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Abstract. Computation of barotropic and meridional overturning streamfunctions for models formulated on unstructured

meshes is commonly preceded by interpolation to a regular mesh. This operation destroys the original conservation, which

can be then artificially imposed to make the computation possible. An elementary method is proposed that avoids interpolation

and preserves conservation in a strict model sense. The method is described as applied to the discretization of the Finite volumE

Sea ice – Ocean Model (FESOM2) on triangular meshes. It however is generalizable to collocated vertex based discretization5

on triangular meshes and to both triangular and hexagonal C-grid discretizations.

1 Introduction

Over recent years, a considerable progress has been achieved in the development of global ocean circulation models working

on horizontally unstructured meshes such as FESOM1.4, Wang et al. (2014), MPAS-Ocean Ringler et al. (2013), FESOM2,

Danilov et al. (2017) and ICON-Ocean Korn (2017). By refining in dedicated areas of the world ocean these models may10

resolve dynamics that would otherwise require nesting or using higher resolution globally. Since these models still use vertically

aligned meshes the overhead of horizontally unstructured mesh is minimized because the horizontal neighborhood information

is valid for the entire vertical column, and becomes negligible as the number of vertical levels is increased. These models

show a very good parallel scalability and reach throughput (in simulated years per day) comparable to that of structured-mesh

models (Koldunov et al., 2019). However, the unstructured character of meshes makes many traditional diagnostics, such15

as barotropic and meridional overturning streamfunctions, difficult. Any interpolation on a regular mesh violates the sense

in which continuity is satisfied in a model and introduces errors which, while often acceptable for computing local fluxes and

transports, are very annoying in computations of global or basin streamfunctions where large positive and negative contributions

are combined together. Furthermore, in the case of streamfunctions one is most frequently interested in variability, which might

be easily masked or biased by the inconsistencies introduced by the analysis procedure. In the early version of FESOM, based20

on continuous finite elements, the situation was exacerbated by continuity being formulated in a weighted sense, without

explicitly computed fluxes (Sidorenko et al., 2009).
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All new large-scale ocean models are based on the finite-volume method and as such have a clear definition of fluxes at

boundaries of the control cells of their meshes. However, these fluxes are defined on irregularly located faces, so instead of

using them in their original sense one is tempted to rely on interpolation to a regular mesh. Our practice shows that incurring

inconsistencies can be large, and this road should not be followed if global or basin-scale quantities are computed. It turns

out that there are efficient and easy-to-implement procedures that are based on exact fluxes and balances and might be used5

for analyses. These procedures do not rely on interpolation, but use binning, which is sufficient in most cases except for very

coarse meshes. The intention of this note is to describe some of them. In doing so we will use the arrangement of variables

of FESOM2, however the adjustments needed for other models with different discretizations are relatively straightforward and

will be briefly mentioned. We suspect that similar procedures are already used by other groups (in particular, for the analysis

on cubed-sphere meshes of the Massachusetts Institute of Technology general circulation model see eg. Adcroft et al. (2004),10

tri-pole grid configurations of Parallel Ocean Program (POP; Smith and Gent (2004)) or MPAS-Ocean), but we feel that they

need to be documented for unstructured meshes, facilitating the use of unstructured-mesh models by a broader community.

We will discuss computations of meridional overturning streamfunction in height and density coordinates as well as compu-

tations of barotropic streamfunction.

2 Geometry of discretization15

FESOM2 uses a cell-vertex discretization, placing horizontal velocities on centroids of triangles and scalar quantities at vertices

if viewed from the surface, as shown schematically in Fig. 1. These quantities are stored at midlevels. Vertical velocities are

located at vertices and full levels. We use index v to enumerate vertices, c (cells) to enumerate triangles and k to enumerate

vertical levels or midlevels (centers of layers). The velocity control volumes are mesh triangles, and scalars are associated with

median-dual control volumes formed in the horizontal plane by connecting midpoints of edges with cell centroids. On uniform20

equilateral meshes they coincide with hexagons of the dual mesh, but in general case they differ. For the reasons discussed in

