zero influx. In this case, the column integrated droplet mass will decrease1

once a non-zero flux across the lower boundary occurs. To implement a zero-influx condition in the Eulerian model, the mass2

concentrations at the ghost cell level nz +1 are simply set to zero. In the Lagrangian model, a zero influx condition is naturally3

implemented when no new SIPs are created at the top of the column.4

In both models, also a non-zero influx at the model top can be prescribed. One option is to use periodic boundary conditions.5

In the Lagrangian approach this is done by increasing the altitude zp of an affected SIP by Lz, once zp drops below 0. In6

the Eulerian model, gp,nz+1 is identified with gp,1. A second non-zero influx option is a prescribed size distribution that is7

advected into the domain with its respective fall speed. In the bin model, the prescribed DSD simply defines the gi,nz+1-values.8

In the Lagrangian model, new SIPs have to be introduced close to the model top. For this, a new SIP ensemble is drawn9

from the prescribed DSD at each time step using the SingleSIP-init method. In order to place the SIPs in the column, it is10

considered how far it would fall at most from the model top during one time step: z∆(p) = wsed,p×∆t. In a straightforward11

implementation, one would create one SIP from each bin with a position znew,p uniformly drawn from [Lz,Lz− z∆(p)) and12

weighting factor νnew,p = νp× (z∆(p)/∆z). This implementation has, however, several undesirable side-effects. For small,13

slowly falling SIPs z∆(p) is much smaller than ∆z. Applying this procedure in every time step leads to ∆z/z∆(p) SIPs per14

GB in the end. Hence, we refine this procedure by creating a SIP with probability pinit,p := z∆(p)/∆z, a weighting factor15

νnew,p = νp and znew,p ∈ [Lz,Lz−z∆(p)). Note that if pinit,p > 1, then either bpinit,pc or dpinit,pe SIPs are created depending16

on the probability pinit,p−bpinit,pc. This establishes a similar spatial SIP occurrence across the size spectrum with one SIP per17

GB and bin on average. Moreover, SIP numbers do not scale any longer with ∆t.18

2.5 Terminology19

Before we start discussing the results, we outline the terminology of the various model versions. On a first level, we differentiate20

between Eulerian ("BIN") and Lagrangian approaches ("LCM"), which can be both applied in a box ("0D") or column model21

("1D") framework. By default, BIN uses the MPDATA advection algorithm (clearly only in 1D) and Bott’s collection algorithm.22

Alternatively, MPDATA can be replaced by the 1st order upstream scheme ("US1") and Bott’s collection algorithm by Wang’s23

algorithm ("Wang"). The Lagrangian model versions differ only in the way AON is employed. The various model versions24

are summarised in Table 2. By default, 3D well-mixedness ("WM3D") is assumed and a quadratic sampling ("QuadSamp") of25

the SIP combinations is used. Those simulations are referred to as "regular". A second type of QuadSamp simulation assumes26

2D well-mixedness ("WM2D"). Linear sampling of SIP combinations ("LinSamp") can be alternatively used for the WM3D-27
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version. Accordingly, the terms "regular", "WM2D" and "LinSamp" each refer to a one specific AON version. On the other1

hand, "QuadSamp" and "WM3D" each denote two AON versions: "QuadSamp" comprises "regular" and "WM2D", whereas2

"WM3D" comprises "regular" and "LinSamp".3

By switching off sedimentation in the column model source code (as done in section 3.1), box model results are produced in4

each GB. In order to distinguish the latter simulations from AON box model results in U2017 they are referred to as "noSedi".5

In LCM1D-noSedi simulations, the vertical position is not updated from time step to time step. Hence, this implicitly calls6

for the usage of AON-WM3D, as AON-WM2D relies on checking overtakes based on the vertical SIP positions. Simulations7

with switched on sedimentation are the default; for better discrimination from the noSedi-case we refer to all such simulations8

optionally as "full" simulations.9

If the space in figure legends is limited, abbreviations "LS" and "nS" are used for "LinSamp" and "noSedi", respectively.10

3 Results11

Before we start comparing collisional growth in column model applications, we should first demonstrate that the differences12

introduced by the different numerical treatment of the sedimentation process are small to negligible. This exercises is deferred13

to the Appendix.14

We find the discrepancies introduced by the different sedimentation treatment small enough as long as the MPDATA advec-15

tion algorithm is employed in BIN. Hence, all following BIN simulations rely on MPDATA and we can attribute the differences16

that we may see in the following validation exercises to the different numerical treatment of collisional growth.17

3.1 Box model emulation simulations18

In this section, we choose a column model setup that is supposed to produce results that are similar to box model results. For19

this, we initialise the default DSD in all GBs of the column and use periodic boundary conditions. In LCM1D, different SIP20

ensemble realisations of this DSD are initialised in each GB.21

The deterministic BIN1D model predicts identical DSDs in all GBs, as in each GB the divergence of the sedimentation flux22

is zero. Hence, for this specific setup, the attained BIN1D results are identical to those of a corresponding BIN0D model or the23

data of Wang et al. (2007, see their Tables 3 and 4).24

In LCM1D, the combination of homogeneous initial conditions and periodic BCs results in statistically identical results25

across all GBs. However, the averaged results may not be the same as in LCM0D, as lucky droplets/SIPs (Telford, 1955;26

Kostinski and Shaw, 2005) can collect other droplets/SIPs not only from a single GB as in LCM0D, but from any GB (de-27

pending on how fast they fall), creating potentially larger and/or faster growing lucky droplets/SIPs than in LCM0D. In other28

words, the number of SIPs interacting with each other is increased in LCM1D. This, as we will show below, accelerates the29

convergence of the simulations.30

Within the LCM1D-model, pure box model results can be obtained by switching off sedimentation ("noSedi"). Without31

sedimentation, the GBs of the column are not interconnected and the collisional growth process proceeds independently.32
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Figure 4. BoxModelEmul setup: Temporal evolution of column-averaged moments λ0 and λ2 over one hour for various time steps ∆t (see

inserted legend for ∆t-values for the regular AON version. All other parameters take the default values as given in the caption of Fig. 5.

All figures related to the box model emulation setup start their caption with the label BoxModelEmul setup.1

By default, we use nz = 50 GBs with ∆z = 10m (giving a column height ofLz = 500m), ∆V = 1m3,∆t= 10s and κ= 402

throughout section 3.1. The results are averaged over nrinst = 20 independent realisations. Hence, the present AON application3

can be viewed as a Monte-Carlo method.4

Moreover, we use the Long kernel (Long, 1974) as default in BoxModelEmul simulations, as U2017 revealed that numerical5

convergence is harder to reach for the Long kernel than for the Hall kernel or a hydrodynamic kernel with constant aggregation6

efficiency typical used for cirrus simulations (Sölch and Kärcher, 2010).7

3.1.1 Regular AON version8

This subsection presents results obtained with the regular AON, i.e. with quadratic sampling of SIP combinations ("Quad-9

Samp") and 3D well-mixed assumption (WM3D). Sedimentation is switched on unless noted (for better discrimination from10

the "noSedi"-cases, these simulations will be referred to as "full").11

Figure 4 shows the temporal evolution of column-averaged LCM1D moments λl (l = 0 and 2) over one hour for various12

time steps ∆t. The box model data serve as orientation in this and following Figures 4−7. We find that in terms of λ0 and13

λ2 LCM1D results converge for ∆t≤ 10s. The noSedi simulations show a similar time step dependence (not shown). Hence,14

AON works well even for large time steps; a fact that was already shown with the AON box model (see Fig. 18 of U2017).15

