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Abstract.

A free software package for the computation of the 3-Dimensional Normal Modes of an hydrostatic atmosphere is presented.

This software performs the computations in isobaric coordinates and was developed for two user friendly languages: MAT-

LAB and Python. The software can be used to expand the global atmospheric circulation onto the 3-D Normal Modes. This

expansion allows the computation of a 3-D energetic scheme which partition the energy reservoirs and energy interactions5

between 3-D spatial scales, and between barotropic and baroclinic components as well as between balanced (rotational) and

unbalanced (divergent) circulation fields. Moreover, by retaining only a subset of the expansion coefficients, the 3-D normal

mode expansion can be used for spatial scale filtering of atmospheric motion, and filtering of balanced motion and mass un-

balanced motions, and barotropic and baroclinic components. Fixing the meridional scale, the 3-D normal mode filtering can

be used to isolate tropical components of the atmospheric circulation. All these features are useful both in data analysis and in10

assessment of general circulation atmospheric models.

1 Introduction

The use of the three-dimensional normal mode functions (3-D NMFs) of the linearized primitive equations as a basis to expand

the global horizontal wind and mass fields simultaneously was presented for the first time by Kasahara and Puri (1981). The

expansion of both atmospheric fields onto the 3-D NMFs allows the partition of energy of the global motion in two kinds of15

motions: mass balanced rotational modes (Rossby/Hawitz waves) and divergent modes (inertio-gravity waves).

The original work of Kasahara and Puri (1981) was developed for terrain following sigma-coordinates. Four years later,

Tanaka (1985) extended the methodology to isobaric coordinates. In these coordinates, Tanaka (1985) and Tanaka and Kung

(1988) were able to develop a 3-D normal mode energy scheme, including the exchanges of Kinetic and Available Potential

Energy (APE) among the different 3-dimensional scales and types of motions. Recently, Marques and Castanheira (2012)20

extended the methodology to analyse the conversion of APE into Kinetic energy.

The 3-D normal mode expansion has been applied in several type of studies, such as the comparisons of reanalysis datasets

(Marques and Castanheira, 2012; Yamagami and Tanaka, 2016, and references therein), or the analysis of ensemble predic-

tion system uncertainties (Žagar et al., 2015a). The methodology was also applied in studies of low frequency extratropi-
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cal variability, like the Arctic/North Atlantic Oscillation (AO/NAO) (Castanheira et al., 2002; Tanaka and Tokinaga, 2002;

Tanaka and Seki, 2013; Castanheira and Marques, 2019) as well as in tropical variability analysis (Yamagami and Tanaka,

2014; Castanheira and Marques, 2015; Marques and Castanheira, 2018; Blaauw and Žagar, 2018; Franzke et al., 2019; Kitsios et al.,

2019).

Recently, Žagar et al. (2015b) developed an open source software package for the projection of global horizontal wind and5

mass fields onto 3-D NMFs. Their software was developed for sigma coordinates, but does not allow for the analysis of the

full energy cycle. Here we present a software package for the projections of horizontal wind and mass fields onto 3-D NMFs,

using isobaric coordinates. This software allows for the analysis of the full atmospheric energy cycle and was developed

for two user friendly languages: MATLAB and Python. The methodology described in this study to obtain the 3-D NMFs

has been used in previous works (e.g. Marques and Castanheira, 2012; Marques et al., 2014; Castanheira and Marques, 2015;10

Marques and Castanheira, 2018; Castanheira and Marques, 2019) in the form of unstructured and disperse scripts written for

the specific data set used in those studies. The software presented here consists of a structured collection of functions, intended

to be used for a wider and more general data sets (such as reanalysis and outputs from climate models) and requiring the

minimum user interaction as we found possible.

2 3–D normal-mode functions15

2.1 The basic equations

In the traditional shallow-atmosphere approximation, a set primitive equations in isobaric coordinates may be written as

∂u

∂t
− 2Ωv sinθ+

1

acosθ

∂φ

∂λ
= −V · ∇u−ω

∂u

∂p
+

tanθ

a
uv+Fu, (1)

∂v

∂t
+2Ωusinθ+

1

a

∂φ

∂θ
= −V · ∇v−ω

∂v

∂p
− tanθ

a
u2 +Fv, (2)20

∂φ

∂p
= −RT

p
, (3)

∇ ·V +
∂ω

∂p
= 0, (4)

25

∂T

∂t
− pS0

R
ω = −V · ∇T −ω

∂T

∂p
+

Q̇

cp
. (5)

where λ and θ are longitude and latitude, respectively. Variables u and v are the zonal and meridional components of horizontal

wind vector V ; and the vertical wind component in the isobaric system is represented by ω. The constants Ω and a denote the

Earth’s angular velocity and Earth’s radius, respectively. Variable Q̇ is the rate of diabatic heating per mass unity, cp the specific

heat at constant pressure, p, and R is the dry air gas constant. Temperature and geopotential, T and φ, are the deviations from30
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a hydrostatic reference state T0(p) and φ0(p), respectively; and the static stability parameter, S0, is given by

S0 =
R

p

(

RT0

pcp
− dT0

dp

)

. (6)

Multiplying (5) by R/(pS0), then calculating the derivatives with respect to p, and finally using on the resulting equation

the hydrostatic and continuity equations ((3) and (4)), the thermodynamic energy equation takes the form

− ∂

∂t

∂

∂p

(

1

S0

∂φ

∂p

)

+∇ ·V =
∂

∂p

[

R

pS0

(

−V · ∇T −ω
∂T

∂p

)]

+
∂

∂p

(

RQ̇

pcpS0

)

. (7)5

The right-hand side of equations (1), (2) and (7) contain the nonlinear terms, frictional forces and the diabatic heat sources.

