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Abstract  25 

Worldwide exposure to fine atmospheric particles can exasperate the risk of a wide range of 26 

heart and respiratory diseases, due to their ability to penetrate deep into the lungs and blood 27 

streams. Epidemiological studies in Europe and elsewhere have established the evidence base 28 

pointing to the important role of PM2.5 (fine particles with a diameter of 2.5 microns or less) in 29 

causing over 4 million deaths per year. Traditional approaches to model atmospheric 30 

transportation of particles suffer from high dimensionality from both transport and chemical 31 

reaction processes, making multi-sale causal inference challenging. We apply alternative 32 

model reduction methods – a data-driven directed graph representation to infer spatial 33 

embeddedness and causal directionality. Using PM2.5 concentrations in 14 UK cities over a 12-34 

month period, we construct an undirected correlation and a directed Granger causality network. 35 

We show for both reduced-order cases, the UK is divided into two a northern and southern 36 

connected city communities, with greater spatial embedding in spring and summer. We go on 37 

to infer stability to disturbances via the network trophic coherence parameter, whereby we 38 

found that winter had the greatest vulnerability. As a result of our novel graph-based reduced 39 

modeling, we are able to represent high-dimensional knowledge into a causal inference and 40 

stability framework. 41 
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1. Introduction: 58 

 59 

1.1 Background and rationale 60 

Atmospheric particulate matter can be attributed to both local emissions (by both stationary 61 

and mobile sources) and regional transport processes. Causal inference between primary 62 

(emitted directly by the emission sources) and secondary (produced in the atmosphere by the 63 

transformation of gaseous pollutants) is challenging. For example, whilst combustion sources 64 

such as road traffic account for the bulk of anthropogenic PM emissions and cause PM2.5 65 

formation (Munir, 2017; AQEG, 2012), meteorological conditions can also influence PM2.5 66 

concentrations through dispersion, and deposition. Due to the high data complexity and 67 

dimensionality caused by the contribution of atmospheric chemistry transport processes and a 68 

range of emission sources in ambient PM2.5 concentrations, we need to overcome the high 69 

dimensionality challenge and compress the concentration data into 2-dimensional (2D) 70 

network. European legislation sets current and future caps on anthropogenic emissions of 71 

primary and secondary-precursor components of PM2.5 at national level and from individual 72 

sources (Vieno et al., 2016). In addition, it is well-known that ambient PM derives from both 73 

transboundary emissions and transport (Vieno et al., 2016), creating challenges to develop 74 

effective mitigation scenarios at the local level (Vieno et al., 2016; Zhang et al., 2008; van 75 

Donkelaar et al., 2010). 76 

1.2 Importance & Impact 77 

Atmospheric particulate matters impact human health (WHO, 2006, 2013) and climate change 78 

through radiative forcing (IPCC, 2013). The global health burden from exposure to ground 79 

level PM2.5 is substantial. According to the Global Burden of Disease project, exposure to 80 

ambient PM2.5 concentrations prevailing in 2005 was responsible for 3.2 million premature 81 

deaths and 76 million disability-adjusted life years (Vieno et al., 2016; Lim et al., 2012). In 82 

Europe, exposure to ambient PM2.5 is still a major health issue. For the period 2010–2012, it 83 

was reported by the European Environment Agency report that 10–14 % of the urban 84 

population in the EU28 countries were exposed to PM2.5 exceeding the EU annual-mean PM2.5 85 

reference value (25 µg m−3), while 91–93 % were exposed to concentrations exceeding the 86 

WHO annual-mean PM2.5 (10 µg m−3) (Gehrig et al., 2003; EEA, 2014). Meeting the standards 87 

focused on PM2.5 is complicated by the considerable chemical heterogeneity. PM long-term 88 

exposure has been identified to be more serious than the daily (short-term) exposure to higher 89 

PM concentrations that was first linked to impacts on human health (Pope and Dockery, 2006; 90 

Harrison et al., 2012). Long-term impact studies have provided the foundation for calculation 91 
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of health impacts from PM exposure in the UK and Europe, which are significant 92 