Next, we discuss the sensitivity to further physical and numerical parameters. Generally, we find faster convergence for16

higher moments than for λ0 (not shown). Hence in the following, we confine our analysis to the most "critical" quantity, and17

Fig. 5 displays the λ0-evolution for various sensitivity experiments. Even though we analyse the results in some detail, we want18

to mention that the observed differences are in principle not substantial. In fact, results differ much more due to a different19

collection kernel or slightly varied initial DSDs (see section 3.1.4). Nevertheless, the analysis will help to understand more20

19
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Figure 5. BoxModelEmul setup: Temporal evolution of column-averaged moment λ0 (i.e. droplet concentration) over one hour for the

regular AON version. The default setting is nz = 50,nrinst = 20,∆V = 1m3,∆t= 10s,∆z = 10m,κ= 40 and Lz = nz×∆z. The micro-

physical parameters of the initial exponential droplet size distribution are LWC init = 1g/m3, rinit = 9.3µm and DNC init = 297cm−3 as in

many previous studies (Berry, 1967; Wang et al., 2007). The parameter or parameter pair that is varied is added in a purple box to each panel

and the legend lists the parameter values for the different colours. If further parameters (besides the varied parameter) take non-default values,

it is indicated inside a black rectangle. In any case, the total number of GBs is nrinst ×nz = 1000. By default, sedimentation is switched on.

Simulations without sedimentation and independent rain formation in each GB (identical to a box model treatment) are labelled as "noSedi"

(appear only in the left column). The panels on the right use a shortened time range.
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deeply how collisional growth works in an LCM with AON. This pronounced effort is justified, as precipitation initiation is1

still not fully understood and a well-validated Lagrangian approach may lead to new insights (Dziekan and Pawlowska, 2017;2

Grabowski et al., 2019).3

In a first simple step, we vary nz (see first row of Fig. 5), which changes two aspects of the numerical setup. The number4

of GBs over which interactions can occur and secondly the height of the column. This implicitly changes the time it takes for5

SIPs to fall through the total column and hence changes the "recycling" time scale Lz/wsed. Together with nz, nrinst is varied6

such that nz×nrinst is always 1000. Accordingly, all simulation results are averaged over the same number of GBs and we7

avoid that simulations with smaller nz produce noisier data.8

In the noSedi-simulations (panel a), the moment evolution is not affected by varying (nz, nrinst). This is trivial, as in any case9

the average is taken over 1000 independent GBs. At least, these results demonstrate that averaging over that many GBs suffices10

by far to produce robust averages. In the full simulations (panel b), the λ0-decrease is more pronounced and the various setups11

produce nearly identical results (except for the case with nz = 2, which is in between the other full simulations and the noSedi12

simulations). From this finding alone one may argue that the collisional growth process is more efficient in LCM1D than in13

LCM0D.14

The second row shows a variation of κwhich reveals qualitatively different convergence properties of the noSedi simulations15

(panel c) and the full simulations (panel d). In the noSedi simulations, an increase of κ (andNSIP; see extra legend for according16

NSIP-values) leads to a faster decrease of λ0. Large differences between κ= 5 and 40 simulations are apparent; above κ= 40,17

an increase of κ leads only to marginal improvements. Also for the highest κ, the λ0-values remain above the BIN0D reference.18

For the smallest κ-value, only 24 SIPs are created according to Eq. 16 and interactions among that few computational particles19

overemphasise the impact of correlations. It is well-known that for small ensembles of real droplets correlations become20

important (Bayewitz et al., 1974; Wang et al., 2006). Analogously, we introduced correlations in our numerical approach by21

using too few computational particles. We speculate that this hinders the formation of lucky droplets and fewer droplets get22

collected (hence λ0 is larger for smaller κ). Another more technical explanation is that the νp-distribution of the SIP ensemble23

is such that the formation of lucky SIPs is not supported. Ideally, there is a reservoir of SIPs with small ν-values that can24

become lucky SIPs. There might be too few SIPs with small ν for small κ.25

Contrarily, the full simulations (panel d) give nearly identical results independent of κ. We obtain converged results with as26

few as 24 SIPs in each GB. Compared to κ= 200 with 1000 SIPs, the simulations are a factor 402 faster. The reason for the27

much faster convergence in terms ofNSIP,GB is that the GBs are interconnected which effectively raises the number of potential28

collision partners. Drops with radii of 100 and 500µm have fall speeds of around 0.7m s−1 and 4m s−1, respectively. Thus it29

takes them around 14s and 2.5s to fall through a ∆z = 10m-GB and they enter a new GB every or every few time steps given30

∆t= 10s.31

How strongly SIPs are interconnected across GBs in LCM1D should depend also on geometrical properties of the column.32

In the next setup, we investigate the κ-sensitivity in a column with nz = 10 and ∆z = 100m instead of nz = 50 and ∆z = 10m33

(panel e). Then, SIP interactions can occur only across 10 GBs and overall five times fewer SIPs are present in the column than34

for the default case with nz = 50. Moreover, the domain is stretched by increasing ∆z to 100m, which increases the residence35
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time of a SIP in a GB by a factor 10, slowing down additionally SIP interactions across GBs. Those two changes introduce a1

weak κ-dependence, yet it is much weaker than in the corresponding noSedi-simulations (panel c).2

In an even more academic experiment, sedimentation is turned off, but SIPs are randomly redistributed inside the column3

after each time step (panel f) similar to Schwenkel et al. (2018). Again, we find converged results for small κ-values down to 54

(panel f). This elucidates that convergence is improved once some process exchanges SIPs between GBs, may it be for physical5

reasons like sedimentation or by an artificial operation as the randomised SIP re-location. We speculate that in full 2D/3D LCM-6

simulations turbulent motions and sedimentation increase the SIP exchange across GBs and hence may additionally increase7

the performance of AON. The two last simulation series are promising, as they suggest that in a column model (and probably8

also 2D/3D model) convergence is potentially reached with fewer SIPs per GB than in a box model. Nevertheless the tests9

also highlight that convergence with κ depends on many circumstances and convergence tests are prerequisite to any LCM10

simulation with AON.11

In bin models, the Smoluchowski equation, which is strictly valid only for an infinite volume and hence an infinite number12

of well-mixed droplets, is solved. Accordingly, only concentrations are prescribed in bin model algorithms. Neither ∆V nor13

the absolute number of droplets is considered in this approach. At least in the limit of all SIPs having weighting factor ν = 1,14

the AON algorithm solves the master equation (Dziekan and Pawlowska, 2017) which takes into account ∆V and results may15

depend on the actual number of involved droplets. Clearly, correlations (which are accounted for in the master equation) are16

larger in smaller volumes (Bayewitz et al., 1974; Wang et al., 2006; Alfonso and Raga, 2017).17

For our SIP-initialisation procedure, NSIP,GB depends solely on the chosen κ-values and is independent of ∆V . By construc-18

tion, a ∆V -variation does not affect at all the simulation results, as all SIP weights are simply rescaled. Indeed, we obtain19

nearly bit-identical results for a ∆V -variation. To explore the ∆V -sensitivity in our LCM1D, the SIP-init procedure has to20

be adapted. In the adapted version the SIP number increases proportionally with ∆V as it would in reality. As computational21

requirements increase quadratically with NSIP,GB, the variation of ∆V and NSIP,GB can be performed only for a small range22

of ∆V -values. ∆V is increased by a factor of five or ten. As a base case, we use the simulations with κ= 20 and κ= 10023

and define ∆V := 1m3. The fourth row shows results for the noSedi (panel g) and the full simulations (panel h). Apparently,24

the noSedi-simulations with larger ∆V converge to the solution we obtained before by using a sufficiently large κ. In full25

simulations, a ∆V -variation has basically no effect. The κ= 100,∆V = 10m3-simulation considered on average collisions26

between 5000 SIPs in each GB. Yet, the results are basically identical to the case κ= 5,∆V = 1m3 with 24 SIPs in each GB27