By setting the right-hand sides of those equations to zero, the linearised system of equations for the three dependent variables

u, v and φ is written as

∂u

∂t
− 2Ωv sinθ+

1

acosθ

∂φ

∂λ
= 0, (8)

10

∂v

∂t
+2Ωusinθ+

1

a

∂φ

∂θ
= 0, (9)

− ∂

∂p

[

1

S0

∂

∂p

(

∂φ

∂t

)]

+∇ ·V = 0. (10)

The linearised system (8)-(10) describes small oscillations of an incompressible, homogeneous, hydrostatic and inviscid

fluid over a rotating sphere, around a state at rest (Tanaka and Kung, 1988; Daley, 1991). Assuming the following separation15

of variables (Kasahara and Puri, 1981; Daley, 1991),

[u, v, φ] = Ψ(p)
[

ũ(λ,θ,t), ṽ(λ,θ,t), φ̃(λ,θ,t)
]

, (11)

and substituting into (10), one obtains

1

Ψ

∂

∂p

(

1

S0

∂Ψ

∂p

)

=
∇ · Ṽ
∂φ̃/∂t

= − 1

gh
. (12)

where g is the constant gravity acceleration and 1/(gh) is the separation constant.20

Then the separable vertical structures Ψ of the solutions of the linearised system (8)-(10) are given by the eigensolution of

the following vertical structure equation (VSE)

∂

∂p

(

1

S0

∂Ψ

∂p

)

+
1

gh
Ψ= 0. (13)

satisfying an appropriate pair of upper and lower boundary conditions.

2.2 Vertical structure functions25

The VSE (13) with appropriate boundary conditions form an eigenvalue problem, with discrete eigensolutions Ψk(p) and

eigenvalues −1/ghk (Cohn and Dee, 1989). The software here presented was developed for two sets of boundary conditions.
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One set was derived from the linearised version of the thermodynamic equation with the assumption that the vertical p-velocity,

ω, vanishes at the top of the atmosphere, and from the assumption that the linearised geometric vertical velocity w = dz/dt

vanishes at a constant pressure, ps, near the surface (Tanaka, 1985). Such boundary conditions may be written as

dΨk

dp
+

pS0

RT0

Ψk = 0 at p= ps (14)

5

lim
p→0

1

S0

dΨk

dp
= 0. (15)

Another set of boundary conditions assumes that the atmospheric mass is bounded by an isobaric surface ps, and the pressure

vertical velocity ω must also vanish at ps. In this case, the lower boundary condition (14) becomes

dΨk

dp
= 0 at p= ps. (16)

The vertical structure functions (VSFs), Ψk(p), can be normalized to satisfy the following orthonormality condition10

1

ps

ps
∫

0

Ψi(p)Ψj(p)dp= δij . (17)

Using this orthonormality condition, one can define a vertical transform

fk =
1

ps

ps
∫

0

f(p)Ψk(p)dp, (18)

where f(p) is an arbitrary function of pressure.

It can be shown (Cohn and Dee, 1989) that the VSFs form a complete orthonormal basis and the circulations variables15

(u,v,φ)T , may be expanded as

(u,v,φ)T =
∞
∑

k=0

(uk,vk,φk)
T Ψk (p) , (19)

where

(uk,vk,φk)
T
=

1

ps

ps
∫

0

(u,v,φ)
T
Ψk (p)dp, (20)

In this software package, the VSE is solved by using the spectral method introduced by Kasahara (1984) (see also Castanheira et al.20

(1999)), which has the advantage, over the finite difference method, that the derivatives of the vertical structure function can

be calculated by analytical differentiation. The input data is the temperature profile T0, which is assumed to be defined on Nk

pressure levels. Following the computational results of Castanheira et al. (1999), the number J of Legendre polynomials used

to approximate Ψ is defined as J =Nk +20. The vertical integration is performed by Gaussian quadrature interpolating T0
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into GL = 2J−1 Gaussian levels. The maximum number of VSFs saved in the output is equal to the number of pressure levels

(Nk).

Fig. 1 shows the vertical profiles of temperature T0 and base-10 logarithm of the stability parameter S0. The profiles were

computed based on the 3–D temperature field of the ERA-interim reanalysis (Dee et al., 2011) covering the period from 1

January, 1979 to 31 December, 2010. The 3–D temperature field was obtained with 1.5◦lon.× 1.5◦lat. grid resolution for5

the 37 isobaric levels from 1 to 1000 hPa, at time intervals of six-hours. The first 12 vertical structures associated with the 12

smallest eigenvalues ξk , which were obtained using boundary conditions (14) and (15), are shown in Fig. 2. The first 12 vertical

structures obtained using boundary conditions (16) and (15), are illustrated in Fig. 3. Both sets of 37 VSFs were derived using

the temperature profile T0 and stability parameter S0 represented in Fig. 1.

The baroclinic structures in both figures 2 and 3, i.e. the vertical structures with one or several nodes are close to each other.10

In Fig. 3 the vertical structure function, Ψ0, is a pure barotropic vertical structure, i.e. it is a constant, and the projection of

an atmospheric variable onto the barotropic mode correspond exactly to the mass weighted vertical mean of that variable. The

vertical structure function Ψ0 in Fig. 2 is not strictly constant. Nevertheless, since Ψ0 of Fig. 2 does not change sign as its

counterpart in Fig. 3, and is approximately constant in the troposphere, it is also called as barotropic mode.

2.3 Computation of the horizontal structure functions15

Applying the vertical transform (18) to the system of equations (8)-(10), a dimensionless equation is obtained in the following

vector form (Tanaka, 1985; Marques and Castanheira, 2012):

∂

∂t̂
Wk +LWk = 0, (21)

where

t̂ = 2Ω t, (22)20

Wk = X
−1

k









u

v

φ









k

, (23)

L =









0 −sinθ αk

cosθ
∂
∂λ

sinθ 0 αk
∂
∂θ

αk

cosθ
∂
∂λ

αk

cosθ
∂
∂θ

(cosθ (·)) 0









. (24)
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Figure 1. Left: Vertical profile of temperature at the ERA-interim pressure levels (black dots) and interpolated into GL gaussian levels (red

line). Right: stability parameter S0 calculated from T0 at original pressure levels (black dots) and from interpolated T0 at gaussian levels

(red line). The stability parameter S0 was made dimensionless multiplying eq. (6) by p2s/gH∗ with H∗ = 8 km. The profiles were computed

from the 3–D temperature field of the ERA-interim reanalysis covering the period from 1 January, 1979 to 31 December, 2010.
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Figure 2. First 12 vertical structure functions derived using T0 and S0 of Fig. 1, with boundary conditions (14) and (15).