(COMEAP,2010). Changes in the direction of studies towards PM2.5, associated with the 93 

evidence that long-term PM levels play important role alongside short-term peaks, in terms of 94 

health outcomes, has caused changes in legislation (Defra, 2007, Official Journal, 2008). 95 

 96 

1.3 Modeling Challenges 97 

Challenges associated with traditional modelling of PM evolution to infer regional and local 98 

influences include the need to embed a chemical complexity, range of emission sources and 99 

transformative processes in Eularian models. In this study, for the first time, we explore the 100 

potential for compressing ambient PM2.5 network data into 2-dimensional (2D) network, 101 

establishing a simple graph to infer causality and stability.  This is a timely study as strategic 102 

investments in national and local air quality monitoring networks require an evaluation on the 103 

usefulness, or not, of network design. Whilst this study focuses on a sparse distributed network, 104 

we discuss future applications for local networks across cities, for example. In a graph, each 105 

node in the graph is a city, which exhibits a temporal signal (PM2.5) and is connected to other 106 

cities if they exhibit a close association in terms of either correlation (undirected) or Granger 107 

causality (directed).   108 

 109 

2. Materials and Methods: 110 

2.1 Ground-level PM2.5 data 111 
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Hourly PM2.5 concentrations were observed at 15 monitoring stations in different cities (from 112 

UK-air defra dataset website1) shown in Figure 1 and coordinates given in SI – List S1. The 113 

study period was divided into four seasons (meteorological seasons) Spring: 1st March 2017- 114 

31st May 2017, Summer: 1st June 2017- 31st August 2017, Autumn: 1st September 2017- 30th 115 

November 2017, and Winter: 1st December 2017- 28th February 2018. Also, PM2.5 emissions 116 

sources data were downloaded from the UK National Atmospheric Emission Inventory (NAEI) 117 

website. 118 

 119 

 120 

 121 

 122 

 123 

 124 

 125 

 126 

 127 

 128 

 129 

 130 

Figure 1. Studied stations in the UK. 131 

 132 

2.2 Cross correlation calculation for spatial distribution of PM2.5 in the UK 133 

To measure the similarity of PM2.5 concentration time series among each pair of cities in the 134 

current study, the hourly based cross-correlation (XCROSS) was calculated using PAST 135 

(PAleontological Statistics) version 3.25, for all site pairs (106 pair of cities) in four seasonal 136 

windows (spring, summer, autumn, and winter). These periods were selected to try and capture 137 

the effect of seasonal changes on the measured similarity between PM2.5 concentration time 138 

 
1 https://uk-air.defra.gov.uk/data/openair  
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series. A flexible threshold (above 70%) was applied to decide which pairs were strongly 139 

correlated (Gehrig et al., 2003).  140 

2.3 Granger Causality calculation in PM2.5 network in the UK 141 

The Granger causality test as a statistical hypothesis test for determining whether one time 142 

series is useful in forecasting another, thus for measuring the ability to predict the future values 143 

of a time series using prior values of another time series, was applied (using Eviews, version 144 

11) to each pair of cities in the network during different seasons. When the p-value was less 145 

than alpha level (5%), the null hypothesis was rejected, and we could decide which time series 146 

can forecast another one. The Granger Causality test assumes that both the x and y time series 147 

(x and y represent PM2.5 concentration series for different stations in our network) are 148 

stationary, which was not the case in current study. As a result, de-trending was first employed 149 

before using the Granger Causality test. To retain the same degrees of freedom (Statistical 150 

parameter estimation is based on different amounts of data or information. The number of 151 

independent pieces of data that go into the estimation of a parameter are called the degrees of 152 

freedom (DF). Mathematically, DF represents the number of dimensions of the domain of 153 

a random vector, or how many components should be known before the vector is fully 154 

determined.), with annual data, the lag number is typically small (1 or 2 lags). For quarterly 155 

data (which was our case), the appropriate lag number is 1 to 8. If monthly data is available, 6, 156 

12, or 24 lags can be used given enough data points. The number of lags is critical since a 157 

different number of lags can lead to different test results. As a result, optimal lags were chosen 158 

based on Akaike Information Criterion (AIC). The optimal lag number that ensures the model 159 

will be stable is thus 7 in our study. It is possible that causation is only in one direction, or in 160 

both directions (x Granger-causes y and y Granger causes x). We chose the direction based on 161 

the lowest p-value. For example in spring, according to our analysis,  results suggest that 162 

