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We thank Mark R. Petersen for reading our manuscript and for his constructive
suggestions. Please find our answers below.

The Authors

This paper provides a clear explanation on how to compute the meridional over-
turning and barotropic streamfunction on unstructured meshes. It is well-written and
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clearly communicates the motivation, the mesh structure, and mathematics of the
computation, and the sensitivity of the parameters. | have not seen these details
discussed in other publications, so it will be a useful reference to ocean modelers
reproducing this calculation. In MPAS-Ocean, we compute the meridional overturning
circulation (MOC) streamfunction by integrating the vertical velocity in latitude bins,
level-wise, as described in this paper as Method A. | adapted this method from our
previous model, POPR, which is a structured quadrilateral mesh but usually ran on a
tri-pole grid, so the generality of latitude binning was required for that model as well.
We have the ability to run the MOC calculation as an in-situ calculation during the sim-
ulation:  https:// github.com/ MPAS-Dev/ MPAS-Model/ blob/ master/ src/ core_ocean/
analysis_members/ mpas_ocn_moc_streamfunction.F#L518 or as a post-processing
calculation from the time-averaged velocity fields: https://github.com/MPAS-Dev/
MPAS-Analysis/blob/ develop/ mpas_analysis/ ocean/ streamfunction_moc.py#L 436
We describe the philosophy of the in-situ computation here: Woodring, J., Pe-
tersen, M., Schmeisser, A., Patchett, J., Ahrens, J., Hagen, H., In Situ Eddy
Analysis in a High-Resolution Ocean Climate Model, IEEE Transactions on Vi-
sualization and Computer Graphics, vol.22, no.1, pp.857-866, Jan. 31 2016
http:// ieeexplore.ieee.org/ stamp/ stamp.jsp ?arnumber=7192723 If you feel it is rele-
vant, you are free to add any of that background to your paper.

We thank the reviewer for informing us about similar techniques being
used in MPAS-Ocean and in POP. At the time of writing we were aware only of
the cubed-sphere configuration of MITgcm using a similar strategy of trans-
port computation (Adcroft et al., 2004). In this paper we aim at documenting
these techniques for unstructured meshes in order to facilitate the use of
unstructured-mesh models by a broader community. We corrected the introduc-
tion mentioning MPAS-Ocean and POP and also cite Woodring et al. 2016 on in
situ computation.
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We have found that the python post-processing method is fine at lower resolu-
tions, but at high resolutions ( 1 million horizontal cells) it is extremely slow or fails,
and we rely on our in-situ calculation. It would be good to hear in section 5 about
any performance limitations in your calculation. On page 9 line 20, are these python
routines just the plotting part, or do they reproduce the functionality of the Fortran and
c code? If the later, did you run into performance bottlenecks, and how did you run
python at high resolution — some combination of xarray and dask?

Diagnostic of MOC in z coordinate is fully done in python (method A, by
integrating the vertical velocity in latitude bins, level-wise). The dask and xarray
are used to read a 3D field if the mean over some time interval is required.
The MOC calculation requires that the data that are located in memory. The
reason is that we did not manage to make dask and xarray working efficiently
with selecting “arbitrary” indices, which is required for computing vertical flux
contribution from a cell and selecting cells that belong to a certain bin. Putting
unused values to np.nan, when possible, instead of selecting by index, causes
a good performance gain. One should have, of course, a sufficient amount of
memory on the post processing machine. Our experience shows that 200G is
enough to compute MOC for a mesh with 20M surface vertices. For a mesh
with 1.3M surface vertices (2.6M surface cells) and 49 levels it takes about
7 seconds to compute a global MOC when using 91 latitudinal bins. For the
largest mesh we have (23M vertices), and 80 levels it takes about 7 minutes. The
python function can be found here: https://github.com/FESOM/pyfesom2/blob/
7609c4ec54c13bcdbc1d15abc5dal4bc40b9ec63/pyfesom2/diagnostics.py#L348
Computation of MOC in density coordinate can be also done in python in the
same manner as methods A or B. For this, the meridional velocity (for method
A) or horizontal divergence (for method B) need to be remapped conservatively
onto density bins. This, however, can be done only in situ and results in 25%
slow down of the code if 80 density classes are used. Method B can be then
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used straightforward in python. For method A we need first diagnose the
diapycnal velocity from horizontal divergence. This is also done in python using
xarray and dask.

Computation of the barotropic streamfunction is currently also made offline and
we confirm that it is slow. Hence we plan to implement the in situ computation
of the barotropic streamfunction.

As suggested by the reviewer we included this discussion into the chapter 5 of
the revised paper.

Your equations are missing numbers.
Fixed!

| find the notation of the streamfunction definition confusing (page 4, top). | pre-
fer to see the df and dz at the very end, to indicate what is included in the integral. The
first one, in particular, could be confused with the multiplication of two integrations,
rather than one case of a double integral. Another way to clarify is to write w and
v as: w(z,d,z) and v(x,0,2') and integrate in ¢’ on the first equation and =z’ on the
second, to explicitly state that the primes are dummy integration variables, not to
be confused with the upper bound and independent variable on the left side. For
the new reader, it would be useful to review the definition of a streamfunction at the
beginning of section 3. That is, if we have zonally-integrated velocities W and V,
then for an incompressible fluid we can define a streamfunction ¥ as d¥/df = W(1)
d¥/dz = —V(2) and refer to some fluid dynamics textbook — my favorite is Kundu,
https.// www.amazon.com/ Fluid-Mechanics- Pijush-K-Kundu/dp/ 0123821002 (I forget
which line is negative, | always have to work through it. | assume one of your
streamfunctions has a negative sign absorbed in a coordinate or variable definition,
but that would be good to note as well). From my equations above, it is clear that one
may compute ¥ by either integrating (1) in 0, or integrating (2) in z. This is identical an-
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alytically, but leads to different implementations and numerical results, as you describe.

Thank you, we modified the equations according to reviewer’s suggestion
and revised the definition of the streamfunction in section 3.

Please state the boundary conditions for the two equations, top of page 4. For
Method A and a global MOC it is easy — just set 1) to zero at the Southern boundary.
But for regional MOCs, like the Atlantic, we use the second equation with v along a
connected set of edges nearf, (33S, say) and integrate from the bottom up. That is
our southern boundary condition ¥ (z, thetay) to then integrate northward with the first
equation. For Method B, the stream function is just zero at the top or bottom.

Done!

Although it is implied, it would be useful to state in each figure caption whether
you are using Method A or B.

We modified the figure captions in the revised paper as suggested by the
reviewer.

Grammatical comments, Please change MPAS-o to MPAS-Ocean throughout...

fixed! we have also corrected for all other grammar comments listed by
the reviewer!
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