The time was made dimensionless by multiplying with 2Ω, and the vectors are made dimensionless by multiplying by the

inverse of the scaling matrix Xk, which is given by

Xk =









√
ghk 0 0

0
√
ghk

0 0 ghk









. (25)

The dimensionless parameter, αk, in the linear differential matrix operator L is defined as

αk =

√
ghk

2Ωa
. (26)5

Equation (21) is a dimensionless form of the linearized shallow-water equations.

7



-12 -6 0 6 12

10 -1

10 0

10 1

10 2

10 3

P
re

s
s
u

re
 (

h
P

a
)

850 hPa

500 hPa

150 hPa

  50 hPa

Vertical Structure Functions

k=0

k=1

k=2

-12 -6 0 6 12

10 -1

10 0

10 1

10 2

10 3 850 hPa

500 hPa

150 hPa

  50 hPa

k=3

k=4

k=5

-12 -6 0 6 12

10 -1

10 0

10 1

10 2

10 3

P
re

s
s
u

re
 (

h
P

a
)

850 hPa

500 hPa

150 hPa

  50 hPa

k=6

k=7

k=8

-12 -6 0 6 12

10 -1

10 0

10 1

10 2

10 3 850 hPa

500 hPa

150 hPa

  50 hPa

k=9

k=10

k=11

Figure 3. First 12 vertical structure functions derived using T0 and S0 of Fig. 1, with boundary conditions (16) and (15).

Since equation (21) is a linear system with respect to λ and t̂, the solutionWk can be expressed as zonal waves (Swarztrauber and Kasahara,

1985)

Wnlk

(

λ,θ, t̂
)

=Θnlk (θ) e
i(nλ−σnlk t̂), (27)

where σnlk are the dimensionless frequencies for the free waves with zonal wave number n and meridional structures Θnlk (θ).

The functions Hnlk(λ,θ) =Θnlk (θ) e
inλ are known as the horizontal structure functions, and the meridional structures Θnlk5

are the Hough vectors functions (Longuet-Higgins, 1968; Swarztrauber and Kasahara, 1985). Substituting (27) into (21) gives

−iσnlkHnlk (λ, θ)+LHnlk (λ, θ) = 0, (28)

and thus the horizontal structure functions are obtained as free eigenvalue problem. Equation (28) is referred as the horizontal

structure equation (HSE).
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For n > 0, there are two kinds of motion (i.e. solutions) with distinct frequencies for system (21). The first kind describes

high-frequency eastward and westward propagating gravity-inertia waves, and the second kind describes low-frequency west-

ward propagating rotational waves of the Rossby-Haurwitz type (Longuet-Higgins, 1968; Kasahara and Puri, 1981; Swarztrauber and Kasahara

1985; Žagar et al., 2015b).

It can be shown that for real αk all the frequenciesσ of L are real and that any modes H corresponding to distinct frequencies5

are orthogonal (e.g. Swarztrauber and Kasahara, 1985; Žagar et al., 2015b). For n > 0, the frequencies are distinct and thus the

modes are orthogonal. However, for zonal wavenumber n= 0, the rotational modes are not necessarily orthogonal because

their frequencies are all zero. Nevertheless, it is possible to derive an orthogonal set of rotational modes for n= 0, which

are also orthogonal to the modes for n > 0 (Kasahara and Puri, 1981; Shigehisa, 1983; Swarztrauber and Kasahara, 1985).

Therefore, all horizontal structure functions H satisfy the orthonormal condition given by10

1

2π

π
2
∫

−
π
2

2π
∫

0

H
∗

nlk ·Hn′l′k cosθdλdθ = δnn′ δll′ , (29)

where the superscript ∗ denotes a conjugate transpose and the right-hand side is unity if n= n′ and l = l′, and zero otherwise.

The Hough vector function, Θnlk (θ), has three components, zonal velocity, meridional velocity and height, and is given by

Θnlk (θ) =









Unlk (θ)

iVnlk (θ)

Φnlk (θ)









, (30)

where the factor i in front ofVnlk is introduced to account for a phase shift of π/2 (Kasahara, 1977; Swarztrauber and Kasahara,15

1985). Substituting eq. (30) into Hnlk(λ,θ) =Θnlk (θ) e
inλ in eq. (29), one can see that the Hough vector functions satisfy

the orthonormal condition given by

π
2
∫

−
π
2

Θ
∗

nlk ·Θnl′k cosθdθ =

π
2
∫

−
π
2

(UnlkUnl′k +VnlkVnl′k +ΦnlkΦnl′k)cosθdθ = δll′ . (31)

Using orthonormal condition (29), a complete set of Fourier-Hough transforms may be constructed as

Wk (λ,θ,t) =

∞
∑

l=0

∞
∑

n=−∞

wnlk(t)Hnlk (λ,θ) , (32)20

wnlk(t)=
1

2π

π
2
∫

−
π
2

2π
∫

0

H
∗

nlk (λ,θ)·Wk (λ,θ,t)cosθdλdθ. (33)

In order to distinguish each wave type, i.e. the westward–propagating Rossby wave and the westward– and eastward–

propagating gravity-inertia waves, the meridional index l is defined as a sequence of three distinct modes, lr, lw and le,

respectively (e.g. Kasahara and Puri, 1981; Marques and Castanheira, 2012).25
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2.4 Solutions of the horizontal structure equation

As shown in Swarztrauber and Kasahara (1985), the meridional modal functions Θnlk (θ) for the eastward and westward

gravity-inertia modes are symmetric (antisymmetric) with respect to the equator for even (odd) meridional index l. For the

rotational modes, the functions Θnlk (θ) are symmetric (antisymmetric) for odd (even) l. For each vertical mode k, the fre-

quencies σnlk and the corresponding meridional modal functions Θnlk (θ) are computed for a range of zonal wavenumbers5

n and meridional indices l. The computational method was developed by Swarztrauber and Kasahara (1985) and consists of

expanding the eigensolutions of (28) in terms of spherical vector harmonics. The modes for n= 0 are determined following

the approach suggested by Shigehisa (1983), as described in Swarztrauber and Kasahara (1985).