(which runs nearly 40000 times faster).28

In the present simulations where SIPs with weights ν > 1 are used, variations of the numerical parameter κ and the physical29

parameter ∆V are interconnected and their effects cannot be disentangled. Hence, the AON algorithm can only answer whether30

correlations matter in systems with a certain number of SIPs. These correlations are not necessarily the correlations one would31

see in a real system with millions to billions of real droplets. Nevertheless, the last sensitivity series implies that at least in32

our model system the importance of correlations are likely the same in a system with NSIP,GB = 24 and with NSIP,GB ≈ 5000.33

Assuming that the importance of correlations in a real system with billions of droplets is similar to that of a system with 500034

SIPs, the latter finding demonstrates that LCMs can capture the collisional growth process with astonishingly few SIPs.35
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The noSedi κ-sensitivity series as shown in panel c) was already presented in Fig. 18 of U2017. There we found that for1

high enough κ the LCM0D results lie below the BIN0D reference contradictory to the present noSedi simulations. The reason2

for this inconsistency is a programming bug in the LCM0D-AON version used in U2017. The Hall/Long kernel values are3

stored in look-up tables and were wrongly accessed (overestimating the actual mass of the involved droplets by 2%). Hence,4

the collisional growth process proceeded more rapidly in U2017. Despite this flaw, the main findings of U2017 remain valid.5

Yet, the more rapid collisional growth of LCM0D-AON in U2017 should clearly not be attributed to conceptual differences of6

AON and BIN algorithms.7

In the discussion of the subsequent sensitivity studies, we refrain from showing time series of λ0 as done in Fig. 5. Instead8

we only evaluate λ0 at t= 1h as this is a suitable metric for the algorithm performance in the BoxModelEmul setup. Figure 69

comprises ∆t- and κ-sensitivity series of all subsequent BoxModelEmul simulations. The black dotted (horizontal) line de-10

picts the reference BIN result obtained with Wang’s algorithm with s= 16 and ∆t= 1s and was already added in Fig. 5 for11

orientation.12

3.1.2 AON with linear sampling13

This subsection discusses the AON version with linear sampling. Both, full simulations and noSedi simulations have been14

carried out. The first row of Figure 6 shows sensitivity of λ0(t= 1h) to κ (left) and ∆t (right), respectively. The grey curves15

repeat the regular AON results (i.e. with quadratic sampling); they show the endpoints of curves shown in Fig. 4 top and Fig. 516

c) and d). We find that the qualitative behaviour does not differ between LinSamp and regular AON.17

In the full simulations (solid lines), simulations converge for any κ, whereas for the noSedi-simulations (dotted, "nS" in the18

legend ) convergence is reached only for largest κ-values. Using the default time step ∆t= 10s, the LinSamp results (orange19

curves) are slightly further away from the BIN reference (black dots) than the regular results. A second LinSamp series with20

∆t= 1s (blue) produces better results than the regular AON version with ∆t= 10s.21

The ∆t-sensitivity series shown in the right panel demonstrates that LinSamp results are slightly worse than the regular22

results for the default resolution κ= 40. Using LinSamp with a finer resolution of κ= 100 produces better results than the23

regular AON with κ= 40. In LinSamp simulations with large time steps, limiter cases occur quite often and one may expect24

that the artificial reduction of collection events strongly deteriorates the model outcome. However, we see that the performance25

in the high-∆t range drops similarly in the LinSamp and regular AON version.26

3.1.3 AON version with explicit overtakes27

Next, we will discuss results of the AON-WM2D version with explicit overtakes. Results are presented in the second row of28

Fig. 6. For the chosen setup with homogeneous initial conditions and periodic boundary conditions, 3D well-mixedness of the29

SIPs is expected to be maintained over the course of the simulation. Hence, the AON-WM3D and AON-WM2D version are30

supposed to produce similar outcomes.31

The dotted, green curve in panel d) shows results for the version where only intra-GB overtakes are considered. Results are32

far off the benchmark curve, only for the smallest time step of ∆t= 0.5s they become close to the reference. The solid, green33
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Figure 6. BoxModelEmul setup: This figure summarises results of many sensitivity studies for various AON versions and BIN simulations

by displaying DNC after one hour as a function of resolution κ (or analogously s in BIN models) and time step ∆t. The default parameter

settings are listed in Fig. 5 and the horizontal black dotted curve shows the BIN benchmark reference. For example, the information of

panels c) and d) in Fig. 5 is compressed into the two grey curves in panel a). Panels a) and b) additionally show AON simulations with linear

sampling (as described in section 2.3.3), unless "reg" in the legend indicates regular AON with quadratic sampling. "nS" is short for "NoSedi".

The second row shows simulations with explicit overtakes and a 2D well-mixed assumption ("WM2D", as described in section 2.3.2). Again,

the regular AON with WM3D serves as reference. In the simulation labelled "WM2D(GB)", overtakes are considered only between SIPs

inside the same GB, whereas "WM2D" checks overtakes in the full column. Panel e) shows a scenario with (increased) LWC init = 1.5 g/m3

and panel f) uses the Hall kernel instead of the Long kernel. Note that the y-ranges are different in the third row. The fourth row shows BIN

results with Bott’s and Wang’s algorithms. The default parameters are s= 4 and ∆t= 10s.
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curve shows a ∆t-variation (down to ∆t= 2s) for the version where overtakes are considered across the full column. In the1

present example, it was also necessary to check for overtakes across the periodic boundary. Then, convergence is reached for2

∆t≤ 10s, very similar to the regular (WM3D) version (see grey curve for comparison). Panel c) shows a slight dependence3

on κ, yet the performance of AON-WM2D is almost comparable to that of the regular AON results.4

Overall, we can conclude that the feasibility and correct implementation of the WM2D-version was demonstrated, with the5

caveat that overtakes have to be considered in the full column. Checking for overtakes outside of the "own" GB can cause6

some computational overhead in implementing the WM2D-version in higher-dimensional cloud models, which are typically7

parallelised. If the chosen time step for collection obeys the CFL criterion (as argued in Shima et al., 2019), SIPs can at most8

travel from one GB to the one right below. Then, potential collision partners can only appear in two different GBs.9

As noted in section 2.3.2, the WM2D version can only be used in conjunction with kernels where the differential sedimen-10

tation term |wsed,i−wsed,j | is explicitly included and can be dropped. Typically, this is not fulfilled for kernels accounting11

for turbulence enhancement, in which motions in all spatial directions need to be accounted for. Turbulence in cirrus clouds is12

often weak. Moreover, cirrus clouds often show a strong layering by ice crystal size possibly making the 3D well-mixed as-13

sumption overly simplistic. Hence, the WM2D version appears to be a reasonable alternative to the regular (WM3D) version.14

Furthermore, the mixed-phase LCM of Shima et al. (2019) used for the simulation of a cumulonimbus employs a hydrodynamic15

kernel. Hence, the WM2D version would be applicable in this context as well.16

3.1.4 Microphysical and bin model sensitivities17

So far, all simulations were initialised with the same initial DSD, the same collection kernel, and the results have always been18

compared to the same BIN reference simulation.19

Accordingly, in this section, we perform simulations with modified LWC init, rinit and DNC init. Moreover, we highlight the20

effect of the employed kernel on the AON performance. And finally, we also present BIN sensitivities (namely, we switch from21