‘activity’ in Manchester is statistically influencing Preston with a p-value= 5×10-29, while 163 

Preston is statistically affecting Manchester with a p-value= 3×10-8. Therefore we infer that the 164 

first statement (pollution from Manchester is influencing Preston’s concentrations) is the 165 

correct one to select due to its lower p-value.  Please note the language chosen reflects the 166 

statistical inference for the network analysis; However, the mapping of inference to 167 

atmospheric behavior and known challenges around PM2.5 source apportionment is important 168 

and discussed. 169 

 170 

2.4 Trophic coherence 171 
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Trophic coherence is a way of hierarchically restructuring a directed network and labelling the 172 

hierarchical levels (trophic levels – as derived from food webs and predation levels). Trophic 173 

levels have been shown to be an effective compressed metric to infer stability on large directed 174 

networks with no clear input output definition. The bottom (basal) nodes are those where all 175 

energy comes from (e.g. major source of pollution), and the coherence of the whole network is 176 

a proxy for stability against disturbances. The trophic level (si) of a node i, is the mean trophic 177 

level of its in-neighbours: 178 

1
1i ij jin

ji

s a s
k

= +   179 

where in

i ijj
k a=  is the number of in-neighbours of the node i and  aij is the adjacency matrix 180 

of the graph. Basal nodes 
in

ik have trophic level 1is = by convention (Pagani et al., 2019). In 181 

our study, to interpret trophic coherence in a directed causal network, the initial stage was 182 

introducing basal nodes. 183 

 184 

Stations with a low trophic level are PM2.5 sources while stations with a high trophic level are 185 

receptors according to this definition. The trophic level of a station is the average level of all 186 

the stations from which it receives PM2.5 pollutant plus 1. ij i jx s s= −  is the associated trophic 187 

difference of each edge. As always, p(x) (the distribution of trophic differences) has a mean 188 

value of 1, and when the network is more trophically coherent, the variance of this distribution 189 

is smaller. The incoherence parameter q is the measurement of the trophic coherence of 190 

network, which is the standard deviation of p(x): 191 

21
1ij ij

ij

q a x
L

= − , 192 

where ijij
L a= is the edges (the number of connections) between the nodes (stations) in the 193 

network. When 0q = , the network is perfectly coherent however q with the values of greater 194 

than 0 shows less coherent networks. 195 

 196 

3. Result and Discussion: 197 

 198 

3.1 Spatial distribution of PM2.5 over the UK 199 

Interesting information about the spatial distribution of the PM2.5 concentrations over the UK 200 

can be obtained when analysing the cross correlation of the hourly values between the different 201 
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sites. Results suggest that two groups of cities were connected to each other with XCROSS 202 

value above 70%. The first group (Northern Group A) includes Preston (Pre), Manchester 203 

(Man), Chesterfield (Chest), Leeds, Nottingham (Not), Newcastle (New), Birmingham (Bir), 204 

and Liverpool (Liv), while the second one (Southern Group B) includes Bristol (Bri), Oxford 205 

(Oxf), Southampton (South), Plymouth (Ply), Norwich (Nor), and London (two stations named 206 

LonB and LonR). For the seasons of spring, summer, and autumn, the combination of groups 207 

does not change, but the value of XCROSS does (Figure 2). In wintertime the combination of 208 

cities in and out of clusters changes (Figure 2-D). The connected cities, generating a directed 209 

dynamic network, are seasonally visualized in Figure 2.   210 

As the networks are very spatial (i.e., distance is a significant impedance factor), a general 211 

measure of how spatially embedded it is, was studied. The pair of stations were divided into 212 

groups based on the distance (Table 1). To quantify the level of spatial embeddedness, a 213 

relationship between Cross correlation and distance between each pair of cities was studied 214 

(Table 1). A very high spatially embedded part of the network for all seasons was formed below 215 

