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Abstract. This study compares the performance of the Community Land Models (CLM4.5 and CLM5) against tower and

ground measurements from a tropical montane rainforest in Costa Rica. The study site receives over 4,000 mm of mean annual

precipitation and has high daily levels of relative humidity. The measurement tower is equipped with eddy-covariance and

vertical profile systems able to measure various micrometeorological variables, particularly in wet and complex terrain. In this

work, results from point-scale simulation for both CLM4.5 and its updated version (CLM5) are compared to observed canopy5

flux and micro-meteorological data. Both models failed to capture the effects of frequent rainfall events and mountainous to-

pography on the variables of interest (temperatures, leaf wetness, and fluxes). Overall, CLM5 alleviates some errors in CLM4.5

but CLM5 still cannot precisely simulate a number of canopy processes for this forest. Soil, air, and canopy temperatures, as

well as leaf wetness, remain too sensitive to incoming solar radiation rates despite updates to the model. As a result, daytime

vapor flux and carbon flux are overestimated, and modeled temperature differences between day and night are higher than10

those observed. Slope effects appear in the measured average diurnal variations of surface albedo and carbon flux, but CLM5

cannot simulate these features. This study suggests that both CLM models still require further improvements concerning en-

ergy partitioning processes, such as leaf wetness process, photosynthesis model, and aerodynamic resistance model for wet

and mountainous regions.

1 Introduction15

Tropical forests play a critical role in determining regional and global climate. Due to their significance for the global water

(Zhang et al., 2010; Choudhury and DiGirolamo, 1998) and climate cycles (Huntingford et al., 2013; Beer et al., 2010), accurate

modeling of tropical regions is important for the prediction of future climate and climate change impacts. While tropical forests

occupy only 16% of the global area, forests in the tropics house 25% of the carbon stocks found in the terrestrial biosphere,

accounting for 33% of global net primary production (NPP) (Bonan, 2008). They account for 33% of terrestrial evapotranspi-20

ration (ET), which ranges from 1,000 mm up to 2,200 mm per year and transpiration (TR) occupy its 70% (Schlesinger and

Jasechko, 2014; Kume et al., 2011; Fisher et al., 2009; Loescher et al., 2005; Sheil, 2018). Hydrological processes in the humid

tropics are also distinctly characterized by warm, uniform temperatures, large inter-annual and spatial variability, intense rain-
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fall, and greater energy exchange accelerated by low albedos and high evaporative cooling (Wohl et al., 2012; Bonan, 2008).

The loss of such forests by climate change or human impact can influence their local climate, but also more remote regions25

(Lawrence and Vandecar, 2014).

Hence, building accurate land-surface models (LSMs) is important. LSMs, as a component of Earth system models (ESMs),

simulate the exchange of heat, water vapor, and carbon dioxide between the terrestrial surface and the atmosphere, based

essentially on the partitioning of net radiation (Wang et al., 2016). The models have been used for the prediction of future

climate and also its impacts on the land surface such as tropical and extra-tropical forests (Cox et al., 2013; Huntingford et al.,30

2013).

However, the models do not yet successfully capture the underlying complexity of land-atmosphere interactions (Cai et al.,

2014; Wang et al., 2014; Lawrence et al., 2011; Oleson et al., 2010). In particular, LSMs are known to make significant errors

in the prediction of carbon and water fluxes for tropical regions. The reasons for these issues are not entirely clear, even

though significant improvements have been made in this field of study (i.e., empirically and mechanistically). Lawrence et al.35

(2011) compared estimates obtained using two versions of the Community Land Model (CLM3.5 (Oleson et al., 2008) and

CLM4.0 (Oleson et al., 2010)) against observed sensible and latent heat flux data from FLUXNET (Baldocchi et al., 2001).

They found that CLM4.0 improved predictions compared to CLM3.5 for most sites across the network, but continued to show

low agreement for tropical sites. Bonan et al. (2011) updated CLM4.0 by modifying the structure of radiative transfer model

and physiological parameters for canopy processes, which resulted in notable improvements in CLM4.5 (Oleson et al., 2013)40

but overestimation of carbon and water vapor fluxes persisted in areas closest to the equator. The deficit is especially true for

tropical wet mountain rainforests, which have rarely been studied in the context of improving global LSMs, due to the lack

of long-term/uniformly distributed measurement and the small number of observation sites (Fisher et al., 2009; Wohl et al.,

2012).

To improve land surface models addressing tropical ecosystem biosphere-atmosphere interactions, accurately partitioning45

net radiation (energy) and water balance is critical for these models, especially with respect to estimating latent heat flux.

Many studies maintain that vapor fluxes in the tropical site are highly correlated (≈ 87%) with net radiation (Andrews et al.,

2019; Fisher et al., 2009; Hasler and Avissar, 2007; Loescher et al., 2005). Others found that leaf wetness is also an important

control (Andrews et al., 2019; Giambelluca et al., 2009). Some studies indicate that the effects of leaf wetness (which can

contribute 8%-20% of ET) can appear depending on the canopy water storage capacity and rainfall pattern, although short50

duration and high intensity rainfall does not significantly affect canopy evaporation (Kume et al., 2011; Loescher et al., 2005).

For tropical sites, therefore, the interaction of interception and its evaporation must be included in the modeling framework.

Aerodynamic conductance has also been considered as a strong driver for evapotranspiration in tropical forest because the large

amount of precipitation and frequently wetted canopy conditions control leaf conductance (Shuttleworth, 1988; Loescher et al.,

2005). Vapor pressure deficit (VPD) has been shown to only slightly influence (≈ 14% predictor) on tropical ET (Fisher et al.,55

2009; Kume et al., 2011). However, when assessing these studies, we can notice that the studies all highlight the importance

and difficulties of quantifying canopy-related water fluxes. ET dynamics are dependent on how these micrometeorological

variables are related to the latent heat flux within the energy balance. In tropical forests, the Bowen ratio is consistently less
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than one (Loescher et al., 2005), which implies net radiation highly correlated with latent heat flux. Moreover, the forest canopy

acts like a well-watered crop without water limits (Loescher et al., 2005; Hasler and Avissar, 2007; Kume et al., 2011). Hence,60

how to accurately track water movement within the system (water balance) and predict the ET proportion of net radiation

(energy balance) is still a critical question.

However, water-related variables are not our only concern, and cannot be independently considered in Earth system or land

surface system models. Other energy balance components and physiological elements (e.g., thermal flux, radiative transfers,

photosynthesis, and respiration) are likewise important because they are dependent on the water. Normally, all LSMs handle65

such main variables (e.g., heat/vapor flux, carbon flux, and net radiation). However, recently the modeling community has

embraced additional components in order to represent more realistic processes and to resolve research questions related to soil

carbon and nitrogen cycling (Thornton et al., 2007), multi-layer plant canopies (Ryder et al., 2016; Launiainen et al., 2015;

Bonan et al., 2018), and even more sophisticated systems (e.g., urban settings, heat stress effects) (Lawrence et al., 2018; Buzan

et al., 2015). These changes have led to the development of a plethora of sub-models, making it difficult to identify a specific70

sub-model or set of sub-models from which model error arises.