Bott’s algorithm to Wang’s algorithm and vary the bin resolution and the time step).22

In a first experiment, we increase LWC init by a factor of 1.5 and repeat the κ-sensitivity test, see panel e) of Fig. 6. We keep23

DNC init fixed and hence the mean radius is rinit = 9.3µm× 1.5(1/3) = 10.7µm. Compared to the base case with LWC init =24

1g/m3, λ0 starts to decrease after 20 minutes (instead of 40 min, see Fig. S10). Eventually, λ0 decreases below 104 cm−325

(instead of 106 cm−3). In the full simulations (all solid curves), we again find results nearly independent of κ for all tested26

AON versions (regular, LinSamp and WM2D). In the noSedi simulations (grey, dotted curve), fewer SIPs are necessary to27

obtain reasonable results compared to the base case in panel a).28

In a next step, the characteristics of the initial DSD are more systematically varied for fixed κ= 40. For such a κ-value29

the noSedi-simulation of the base case was considerably off the reference. LWC init = λ1(t0) is varied, for either fixed droplet30

number or fixed mean radius. The default value is scaled by factor of 1.5,2.0 or 2.5. Similarly, DNC init is varied by factor of31

0.5,0.7 or 1.5 keeping LWC init constant.32

A more detailed presentation of simulation results with time series of the mean diameter, λ0 and λ2 over 100min is deferred33

to SUPP (see Fig. S11). Here, we focus on a single metric again. We define T cross as the time, when λ0 drops below 107 m−3.34
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Figure 7. BoxModelEmul setup: Sensitivities to the initial size distribution parameters LWC init, rinit and DNC init are summarised by

showing T cross, which is defined as the time when λ0 drops below 107 m−3. LWC init is varied (the x-axis shows the scaling factor LWCvar

relative to the default LWC init) for either fixed DNC init (dashed lines) or rinit (dotted lines). The solid lines depicts a DNC init-variation for

fixed LWC init. Again, the scaling factor DNCvar is depicted on the x-axis. Five different model versions, as indicated in the top left legend,

are used: regular AON (reg), AON-WM2D, regular AON with noSedi ("nS"), AON with LinSamp ("LS") and BIN.

The smaller T cross, the faster precipitations sets in. Figure 7 shows T cross for all three sensitivities series (see lower left legend1

for the various linestyles). Simulations with the BIN are contrasted with the regular AON, AON-WM2D and AON-noSedi2

and AON-LinSamp (see upper left panel for the various colours). T cross and with it precipitation onset changes strongly with3

LWC init and DNC init. Generally, we find a similar behaviour across all tested models. The AON-noSedi version features4

the largest T cross-values. This is consistent with previous noSedi-results in Fig. 5 where the decrease in λ0 lags behind. All5

other AON versions match well and are close to the BIN results. Only for the largest DNC init-value some spread in T cross6

exists. Fig. S11 shows that BIN predicts in all cases slightly lower droplet numbers similar to what we already observed for the7

default microphysical initialisation in Fig. 5. Nevertheless, we can confirm the very good agreement of BIN and all full AON8

simulations.9

As a last AON sensitivity study, the default Long kernel is replaced by the Hall kernel. Panel f) of Fig. 6 shows the according10

results. The decrease in λ0 occurs at a slower rate (the y-scale now uses a linear scale). For the full simulations (solid curves),11

we obtain perfect agreement for any chosen κ-value and for all three model versions. Moreover, convergence with κ in the12

noSedi-simulations (dotted curve) is less critical than in the base case (compare with panel a) again) and results converge for13

κ≥ 40. Timeseries of λ0 of all Hall kernel simulations are shown in Fig. S12.14
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So far, all reference BIN results were obtained with Wang’s algorithm, using a time step ∆t= 1s and resolution s= 16. We1

conclude the box model emulation section by showing sensitivities of two BIN versions. For this, we vary the bin resolution s2

and the time step for the base case with LWC init = 1g/m3 and Long kernel and apply either Bott’s or Wang’s algorithm. The3

default time step is ∆t= 10s as in the AON simulations and the bin resolution is s= 4. The fourth row of Fig. 6 show results4

obtained with Bott’s and Wang’s algorithm, respectively. Again, λ0-timeseries of these BIN simulations are shown in Fig. S13.5

We find that Bott’s algorithm converges for s≥ 2 (left panel). Wang’s algorithm, on the other hand, does not produce stable6

results for higher resolutions and ∆t= 10s. Thus, the time step had to be reduced (see inserted legend, for the combination of7

s and ∆t). For s≥ 8 results have converged to the reference. The right panel shows the time step dependency for a medium8

resolution of s= 4. While Bott yields stable results for ∆t≤ 100s, the results only converge for ∆t≤ 20s. We can even see9

a slight dependence of λ0(t= 1h) on ∆t. As as side note, this is is a clear indication that the BIN reference values used for10

orientation so far should not be interpreted as absolute reference and it would be premature to discredit AON results being11

slightly above the BIN reference.12

Wang’s algorithm, on the other hand, requires ∆t≤ 10s for stable results, and convergence is reached for ∆t≤ 5s. Overall,13

we can conclude that both algorithms converge to basically the same values, given a sufficiently high s and small ∆t is chosen.14

As Bott’s algorithm appears to be more robust than Wang’s algorithm, all following BIN simulations are carried out with this15

algorithm.16

Comparing the various collisional growth algorithms, we find that Bott’s algorithm has the least requirements in terms of17

bin resolution and time step as we have converged results for t up to 100s and s as low as 2. AON simulations may converge18

for κ= 5 (corresponds roughly to s= 2) and ∆t= 10s if GBs of the column are sufficiently interconnected and averaging19

over several realisations is done. Wang’s algorithm produces correct solutions for s= 4 and ∆t= 5s, yet increasing the bin20

resolution has to be done hand in hand with a reduction of the time step.21

3.2 Algorithm profiling22

Now, we turn the attention to an algorithm profiling of the various AON versions.23

Figure 8 and Table 3 give an example of how often collections occur in the model. For AON-WM2D, also the number of24

overtakes is given. The listed numbers give a rough indication of the importance of the various events (overtake, no collection,25

single collection, multiple collection, limiter), yet we want to note the caveat that the relative importance changes with a26

change of the parameter setup. Here, results are shown for the specific setup with nz = 20,nrinst = 10,∆V = 1m3,∆t=27

5s,∆z = 50m and κ= 40. The figure shows qualitatively the number of occurrences as a function of time, whereas the table28

gives aggregate values for three 20 min blocks and the total 60 min simulation period. In both WM3D versions (regular and29

LinSamp), the number of tested SIP combinations N comb is constant over time. Clearly, the LinSamp value is smaller by a30

factor of 200 (=NSIP) and implies a faster execution. For the WM2D-version, on the other hand, N comb increases over time as31

the DSD gets more mature and larger droplets fall faster. Relative to the regular (WM3D) version, N comb of WM2D is at any32

time smaller. In the beginning of the simulation, possible overtakes occur among relatively few SIPs; much fewer on average33

than there are in a GB, hence the total N comb is around a factor 60 smaller (in the first 20 minutes; 9.44 · 107 vs. 1.49 · 106).34
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Table 3. BoxModelEmul setup: Number of events for various AON versions for the parameter setup given in the text. N comb is the number

of tested SIP combinations andNLI is the number of limiter cases, where ncoll had to be artificially reduced. Moreover, ηOT,ηNO,ηSI and ηMU

specify the number of overtakes, no collections, single collections and multiple collections divided by N comb. The two last columns shows

summed up pcrit (summed over all times and SIP combinations/overtakes) and the average pcrit. For each AON simulation, the first three

rows show aggregate values over three time periods (0− 20min,20− 40min and 40− 60min) and the fourth row values for the full time

period.