Figure 4 shows the dimensionless frequencies σ of westward propagating gravity-inertia and rotational waves (left panel)

and eastward propagating gravity-inertia waves (right panel), for the case n= 1. This figure corresponds to Figure 2 in10

Swarztrauber and Kasahara (1985), because we have used the same values of α has they did to compute the frequencies σ.

The α used here corresponds to 1/
√
ǫ of Swarztrauber and Kasahara (1985). The frequencies are plotted as a function of α−1

for 10 meridional indices (l= 0, . . ., 9), five symmetric (continous lines) and five antisymmetric (dashed lines). The logarithm

scale was used in both axis and the y-axis for the westward propagating waves has been reversed. The rotational mode lr = 0

is referred to as a mixed Rossby-Gravity wave because it behaves like a rotational mode for large values of α, but behaves like15

a gravity mode for small values of α. The symmetric mode le = 0 is referred to as a Kelvin wave.

The meaning of eastward and westward propagations is lost in the case of n= 0. However, since the frequencies of gravity-

inertia motion appear as pairs of positive and negative values with the same magnitudes, we also use the term eastward

(westward) to indicate positive (negative) frequency, as adopted by Swarztrauber and Kasahara (1985). The frequencies of

the rotational motion along with the frequencies of the gravity motion corresponding to the lowest meridional index (l= 0)20

are zero for n= 0 (Swarztrauber and Kasahara, 1985). Therefore, instead of saving zeros for all the rotational frequencies

and for the gravity frequencies corresponding to the lowest meridional index, the software computes the asymptotic rate (σa)

at which those frequencies go to zero (see eqs. (4.14) and (4.18) in Swarztrauber and Kasahara, 1985, for the definition and

computational formula of σa).

Left panel of Figure 5 shows the curves of asymptotic dimensionless frequencies σa in the case of n→ 0. The frequencies25

are plotted as a function of α−1 for 10 meridional indices, using a log-log scale with the y-axis reversed. In this case, the lowest

symmetric mode is identified as lr =−1 because the symmetric equations begin at index −1 (see Swarztrauber and Kasahara,

1985, for details). The values of σa are all negative, except for the mode lr =−1, which is similar to the eastward propagating

Kelvin wave in Figure 4 (right panel). For this reason, the lr =−1 mode is saved as the eastward gravity mode le = 0 as in

Swarztrauber and Kasahara (1985). The curves for the modes lr = 1,2, . . ., 9 behave analogously to those of rotational modes30

in Figure 4 (left panel). The absolute values of dimensionless frequencies σ in the case of n= 0 of the gravity waves, are

illustrated in the right panel of Figure 5 for l = 1,2, . . ., 9. The right and left panels of Figure 5 corresponds to Figures 1 and 3

of Swarztrauber and Kasahara (1985), respectively.
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Figure 4. Dimensionless frequencies σ for westward propagating gravity waves and rotational waves (left) and for eastward propagating

gravity waves (right), plotted as a function of α−1 and for zonal wavenumber n= 1.
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As mentioned above, the horizontal modes include Kelvin, westward and eastward inertio–gravity (WIG and EIG, respec-

tively), Rossby and mixed Rossby–gravity (MRG) waves. As an illustration of the software outputs, the horizontal structure

functions were calculated for each equivalent height computed in subsection 2.2, using boundary conditions (14) and (15) (the

first 12 VSFs are represented in Figure 2), and for 43 wavenumbers (n= 0, . . ., 42) and 80 meridional modes (20 WIG, 20

EIG and 40 Rossby modes). The meridional profiles of the Hough functions corresponding to two Rossby modes lr = 1 and5

lr = 2 are shown in Fig. 6 for the barotropic mode (k = 0, with h0 ≃ 9.8 km) and for two zonal wavenumbers (n= 0 and

n= 10). Figure 7 shows the meridional profiles corresponding to the Kelvin mode (le = 0) and to the Rossby mode (lr = 1)

for two baroclinic modes (k = 1, with h1 ≃ 6.1 km and k = 10, with h10 ≃ 65 m) and for two zonal wavenumbers (n= 0 and

n= 10). Increasing the vertical index k (i.e. reducing the equivalent height hk) or increasing the zonal wavenumber n for the

same vertical index k, the horizontal structure functions become more confined around the equator (Longuet-Higgins, 1968;10

Cohn and Dee, 1989; Žagar et al., 2015b).

2.4.1 The Haurwitz waves

The Hough vector functions define modes in the transformed variables as given by eq. (23). If the equivalent height hk is

infinite, then transform (23) is no longer applicable. This is the case for the barotropic mode when the lower boundary condition

(16) is used. However, an infinite equivalent height means that the separation constant in eq. (12) is null, and the horizontal15

motion is non-divergent, and there must be no vertical dependence in the linear system (8)–(10). Consistently, the respective

vertical structure is a constant. In this case, the horizontal modes are computed in the untransformed variables u,v and φ as in

Swarztrauber and Kasahara (1985), and are called the Rossby-Haurwitz waves. Additionally, because linear system (8)–(10) is

non divergent there are no WIG and EIG modes (and also no MRG mode for the zonal mean component n= 0). Fig. 8 shows

the same meridional profiles as in Fig. 6, but for the Haurwitz modes.20

2.5 3–D Normal mode functions

The three-dimensional (3–D) normal mode functions (NMFs) are obtained by the product of the vertical normal modes Ψk(p)

– the eigensolutions of the VSE – and the horizontal normal modes Hnlk (λ,θ) – the eigensolutions of the HSE (e.g. Kasahara,

1976; Kasahara and Puri, 1981). The 3–D NMFs, denoted by Πnlk (λ,θ,p), form a complete orthogonal basis, allowing there-

fore to expand the horizontal wind and the geopotential fields of the global atmosphere (Kasahara and Puri, 1981; Tanaka,25

1985; Daley, 1991):