Hence, in order to properly parametrize global LSMs and to precisely represent such complicated systems, such as the

tropics, it is necessary to continue to diagnose land surface models using site-based data. Unique sites like tropical forests

are valuable testbeds for model improvement because their environment is an "edge case" for the model; model calibration

under more extreme climate conditions can provide valuable insight for the utility of these models under conditions of climate75

change. Using detailed variables, such as soil moisture/temperature, interception,and stomatal conductivity, site-based studies

can identify and alleviate errors in model sub-components . Such errors cannot be easily detected by the analysis of more

integrative variables, such as albedo or net radiation.

Land surface models have gradually increased in resolution with the improvement of observations through remote-sensing

technology. These changes have highlighted the importance of spatial variability in the land surface system. However, the80

models still cannot fully reflect the complexity of the surface. The current oversimplified parameterization and misinterpre-

tation cause the model’s error (Singh et al., 2015; Wood et al., 2011). Therefore, site-based observations are very important;

measurements including eddy-covariance tower systems have been widely used for the advance of global land surface models

via calibration and validation (Bonan et al., 2012; Zaehle and Friend, 2010; Larsen et al., 2016; Chaney et al., 2016). Gridded

global data from the FLUXNET network is also available for model development at large scales (Bonan et al., 2011; Jung,85

2009). However, point-scale and stand-scale studies still form a core component of research at regional to global scales. In

this study, CLM4.5 (Oleson et al., 2013) and its updated version (CLM5) (Lawrence et al., 2018) are employed, and microm-

eteorological datasets from a tropical rainforest in Costa Rica are compared with these simulation results. The objectives are

four-fold:

1. To compare the default mode and point-scale predictions of both CLM 4.5 and CLM 5.0 against micrometeorological90

and flux measurements collected in a Costa Rican wet montane tropical forest;
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2. To identify the improvements in performance between the two CLM versions and shortcomings remaining in the newer

version (CLM5);

3. To discern errors caused by the unique environment at our study site (i.e., frequent rainfall and mountainous topography)

and to identify oversimplified formulations and incorrect parameters (i.e., interception/leaf-wetness models, photosyn-95

thesis models, etc.); and

4. To determine which canopy-atmosphere processes (i.e., sub-models) are most poorly represented, in order to suggest

priorities for future model improvements.

2 Methodology

2.1 Study Site100

The field site is located at the Texas A&M University Soltis Center near San Isidro de Peñas Blancas in Costa Rica (10◦23′13′′N ,

84◦37′33′′W , about 600 m above sea level). This area has a mean annual temperature of 24 C◦, relative humidity of 85%, and

precipitation of 4200 mm (Teale et al., 2014). The study area is classified as a moist, tropical premontane forest. The canopy

height ranges from 24 to 45 m, and is located on a steep eastern slope (Aparecido et al., 2016; Jung, 2009). Rainfall is frequent,

and a little over two-thirds of days have one or more rain events.105

2.2 Micrometeorological measurements

The site has two primary biometeorological measurement locations. The main weather tower (hereafter called “Met Tower”)

is located in a flat, grass-covered clearing at the base of the mountain. The walk-up canopy access tower (hereafter called

“Canopy Tower”) is located within the forest, on the eastern slope. The Met Tower measures meteorological conditions without

the influence of canopy processes and structure. Precipitation (mm; TE525, Campbell Scientific, Logan, UT), incoming solar110

radiation, net radiation (W ·m−2; CNR1, Campbell Scientific), air temperature (C◦; HMP60, Campbell Scientific), and relative

humidity data (%; HMP60, Campbell Scientific) have been collected since 2010. The Canopy Tower has collected the same

variables as the Met Tower (with exception of precipitation). A suite of additional measurements, including greenhouse gas

concentrations and fluxes, soil moisture, leaf wetness, and sap flow have been collected at the Met Tower since 2014. An

infrared, trace-gas profile system (AP200, Campbell Scientific, Logan, UT) and an eddy-covariance system (LI-7200, LI-115

COR, Lincoln, NE; CSAT3, Campbell Scientific, Logan, UT) are used to collect micrometeorological data at various heights,

including concentrations and fluxes of vapor (i.e., H2O) and carbon dioxide (i.e., CO2), wind speed and its direction, and

air temperature. Additional data are also collected to track canopy processes: leaf wetness sensors at four different heights

(LWS, Decagon Devices, Utah), photosynthetically active radiation (PAR) profiles (LI-190, LI-COR) at five heights, leaf area

index (LAI) profile using a lined PAR sensor (LI-191, LI-COR) and Beer-Lamber law (Vose et al., 1995; Andrews et al.,120

2019), leaf temperature sensors for sunlit and shade leaves (SI-111, Apogee Instruments, Logan, UT), soil heat flux (HFT3,

Campbell Scientific), soil temperature (5TE, Decagon Devices, WA), soil moisture (EC-4 and 10HS, Decagon Devices, WA),
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Figure 1. Sketch of Canopy Tower located in a plot within a mature premontane moist tropical forest in Costa Rica (right) with LAI profiles

highlighted (left) along with the location of the eddy-covariance system (EC, 33 m) and the Spire (44 m), which holds the net radiometer.

The leaf area index is given at 22 discrete points(100 points by spline interpolation) in the canopy (LAIz), and its sum (LAI) is equal to 6

m2 ·m−2 for this stand. Song (2019, Appendix B.2.4) explains the method used to derive LAI in detail.

soil respiration (LI-8100A, LI-COR) and transpiration from sap flow system. Aparecido et al. (2016) and Andrews et al. (2019)

present more detailed information about the sap flow system and the profile measurements, respectively. The datasets for this

site, from 2014 to 2017, are available via the OAKTrust repository (Miller et al., 2018a, b, c, d).125

While the Canopy Tower exceeds the average canopy height canopy, some known interference is present from a nearby

emergent tree [Figure 1], leading to a large gap in the canopy in-between heights of roughly 30 and 40 m. This configuration

leads to two main challenges. Above the gap, the upslope tree (emergent tree) provides a significant degree of shading, which

leads to a 70% reduction in PAR between measurements at the down-slope canopy surface (32 m) and above the emergent tree

(44 m). We also note that this configuration makes the eddy-covariance method less than ideal. However, the sonic anemometer130

and IRGA are located at 34 m height, extending away from the tower and clear of obstructions in both the upwind and

downslope directions [Figure 1]. As shown in the figure, predominant winds flow parallel to the valley (e.g., N-S) and not

perpendicular to the mountain slope. This configuration allows us to capture fluxes, albeit under a narrowed set of ambient

conditions. Thus, these data are not necessarily sufficient for recording long-term, integrated measures of ecosystem-level

variables, like gross primary production. However, they are suitable for testing and validating models, despite the heterogeneous135

structure created by the emergent tree.
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2.3 Model Description

In this section, we briefly describe CLM’s structure and its formulation of the energy balance equation. Given the site’s ex-

tremely high humidity and annual precipitation, we hypothesize that the sub-models related to water fluxes are the main

sources of prediction errors, and as such, the discussion focuses primarily on them. More detailed descriptions can be found in140

the technical manual (Lawrence et al., 2018; Oleson et al., 2013, 2010). Additionally, hereafter we use CLM in a general sense,

applicable to both CLM4.5 and CLM5, but provide the specific version number when distinguishing their respective behavior

or the effects of recent code modifications.