Model version tested SIP overtakes no single multiple limiter
∑
pcrit p̄crit

combinations collection collection collection event

N comb ηOT ηNO ηSI ηMU NLI

9.44e7 - 100.0% 0.0% 0.0% 0 2.91e4 3.08e-4

block #1 9.44e7 - 97.0% 1.2% 1.8% 0 4.25e7 4.50e-1

AON-WM3D 9.45e7 - 91.2% 2.5% 6.3% 0 1.95e8 2.06e0

2.83e8 - 96.1% 1.3% 2.7% 0 2.38e8 8.38e-1

1.49e6 13.9% 12.7% 0.8% 0.3% 0 2.70e4 1.30e-1

block #2 3.83e6 34.7% 11.9% 4.5% 17.8% 0 3.64e7 2.74e1

AON-WM2D 1.77e7 44.1% 12.1% 6.4% 25.3% 0 2.15e8 2.75e1

2.30e7 40.6% 12.2% 5.8% 22.5% 0 2.52e8 2.69e1

3.64e6 28.6% 27.7% 0.7% 0.0% 0 2.85e4 2.74e-2

block #3 1.53e7 43.9% 22.0% 6.5% 14.9% 0 3.62e7 5.37e0

AON-WM2D, ∆z = 10m 8.89e7 47.5% 23.9% 8.4% 15.0% 0 1.79e8 4.24e0

1.08e8 46.4% 23.8% 7.9% 14.5% 0 2.15e8 4.31e0

4.76e5 - 97.9% 1.6% 0.5% 0 2.95e4 6.20e-2

block #4 4.76e5 - 90.9% 2.2% 6.9% 11 3.59e7 7.55e1

AON-WM3D, LS 4.76e5 - 78.7% 2.6% 18.7% 87 2.55e8 5.35e2

1.43e6 - 89.2% 2.1% 8.7% 99 2.91e8 2.04e2

2.38e6 - 99.3% 0.6% 0.1% 0 3.34e4 1.41e-2

block #5 2.38e6 - 92.9% 1.7% 5.4% 0 4.39e7 1.84e1

AON-WM3D, LS, ∆t= 1s 2.38e6 - 85.0% 2.0% 12.9% 0.40 1.95e8 8.20e1

7.14e6 - 92.4% 1.4% 6.2% 0.40 2.39e8 3.35e1

28



0 20 40 60
time / min

10 1
100
101
102
103
104
105
106

# 
ev

en
ts

AON-regular

tested
--
no
single
multiple
limit

0 20 40 60
time / min

AON-WM2D

tested
overtake
no
single
multiple
limit

0 20 40 60
time / min

AON-LinSamp
tested
--
no
single
multiple
limit

Figure 8. BoxModelEmul setup: Time series of number of events in the various AON versions. Shown are the number of tested SIP

combinations, of overtakes, of no collection, of a single collection, of a multiple collection in every time step. Additionally, the number of

limiter cases, where νcoll had to be artificially reduced, is shown (occurs only in the LinSamp-panel). The parameter setup is given in the text.

In the WM2D-panel, the dotted lines show the case with ∆z = 10m. In the LinSamp-panel, the dotted lines show the 1s-simulation. The

displayed numbers can be below unity, as averages over 20 instances are shown.

Even towards the end of the simulation, many SIPs are still small and travel through a small fraction of the GB. Only few SIPs1

grow to rain drop size and travel distances of order ∆z. The table shows that the total (time-integrated) N comb is more than2

a factor 12 smaller for WM2D than for WM3D (2.30 · 107 vs. 2.83 · 108). This demonstrates the numerical efficiency of the3

current WM2D implementation despite a theoretically unfavorable computational complexity with a factor nz higher N comb4

compared to the regular WM3D version.5

Moreover, the workload per time step is constant in both WM3D-versions and determined solely by NSIP. In the WM2D-6

version, the workload depends additionally on the properties of the DSD and also on ∆z. If ∆z is reduced by a factor of 5 (see7

block #3 in the table), N comb roughly increases by the same factor. Similarly, we found a longer execution time of WM2D in8

the LWCup-series than in the base case (not shown).9

In the table, the ratios ηNO, ηSI and ηMU specify the number of no collections, single collections and multiple collections10

divided by N comb, and add up to 100% for both WM3D versions. In the regular WM3D version, only 1.3% and 2.7% of11

all tested combinations lead to a single or multiple collection. So, for most combinations pcrit is close to zero and makes a12

collection unlikely. On the other hand, for favourable SIP combinations pcrit can be far above 1 (imagine a SIP combination13

with νi = 106,νj = 102 and νcoll = 104 yielding pcrit = 100). This also explains the somewhat surprising fact that the average14

p̄crit is close to unity (= 0.83, see right-most column). The PDF (probability density function) of all pcrit-values is strongly right-15

skewed (not shown). In the LinSamp case, single and multiple collections occur in 2.1% and 8.7% of the tested combinations.16

Collections are more likely as p̄crit is larger due to the upscaling. Moreover, νcoll had to be artificially reduced in NLI ≈ 10017
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cases. Note that such limiter cases do not appear in any QuadSamp version (regular and WM2D). In the LinSamp version, NLI1

can be cut down by choosing a smaller time step (see fifth block in table). Using ∆t= 1s leads to 5 times smaller pcrit-values,2

increases ηNO, and decreases ηSI and ηMU. Limiter cases are now an extremely rare event. For clarification, pcrit of a single SIP3

combination scales with ∆t−1; from this, however, does not follow that the listed p̄crit-values of the two LinSamp simulation4

differ by a factor of 5, as the DSDs and SIP ensembles/weights evolve differently in the two simulations.5

Finally, we focus on the WM2D-version (block #2). Here, the sum of ηNO,ηSI and ηMU yields ηOT, the number of overtakes6

divided by N comb, and not 100% as before. In the end, around 40% of all tested SIP combinations undergo an overtake. This7

quite large fraction comes from the fact that the DSD (or more precisely the size distribution of the SIPs) features a strong8

bimodal spectrum. So most tested combinations are combinations between a large collector SIP i and a small SIP j with9

zi > zj . These tested SIP combinations fulfil by design zi(t+ ∆t)< zj(t). For small SIPs j, zj(t+ ∆t) = zj(t)− ε holds. As10

ε is a small distance, it is likely that zi(t+ ∆t)< zj(t+ ∆t) is fulfilled, i.e. SIP i overtakes SIP j. In more than every second11

overtake, a multiple collection occurs (i.e. ηMU/ηOT = 0.56). In one eights/one third of the overtakes a single/no collection12

happens. So the relative importance of the various events is quite different compared to the regular AON and also p̄crit is three13

times larger (2.69 vs. 0.83). Note that changing ∆z in the WM2D-simulation (block #3) also affects the relative occurrences14

of no/single/multiple collections. In the WM3D-versions, the overall workload is proportional to ∆t−1. This is different in15

the WM2D-version. With increasing time step, droplets travel longer distances. Hence, the number of tested combinations and16

overtakes per time step increases.17

Note that the relative occurrence frequency of pcrit-values may depend also on the spectrum of given νp values (i.e. on the18