Danilov et al. (2017) the bottom topography of FESOM is given on cells, implying that velocity control volumes are triangular

prisms in 3D. However, a part of scalar control volume can be cut by bottom topography at depths, and its footprint will differ

from that at the surface. As a consequence, there is a one-dimensional array Ac of triangle areas, and a two-dimensional array

Akv of the areas of scalar control volumes. The transport through the top face of scalar prism with indices (k,v) is wkvAkv ,25

with wkv the respective vertical (or cross-level in the case of moving level surfaces) velocity. Each triangle is characterized by

the list of its vertices v(c) which is (v1,v2,v3) for c= c1 in Fig. 1.

The elementary structure used in computations of horizontal fluxes between two scalar control volumes is given by mesh

edges (labelled with index e). An edge is characterized by its two vertices (v1,v2) symbolically written as v(e), and two cells

it belongs to, (c1, c2) symbolically written as c(e). For boundary edges c2 is absent, and c1 is the left cell to the edge direction,30

which is from the edge first vertex to the second one. There are two vectors drawn from edge midpoint to centroids of edge

cells, (dec1 ,dec2). Their components are expressed in local Cartesian coordinates related to respective cells. The transport
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Figure 1. Horizontal schematic of median-dual control volumes (left) and the edge-based structure (right). In FESOM2, scalar quantities and

vertical velocity are at vertices (blue circles), while the horizontal velocities are at triangle centroids (green circles). The median-dual control

volume around vertex v1 is bounded by segments (gray lines) connecting the centers of neighbor triangles with midpoints of edges. Edge e

(right panel) is characterized by its vertices v(e) = (v1,v2) and cells c(e) = (c1, c2) with c1 on the left. The edge vector le connects vertex

v1 to vertex v2. The edge cross-vectors dec1 and dec2 connect the edge midpoint to the respective cell centers.

through the faces of the scalar control volume in layer k in the direction of the edge is

Fe = [−(ez ×dec1) ·ukc1hkc1 + (ez ×dec2) ·ukc2hkc2 ]Te, (1)

where ez is a unit vertical vector, hkc1 and hkc2 are the layer thicknesses at respective velocity points and Te is the tracer

estimate at edge midpoint. Te = 1 for volume transport. In MPAS-Ocean or ICON-Ocean codes, which are based on hexagonal

and triangular C-grid discretizations, normal velocities are located at edges and computations of transports are simpler. The ar-5

rangement of hexagonal C-grid is easily obtained from the case considered here if edges of dual triangular mesh are considered

(with the difference that centroids are replaced by circumcenters and lines connecting c1 with c2 are perpendicular to edge e).

Importantly, edge-related transports are the same as in the model, however care should be taken that also Te is computed in the

same way as in the model if fluxes are to be properly analysed.
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3 Meridional overturning

For zonally-integrated vertical and meridional velocities W =
∫ xe

xw
w(x′,θ,z)dx′ and V =

∫ xe

xw
v(x′,θ,z)dx′ of a divergence-

less flow we can introduce (see eg. Kundu et al., 2012) a streamfunction Ψ(z,θ) such that

1

RE

∂Ψ

∂θ
=W,

∂Ψ

∂z
=−V. (2)

Here θ is the latitude in radians, z is the depth, RE is Earth’s radius, v and w are the meridional and vertical velocities and5

xw and xe the western and eastern boundaries in zonal direction. Following the definition, there are two convenient ways of

computing global Ψ in geopotential coordinates:

Ψ(z,θ) = Ψ(z,θr) +

θ∫
θr

RE

xe∫
xw

w(x′,θ′,z)dθ′dx′, (3)

or

Ψ(z,θ) =−
z∫

−H

xe∫
xw

v(x′,θ,z′)dz′dx′. (4)10

Here θr the reference latitude. For global MOC computations it is the southernmost latitude of the Antarctic coast, where

Ψ(z,θr) = 0. For regional MOCs, like the Atlantic MOC (AMOC), θr is any convenient latitude where Ψ(z,θr) = 0 should

be provided. For this, the equation 4 is usually used. In this equation the boundary condition is naturally taken into account

by integrating from the bottom z =−H(x,θ). Note that both ways of computation are equivalent because the full velocity

vector is divergence-free. In the following we discuss details of both methods of computation on unstructured meshes. Method15

A (equation 3) involves vertical velocities and is more straightforward. Method B (equation 4) is based on horizontal velocities

and is slightly more complicated.