100 Km, while less spatial embeddedness of network was witnessed when the distance 216 

increased to above 200Km (for all seasons). A main part of the network (100 Km) was formed 217 

in cluster A with percentage of 67%, 54%, 60%, and 89% during spring, summer, autumn, and 218 

winter, respectively. This value in cluster A reduced (for all seasons) when increasing the 219 

distance between pair of cities reaching the value of zero during autumn and winter. Since the 220 

distance between cities in cluster was dominantly above 100Km, the dominant part of the 221 

network in cluster B was formed below 200 Km (100-200Km), with percentage of 38%, 52%, 222 

46%, and 23% during spring, summer, autumn, and winter, respectively. This value in cluster 223 

B had a reduction (for all seasons) by increasing the distance between pair of cities reaching 224 

the value of zero during autumn, while during wintertime it was 19% for distance above 225 

200Km. The number of outliers (pair of connected cities out of group A &B) had its highest 226 

values of 40%, 100%, and 81% during spring, autumn, and winter, respectively when the 227 

distance between cities was above 200Km. During autumn, for distances above 200Km, the 228 

original network was not formed, while during winter, group B was formed. The number of 229 

paired cities in the network had a reduction by 50% between spring and winter, when the 230 

distance was below 100Km (the same reducing trend was witnessed in both groups). For 231 

distances below 200Km, the network was weakened by %50. Interestingly, when the distance 232 

between cities increased above 200 Km, during winter the network was strengthened by 17% 233 

comparing to spring.  234 

 235 
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Table 1. The relationship between Cross-Correlation (XCROSS) of the daily values of PM2.5 and 236 

distance of the cities in UK. 237 

 238 

 239 

 240 

 241 

 242 

 243 

 244 

 245 

 246 

 247 

 248 

 249 

 250 

 251 

 252 

 253 

 254 

 255 

 256 

Distance 
Pair of connected 
cities in network 

Pair of connected 
cities in group A 

Pair of connected 
cities in group B 

Outliers (pair of connected 
cities out of groups) 

Spring 

˂100Km 18 (43%) 12 (67%) 6  (33%) 0 

˂200Km 42 (81%) 24 (57%) 16 (38%) 2 (5%) 
>200Km 10 (19%) 3 (30%) 3 (3%)   4 (40%) 

Summer 

˂100Km 13 (52%) 7  (54%) 6  (46%) 0 

˂200Km 25 (90%) 12 (48%) 13 (52%) 0 
>200Km  3 (10%)  2  (67%) 1  (33%) 0 

Autumn 

˂100Km 15 (54%) 9 (60%) 6 (40%) 0 

˂200Km 28 (93%) 9 (27%) 13 (46%) 9 (27%) 
>200Km 2  (7%) 0 0 2 (100%) 

Winter 

˂100Km 9  (35%) 8  (89%) 1 (11%) 0 

˂200Km 26 (41%) 14 (54%) 6 (23%) 6  (23%) 
>200Km 37 (59%) 0 7 (19%) 30 (81%) 

A 

https://doi.org/10.5194/gmd-2019-342
Preprint. Discussion started: 5 March 2020
c© Author(s) 2020. CC BY 4.0 License.



10 
 

 257 

 258 

 259 

 260 
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B 

D 
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 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 

 299 

Figure 2. Cross correlation based dynamic network including; A) spring window, B) summer window, 300 
C) autumn window, and D) winter window in 2017-2018, UK. 301 

 302 

 303 

3.2 Granger causality test  304 

The main result from this study is that cities with the strongest Cross correlation have the lowest 305 

p-value (below 5%) (Figure 3). In spring, as already noted, results suggest that, statistically, 306 

activity in Manchester is causing concentrations to change in Preston with p-value= 5×10-29 307 

(i.e. Manchester PM2.5 data can be used to predict the future PM2.5 values of Preston) and 308 