SIP initialisation method).19

Figure S14 demonstrates that all five AON simulations converge and show a basically identical time evolution of λ0. The20

analysis here shows that in the end more multiple collections than single collections appeared. Clearly, the occurrence of21

multiple collections in a simulation does not necessarily deteriorate the simulation results. It is certainly not the case, that the22

time step choice or adaptation must be such that multiple collections barely appear in a simulation. Beyond that, limiter events23

occurred in the LinSamp-simulation with ∆t= 10s did not avert convergence. So even a certain amount of limiter events24

seems to be acceptable in terms of performance. Fig. 6b) showed that even for ∆t= 100s LinSamp and regular AON produce25

similarly good results, albeit off from the reference.26

Several of the above findings may hold only for the specific setup used here. To put the findings into a broader context, we27

next derive scaling relations for basic numerical quantities and, in particular, discuss their sensitivity to the time step and the28

number of SIPs. For a simplified presentation, we limit ourselves to the regular and LinSamp-version and assumed converged29

simulation results and no limiter events. Moreover, we assume that an increase of NSIP leads to a uniform decrease of all SIP30

weights νp.31

For the following basic quantities we have32

νp ∝
1

NSIP
; nt∝ 1

δt
; N comb ∝NSIP

α; γcorr ∝NSIP
β , (28)33

where γcorr is the correction factor defined in Eq. 25. For QuadSamp α= 2,β = 0 and for LinSamp α= 1,β = 1.34
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Accordingly,1

νcoll ∝
1

NSIP
2 × δt, (29a)2

νsum :=

nt,Ncomb∑
(νcoll γcorr)∝

NSIP
α+β

NSIP
2 = 1, and (29b)3

p̄crit :=
1

N comb nt

nt,Ncomb∑
(νcoll/νp γcorr)∝NSIP

β−1 δt. (29c)4

In both versions, νsum is independent of NSIP and δt. Clearly, νsum should have the same value (not only the same asymptotic5

behaviour) across all AON versions in order to obtain consistent results. The average probability p̄crit scales, not surprisingly,6

linearly with δt. For QuadSamp, p̄crit is inversely proportional to NSIP and an increase of NSIP decreases the occurrence of7

multiple collections and limiter events. In the LinSamp case, p̄crit is independent of NSIP (as already pointed out by Shima8

et al., 2009, end of their section 5.1.3) implying that an increase of NSIP does not decrease the number of multiple collections9

and limiter events. Nevertheless, an NSIP-increase is also beneficial in LinSamp as it increases the number of trials and reduces10

the variance of the results.11

3.3 Realistic column model simulations12

The box model emulation simulations presented in Sec. 3.1 used an academic and irrealistic setup, not yet exploiting the13

capabilities of a column model framework. The following two subsections treat realistic setups.14

3.3.1 Half domain setup15

We initialise droplets in the upper half of a 4km column. In each GB the mean radius of the DSD is fixed at the default value16

rinit = 9.3µm. LWC init (and with it DNC init) decreases linearly from 3 g/m3 at the model top to zero at z = 2km. At the17

model top, a constant influx of a DSD with LWC init = 3 g/m3 is prescribed which guarantees a smooth profile over time.18

Otherwise, a discontinuity would occur at the top-most GB which may raise problems in the BIN model. The further settings19

are nz = 400, ∆z = 10m, ∆t= 10s, nrinst = 20, κ= 40. All figures related to this setup start their caption with the label20

HalfDomLinDec setup.21

Figure 9 shows the temporal evolution of the mean diameter and the moments λ0,λ1 and λ2. Due to the influx condition,22

the total mass increases during the first 10 minutes, barely visible in the third panel. During this period, however, collisional23

growth is already efficiently reducing the droplet number. This is accompanied by an increase of the mean diameter and radar24

reflectivity. Soon after, the first droplets reach the surface, the mass declines rapidly, and the whole column is more or less25

washed out after 30 minutes. We find an excellent agreement among the four model versions BIN, AON-regular, AON-WM2D26

and AON-LinSamp.27

Figure 10 shows vertical profiles of DNC,LWC,Z and NSIP,GB for times t= 0,10min,20min,30min and 60min. In the28

upper half, droplet number is roughly homogeneously distributed and decreases over time. In the lower half, droplet number29

concentrations are several orders of magnitude smaller than in the upper half and increase over time. The profile of the radar30
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Figure 9. HalfDomLinDec setup: Temporal evolution of Dmean and column-averaged moments λ0,λ1 and λ2 for various model versions

(see inserted legend; "LS" is short for linear sampling). .

reflectivity shows the highest values after 10 minutes with a pronounced peak in the middle of the domain. Soon after, the1

Z-profiles become smooth and increase monotonically towards the surface. The sedimentation flux also increases towards the2

surface and hence λ2-values decrease over time.3

In the upper half, NSIP,GB is fairly constant over altitude and time with around 200 SIPs. As the LWC is initially highest4

at the model top, collisional growth is most frequent there. Most likely, SIPs from that layer turn into collector SIPs, meaning5

they fall through the total column and collect many other SIPs. Consistently, NSIP,GB decreases over time close to the model6

top. Yet overall, only a small fraction of the SIPs becomes rain drops eventually (see e.g. Fig. 4 in U2017) and hence the SIP7

number is substantially smaller in the lower half. There, each GB is populated roughly by 10 SIPs. Despite this rather small8

value, convergence in DNC and Z seems to be ubiquitous.9
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Figure 11 depicts column-averaged DSDs for various points in time. The precipitation mode develops rapidly, and 2 to 3mm-1

sized drops are produced within 10 minutes. Those drops soon reach the surface and remove a significant amount of liquid2

water from the column. Due to this wash-out effect, the rain drops cannot grow that large any longer and the precipitation mode3

peaks at smaller sizes at later times.4

For a cleaner presentation, AON-LinSamp results were not shown in Figs. 10 and 11, but we confirm that these are very5

similar to those from AON-regular and AON-WM2D.6

Overall, the agreement between the four model versions is remarkable given the completely different numerics of the Eule-7

rian and Lagrangian approach.8

Next, the vertical resolution ∆z is varied in the model versions AON-regular, AON-WM2D and BIN (see Fig. S17). Even9

though this may look like a trivial sensitivity study, the effect of a ∆z-variation has different implications in the various10

models and AON versions. The differences are rather subtle. First, ∆z affects the number of GBs nz and with it the total SIP11

number NSIP,tot (as NSIP,GB is unchanged with the standard SIP init technique). To eliminate this unwanted numerical side12

effect in LCM1D, we increase NSIP,GB proportionally to ∆z (analogous to the ∆V -sensitivity tests in section 3.1). Second, the13

advection by sedimentation changes in BIN as the CFL number changes and the subcycling has to be adapted. In LCM1D, the14

SIP transport by sedimentation is independent of the assumed grid and clearly unaffected by a ∆z-variation. Third, there is a15

physical effect as ∆z determines the layer depth of the well-mixed volume (effective only in AON-regular and BIN).16

It follows that the results of the AON-WM2D version should be independent of ∆z. Moreover, the AON-regular version can17

be used to determine if the size (more specifically the depth) of the well-mixed volume is a crucial parameter. In bin models in18

general, this sensitivity could not easily be singled out as sedimentation numerics also change with ∆z.19