(u,v,φ)
T
=

∞
∑

k=0

∞
∑

l=0

∞
∑

n=−∞

wnlk(t)XkΠnlk (λ,θ,p) , (34)

where

Πnlk (λ,θ,p) = Ψk (p)Θnlk (θ)e
inλ. (35)
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Figure 6. Meridional structures of the barotropic (k = 0, h0 ≃ 9.8 km) Hough harmonics for two Rossby modes, lr = 1 (left panels) and

lr = 2 (right panels), and two zonal wavenumbers, n= 0 (top panels) and n= 10 (bottom panels). The equivalent height h0 was obtained

by solving the vertical structure equation with boundary conditions (14) and (15).
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Figure 7. Meridional structures of two baroclinic Hough harmonics (k = 1, h1 ≃ 6.1 km and k = 10, h10 ≃ 65 m) for (left panels) the

Kelvin mode, le = 0 and (right panels) the Rossby mode, lr = 1, and also for two zonal wavenumbers, n= 0 and n= 10. The equivalent

heights hk were obtained by solving the vertical structure equation with boundary conditions (14) and (15).
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Figure 8. As in Fig 6, but for the Haurwitz modes (h0 =∞).
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The expansion coefficients wnlk are obtained by means of the vertical projection onto the vertical structure functions, fol-

lowed by the horizontal projection onto the horizontal structure functions:

wnlk(t)=
1

2πps

π
2
∫

−
π
2

2π
∫

0

ps
∫

0

Π
∗

nlk (λ,θ,p) ·X−1

k W cosθdpdλdθ, (36)

with W = [u, v, φ]
T .

2.6 3–D normal mode energetics scheme5

Using the 3–D NMFs of the linearized primitive equations ((8) – (10)) as a basis to expand the global circulation field, Tanaka

(1985) (see also Tanaka and Kung, 1988) developed a 3–D normal mode energetics (NME) scheme, which combines three one-

dimensional spectral energetics in domains of zonal wavenumber, n, meridional mode number, l, and vertical mode number, k.

The 3–D NME scheme complements therefore the standard energetics in the zonal wavenumber domain of Saltzman (1957),

since it can diagnose the 3–D spectral distribution of energy and energy interactions, the energetics characteristics of Rossby10

waves and gravity-inertia waves, and the energy interaction between the barotropic and baroclinic modes (Tanaka and Kung,

1988).

Derivation of the 3–D NME may be summarized as follows:

Applying the vertical transform (18) to equations (1), (2) and (7), a dimensionless equation is obtained in the following

vector form:15

∂

∂t̂
Wk +LWk = Ik +Jk +Sk, (37)

where subscript k denotes the kth component of the vertical transform and t̂, Wk and L are given by (22), (23) and (24),

respectively. The dimensionless nonlinear term vectors for the wind and mass fields, Ik and Jk, and the energy source or sink

term due to diabatic heating and dissipation, Sk, are given by

Ik = Y
−1

k









−V · ∇u−ω ∂u
∂p

+ tanθ
a

uv

−V · ∇v−ω ∂v
∂p

− tanθ
a

u2

0









k

, (38)20

Jk = Y
−1

k









0

0

∂
∂p

[

R
pS0

(

−V · ∇T −ω ∂T
∂p

)]









k

, (39)

Sk = Y
−1

k









Fu

Fv

∂
∂p

(

qR
pcpS0

)









k

, (40)
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These vectors are made dimensionless using the inverse of scaling matrix Yk, which is given by

Yk =









2Ω
√
ghk 0 0

0 2Ω
√
ghk

0 0 2Ω









. (41)

Applying the Fourier-Hough transform (33) to (37), yields

d

dt̂
wnlk + iσnlkwnlk = ınlk + nlk + snlk, (42)

where the complex variables wnlk , ınlk, nlk and snlk are the Fourier-Hough transforms of the vector variables Wk, Ik, Jk5

and Sk, respectively.

The kinetic energy, K , and available potential energy, A, are defined respectively by

K =
1

2

(

u2 + v2
)

, (43)

A =
1

2S0

(

∂φ

∂p

)2

, (44)10

And the total energy, E =K+A, is conserved a quantity of the full nonlinear equations (1), (2) and (7) under frictionless and

adiabatic conditions (see Tanaka and Kung, 1988).

In the transformed 3-D normal mode space, the total energy Enlk associated with each mode (nlk) is

Enlk =
1

2ǫn
pshk|wnlk|2. (45)

where ǫn = 2 for the zonal (n= 0) modes, and ǫn = 1 for the eddy (n > 0) modes.15

Substituting (42) into the time derivatives of (45), the energy balance equations for the 3–D normal modes are finally obtained

as

d

dt
Enlk = Inlk + Jnlk +Snlk, (46)

where

Inlk =
psΩhk

ǫn
[w∗

nlk ınlk +wnlk ı
∗

nlk] , (47)20

Jnlk =
psΩhk

ǫn
[w∗

nlk nlk +wnlk 
∗

nlk] , (48)

Snlk =
psΩhk

ǫn
[w∗

nlk snlk +wnlk s
∗

nlk] . (49)

The terms Inlk,Jnlk, and Snlk that contribute to the time change of Enlk are respectively associated with nonlinear interac-25

tions of kinetic and available potential energies and with an energy source or sink due to diabatic heating and dissipation.The

spetra of these terms can therefore be analysed separately for the zonal mean and eddy components, for the barotropic and

baroclinic modes, and also for the Rossby and gravity waves (Tanaka and Kung, 1988).
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As another illustration of the capabilities of the current software, in Figure 9 it is shown the spectra for total energy E (top

panels), interactions of available potential energy J (middle panels) and interactions of kinetic energy I (bottom panels). The

left column of panels contain the wavenumber spectra whereas the middle and right columns show the vertical spectra for the

zonal mean and eddy components, respectively. In each panel it is represented the total spectra along with the contributions

of the Rossby and Gravity components. These spectra were computed using 34 years of ERA-interim reanalysis (Dee et al.,5

2011) data covering the period from 1 January, 1979 to 31 December, 2012. The horizontal wind (u,v), pressure velocity

(ω), temperature and geopotential fields were obtained with 1.5◦lon.× 1.5◦lat. grid resolution for the 37 isobaric levels from

1000- to 1 hPa, at time intervals of six-hours. The solutions of the VSE ((13)), with boundary conditions (16) and (15), were

approximated using 57 Legendre polynomials and 37 vertical modes were retained. The zonal wavenumber has been truncated

at n= 42. The spectra were computed at each time step (6-hourly) and then averaged over the 30 years period.10

A detailed analysis of the spectra in figure 9 is beyond the scope of this study, but some of its characteristics are mentioned.