CLM calculates the radiative transfer through the canopy and the ground surface, using the Two-stream approximation

method (Dickinson, 1983; Sellers et al., 1992; Bonan, 1996; Oleson et al., 2013), which is a starting point for land surface145

models determining the amount of energy exchange. In the procedure, the canopy structure and the albedo, as influenced by

current conditions (leaf angle, wetness, solar angle, etc.), are main controllers determining the absorptivity of incoming solar

radiation. Based on the absorbed energy of incoming energy, fluxes of sensible heat, latent heat, and soil heat are estimated

using the energy balance equation. For example, as a function of vegetation temperature (Tv), the canopy energy balance can

be written as150

−Sv +Lv(Tv) +Hv(Tv) +LEv(Tv) = 0 (1)

where Sv is the absorbed solar radiation by canopy, Lv is the long wave radiation emitted by canopy, Hv is the sensible heat

flux, and LEv is the latent heat flux from the canopy, all of which are given in W ·m−2 (Oleson et al., 2013). Monin-Obukhov

Similarity Theory (MOST) is used to determine resistances along the soil-plant-atmosphere continuum [Figure 2], which is

then used to calculate Hv and LEv (Zeng et al., 1998; Oleson et al., 2013). As a big-leaf model, CLM represents both sunlit155

and shade leaves (Dai et al., 2004).

The water balance equation tracks water flows through the system and connects to the energy balance via its dual controls

on ET. The first of these controls, the influence of soil moisture on stomatal conductance, is not considered in this study. Prior

work has determined that ET at the present study site is not limited by soil water deficits during normal to above-normal rainfall

years, such as the period from 2014 to 2016 (Andrews et al., 2019). On the other hand, leaf wetness can have an influence on160

this site. While its effect is considered to be small in some ecosystems (Burns et al., 2018), previous studies have shown that

leaf wetness exerts significant influence on fluxes from rainforests in general (Loescher et al., 2005; Kume et al., 2011) and

at this site specifically (Aparecido et al., 2017; Moore et al., 2018). CLM reflects these mechanisms as well in the resistance

network [Figure 2b], and the leaf wetness can prevent transpiration and contribute to canopy evaporation rates. Here, leaf

wetness is determined by the interception rate of incoming precipitation (Deardorff, 1978; Dickinson et al., 1993; Lawrence165

and Chase, 2007). The amount of interception qic is given in CLM4.5 and in CLM5 as:

qic = 0.25 · qrain/snow · [1− e−0.5(L+S)] (2)
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Figure 2. Resistance network schemes incorporated within CLM for (a) sensible heat flux and (b) latent heat flux. Main state variables

are atmospheric potential temperature (θatm) and specific humidity (qatm), canopy air temperature (n) and specific humidity (qs), leaf

temperature (Tv) and its corresponding specific humidity (qv), and ground temperature (Tg) and its corresponding specific humidity (qg).

Relevant heights are the atmospheric reference height (zatm), the canopy roughness heigth (Z0), the groundwater roughness height (Z′0),

and the displacement height (d). Resistances are specified by their scalar (h for heat and w for water vapor), type (a for aerodynamic, b for

boundary layer, s for stomatal, or litter for litter), and lighting (sun or shade). Leaf wetness also exerts control on fluxes, via a wetness

fraction (fwet) and (L+S) is leaf and stem are index. Figure adapted after Oleson et al. (2013).

qic = 1.00 · qrain/snow · tanh(L+S) (3)

where qrain/snow is the precipitation as liquid or snow, and 0.25 is a model coefficient. Here, we note that when the leaf-stem

area index is high (L+S > 2) the interception rate approaches 100% in CLM5. This value is questionable in our view because170

of the canopy in this site. The observed tree having high LAI (far higher than 2 (m2 ·m−2)) does not cover 100% of the sky

(≈ tanh(2)). On the other hand, the value of 0.25 in CLM4.5 seems too low. After determining intercepted rainfall, canopy

water storage (Wcan) is calculated through re-partitioning based on the condition of 0 5Wcan 5Wmax, where maximum

canopy water storage (Wmax) is 0.1(L+S) (Dickinson et al., 1993; Oleson et al., 2013). Finally, fwet is

fwet =
[
Wcan

Wmax

]2/3

(4)175

Additionally, in CLM5, fwet cannot exceed a maximum value (fwetmax) of 0.05, and fdry is calculated as:

fdry =
(1− fwet) ·L

L+S
(5)
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In Eq. (4), the 2/3 exponent was assumed following the original literature (Deardorff, 1978), because the canopy water tends

not to be evaporated when it is set to one and evaporates too fast when close to zero (Deardorff, 1978).

Additionally, CLM mainly uses the Farquhar model (Farquhar et al., 1980; Oleson et al., 2013) for photosynthesic rates. In180

our site, air temperature varies little throughout the year, and CO2 concentration is not significantly variable. Consequently,

light-limited photosynthesis can be considered as a dominant process. The light-limited model wj (µmol·m−2s−1) in CLM is

developed based on the Farquhar model (Oleson et al., 2013) and can be written as:

wj = 0.25JxCi, Ci =
ci− cp
ci + 2cp

(6)

where ci is intracelular CO2 concentration, cp is CO2 compensation point, assuming 4 electrons per CO2 molecule, Ci is a185

function of ci and cp, and Jx (µmol ·m−2s−1) is the electron transport rate which can be additionally estimated through

ΘJ2
x − (IPSII + Jmax)Jx + IPSIIJmax = 0 (7)

where Θ is a curvature parameter (Θ = 0.7 in default), Jmax (µmol ·m−2s−1) is maximum rate of electron transport, IPSII

can be estimated as IPSII = 0.5Φ ·IAPAR, Φ is quantum efficiency of photosystem II (Φ = 0.85), 0.5 is for two photosystems

for one electron, and IAPAR is absorbed PAR (µmol ·m−2s−1).190

To further explore these relationships, Eq. (6) and Eq. (7) are simplified and recalculated to make them comparable to

apparent quantum yield (α). This is because the light-limited model has a hyperbolic shape and the shape changes influenced

by other environmental conditions. However, the apparent quantum yield is a slope parameter (or the initial slope of the

light-limited model) between absorbed-PAR and photosynthetic rate, which is a well known and simple parameter with a

long research history in the literature (Skillman, 2007; Evans, 2013). From Eq. (6), if ambient condition has cp ≈ 40µmol,195

ca ≈ 400 and ci/ca ≈ 0.7,which gives ci ≈ 0.7 ·400µmol (Launiainen et al., 2011; Katul et al., 2010), then Ci becomes 0.667.