3.1 Method A

In FESOM2, the vertical velocity is conservatively remapped from vertices to cells using

wkc =
∑
v∈v(c)

wkv/3, k 6=Nc, wNcc = 0, (5)20

where v(c) is the list of vertices of triangle c and Nc is the number of the bottom level on triangle c. Indeed, it is easy to prove

that
∑
vAkvwkv =

∑
cAkcwkc for FESOM2 discretization, so that the vertical (across level surface) transport is preserved.

Using triangles is more convenient in FESOM2 because bottom depth is constant on triangles. This remapping is not required

in ICON-Ocean and MPAS-Ocean where the bottom depth is specified at scalar locations.

We introduce a set of latitude bins (θi,θi+1), θi = θ0 + i∆θ, i= 0, . . . ,Nθ covering the ocean domain. The computational25

procedure is straightforward and is illustrated schematically in Fig. 2.
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Figure 2. Schematics of binning. Circles correspond to triangle centroids. Bins (here B1, B2 and B3) are given by selected latitude lines. A

triangle is in a bin if its centroid is in this bin. Triangles with centroids in dark blue, light blue and green fit in bins B1, B2 and B3 respectively.

– For each bin i find the list of triangles c(i) with centroids in these bins. They will be partly masked by bottom topography

in deep layers, and we will formally write this list as c(ki), adding a layer index k. Subsequent computations are over

triangles and levels, so that only c(ki) is needed.

– Compute ∆ψki as

∆ψki =
∑
c∈cki

wkcAc, (6)5

where cki is the list of triangles the centers of which are in bin i at level k.

– Compute the meridional overturning streamfunction

Ψki =

i∑
j=1

∆ψkj . (7)

The procedure as written is strictly applicable in the case when level surfaces are fixed except for the surface. For z∗ vertical

coordinates or for other options where where level surfaces are changing only slightly around their mean positions it can still10

be used in most cases. It can be readily augmented with vertical remap to fixed levels by considering that the difference in

transports (wkc−w(k+1)c)Ac is linearly distributed within the layer in case when layers do not disappear, and level surfaces

do not outcrop and stay at fixed depths where they cross topography. The method B should be used in more general cases.

Generally ∆θ should be taken about or larger than the typical size of triangles. The triangles that are counted as belonging

to a bin are not necessarily confined to this bin, and the total area occupied by them differs from the bin area. However,15
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there generally are sufficiently many triangles in each bin, and one gets a smooth Ψkj despite these effects. The procedure

can be improved by conservative remapping into bins, which might be needed on coarse meshes. One may always check the

bin attribution effect by repeating computations with smaller ∆θ. We also note that for instantaneous vertical velocities the

procedure may result in Ψ different from zero at the surface. It will become zero only upon sufficient averaging which removes

transient behavior of the surface.5

The computations presented here can be generalized to some other sets of binning. Any sufficiently smooth scalar quantity

defined at vertices or triangles can be used to introduce a set of bins. For example, being limited to the NA subpolar gyre, one

may ask where the AMOC is forming using bins in mean sea surface height or barotropic streamfunction (see, e.g., Katsman

et al. (2018)).