The wavenumber energy spectrum of Rossby modes follows approximately the -3 power law over the synoptic and mesoscale

region, while that of the gravity modes has approximately a -5/3 slope, which is in line with the literature (e.g. Charney, 1971;

Nastrom and Gage, 1985; Tanaka, 1985; Tanaka et al., 1986; Terasaki and Tanaka, 2007). The zonal mean available potential

energy is transferred into eddy available potential energy essentially due to the Rossby waves, with a small contibution by15

planetary scale gravity waves, as indicated by the positive values in the wavenumber spectra of J . On the other hand, the

wavenumber spectra of I indicate that the Rossby waves transfer energy out of the eddy kinetic energy reservoir, whereas the

smaller quantity of energy transferred by the gravity waves is in the opposite direction. The vertical spectra for I shows that the

eddy kinetic energy contained in the Rossby baroclinic modes is transferred into the Rossby barotropic modes of both zonal

mean and eddy components, and also into baroclinic zonal mean kinetic energy. Again, it is seen that the transfer of kinetic20

energy due to the gravity waves is in the opposite direction.

A disadvantage of the 3–D NME is that one cannot separate the available potential and kinetic energies, only the total energy

(Enlk) associated with each mode can be calculated. Consequently, also the conversion rate of available potential energy into

kinetic energy cannot be acessed. However, the separation of the available potential and kinetic energies can be performed if

one uses only the expansions in the vertical and wavenumber domains. This reasoning led Marques and Castanheira (2012)25

to present a normal mode energetics formulation that performs an explicit evaluation of the available potential and kinetic

energies as well as the conversion rates between them. In addition, the generation and dissipation rates and also the nonlinear

interactions of each energy form, can be performed in both the zonal wavenumber and vertical mode domains. Using the

vertical normal mode basis that results from applying lower boundary condition (14) and (15), and then performing the vertical

and the zonal wavenumber (Fourier) expansions, the set of balance equations for the kinetic energy (K) and available potential30

energy (A) is given by (see Marques and Castanheira, 2012, for details)

dKnk

dt
= Cnk + Ink −Dnk (50)

dAnk

dt
= −Cnk + Jnk +Gnk, (51)
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where

Knk =
pshk

2ǫn

π
2
∫

−
π
2

(û∗

nk ûnk + v̂∗nk v̂nk)cosθdθ, (52)

Ank =
pshk

2ǫn

π
2
∫

−
π
2

(

φ̂∗

nk φ̂nk

)

cosθdθ, (53)

Cnk =
psΩhk

ǫn

π
2
∫

−
π
2

{

inαk

cosθ

(

ûnk φ̂
∗

nk − û∗

nk φ̂nk

)

5

− αk

(

v̂∗nk
∂φ̂nk

∂θ
+ v̂nk

∂φ̂∗

nk

∂θ

)}

cosθdθ, (54)

Ink =
psΩhk

ǫn

π
2
∫

−
π
2

{(

û∗

nk

(

Î1

)

nk
+ ûnk

(

Î1

)

∗

nk

)

+
(

v̂∗nk

(

Î2

)

nk
+ v̂nk

(

Î2

)

∗

nk

)}

cosθdθ, (55)

Jnk =
psΩhk

ǫn

π
2
∫

−
π
2

(

φ̂∗

nk

(

Ĵ3

)

nk
+ φ̂nk

(

Ĵ3

)

∗

nk

)

cosθdθ, (56)10

Dnk = −psΩhk

ǫn

π
2
∫

−
π
2

{(

û∗

nk

(

F̂u

)

nk
+ ûnk

(

F̂u

)

∗

nk

)

+
(

v̂∗nk

(

F̂v

)

nk
+ v̂nk

(

F̂v

)

∗

nk

)}

cosθdθ, (57)

Gnk =
psΩhk

ǫn

π
2
∫

−
π
2

(

φ̂∗

nk

(

N̂3

)

nk
+ φ̂nk

(

N̂3

)

∗

nk

)

cosθdθ, (58)

and15

(

Î1

)

nk
=

1

2Ω
√
ghk

[

−V · ∇u−ω
∂u

∂p
+

tanθ

a
uv

]

nk

, (59)

(

Î2

)

nk
=

1

2Ω
√
ghk

[

−V · ∇v−ω
∂v

∂p
− tanθ

a
u2

]

nk

, (60)

(Ĵ3)nk =
1

2Ω

(

∂

∂p

[

R

pS0

(

−V · ∇T −ω
∂T

∂p

)])

nk

, (61)

(N̂3)nk =
1

2Ω

[

∂

∂p

(

qR

pcpS0

)]

nk

, (62)20
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(

F̂u

)

nk
=

(Fu)nk
2Ω

√
ghk

, (63)

(

F̂v

)

nk
=

(Fv)nk
2Ω

√
ghk

. (64)

Term Cnk represents the conversion of available potential energy into kinetic energy, whereas Ink (Jnk) represents interac-

tions or exchanges of kinetic (available potential) energy between different scales or types of motion. Finally, the dissipation5

of kinetic energy and the generation of available potential energy, due to diabatic processes, are represented by terms Dnk and

Gnk, respectively, and may be computed as residuals from balance equations (50) and (51). The calculated energetics terms

may then be used to construct an extended energy cycle diagram, as in Fig. 7 of Marques and Castanheira (2012) (see also

Fig. 6 in Marques et al., 2014). Such an extended energy cycle diagram is illustrated in figure 10, in which the boxes represent

the levels of energy and the arrows the energy generation/dissipation rates and the energy conversion/transfer rates. The esti-10

mates in the diagram were based on the same 34 years of ERA-interim reanalysis mentioned above for the 3-D spetra of E,