If ci becomes higher as atmospheric CO2 concentrations increase, it will approach 1. Through Eq. (6) and Eq. (7), the initial

quantum yield of CO2, also known as apparent quantum yield (α), can be estimated via ∂Jx/∂IAPAR× 0.667× 0.25, which

can be used with simple-version models such as wj = α · IAPAR. The theoretical maximum for α should be ≈ 0.11, α with

saturated condition is approximately 0.075 (absence of photorespiration), and in normal atmosphere condition α is about 0.05200

which is estimated if Φ≈ 0.6 in Eq. (7) (Evans, 2013; Raj et al., 2015; Skillman, 2007). These light-limit models with different

parameters are explored with observations in later section.

2.4 Simulation Setup and Comparison Method

CLM was tested in point-scale mode and the satellite phenology (SP) mode with default settings, with exceptions noted below.

Extension modes, which consider additional processes such as dynamic global vegetation (DGVM), biogeochemical cycles205

(BGC), or carbon-nitrogen cycling (CN) were in general not considered since they do not affect our study interests here (e.g.,

tree growth and stand competition). Input parameters for the simulation were determined using the ‘mksurfdata_map ’ utility
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provided in Community Earth System Model (CESM). The utility derives its values from satellite-based global datasets of

phenology, soils, and topography, provided by University Corporation for Atmospheric Research (UCAR) (Oleson et al.,

2013).210

Based on multiple initial tests, we decided to use default parameters from the global surface data for our model if varying

them had no significant influence on model performance. Location specific default parameters from the global dataset included:

leaf area index (LAI , 5m2 ·m−2), stem area index (SAI , 0.8m2 ·m−2), canopy height (34 m), sand clay loam soil (47% sand,

26% clay, 27% silt), organic matter density (33 kg ·m−3), maximum fractional saturated area (0.39), color class (15). Changing

any of these parameters from the global values to local values did not significantly affect the model’s results in our tests. This215

is perhaps because our LAI value is high enough to be the dominant parameter, and the role of the soil is small. Moreover, the

slope parameter exists in the model but it is not actually used in CLM’s radiative transfer, canopy process, and turbulence sub-

models. Additionally, most of the measured parameters at this site were not very different from the default values. Therefore, we

decided to use the default setting except for some significant differences as outlined below. The tropical, broadleaf evergreen

tree (BET) plant functional type (PFT) was used as the basis for representing the site’s specific landcover. The location in220

question had a default value of 30% BET tropical, 30% of tropical broadleaf deciduous trees (BDT Tropical), and 25% for

grass and crop which we altered to 100% BET for purposes of this study. The atmospheric reference height was set to 44 m to

reflect the location of the net radiation sensor on the Canopy Tower.

As an input, a meteorological forcing data set for CLM was created based on the measurements collected on site. These

variables included half-hourly averages of wind speed (m · s−1), incoming solar radiation, relative humidity, air temperature,225

air pressure, precipitation, and CO2 concentration. Comparison of the simulation was based on measurements taken at Canopy

Tower; thus, Canopy Tower data was primarily used as forcing data when possible data was available. Average precipitation

and air temperature data collected at 10-m height at Met Tower were also used for data gap-filling. In most cases, weather

data obtained from the two towers were highly correlated, as the locations are less than 1 km away and only differ in their

immediate surroundings (i.e., forest vs. clearing) and slope degree (i.e., ∼45 degree slope vs. flat terrain).230

Although flux methods cannot measure gross primary production (GPP) directly, it is an extremely important variable in

the context of global carbon cycle modeling. In light of this, we estimated GPP based on net ecosystem exchange (NEE), net

ecosystem production (NEP), and ecosystem respiration (ER), where NEE≈NEP and GPP = NEP – ER. With eddy-covariance

data collected at the height of 33 m, NEP was estimated as CO2 flux + CO2 storage flux. Ecosystem respiration (ER) was

estimated to be around 1.2 (µmol ·m−2s−1) based on the nighttime data found using the u* threshold method (Papale, 2006;235

Reichstein et al., 2005). This EC based data for CO2 and H2O flux can be still questionable due to the instrument configuration.

However, comparison of the EC data and sap-flow data (discussed below) showed acceptable similarity, and these data were

accurate enough to give the information whether the model is over-parameterized.

For transpiration (TR), measured data and simulated transpiration rates are compared at daily timescales. To investigate water

loss from the canopy, it is necessary to estimate or measure each major flux (partitioned flux) within ET. In this site, up-scaled240

sap-flow data provides a transpiration rate (Aparecido et al., 2016), which in turns allows for water vapor flux partitioning.

Although the sap-flow data at the site tends to lag temporally and nocturnal sap-flow occurs (shown later), it provides data to
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be used as a comparison at a daily scale against CLM estimates. As CLM cannot represent nighttime transpiration, the nighttime

sap flow data, collected when the cosine zenith in CLM is less than zero, were eliminated from the comparison. This daily scale

comparison is made by a one to one figure with R-squared value. Also, regression analysis provides additional information245

how much the model deviates from observation, as a slope of 1 and an intercept of 0 are expected from model/measurement

comparisons. We note that the intercept is related to the daily average value, and it should be directly affected by the elimination

of the nighttime transpiration and that a portion of this difference is related to the lag.

For GPP and TR, unlike the radiative transfer models, notable updates to the physiological models and their associated pa-

rameters have been made in CLM5 as compared to CLM4.5. The Ball-Berry Model (BB) (Ball et al., 1987) was supplanted250

by a combination the Medlyn model for the stomatal conductivity (Medlyn et al., 2011), a plant hydraulic stress model (Bo-

nan et al., 2014), and the Leaf Use of Nitrogen for Assimilation (LUNA) routine (Ali, 2016). For the stomatal conductivity,

regardless of the type of model (BB or Medlyn model), the slope parameter, which links stomatal conductivity and carbon

fixation (i.e., photosynthesis), has been reduced by the model update. While the BB model still can be used for CLM5, its

slope parameter has been changed from 9 to 7.3 for C3 plants. We have tested several options in CLM5 and determined that255

changing the stomatal conductivity model does not affect photosynthesis-related results (e.g., GPP) in our case.

In order to facilitate comparisons, it is necessary to input variable heights into CLM. In this case, each reference height was

determined based on assigned parameters in CLM: the displacement height was d= 23.45m, ground roughness height was

z0mg = z0vg = z0hg = 0.01m, and surface height was z0 = z0mv = 2.625m, so the canopy height became d+ z0 = 26.075m.