Bristol is causing Oxford with a p-value of 9×10-28. In summer, Liverpool is causing Preston 309 

with a p-value of 7×10-17. Manchester is causing Preston with p-value= 6×10-23 in autumn, 310 

while Chesterfield is causing Nottingham with a p-value of 1×10-7in wintertime. The results 311 

look very spatial and the distance is a significant impedance factor. The distance between all 312 

paired cities was below 50Km. Based on Table 2, when the distance between pair of cities 313 

increases the order of p-value increases too.  314 

 315 

D 
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 316 

 317 

 318 

 319 

 320 

A 

B 
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 321 

 322 

 323 

  324 

 325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

Figure 3. Granger based dynamic network including; A) Spring window, B) Summer window, C) 336 
Autumn window, and D) Winter window in 2017-2018, UK. 337 

 338 

 339 

 340 

C 

D 

D 
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Table 2. Comparison among Granger causality results (p-values) in different seasons. 341 
 342 

Source Target Distance (Km) p-value 

Spring 

Manchester Preston 43.66 5×10-29 

Bristol Oxford 91.78 9×10-28 

Summer 

Liverpool Preston 42.62 7×10-17 

Leeds Newcastle 131 5×10-11 

Autumn 

Manchester Preston 43.66 6×10-23 

Chesterfield Oxford 165.11 3×10-20 

Winter 

Chesterfield Nottingham 36.17 1×10-7 

Chesterfield Bristol 213.74 7×10-6 

 343 

  344 

A directed graph is defined (Bang-Jensen and Gutin, 2008) as an ordered pair ( , )G N E= , 345 

where N is a set of nodes (i.e. stations) and E is a set of ordered pairs of nodes, called edges 346 

(i.e the probability values for F statistics). The hierarchical structure of a directed graph can be 347 

presented by its trophic coherence property. The whole idea is that hierarchical systems have 348 

fewer feedback loops and experience less cascade effects. The incoherence parameter (q) was 349 

used to measure the coherence of the seasonal causal network to show how trophic distance is 350 

tightly associated with edges concentrated around its mean value (which is always 1) (Johnson, 351 

et al., 2014). We observed incoherent network in our seasonal datasets (Table 3).  352 

 353 

Table 3. Incoherence factor of seasonal directed networks in current study. 354 

Directed network Incoherence factor (q) 

Spring 0.69 

Summer 0.37 

Autumn 0.49 

Winter 0.35 

 355 

The highly incoherent season was spring with q= 0.69, whilst a less incoherent network was 356 

found to be winter (q=0.35). In figure 3, according to the parameter definition, the basal nodes 357 

with the low trophic level represent the major pollution source nodes, while stations with high 358 

trophic levels are ones who act as receptors in the causal network. During springtime, due to 359 

well mixing of the lower atmospheric layer, the network was well formed. In group A, 360 
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Birmingham with low trophic level was classified as a pollution source, while in group B 361 

Southampton was pollution source with low trophic level.  362 

 363 

 364 

 365 

 366 

 367 

A 

B 
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 368 

 369 

 370 

 371 

Figure 3. The hierarchical structure and basal nodes of causal network including; A) Spring window, 372 
B) Summer window, C) Autumn window, and D) Winter window in 2017-2018, UK. 373 

 374 

 375 

C 

D 
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4. Discussion: 376 

4.1 The effect of meteorological parameters on network structure 377 

Based on the previous analysis, this connection (network) indicates that meteorological 378 

conditions and diurnal emissions from a wide range of common sources (such as traffic), rather 379 

than locally specific sources and events, dominate the relative variations of the concentrations 380 

of fine particles over long periods (Gehrig et al., 2003). During wintertime, the meteorology is 381 

characterized by frequent inversions, forming an efficient obstacle for the distribution and 382 

homogenization of PM. As a result, only tight spatially embedded parts of network (below 383 

100Km with the highest percentage of restored network) could ‘withstand’ meteorological 384 

influences and further parts (above 100Km) started to collapse from a network perspective. In 385 

winter time, the plausible reason of connecting the cities out of the initial network (81% of 386 

connected cities were out of the initial network with distance above 200 Km) might be higher 387 

average seasonal wind speeds (in all studied stations), probably due to the balance among 388 

greater dilution and shorter transport times at higher wind speeds, which allows less time for 389 