In the following we present an example showing differences between computations using different bins in ∆θ. For this,10

FESOM was configured on a mesh with resolution varying from nominal one degree in the interior of the ocean to ~1/3 degree

in the equatorial belt and ~24 km north of 50°N. We run the model for one year starting from climatology and compute the MOC

from the annually averaged velocity. Because of starting the model at rest and short period of averaging we expect ∂η/∂t 6= 0,

where η is the sea surface height. This, however, shall not affect the presented results. Fig. 3 depicts the simulated global MOC

which is expressed by the basinwide mid-depth cell of ~20Sv at 40°N and the bottom cell, induced by the circulation of the15

Antarctic Bottom water with a maximum of 10Sv. Bins with ∆θ = 0.125 ◦, which are finer than the nominal resolution, have

been used for computing the streamfunction. Differences between computations using different bins in ∆θ are shown in Fig. 4.

Using the coarsest bin size of 4 ◦ the difference in MOC reaches locally above 5 Sv. As one would expect, decreasing the size

of bins leads to convergence towards the solution obtained with the finest bin size of ∆θ = 0.125 ◦. We see that using bins of

∆θ = 0.25 ◦ is already sufficient in this case because the mesh contains only few triangles that are smaller than the bin size.20

3.2 Method B

Here the horizontal velocities are used. We select a set of latitudes θi. The steps of the procedure are as follows.

– For each i draw a line θ = θi and find a set of edges crossed by this line, as shown schematically in Fig. 6. For this,

cycle through all edges, picking up those that satisfy the condition (θv1−θi)(θv2−θi)< 0), with θv1 and θv2 the latitude

of edge vertices. To avoid situations when the line passes exactly through the mesh vertex, a random noise of small25

amplitude is added to the original θi before edge e with vertices (v1,v2) is tested. Schematic in Fig. 6 shows that the

actual line through which transport is computed is a broken line composed of vectors (dec1 ,dec2) related to the crossed

edges. For a triangular C grid discretization one will deal with transports directly through the edges. The caveat in this

case is that some of the crossed edges will be hanging and not contributing to the broken line. They are excluded by

noticing that they have vertices that are encountered only once in the union of vertices of crossed edges. On hexagonal30

C grids the procedure needs to deal with edges of dual triangular mesh. We denote the set of edges forming the broken

line around θ = θi as e(i).
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Figure 3. Global Meridional Overturning Circulation (MOC) streamfunction including the eddy induced transports. Method A was used for

the computation. The streamfunctions depicts a canonical pattern as known from the literature with a maximum of 20Sv at 45°N.

– The flux associated to the edge is given by the expression for Fe above. The question now is the orientation of edges.

This question is trivially solved for each e by taking Fe if θv1−θi > 0 and −Fe otherwise. It corresponds to keeping the

normals to segments oriented so that transports are from the "northern" side of the broken curve. On triangular C grid

the edge normal vectors used to introduce edge velocities can be selected as turned 90◦ in positive direction from the

edge direction. This will allow to solve the orientation problem in the same way.5

– Since each of segments (dec1 ,dec2) belongs to a particular cell, vertical integration is trivial for fixed level surfaces. If

level surfaces are moving, the fluxes (transports) through the faces associated with segments are conservatively interpo-

lated to the desired system of levels assuming linear distribution within model layers. In particular, the new system of

levels can be specified in terms of potential density, with the result being the streamfunction in density coordinates. For

each level the contributions from edges e ∈ e(i) are summed to get streamfunction at this level and the latitude θi.10

Note that the set of intersected edges may be ordered arbitrarily, the computation relies on the orientation of edges with

respect to lines θ = θi. This is the reason why the search for intersected edges remains relatively fast even on very large meshes.

Furthermore, it needs to be done only once for a particular mesh. Similarly to Method A, computations can be generalized to

any set of lines, in particular to isolines of mean sea surface height or barotropic streamfunction. In both Methods we introduce

masks if computations need to be confined to a particular basin.15
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Using this method we computed the streamfunction using the discrete spacing of ∆θ = 0.125 ◦. The difference to the stream-

function computed by method A is illustrated in Fig. 7. The discrepancy between both methods is caused by the difference of

attribution of ocean volume to θi. This, as shown in Fig. 7, can lead to a differences exceeding locally 1 Sv. These differences

are not the errors, but uncertainty in the interpretation (see further).