J and I . The solutions of the VSE ((13)) were obtained using boundary conditions (14) and (15). The energetics terms were

computed at each time step (6-hourly) and then averaged over the 34 years period to obtain the corresponding mean values

for the northern winter (DJF) and summer (JJA) seasons, which are represented as the top (black) and bottom (red) values in

figure 10.15

The energy cycle diagram of figure 10 describes the flow of energy among the zonal mean and eddy components, and

also among the barotropic and baroclinic components. All terms in the diagram are decomposed into the zonal mean (n=

0) and eddy (n≥ 1) components, which are denoted respectively by subscripts Z and E. Each one of these components

is also decomposed into the barotropic (k = 0) and baroclinic (k ≥ 1) components, by using the extra subscripts B and b,

respectively. The two exceptions are the barotropic-baroclinic interactions of available potential energy, denoted by JBb, and20

the baroclinic-barotropic interactions of kinetic energy which is represented as IbB . These values represent the balances of the

flows of kinetic energy and available potential energy between the barotropic and baroclinic components and both zonal mean

and eddies, implying that the energy flows represented by the dotted lines in the diagram cannot by quantified individually.

These flows are associated with eddy generation by barotropic instability and the barotropic decay of baroclinic eddies (see

Marques and Castanheira, 2012, and references therein, for details)25

As an alternative, Marques and Castanheira (2017) and Castanheira and Marques (2019) presented a similar NME scheme

but using the vertical normal mode basis that results from applying lower boundary condition (16) in place of (14). The main

difference between the NME schemes presented in Marques and Castanheira (2012) and in Marques and Castanheira (2017)

is that in the later, the first vertical structure is strictly constant, which implies that its vertical derivative is null and there is no

available potential energy associated with the barotropic mode (k = 0). Therefore, the terms An0, Cn0, Jn0 and Gn0 are null in30

this variant of the energetics scheme. All baroclinic terms (k ≥ 1) have identical expressions in both NME schemes. The terms

associated with the kinetic energy of the barotropic component are calculated formally with identical expressions in both NME

schemes. However, a constant h0 can not be derived from de eigenvalues of the VSE (13). In this case the smallest eigenvalue

is null, and corresponds to the separation constant in eq. (12) to be null. For such case, it is not possible to define an equivalent

22



Figure 10. Extended energy cycle diagram describing the flow of energy among the zonal mean and eddy components, and also among the

barotropic and baroclinic components for ERA-Interim in DJF (top values) and JJA (bottom values) climates. Units are 105 J m−2 for energy

levels and W m−2 for conversion/transfer rates and generation/dissipation rates.
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Figure 11. As in Fig. 10, but replacing lower boundary condition (14) by (16).

height as in eq. (12). In order to maintain the expressions for the barotropic and baroclinic terms formally identical in both

NME schemes, the software fixes h0 = 1m, when the boundary condition (16) is used. Performing in this way the equations

(50) and (51), with its individual terms given by equations (52)-(58), may be also used to construct an extended energy cycle

diagram as illustrated in figure 11 (see also Fig. A2 in Marques and Castanheira, 2017). In this case, there is no barotropic

branch in the available potential energy side, as compared to extended energy cycle diagram of figure 10. The estimates in5

this diagram were based on the same data as those of figure 10. The solutions of the VSE were also approximated using 57

Legendre polynomials, being retained 37 vertical modes. It was also considered the same zonal wavenumbers as those for the

estimates in figure 10.
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Although boundary condition (16) may be seen as somewhat unrealistic, it presents some useful features. First, using the

boundary conditions (15) and (16), it can be shown easily that the total energy is exactly conserved in by full non-linear

equations (1)-(5), in the case of frictionless adiabatic motions (see Tanaka and Kung, 1988). Moreover, an extra surface term,

which was interpreted by Tanaka and Kung (1988) as a geopotential flux across the lower boundary, does not appear in the

available potential energy as defined by eq. (44), when the boundary condition (16) is used. Another feature of (16) is that the5

barotropic mode represents the mass weighted average of the circulation field.

The use of the boundary condition (14) may seem more realistic, but in order to guaranty the conservation of energy for

frictionless adiabatic motions it is necessary to impose a non-slipping condition (u,v)s = 0 at p= ps. And this may seem

contradictory with the absence of friction.

3 Conclusions10

The software here presented consists of tools or functions for specific tasks and includes a Python and a Matlab version. The

Python version requires Numpy and Scipy modules and works with both Python 2 and 3. The netCDF4 library is recommended.

The input/output data format for each function may be either the native format of the chosen version, i.e. “.mat” for Matlab

and “.npz” for Python, or netCDF for both versions.

The tasks to be achieved with the functions in the software include the solution of the VSE (13), the solution of HSE (28)15

and the computation of complex expansion coefficients wnlk , ınlk and nlk, which are the vertical-Fourier-Hough transforms

of the dependent variable vector [u,v,φ]T , of the nonlinear term vector due to wind field and of the nonlinear term due to mass

field, respectively. In addition, the software also permits the computation of vertical transforms of the terms in the normal mode

energetics formulation presented by Marques and Castanheira (2012) or its alternative presented by Marques and Castanheira

(2017) and Castanheira and Marques (2019). These terms constitute the set of balance equations (50) and (51) and its ex-20

pressions are given in equations (52)-(64). With these vertical transforms the user may compute the global energy cycle in

the wavenumber and vertical domains (as in Marques and Castanheira, 2012, 2017; Castanheira and Marques, 2019), with the

dissipation and generation terms computed as residuals from (50) and (51).