Given a constant column heightLz = 4km, ∆z takes the values 2m,10m,50m or 100m and we find λ0(t) to be independent20

of ∆z (see Fig. S17). As expected, the AON-WM2D simulations are not at all affected by ∆z. In particular, the AON-regular21

simulations are insensitive to a change in ∆z and imply that the depth of the well-mixed volume has a negligible impact on22

the extent of collections in the present setup. Interestingly, the ∆z = 10m simulation uses NSIP,GB = 200 and the ∆z = 100m-23

simulation NSIP,GB = 2000. Hence, a factor 100 more SIP combinations are tested for possible collections in the latter case, yet24

with no effect on the physical evolution.25

3.3.2 Empty domain setup26

In this section, the 4km deep column is initially devoid of droplets and a time-constant influx of a DSD with rinit = 16.9µm27

and LWC init = 6g/m3 is prescribed. As in the box model emulation setup, the according DNC init is 297cm−3. All figures28

related to this setup start their caption with the label EmptyDom setup.29

Over time the column fills with droplets, a distinct size sorting is established and DSDs at a specific altitude are expected to30

be rather narrow. Hence, choosing a too coarse vertical resolution may result in overestimating collections as the droplets are31

not supposed to be well-mixed within such deep GBs. In such a case, the AON-WM2D version has a conceptional advantage32

as it does not assume well-mixedness in the vertical direction. The chosen setup specifically aims at demonstrating the possible33

improvement by this. Again, the further parameter settings are nz = 400, ∆z = 10m, ∆t= 10s, nrinst = 20, κ= 40.34
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Figure 12 shows vertical profiles at t= 30 and 60 minutes for AON-regular, AON-WM2D and BIN. After 30 minutes the1

cloud roughly covers the top half of the column. Below z = 2km, fewer than 0.1 SIPs are present in each GB of LCM1D. This2

implies that only in 1 or 2 out of the 20 realisations SIPs grow sufficiently large to fall that far. This also explains the jagged3

λ2-profiles in the lower part. Below a certain altitude, no SIPs are present at all and hence no mean droplet diameter could be4

diagnosed. BIN produces non-zero mass and number all the way down to the bottom and allows computing a smooth Dmean-5

profile. As the predicted droplet masses and concentrations become vanishingly small, the derived Dmean-values in the lower6

part are, however, meaningless. Anyhow, this small discrepancy between BIN and LCM1D is a transient phenomenon. Once the7

cloud is fully developed, the profiles match perfectly (see dotted curve for t= 60min). Remarkable is the fact that on average8

well below 10 SIPs populate GBs in the lower domain half. Nevertheless, the LCM1D results seem to be converged. SIPs at9

those altitudes are large (Dmean > 400µm) and fall fast, which fosters a strong SIP exchange across GBs and is beneficial to10

convergence (see section 3.1). The AON-LinSamp simulation (not shown) produces again very similar profiles. This is even11

more remarkable, as on average only 5 SIP pairs are tested for collections per GB in the lower half.12

Figure 13 shows the temporal evolution of the mean diameter, column-averaged DNC and Z, here AON-LinSamp curves13

are added. Within the first 10 minutes, DNC increases quickly. Soon after, collection becomes effective and DNC reaches a14

quasi steady state. The radar reflectivity increases within the first 60 minutes and then also reaches a quasi steady state. The15

only discrepancy between the various models are slightly larger DNC-values by all AON versions. The reason for this is16

elucidated next.17

Fig. 14 shows the ∆z-dependence of the DNC-evolution in the different models. For ∆z = 50 and 100m, the SIP numbers18

in AON simulations have been upscaled to maintain NSIP,tot-values comparable to the ∆z = 10m-simulation (as already done19

in the HalfDom-setup). The Z-evolution (see Fig. S19 for a time series) is found to be basically independent of ∆z in all three20

models. For the DNC-evolution, we find also no ∆z-dependence in the WM2D-model as intended. However, in AON-regular21
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legend).

0 20 40 60 80 100 120
t / min

0.0

0.5

1.0

0 /
 m

3

1e6

AON-WM2D

100m
50m
10m
2m

0 20 40 60 80 100 120
t / min

AON-regular

0 20 40 60 80 100 120
t / min

BIN

EmptyDom, const inflow

Figure 14. EmptyDom setup: Temporal evolution of column-averaged moments λ0 and λ2 for various model versions (AON-WM2D, left;

AON-WM3D, middle; Bin, right). Each panel shows a variation of the vertical resolution ∆z (see legend). In LCM simulations, SIP numbers

for ∆z = 100m and 50m-simulations are increased to the level of the ∆z = 10m-simulation.

36



and BIN model,DNC levels off at different values depending on ∆z. This behaviour is most likely caused by an interaction of1

the unresolved size sorting and the hence larger range of potential collection partners in AON-regular and BIN. Apparently, this2

results in changes in the rate with which the smallest droplets are collected by larger droplets, as indicated by the substantial3

effect of this process on DNC, but not on Z.4

The ∆z-dependence persists in AON-LinSamp simulations and in further AON-regular simulations, where we reduced the5

time step to ∆t= 1s or decreased NSIP,tot (see Fig. S20).6

This undesired ∆z-dependence in BIN and AON-regular seems to showcase the superiority of the AON-WM2D version.7

However, the ∆z-dependence does not affect higher moments of the DSD, e.g., Z (as shown in SUPP) or the accumulated size8

distribution of all droplets that crossed the lower boundary (Fig. S21). Accordingly, precipitation-related quantities seem to be9

unaffected by changes in the vertical grid spacing. On the other hand, most of the ∆z-effect can be attributed to changes in the10

DNC within the top most 100− 200m of the column (Fig. 12). Anyhow, based on the presented results, we cannot definitely11

answer the question, whether using the AON-WM2D approach has in general any practical benefits over the classical 3D12

well-mixed approaches. Further research in this direction is required.13

4 Summary and conclusions14

Collection, i.e., the coalescence, accretion, and aggregation of hydrometeors, is an important process for the development15

of precipitation in liquid-, mixed-, and ice-phase clouds, respectively. The correct representation of these processes in cloud16

microphysical models is, therefore, of utmost importance. In this study, we investigated and validated the representation of17

collection in LCMs, a relatively new approach that uses simulation particles, so-called SIPs or superdroplets, to represent18

cloud microphysics.19

This study is a continuation of U2017, in which we analysed various representations of collisional growth algorithms in20

LCMs using zero-dimensional box model simulations. Here, this analysis is extended to one-dimensional column simulations21

that allow considering the effects of sedimentation explicitly. This study focuses on the AON algorithm (Shima et al., 2009;22

Sölch and Kärcher, 2010) that outperformed other collection algorithms, as assessed in our previous study (U2017). Two23

versions of AON are applied that differ in the assumed distribution of droplets represented by a SIP: In the regular AON24

version, the droplets are assumed to be well-mixed within a three-dimensional volume (which is typically identical to the GB25

of the dynamical model coupled to the LCM). In WM2D, the height coordinate of each SIP is used explicitly, and the droplets26

represented by a SIP are assumed to be well-mixed only within a two-dimensional, horizontal plane. Accordingly, collections27

are only considered if a SIP overtakes another one during a time step.28

Furthermore, two variants of AON-WM3D are tested that differ in the number of SIP combinations that need to be tested29

during collection. In its simplest form, AON-WM3D depends quadratically on the number of SIPs since every SIP may interact30

with any other SIP inside a GB (QuadSamp). Additionally, Shima et al. (2009) introduced an approach that depends only31

linearly on the number of SIPs by appropriately scaling collection probabilities (LinSamp). What we call here AON-LinSamp32

is also referred to as SDM (SuperDroplet Method) algorithm in the literature.33
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All results are compared to established Eulerian bin model results (Bott, 1998; Wang et al., 2007). Accordingly, the capability1

of Lagrangian and Eulerian approaches to advect a droplet ensemble due to sedimentation is tested first — neglecting the2

influence of collection. Since numerical diffusion is inherent to any Eulerian advection problem, i.e., also sedimentation, its3

impact might impede any conclusions drawn from the collection simulations. However, by using an appropriate advection4

scheme (MPDATA, Smolarkiewicz, 1984), numerical diffusion can be reduced to an acceptable degree in the sense that the5

present simulations focus on the differences driven by collection numerics.6

As a first step and link to U2017-simulations, box model simulations are emulated in the column model. This is done by7

initialising each GB of the column with the same droplet size distribution and applying cyclic boundary conditions at the8

surface and the top. By using this framework, we were able to show that sedimentation increases the model convergence rate9

significantly compared to box model simulations without sedimentation, i.e., fewer SIPs are required in the column model.10