If the modeled fluxes have been remapped onto the desired set of vertical levels as, for instance prescribed density lev-5

els, method B can be directly used for computing the MOC for a new vertical coordinate system. Figure 5 depicts the MOC

computed using σ2 (density referenced to 2000m) coordinate in vertical. For computing the streamfunction in density coor-

dinate we used 1000 equally spaced σ2 levels varying from 1027.5 to 1037.5 kg/m3. The resulting MOC resembles that of

generally known pattern from literature, with less expressed Deacon cell relative z coordinate streamfunction. The result is

sensitive to the selection of density bins, as illustrated in the bottom panel of Fig. 5 where the difference is presented with10

computations relying on the density levels of Megann (2018). He used 72 unequally spaced density classes spanning the range

30.0< σ2 < 37.2 kg/m3 and using the logarithmic scale for densities higher than σ2 > 35.0 kg/m3 to better represent the

deep and bottom waters. Thus, due to the different sampling the difference in the equatorial overturning of the surface waters

reaches ~3Sv for 30< σ2 < 35.0 kg/m3 and is even larger for the circulation cell associated with the Antarctic Bottom Water.

We conclude that different or not detailed enough selection of density levels may result in the small-scale recirculations in the15

diagnosed MOC. However, this difference is not an error but attribution uncertainty created by arbitrariness in the selection of

density levels.

Note, that diagnostic of MOC in density coordinate can be also made in the same manner as method A. For this, the horizontal

divergence needs to be remapped conservatively into density bins. From the horizontal divergence we then (1) diagnose the

diapycnal velocity and (2) use it in method A.20

4 Barotropic streamfunction

As follows from the equation for elevation, time mean vertically integrated horizontal velocity U is divergence free,∇
∫ η
−H udz =

∇U = 0, i.e. it can be written in terms of the barotropic streamfunction Ψ as

U =−∇× (Ψez). (8)

This streamfunction gives vertically integrated transport between two points at the surface.25

4.1 Computations through binning

The barotropic streamfunction is more difficult to compute because binning has to be done in two directions. We introduce

first a set of lines φ= φj , where φ is the longitude, and φj is the set of equally spaced longitude values over the basin of

interest. As a first step the set of broken lines associated to each straight line φ= φj is found. As the next step vertically

integrated transports associated with the segments of broken line are computed. The final step is further binning of edges and30
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associated transports into equally spaced latitude intervals (θi,θi+1). Transport (and hence streamfunction) at each bin can be

then computed by summing contributions going from the southern boundary where Ψ is set to zero.

This procedure can potentially be more noisy than computations of MOC, and may benefit from a conservative remap of the

contributions from the segments in the second binning step (the number of segments in final bins is not necessarily large, in

contrast to computations of meridional overturning).5

According to the above procedure we computed the barotropic streamfunction using ∆θ,∆φ= 0.25◦. Considering, that the

procedure requires two-fold loop for (∆θi,∆φj) in case of large meshes and small bins it can become computationally heavy.

The result is illustrated in Fig. 8 (upper panel) and depicts reasonable structure of the main gyres with transports of 160 Sv and

70 Sv across Antarctic Circumpolar Current (ACC) and Gulf Stream, respectively.

In Fig. 8, middle and bottom panels show the differences between the streamfunctions if bins of 2◦ and 1◦, respectively, are10

used. As expected, the largest differences occur along the main gradients and reach of above 5 Sv along the ACC front. As in

case with the MOC we note that these differences are not the errors, but uncertainty created by arbitrariness in the selection of

bin size.

4.2 Computations through velocity curl

FESOM2 as its predecessor use implicit time stepping for the internal mode. The already available solver and routines need to15

be only slightly adjusted to compute the barotropic streamfunction Ψ in the case when no-slip boundary conditions are applied.