For instance, canopy air temperature (Ta) in CLM was 2 m temperature in this comparison study, and it had d+ z0 + 2 =260

28.075m. Our instrument heights did not exactly correspond to those heights from CLM, so the nearest one or two data points

was used for the comparison rather than interpolating all data.

Additionally, CLM5 has a low default leaf wetness ratio; the maximum is 0.05 as in Eq. (4)). For fair comparison, all leaf

wetness values from CLM were normalized to a [0-1] scale based on the water amount on canopy using Eq. (4). Additionally,

the question of whether or not to apply the power of 2/3 did not change our comparison results significantly.265

Soil related data was spatially up-scaled and vertically interpolated to compare with the simulation. For the spatial up-scale,

soil temperatures and soil heat fluxes were measured at five different places near the Canopy Tower, and the vertical profile

data were also collected close to the base of the tower. For the vertical profile, CLM considers a larger number of soil layers,

so the results of CLM were linearly interpolated, to compare with the measured data.

To initialize the simulations, CLM was first executed with a cold start (i.e., randomly produced initial values) and run for270

100 years to get stable soil temperatures, cycling 6-year datasets collected between the beginning of 2010 and the end of 2015.

Once stable soil temperatures were obtained, CLM was rerun for two years (2014 – 2016) at a 30-minute time step. For some

cases, linear regressions were performed to compare CLM outputs to field data. Goodness-of-fit of the regression analysis was

determined based on coefficient of determination (R-squared) where appropriate. In this analysis, we focused on the following

variables: net radiation, PAR, albedo, CO2 flux, GPP, transpiration, latent heat flux, air temperature, leaf temperature, leaf275

wetness, and soil-related variables. Additional test simulations were used to determine how changes in levels of maximum leaf

wetness (fwetmax) and quantum efficiency of photosystem (Φ) affected goodness-of-fit. Modifications of LAI, light extinction
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related coefficients, and canopy heights (34m∼44m) were also tested. Unlike fwetmax and Φ, however, they provided no

significant difference or better results, so comparison and discussion of them are not made here.

3 Simulation Results and Comparison280

3.1 Net Radiation and Albedo

A comparison of light-related variables indicated the simulated land surfaces received less energy than field measurements,

but the difference was not significant. Simulated net radiation values were 20 W ·m−2 less than the average measured values,

although diurnal patterns closely matched (R2=0.99). CLM was approximately 15 to 45W ·m−2 lower than field measurements

during the daytime and 10 to 15 W ·m−2 lower during the nighttime [Figure 3a; Figure 3b]. Little difference (< 5 W ·m−2,285

R2=0.99) was detected between CLM4.5 and CLM5. The simulated shortwave reflectance (albedo) in CLM was around 15%

higher than the gauged albedo (+0.022 across all daytime data) [Figure 3c], which likely caused the differences in net radiation.

Light data was clearly affected by the sloped terrain. Although the models were developed for all the global surface, sub-

grid scale heterogeneity in land surface elevations has not yet been implemented in CLM4.5/5.0. Albedo from CLM tended

to have a symmetric form, while the measured albedo had a skewed diurnal pattern [Figure 3c]. This skew caused a noticable290

discrepancy with the modeled values in the early morning which peaked during mid-afternoon (+0.0517 at 3PM; [Figure 3c]).

. The highest PAR intensity (or highest incoming solar radiation) occurred at 10 a.m. [Figure 3e], at which time it produced the

smallest difference between observation and simulation of albedo, +0.0214 (Figure 3c). In some parts, this may be caused by

the oversimplification of albedo models which cannot properly respond to the intensity of solar radiation/angle. However, the

skewed albedo seen on the measured data in [Figure 3c; Figure 3d] clearly indicates that CLM cannot represent the slope effect295

of the land surface. Such skewed diurnal variations were also observed in the PAR profiles [Figure 3e; Figure 3f]. The measured

PAR values, generated by sensors somewhat shaded by the upper canopy, were diurnally skewed compared with shaded PAR

from CLM. In contrast to the solar radiation above the canopy (i.e., the top of the tower, net radiation), the radiation profile

started to become skewed right after infiltrating the top canopy layer. When revisiting the effect of canopy gaps created by the

emergent tree, we observed that radiation values between the top of the canopy (≈ 400 W ·m−2 at 44 m from Net Radiation)300

and the next nearest heights (≈ 110W ·m−2 at 32-38 m from PAR) were considerably different (about 70-80% reduction from

the top) as mentioned before. The height of the primary canopy, consisting of the dominant trees, is about 38 m (Aparecido

et al., 2016). Therefore, the shade effect may be substantial, even though the emergent trees added minimal thickness.

3.2 CO2 Flux (GPP)

All CLM versions (CLM4.5, CLM5, and CLM5BGC) overestimated GPP (6.7, 4.9, and 3.6 µmol ·m−2s−1) [Figure 4a; Figure305

4b]. Results from the new version, CLM5, were generally more similar to the measured data than those in CLM4.5 [Figure 4a].

CLM5 yielded lower photosynthetic rates than CLM4.5, possibly due to the lower BB parameter, and also due to suppressed

maximum rates of Vc,max25 and Jmax25 by LUNA and BGC mode. Here in CLM5, disabling the plant hydraulic stress model

11

https://doi.org/10.5194/gmd-2019-335
Preprint. Discussion started: 9 March 2020
c© Author(s) 2020. CC BY 4.0 License.



increased the carbon-assimilation rate, while disabling the LUNA model decreases it in this site study. The prediction for the

middle range of photosynthetic rate (5-15 µmol ·m−2s−1) did not improve much compared with CLM4.5.310

One of the possible causes of discrepancy between the estimated GPP and its observed values may be the model determining

the response to light-limitations [Figure 4b]. Comparison between absorbed PAR versus GPP shows that the initial slope of

measured data is much lower than the simulated one [Figure 4c]. As previously explained [Figure 4d], an extensive literature

study Skillman (2007) and Evans (2013) showed the theoretical maximum for α should be ≈0.11, that α under saturated

conditions is approximately 0.075 (absence of photorespiration), and that in normal atmospheric conditions α is about 0.05315

which is estimated when considering Φ≈0.6 in Eq. (7) (Evans, 2013; Raj et al., 2015; Skillman, 2007). From our observations,

the fitted value for α was 0.021 (Φ≈0.25). This low value may have been caused by other factors such as physiological stress

or a scale problem. The fitted value was estimated from eddy-covariance measurement rather than at the leaf-scale. By default,

the α is around 0.07 in CLM4.5 and CLM5, with Ci=0.667, which is higher than 0.05 as usually reported (Skillman, 2007;

Ehleringer and Pearcy, 1983; Ehleringer and Björkman, 1977). For this study, Φ was modified to get proper α, but the issue320

should be revisited in future studies.