Other applications of this software include the spatial scale filtering atmospheric motion, and filtering of balanced motion

and mass unbalanced motions by retaining an appropriate subset of terms in the expansion (34) (e.g. Castanheira and Marques,25

2015; Žagar et al., 2019). Furthermore, the solutions of HSE, i.e. the Hough vectors functions (Θnlk(θ)), can be used as

meridional basis functions onto which dynamical data may be projected. This can be an alternative tool for investigating studies

on tropical convection as in Yang et al. (2003) and Gehne and Kleeman (2012), which have used parabolic cylinder functions

as meridional basis functions. All these features are useful both in data analysis and in assessment of general circulation

atmospheric models (e.g. Žagar et al., 2019).30
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Appendix A: Software functions

– Vertical structure

The vertical structure equation (VSE), (13), is solved with function named vertical_structure that uses the spectral

method introduced by Kasahara (1984). The function requires the mean vertical profile of temperature T0 , defined on

pressure levels, and the pressure levels as inputs, returning the vertical structure functions (Ψk(p)) and equivalent heights5

(hk). The VSE may be solved using either one of the two pairs of boundary conditions as described in section 2.2. These

pairs of boundary conditions are controled by the input argument ws0. When ws0=False (the default) the VSE is solved

using boundary conditions (14) and (15), whereas when ws0=True the VSE is solved using boundary conditions (16)

and (15). In the later case the first vertical structure is strictly constant and the associated equivalent height is infinite.

– Horizontal structure10

The solution of HSE (21) is obtained with function called hough_functions. It uses the computational method developed

by Swarztrauber and Kasahara (1985) which consists of expanding the eigensolutions of (28) in terms of spherical vector

harmonics. The function inputs are the equivalent heights (hk) and the user defined parameters for the maximum zonal

wavenumber, the total number of Rossby modes and half the number of Gravity modes used in the expansion, along

with the latitude points which may be linear (the default) or gaussian. It returns the Hough vectors functions (Θnlk(θ))15

and the frequencies of the modes. In the output, the meridional modes are written in the following order: first the

westward gravity modes, then the eastward gravity modes and finally the (westward) Rossby modes. Both types of

gravity modes are written following the symmetric-antisymmetric mode order, whereas the order for Rossby modes is

reversed. If the VSE (13) is solved using boundary conditions (16) and (15), then the solutions for the barotropic mode

returned by hough_functions are the Haurwitz waves (Swarztrauber and Kasahara, 1985). This is controled internaly by20

hough_functions which calls functions named hvf_baroclinic and hvf_barotropic for the Haurwitz modes.

– Expansion coefficients

The complex expansion coefficients wnlk, ınlk and nlk may be obtained with function called expansion_coeffs. The

inputs are the vertical structure functions (Ψk(p)), the equivalent heights (hk), the Hough vectors functions (Θnlk(θ))

and a data structure with appropriate fields. For the expansion coefficients wnlk it is required a data structure with fields25

[u,v,φ] (recall that field φ corresponds to the deviations from a hydrostatic reference state φ0(p)). The computation

of expansion coefficients ınlk and nlk requires data structures with fields [I1, I2] and [J3], respectively. Each one of

these fields need to be pre-computed by the user and correspond to the terms between square brackets of (59), (60)

and (61), respectively (Note that in (61) the vertical derivative is outside the square brackets, and this is accounted in

the expansion_coeffs function). The returned coefficients, wnlk , ınlk and nlk, may then be used to compute the 3-D30

spectrum of total energy (Enlk) and of the nonlinear interactions of kinetic (Inlk) and available potential (Jnlk) energies

(see Fig. 9), using equations (45), (47) and (48), respectively.

– The inverse transforms
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The zonal and meridional wind, u and v, and geopotential perturbation φ (from the reference geopotential), as given by

equation (34), can be obtained with function inv_expansion_coeffs. By choosing an appropriate subset of modes, this

function can be used for spatial scale filtering of atmospheric motion, and filtering of balanced and mass unbalanced

motions, as well as of barotropic and baroclinic components. Moreover, choosing the appropriate meridional indices the

filtering can be used to isolate tropical components of the atmospheric circulation. The function requires as inputs the5

vertical structure functions (Ψk(p)), the equivalent heights (hk), the Hough vectors functions (Θnlk(θ)), the complex

expansion coefficients (wnlk), the pressure levels (in hPa), the longitudes (in degrees) and the wavenumber, meridional

and vertical indices. In addition, the user can choose to compute all three fields, u,v and φ (the default), or only a subset

of those, which is controled by the input argument uvz.

– Vertical and Hough transforms10

All functions described above have the same name in both versions, Matlab and Python, difering only in the file ex-

tension (“.m” and “.py”, respectively). The software tools presented here include two more functions used to compute

the vertical and the Hough transforms. In the Matlab version there are two separate functions, vertical_transform.m and

hough_transform.m, whereas for Python both are included in module transforms.py, being invoked as transforms.vertical

and transforms.hough. The vertical and Hough transforms are used by the expansion_coeffs function, but they may be15

also executed independently by the user. For example, the vertical_transform function (or transforms.vertical) may be

used to compute the vertical transforms of u, v, φ, I1, I2 and J3. Again, I1, I2 and J3 correspond to the terms be-

tween square brackets of (59), (60) and (61). The computation of these six vertical transforms constitute the essential

task to obtain the global energy cycle in the wavenumber and vertical domains as in Marques and Castanheira (2012)

or Marques and Castanheira (2017) (see also Castanheira and Marques (2019)). Having these vertical transforms, all the20

terms of the normal mode energetics formulation represented by balance equations (50) and (51), may then be easily

obtained using equations (52)-(56), with the remainder dissipation and generation terms computed as residuals from (50)

and (51).

Code and data availability. The exact version of the software code used to produce the results presented in this paper is archived on Zenodo

(Marques et al., 2020). A step by step tutorial is included in the repository for both Python and MATLAB. Also included are the mean vertical25

profiles of temperature and geopotential, computed from 32 years (1979-2010) of the ERA-Interim reanalysis data as described in the text

(see section 2.2). These two vertical profiles along with the horizontal wind (u, v), pressure velocity (ω), temperature and geopotential fields

that may be obtained from the ERA-Interim data server with 1.5◦lon.× 1.5◦lat. grid resolution for all the provided 37 isobaric levels from

1000- to 1 hPa, at time intervals of six-hours, are the only data sets needed to obtain all the figures in the paper. The two exceptions are

figures 4 and 5 for which we have used the same values as Swarztrauber and Kasahara (1985) (see for example their Table 5. Note that our30

α corresponds to their 1/
√
ǫ).
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