PM dispersion and deposition over further distances (Harrison et al., 2012). 390 

Indeed, it is well known that changes in meteorological parameters (e.g., wind speed and 391 

direction, temperature, and rainfall) can significantly affect PM2.5 concentrations and formation 392 

mechanisms (AQEG, 2012; Vieno, et al., 2016). In addition to primary sources, secondary 393 

sources are dependent on meteorological conditions and the abundance of precursors. 394 

Secondary aerosols have a significant contribution in PM2.5 concentrations in the UK, where a 395 

large proportion transboundary secondary PM2.5 transferred from Europe is made of nitrate 396 

particles in the form of ammonium nitrate (AQEG, 2012; Vieno, et al., 2016). One plausible 397 

reason of connection within a network can be common transboundary sources. 398 

The association among wind direction and PM2.5 can provide a better picture of the origins of 399 

the measured PM2.5 concentrations. With this in mind, there is an outstanding coherence 400 

throughout the patterns across the Group A and Group B in the UK. Hence, there is, a minor 401 

variation between cities in the south (Group B) and those in the north or close to northern part 402 

(Group A) of the UK (Harrison et al., 2012). High PM2.5 concentrations in Group B (southern 403 

sites) are more attributed to winds from the east through to southeast, which are often attributed 404 

to a blocking high pressure over the Nordic countries, giving rise to a south-easterly or easterly 405 

air flow that cause transportation of emissions from eastern Europe, northern Germany, and 406 

the Belgium and Netherlands to the southern cities in the UK (Harrison et al., 2012; Barry and 407 
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Chorley, 2010). Nonetheless, the arriving air flow in the northern parts of the UK from the east 408 

to southeast sector will not have passed through these same emission origins. 409 

On the other hand, High PM2.5 concentrations in Group A (northern cities or close to northern 410 

part) are more important attributed to the winds blowing from the northeast through to east, 411 

drawing air flow ( likely to start blowing when a low pressure runs up the English Channel) 412 

northward across European emission sources (to mainly be emission sources of precursors of 413 

secondary PM), out into the North Sea, then reaching northern parts of the UK from a north-414 

easterly direction (Barry and Chorley, 2010). 415 

 416 

5. Conclusion: 417 

 418 

In current study, we use PM2.5 concentrations in 14 cities in the UK over 52 weeks to infer an 419 

undirected correlation and a directed Granger causality network. We show for both network 420 

cases (group A & B), two robust spatial communities divide the UK into the northern and 421 

southern city clusters, with greater spatial embedding in spring and summer.  422 

Based on the granger causality test, we infer that PM2.5 data of cities with the strongest Cross 423 

correlation (having the lowest p-value) can be helpful to predict the future PM2.5 values in the 424 

network. However, there are of course multiple caveats with this statement, some of which are 425 

reflected in our discussions around known influences from meteorological and source 426 

variability. We leverage on the directed network to infer stability to disturbances via the trophic 427 

coherence parameter, whereby we found that winter had the greatest vulnerability.  428 

As already noted, this connection (network) suggests that meteorological conditions and 429 

emissions from regional origins rather than specific local origins and events dominate the 430 

relative variations of the urban background PM2.5 concentrations (Gehrig et al., 2003) using 431 

this sparse network data. We know that PM with emission sources from continental Europe, 432 

probably as secondary PM, can play an important role in affecting PM2.5 levels in different 433 

parts of the UK (Harrison et al., 2012). However, our study has some limitations including a 434 

short period of time over which the network was analysed. Also, to have a better understanding 435 

of network, evaluating a predictive network based PM2.5 model using meteorological 436 

parameters, and contributions from identified clusters in the UK, would be helpful.  This work 437 

acts as a demonstrator for the information that can be extracted from an undirected correlation 438 

and a directed Granger causality network. Further work is needed, alongside ancillary data that 439 

might support the extracted relationships such as source apportionment data and transport 440 
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activity, for example. The approach might also be better suited to more local networks, such as 441 

monitoring stations across a city.  442 

Code availability. The code for computing the trophic level of each node in the network, the 443 

trophic difference and finally trophic coherence (q) of the network with all scripts needed to 444 

reproduce the results in this study is available at https://github.com/kohyar88/PM2.5--Trophic-445 

-Coherence-/tree/v1.0.0 with DOI number of 10.5281/zenedo.3661483.  446 
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