Test simulations with CLM4.5 and CLM5 were conducted using Φ=0.25 and Θ=0.7. When Φ was updated, both CLM4.5

and CLM5 performed better than before [Figure 5;Figure 4a]. This change resulted in more stable predictions, as judged by

the middle range of GPP (5-15 µmol ·m−2s−1). Maximum GPP was reduced as expected [Figure 4d], and it was possible to

further fix such over reduction by updating Θ (curve shape), as shown on [Figure 4d]. In the simulated diurnal variation plot,325

the trend was slightly shifted in the afternoon, also probably due to the effects of the topographical slope [Figure 5b]. Time-

dependent classification (i.e., regression lines with intercept forced through zero [Figure 5b]) and the fitted slopes indicated

that geographical features have an influence on photosynthetic activity, which is mostly caused by the radiative transfer models,

like albedo. However, the model failed to accurately represent such features, since CO2 flux in CLM was lower in the morning

and higher in the afternoon.330
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Figure 3. (a) and (b) - comparison of net radiation between CLM and measurement on Canopy Tower at 44m. (c) and (d) - albedo at 44m.

(e) and (f) - PAR comparision for shaded canopies. All left plots (a, c, and e) are ensemble diurnal variation and the right plots (b, d, and f)

are one to one comparison plots between CLM and measured data. Hysteresis depicted on (d) and (f) is based on hourly ensemble average

values for daytime.
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Figure 4. (a) The ensemble diurnal variation of CO2 flux: differences between Eddy Covariance (Canopy Tower 33m) and CLM in daytime

is 6.7, 4.9, and 3.6 µmol·m−2s−1 for CLM4.5, CLM5, and CLM5BGC, respectively; (b) One-to-one plot in reference to data shown in

figure (a); (c) APAR vs GPP, and wj is simulated with default parameters and Ci=0.667; (d) ‘A)’ is the theoretical maximum α≈0.11, ‘B)’ is

saturated/elevated condition α≈0.075 (absence of photorespiration), ‘C)’ is normal atmosphere condition α≈0.05 if Φ≈0.6, and ‘D)’ is a

fitted value α≈0.021 if Φ≈0.25 from our observation. In the legend, ‘[Θ]‘means the usage of hyperbolic function Eq. (7), where Θ is a

curvature parameter like ‘Elv[Θ]’. Without ‘[Θ]‘, only the slope parameter is active as ‘B) Elv’. The change of the slope can alter maximum

assimilation rate, and the alteration can be counterbalanced if Θ is modified.

3.3 H2O Flux

The effect of the change of fwetmax were detected in the model’s results for vapor fluxes [Figure 6a; Figure 6c; Figure 6e;

Figure 6f]. Again, CLM5 has a low leaf wetness coefficient (i.e., maximum rate is 0.05 as Eq. (4), which reduced canopy

evaporation and elevate transpiration rate). In this simulation, fwetmax was considered as 1 for CLM5 (hereafter referred to as

CLM5 fmx=1), and we used this when we wanted to make a fairer comparison with CLM4.5335
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Figure 5. Test simulation using Φ=0.25 and Θ=0.7 as in [Figure 4d]. By the modification of Φ, maximum GPP has been reduced. It is

possible to improve this model by updating Θ. r2 is a R-squared value without an intercept.

Similarly to CO2 flux, total H2O fluxes of CLM5 were overestimated (2.1×10−5 mm·s−1 higher in daytime than eddy-

covariance values). Flux rates in the CLM5 fmx=1 simulations were reduced in comparison to those predicted by CLM4.5

[Figure 6a; Figure 6b]. The notable decrease (CLM4.5 & CLM5 with Φ=0.25) was due to the change of the quantum yield α

parameter needed for GPP predictions [Figure 5]. Transpiration rates (TR) also showed similar trends, and this indicates that

TR is an important process in this site.340

At the daily time scale, CLM4.5 produced the highest estimates for both ET and TR in comparison to the other versions.

CLM5 yielded a notable and reduced change to the estimated ET and TR due to the newly implemented leaf wetness parameter

fwetmax. Applying a quantum efficiency of Φ=0.25 made fitted lines closer to the 1:1 line for both ET and TR [Figure 6e; Figure

6f]. Here, correlations of TR were slightly increased, by around 0.01 (R2
CLM4.5 = 0.67, R2

CLM5 = 0.68), when considering

Φ = 0.25. However, the correlations of ET were decreased by around 0.1 (R2
CLM4.5 = 0.42, R2

CLM5 = 0.44) [Table 1]. When345

assuming a lower quantum efficiency, the change in TR makes the fitted slope for ET decrease [Figure 6e], possibly since

transpiration is a more influential component than evaporation in this site. Thus, TR drove ET rates when there was higher

energy exchange condition (i.e., warm, sunnier and drier time). On the other hand, these results also highlighted the importance

of other sub-models such as canopy evaporation. In the daily-scale comparison, if one wants to include nighttime transpiration,

all intercept values (y-axis) in [Table 1] should be decreased by -2.2×10−6·mm·s−1.350
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Figure 6. (a) The ensemble diurnal variation of total H2O flux, where “Measured 33m” is measured by Eddy Covariance (at 33m),

“Sapflow” is transpiration measured through sapflow, all “CLM” are about evapotranspiration (ET), ‘fmx=1’ sign represents fwetmax=1,

and ‘Φ=0.25’ means 0.25 applied to Φ in Eq. (7); (c) Partitioned H2O flux, where ET, TR, and VE are evapotranspiration, transpiration,

and canopy evaporation from CLM; (b, d) The one to one plots of (a) and (c); (e) and (f) Daily ET and TR (except nighttime) against

eddy-covariance and sapflow data.
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Table 1. Fitting parameters and regression coefficients for sap flow and eddy-covariance measurements (except nighttime transpiration)

versus simulation by CLM in daily scale for [Figure 6e] and [Figure 6f]. The unit for the intercept is 10−6·mm·s−1.

Figure Line Model Data Slope Intercept R2

1 CLM5 0.92 9.98 0.51

2 CLM5 fmx=1 0.82 10.79 0.51

3 CLM4.5 1.04 8.06 0.55

4 CLM5 Φ=0.25 0.69 8.51 0.42

[Figure 6e]

5 CLM4.5 Φ=0.25

EC 33m

(ET)

0.75 7.65 0.44

1 CLM5 1.01 -0.22 0.66

2 CLM5 fmx=1 1.17 -5.32 0.67

3 CLM4.5 1.37 -7.29 0.67

4 CLM5 Φ=0.25 0.79 -2.14 0.67

[Figure 6f]

5 CLM4.5 Φ=0.25

Sapflow

(TR)

1.03 -5.84 0.68

3.4 Leaf Wetness

The leaf wetness fraction predicted by CLM was compared to observations made using capacitance sensors [Figure 7]. In

the analysis, the ensemble diurnal variations of leaf wetness were plotted, where ‘38m’, ‘11m’, and ‘3m’ are measurement

heights and the others are leaf wetness from CLM5 (fwetmax=0.05), CLM5 fmx=1 (fwetmax=1), and CLM4.5 (fwetmax=1)

[Figure 7b]. The predicted leaf wetness was not in agreement with the diurnal leaf wetness variation measured at this site355

[Figure 7b]. In particular, the night-time fraction of leaf wetness was significantly higher when compared with gauged data.