Taking curl of the equation defining Ψ one gets

∆Ψ = ζ, ζ = ez · (∇×U). (9)

In FESOM the discrete ζ is located at scalar points (at vertices), so modifications of the sea surface height solver to solve the

above equations are indeed elementary. The difficulty in formal application of this approach is that the equation above needs20

to be solved in a multiply connected domain with the Dirichlet boundary conditions provided on the periphery of each island

and continent. Although these conditions can be formally provided by drawing lines connecting the islands and computing

transports through the associated broken lines, this is tedious enough, especially when mesh resolution is high (and there are

many islands). In the case of no-slip boundary conditions circulations along each island are identically zeros, and the equation

above can be formally solved with the Dirichlet boundary condition on the southern boundary and the von Neumann boundary25

condition ∂Ψ/∂n = 0 (n is the normal to the boundary). Although this condition does not ensure that Ψ = const over the

periphery of any island, our experience with FESOM1.4 is that it works fine enough for practical purposes.

If we integrate the equation above over a scalar control volume (in FESOM2 scalar points are natural locations for relative

vorticity ζ and streamfunction), we get∑
e=e(v)

[−(ez ×dec1) · ∇Ψkc1 + (ez ×dec2) · ∇Ψkc2 ] =
∑
e=e(v)

[dec1 ·Uc1−dec2 ·Uc2]. (10)30

The contributions from edges on boundaries here are one-sided, including only segments that are wet (the first in the list in the

case of FESOM). This automatically takes into account that there are no contributions from the boundary, as is the case for the
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no-slip boundary conditions. The operator on the left hand side in the case of FESOM is, up to the absence of depth weighting,

the same as the part of operator used to compute the elevation, so the implementations is straightforward in the code (less so for

post-processing). A clear drawback of this procedure is that it is not applicable for partial slip boundary conditions (it can be

generalized, but will become too complicated). Since the methods based on bins was found to perform reliably, the curl-based

method presents largely a historical interest.5

5 Technical realization

The FESOM 2.0 source code is available at https://github.com/FESOM/fesom2. It is written in Fortran 90 with some C/C++

code for providing bindings to some of the third party libraries. The code employs the distributed memory parallelization

based on MPI to run on HPC systems. The presented diagnostics have been computed using python routines that are part of

the FESOM 2.0 code distribution. For computing the MOC in z coordinate python routines require either vertical or horizontal10

velocities to be stored as wk,v or (u,v)k,c where k, v and c denote the layer, vertex or element indices, respectively. This is

the default output provided by FESOM. For computing the MOC in density space the index k refers to a density bin and wk,v

(is then diagnosed from the horizontal divergence within the bins) or (u,v)k,c denotes the transport through this bin below the

element c. Transports within the density classes are instantaneously computed by FESOM and stored with the desired frequency

if option ldiag_dMOC is activated. For the sake of better subsampling, the number of density classes for computing transports15

shall be sufficiently large. This, however, can make the remapping of transports onto density bins computationally heavy. Our

experience shows that instantaneous remapping of modeled fluxes onto density classes results in a ∼ 25 % slow down of the

code if 80 density classes are used. For this reason ldiag_dMOC is switched off per default.

For postprocessing in python a combination of Dask and Xarray is used for reading a 3D field (if, for example, the mean over

several timesteps or years is required). The MOC calculation itself happens on the data that are located in memory. One should20

have, of course, a sufficient amount of memory on the post processing machine. Our experience shows that 200G is enough

to compute MOC for a mesh with ∼ 23 M surface vertices. For a mesh with ∼ 1.3M surface vertices and 49 vertical levels it

takes about 7 seconds to compute a global MOC using 91 latitudinal bins. For the largest mesh we have tested in FESOM so

far (23M surface vertices), and 80 levels in vertical same computation takes about 7 minutes.

Computation of the barotropic streamfunction is currently implemented offline and from our experience it is slow because25

of the loops along vertical and zonal directions are required. Hence we plan to implement the computation of the barotropic

streamfunction following the philosophy of the in-situ computations (see e.g. Woodring et al., 2015).