The reason for this behaviour is that the largest and hence fastest falling droplets are no longer confined to the same GB and to11

the same potential collection partners, which increases the ensemble of potential collection partners. A similar observation has12

been made by Schwenkel et al. (2018), who used randomised motions between individual GBs. Overall, these results indicate13

that a simulation with only 24 SIPs per GB can yield reasonable results if (i) these SIPs are able to move between GBs and (ii)14

the SIP weighting factors are ideally chosen in the beginning by using an appropriate SIP initialisation technique.15

In general, a remarkably good agreement of the LCM results with the bin reference has been found for all AON versions16

(regular AON, AON-WM2D and AON-LinSamp). AON-LinSamp results are only slightly worse compared to regular AON17

simulation of the same time step and SIP number. However, these stronger restrictions on the time step do by far not outweigh18

the computational benefit gained by the favourable linear computational complexity making the LinSamp version the preferred19

choice if computation time is a critical factor. In an operational setting, the QuadSamp approach is a valuable alternative to20

LinSamp as long as the number of SIPs is not prohibitively high.21

We further compared the computational requirements for the WM2D and WM3D implementations of AON. We found that22

WM2D requires checking for overtakes in the entire column, not only in the GB in which the SIP is located, as is the case for23

WM3D. However, this seeming disadvantage is turned into an advantage, since only a minority of SIPs overtakes other SIPs.24

Accordingly, the overall number of calculations necessary for the application of WM2D is reduced compared to WM3D. The25

physical reason for this effect is the typical bimodal structure of droplet spectra, which consist of only a few large droplets that26

sediment and collect other droplets efficiently, while the remaining droplets are usually too small to sediment and collect other27

droplets.28

Finally, we applied the various AON versions to two more realistic column cases. While both cases use a prescribed inflow29

of droplets from the top, the first case is initialised with a linearly increasing liquid water content, and the second case is30

completely devoid of any initial droplets. Overall, the agreement of AON-regular, AON-WM2D, AON-LinSamp and the bin31

references is remarkable. Only in the second case, which is designed to be heavily prone to size-sorting, a dependence on the32

vertical grid spacing is detectable for WM3D and the bin reference, which both assume droplets to be well-mixed within a GB,33

while the WM2D results are found to be completely independent of the vertical grid spacing.34
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In all AON variants, simulation results converge for fairly large time steps ∆t > 10s. For such high ∆t-values, the largest1

droplets routinely travel distances larger than the vertical resolution ∆z during one time step (as noted above). Whereas in2

Eulerian advection this would violate the CFL criterion and cause a numerical break-down, Lagrangian numerics do not fail. In3

higher-dimensional full microphysical models with diffusional growth included and gradients in moist thermodynamic fields4

physical reasons render it appropriate to apply a time step criterion in the spirit of the CFL condition also in Lagrangian5

approaches. Solving diffusional growth usually sets stricter bounds on ∆t (Arnason and Brown, 1971). Moreover, the interplay6

of diffusional and collisional growth, which was not studied here, may raise the time step requirements of AON for physical7

reasons, e.g. Dziekan et al. (2019), using AON with linear sampling in 2D and 3D LCM simulations, found convergence only8

for a rather small time step of ∆t= 0.1s.9

All in all, this study has shown that the representation of collisional growth in LCMs using AON successfully reproduces10

established Eulerian bin results. This ability, of course, depends foremost on the number of SIPs and the applied time step as11

already indicated in previous zero-dimensional box model studies. Compared to these zero-dimensional studies, the application12

of an LCM in a column decreases the required number of SIPs significantly. The consequently lower computational costs raise13

hopes to use LCMs more frequently in large-scale, multidimensional models in the future.14

Appendix A: Pure sedimentation test cases15

This Appendix presents pure sedimentation test cases that are suited to demonstrate that minor differences are introduced by16

the different numerical treatment of the sedimentation process. Two simple setups with an influx of an exponential DSD with17

rinit = 50µm are tested. In the first case, the domain is initially empty and fills over time (EmptyDom) as in section 3.3.2.18

In the second case, the upper half of the domain is filled, with LWC init and DNC init decreasing linearly to zero from the19

domain top to the domain middle (HalfDom) like in section 3.3.1. Figure A1 shows the vertical profiles of normalised zeroth20

(left) and second (right) moments for EmptyDom (top) and HalfDom (bottom). Because of the lack of numerical diffusion, the21

solid LCM curves show the exact results, except for the error introduced by discretising the influx DSD with a probabilistic22

approach. Each panel showcases a convincing agreement between the Eulerian and Lagrangian approach. Only the BIN-US123

solutions are slightly smeared out. The small wiggles in the LCM curves originate from the probabilistic influx condition. Even24

though the above agreement is favourable, it might be that the advection errors of differently sized droplets compensate each25

other in the Eulerian approaches. Hence, in a second validation step, the computation of mass profiles is confined to certain26

droplet size ranges. Figure A2 shows such vertical profiles for EmptyDom. We see that for all four size ranges, the BIN results27

are smeared out relative to LCM. For the smallest size ranges both BIN versions are equally "bad" (top left panel). For the28

three remaining panels, the MPDATA curves (dashed) are closer to the LCM reference than the US1 curves (dotted). On the29

other hand, the MPDATA curves in the bottom right panel show some wiggles. Overall, the agreement between LCM and30

BIN-MPDATA is good. The discrepancies introduced by the different sedimentation treatment appear to be small enough to31

focus on the collisional growth process and its implementations in the main part of the paper.32
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Figure A1. Pure Sedimentation test case: Comparison of BIN and LCM (solid) advection. BIN uses either MPDATA (dashed) or 1st order

Upstream scheme (dotted). EmptyDom (upper row) and HalfDom (lower row) setup are used with an exponential distribution with rinit =

50µm as influx condition. Displayed are vertical profiles of normalised zeroth and second moment at the indicated points in time.

Moreover, we tested the sensitivity to rCFL and ∆t as both parameters in combination determine the local CFL number of1

each grid box. BIN simulations were carried out for the HalfDomLinDec-setup and with switched on collisional growth (i.e.2

the setup of section 3.3.1). Fig. S18 demonstrates that this has no impact on the prediction of the total moments.3

Code and data availability. The source code of the Lagrangian column model is hosted on GitHub (https://github.com/SimonUnterstrasser/4

ColumnModel) and released under Apache License 2.0. The (frozen) code version used to produce the simulation data of this study can be5

obtained from Zenodo (DOI: 10.5281/zenodo.4031214). The data of the BIN and AON simulations together with all plot scripts that are6

necessary to reproduce the figures of this study, are released in a second Zenodo data set (DOI: 10.5281/zenodo.4030878). The source code7
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Figure A2. Pure Sedimentation test case: Comparison of BIN and LCM advection. EmptyDom setup with an exponential distribution with

rinit = 50µm as influx condition. Displayed are vertical profiles of normalised mass within specified size ranges (see on top of each panel)

at the indicated points in time. Note that most panels use different y-axis ranges and do not show all six points in time.

of the bin collection algorithms by Bott (1998) and Wang et al. (2007) have been obtained from A. Bott and L. P. Wang, respectively. We are1

not in the position to make the codes publicly available.2
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