The biggest problem detected in this study was that intercepted canopy water was rarely evaporated in the model. The canopy

water tended to accumulate, especially due to frequent nighttime rainfall that started in the late afternoon or high daytime

humidity which caused condensation. Daytime leaf wetness seems to be reasonably simulated [Figure 7b]. However, no trend

could be identified in the comparison between simulated and measured data (not displayed here), which indicated that the360

formula cannot adequately represent actual behaviors of wet fraction in both CLM5 and CLM4.5.

Intercepted precipitation was usually too high in CLM compared to observed leaf wetness [Figure 7c; Figure 7d]. The

analyses in [Figure 7c] and [Figure 7d] were made by detecting the incremental increase in leaf wetness due to precipitation.

The wetting rate on the canopy at 38m, and large and thick markers indicate the average of simulated values. The collected data

was conditioned was conditioned upon the absence of a rainfall event at least 2 hours prior and an initial leaf wetness lower than365

0.2. [Figure 7c] shows 0.5-hour rainfall events (one consecutive event in 30-min scale) and [Figure 7d] is for 2 hours rainfall

events (four consecutive events). This increment was directly related to canopy interception: the usual increment for 2-hour

(30-min) rain was 0.71(0.33) at a 38-m height, 0.48(0.28) at a 3-m height, around 0.88(0.73) in CLM5, 0.97(0.77) in CLM5

fmx=1, and 0.94 (0.46) in CLM4.5. The interception model in CLM5 fmx=1 was been updated in Eq. (3) resulting in higher

interception rate than CLM4.5 fmx=1 [Eq. (2)]. The interception rate also seemed higher with CLM5 fmx=1 than with CLM5370
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as in [Figure 7c] because CLM5 fmx=1 had a higher canopy evaporation rate. This effect resulted in the acceleration of canopy

evaporation while allowing interception to assume a larger role in the canopy water balance. In the one-to-one comparison,

the increase of leaf wetness in CLM was usually higher than in measured data. Consequently, the wet canopy fraction at the

beginning of the drying process was usually higher in CLM than in the measurements: 0.63 at the 38 m observation, 0.47 at

the 3 m observation, 0.96 in CLM5, 0.9 in CLM5 fmx=1, and 0.78 in CLM4.5 (see y-axis data at 0 x-axis in [Figure 7e]).375

Another analysis showed that leaf wetness behavior is highly sensitive to incoming solar radiation. The water state on a

leaf in [Figure 7e; Figure 7f] was tracked over consecutive no-rain events for 3 hours just right after last rain events in the

daytime between 10:00 AM and 14:00. [Figure 7e] shows events with low solar radiation (0 - 300 W ·m−2) and [Figure 7f]

shows events when solar radiation was higher than 300 W ·m−2. Although it was difficult to gather data for these serial drying

events (each plot uses at least 12 successive datasets), the result clearly indicated that leaf wetness is strongly influenced by an380

increase of incoming solar radiation when fwetmax=1 (CLM5 fmx=1 and CLM4.5). In the case of fwetmax=0.05 (CLM5), the

drying rate is reasonable at low solar radiation, but it is higher than values observed during high incoming solar radiation. The

measured data in the analysis showed relatively smaller values of leaf wetness at lower levels of the canopy. This indicated that

rainfall does not frequently reach the lower canopy, and thus interception rates are low there. This finding would suggest that

lower fwetmax values are reasonable.385

3.5 Temperatures and Soil Flux

The simulated canopy air temperature in both CLM4.5 and CLM5 was overestimated during daytime (+0.8 and +1 C◦, re-

spectively) and underestimated during the nighttime (-1.9 and -1.1 C◦, respectively) [Figure 8]. In other words, the simulated

temperature might be overly sensitive to incoming solar radiation, as seen for leaf wetness. Updated MOST parameters im-

proved nighttime air temperatures in CLM5 (Burns et al., 2018), but they were still underestimated. As reported in the previous390

section, water remaining on the canopy during nighttime tended to be inefficiently evaporated [Figure 7b], which was also

possibly related to low canopy temperature in CLM. At lower canopy levels, the ground air temperature at the surface was

overestimated during daytime, and it was even higher than air temperature at heights of 1 m - 5 m [Figure 8b].

The ground surface tended to have high energy exchange during daytime similar to the canopy processes. Considering the

soil temperatures [Figure 8] and the soil heat fluxes [Figure 9], we found they were overestimated during daytime and under-395

estimated in the nighttime. Soil temperature and heat flux in CLM was highly variable. Soil evaporation rates in both CLM4.5

and CLM5 were also overestimated compared with estimated data from soil respiration chamber measurements (LI8100) [Fig-

ure 9]. For daytime soil evaporation, the average difference from the observation was 5×10−7 mm·s−1 with CLM4.5 and

15×10−7 mm·s−1 with CLM5. The measured field value was around 1×10−7 mm·s−1. The simulated soil moistures also

had high variability with low mean water contents (around 0.2 m3·m−3) compared with gauged values (0.3-0.4 m3·m−3).400

The overestimation of vegetation temperature (Tv) in both CLM4.5 and CLM5 also appeared in the daytime simulation (≈
+ 1.0∼2.4 C◦) [Figure 10a; Figure 10b]. Another model test was also made using global forcing datasets (Qian et al., 2006) to

corroborate our simulations, and the result was very similar behavior (≈ + 5 C◦, not depicted here). The high Tv and Ta from

CLM simulations resulted in lower relative humidity than gauged-based canopy air humidity. We note that the sunlit/shade
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scheme in CLM does not consider two different vegetation temperatures, so it only takes a single variable Tv to represent the405

entire canopy. Canopy temperature (Tv) in CLM should be an average of sunlit and shaded leaf temperature but the simulated

results were far from our expectation [Figure 10a]. A comparison plot also showed significant error [Figure 10b]. The additional

comparisons indicate that Tv on sunlit leaves normally followed the canopy air temperature (leaf thermoregulation) but CLM

did not reproduce such behavior [Figure 10c; Figure 10d].

4 Discussion and Conclusions410

In this study, two versions of the Community Land Model (CLM4.5 and CLM5), running primarily in the satellite phenology

(SP) mode, were tested against measured data from a mountainous tropical rainforest in Costa Rica. Net radiation was under-

predicted by an average of -20 W ·m−2 [Figure 3a; Figure 3b] in both CLM4.5 and CLM5. The discrepancy was attributed to

CLM’s over-prediction of surface albedo, which was, on average, 0.022 lower in the model [Figure 3c; Figure 3d].