6 Discussion

The general idea of the simple procedures described above is the use of transports as they are defined in an unstructured-mesh

model, avoiding interpolation from an unstructured to a structured mesh. The diagnosed quantities such as meridional and30

barotropic streamfunctions rely on the continuity equation, which is satisfied by the model only in a certain discrete sense.
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Interpolation destroys this sense, requiring corrections and introducing interpretation errors related to these corrections. In

practice the interpretation errors are significant, being on the level of Sverdrups for the meridional overturning as illustrated in

Sidorenko et al. (2009), hampering discussions of MOC variability.

The algorithms above rely only on transports as they defined in models, and use conservative interpolation only in the

vertical direction if required by a specified system of levels. We emphasize that the algorithms described are still sensitive to5

parameter choices and thus contain interpretation uncertainty. In each case there is some sensitivity to how bins or vertical

levels are selected. In Method B the straight line θ = θi can be considered as centered in the respective bin, however the broken

line drawn around the straight line is not necessarily centered within a bin. Drawing other possible broken lines in the bin is

generally possible and can be proposed as a method to estimate this uncertainty. However, we would argue that such uncertainty

is intrinsic to the diagnostics we are willing to compute. The true computation must rely on transport strictly consistent with10

model discretization to avoid errors, and such transports are defined at irregular locations that generally do not lie on lines of

latitude or longitude. A set of bins proposes some interpretation of integrated transports that is free of horizontal interpolation.

Any attempt to interpolate may create new uncertainties instead of making the analysis more accurate. These ’attribution’

uncertainties have to be kept in mind especially in situations where small variability of MOC is the subject of analysis. Our

experience thus far with the methods described above is that the computed patterns of MOC and barotropic streamfunction are15

sufficiently smooth.

7 Conclusions

We describe a set of simple procedures intended to diagnose the meridional overturning and barotropic streamfunctions in-

tended for unstructured meshes and requiring no interpolation of model output to regular meshes. We give application examples

and discuss uncertainties involved. The procedures are described for FESOM2, but their adaptation for other discretizations20

(MPAS or ICON) is straightforward. Our experience with using them indicates that they create much less difficulties with

interpretation of model results than all our previous approaches based on interpolation.

Code availability. The code of the FESOM 2.0 model which was used to conduct the simulations for this paper is available at Zenodo

(Sidorenko et al., 2020). The latest version of FESOM2 code can be downloaded from the public GitHub repository at https://github.com/FESOM/fesom2
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Figure 4. Differences in MOC computed with method A and using bins ∆θ = 4◦, 2◦, 1◦, 0.5◦, 0.25◦ (from top to the bottom) relative the

MOC computed with ∆θ = 0.125◦. Evidently there is a convergence with decreasing bin size.
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Figure 5. upper panel shows the MOC computed using 1000 equally spaced density levels varying from 1027.5 to 1037.5 kg/m3. Lower

panel shows the difference in MOC if 72 unequally spaced vertical levels after Megann et al. 2010 are used.
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Figure 6. Schematics of edge search method. The gray line L intersects edges depicted with arrows that show their orientation. The set of

segments drawn to centroids from the centers of intersected edges forms a broken line connecting land at left to land at right where exact

expressions for fluxes are available in FESOM2. The broken line formed by the intersected edges will be taken on triangular C grids, and

on hexagonal C grids it will be composed of edges of primary hexagonal mesh. The set of intersected edges may stay disordered, only edge

orientation with respect to the line L should be known. The latter is positive if the latitude of the first edge point is larger than that of L and

negative otherwise. The transport through L is the transport through the associated broken line.

Figure 7. Differences between computations of MOC using meridional (method B) or vertical (method A) velocities. The discrepancy

between techniques may result in differences of more than 1 Sv.
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Figure 8. Uppper panel: the barotropic streamfunction computed using ∆θ,∆φ= 0.25◦. Middle and bottom panels show the differences in

cases ∆θ = 1◦ and 2◦, respectively.
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