The effects of topographic slope clearly appeared in the diurnal plots for albedo/PAR [Figure 3] and for CO2 flux [Figure415

5]. With respect to albedo, the hillslope shading effect magnified these discrepancies, with afternoon values having larger

differences as the sun moved behind the north-south trending mountain [Figure 3]. The level of discrepancy varied according

to the diurnal cycle of the intensity of incoming solar radiation and the solar angle [Figure 3c; Figure 3d]. PAR profiles also

showed radiation levels within the canopy had a skewed, or hysteretic, cycle [Figure 3e; Figure 3f], which was not captured

by CLM. These results indicated that canopy radiative transfer, including the surface albedo and sunlit/shade separation, may420

need to be better represented in advanced land surface models, in order to simulate a more realistic response to solar radiation

or topographical slope. Perhaps more importantly, aerodynamic resistance models, such as MOST, are also currently incapable

of representing a sloped terrain. If the effects of both can be implemented in CLM, predictions can be highly improved for

mountainous regions, especially if they can be considered at a fine grid scale.

This study demonstrates the possibility of reducing predictive uncertainty by adapting the model to mimic such slope effects,425

and suggests that additional observations are necessary to examine and capture such features. Several past studies to compare

and improve CLM have taken a similar approach. However, they focused on specific sub-model performance (Burns et al.,

2018; Swenson and Lawrence, 2014; Bonan et al., 2011), rather than studing the effects of spatial complexity. For albedo, the

slope effects are minor in this study; skewness in the diurnal average curve is relatively small, and it is difficult to identify the

difference between measured and modeled net radiation curves. On the other hand, the skewness for PAR is significant, and430

this was obviously related to the different response of GPP through time [Figure 5]. Such influence might not be noticeable if

the GPP comparison were not classified by time, because the error appears similar to white noise. If this effect is captured, the

prediction of physiological variables (e.g., GPP and TR) can be improved. We anticipate the same effect would be present in a

wider range of forests. Also, recent land surface models are becoming more elaborate vertically (e.g., multi-layered canopies

(Bonan et al., 2018; Ryder et al., 2016)) and horizontally (e.g., vegetation demographics (Fisher et al., 2018). The performance435

of these advanced models would be affected by topographical characteristics. Hence, further investigation should focus on both

improved model parameterization for hillslopes and additional data from mountainous forests.
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The simulated photosynthesis rates tended to be higher than those observed; these result have also been reported in similar

studies of montane rainforests (Fan et al., 2019; Muñoz-Villers et al., 2012); such errors could possibly be alleviated by

updating parameters associated with light-limitation effects. For carbon flux (GPP) and transpiration (TR), the over-estimation440

in CLM4.5 has been reduced in CLM5 [Figure 4b; Figure 6b; Figure 6d]. However, CLM5 and CLM-BGC seem to reduce

the maximum assimilation rate limit by lowering the BB slope and other photosynthesis-limiting parameters (i.e., Vc,max25

or Jmax25). The curved-shape error in GPP, at the middle range of photosynthesis rates still exists compared with CLM4.5

[Figure 4b]. At this point, we suggest that the light-response photosynthesis model could be the cause. We briefly addressed

the electron transport model (Eq. (6) and Eq. (7)), and tested it by changing quantum yield and curvature parameters [Figure445

4c; Figure 4c]. The analysis of GPP and transpiration values showed that changing the fitted quantum yield parameter resulted

in better agreement with the observations and the effect of topographical slope appeared more clearly [Figure 5; Figure 6f].

Partitioning the water flux is a critical task which also needs more investigation. Errors in vapor flux were particularly difficult

to diagnose since the discrepancy can be caused by the failure of any of the embedded sub-models, although transpiration is

the largest driver of the overall pattern of total vapor flux (ET) [Figure 6c]. For comparison, CO2 fluxes in CLM largely depend450

on plant-light relationships and their effect on photosynthesis. In contrast, evapotranspiration (ET) consists of three major

components: soil evaporation, canopy evaporation, and transpiration. Therefore, an error in any one of the sub-models can

make the entire water flux (ET) inaccurate. We can also recognize that the comparison of total vapor flux [Figure 6b] has much

more uncertainty than CO2 flux [Figure 4b].

Canopy evaporation was key to proper partitioning for this site, and the process relies on both the rainfall interception455

sub-model and the leaf wetness sub-model. Both ET and TR were affected by the canopy evaporation [Figure 6a; Figure 6c],

because leaf wetness suppressed transpiration and enhanced canopy evaporation in CLM [Figure 2b; Figure 7a]. However,

the leaf wetness variable in CLM caused a high degree of uncertainty in a number of analyses, including ensemble diurnal

variation [Figure 7b] and interception rate [Figure 7c; Figure 7d], possibly due to oversimplifaction of throughfall processes

as reported in a previous study (Fan et al., 2019). Leaf wetness related parameters are optimized for large-scale forcing (e.g.,460

6 hourly data). The improperly modeled canopy water levels and the wetted fraction resulted in errors in canopy evaporation

which overreacted to the intensity of solar radiation or net radiation [Figure 7e; Figure 7f]. We observed some improvement in

CLM5 by low maximum wetness fwetmax but the simulated leaf wetness was still sensitive to the incoming solar energy. Such

water-related processed can also have vertical/spatial variation due to the structure and the shape of canopy and to the sloped

topography.465

The new maximum leaf wetness applied in CLM5 may need to vary more by vegetation and leaf morphology, as highlighted

in a previous study (Fan et al., 2019). Changing fwetmax had a significant impact on latent heat fluxes [Figure 6a; Figure

6c; Figure 6e; Figure 6f], contrary to the results noted by Burns et al. (2018). This affect could be attributed to much more

frequent rainfall at our site. Also, a low fwetmax is more reasonable for needle leaf species than it is for those with large, broad

leaves. Leaf surfaces within the canopy cannot be easily fully-wetted even in this tropical forest. However, simply applying470

fwetmax = 0.05 for all sites cannot be realistic. The role of leaf wet faction is not negligible in CLM, and the photosynthesis is

still sensitive to leaf wetness (fwet 5 0.4). At low relative humidity, the role becomes stronger [Figure 7a]. In our site, different
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leaf wetness behaviors have been observed between sunlit and shaded portions of the canopy (Andrews et al., 2019), which

may also be an important characteristic for tracking canopy evaporation and ET.

Temperature-related variables were also problematic in CLM [Figure 8; Figure 9; Figure 10]. This issue may be caused by er-475

rors in energy partitioning and modeling aerodynamic resistance. Daytime versus nighttime changes in canopy air temperature

and leaf temperature in CLM were found excessive. In the Burns et al. (2018) study, changing the MOST parameters partially

corrected underestimates of nighttime air temperature in CLM5. The source of error was similar to, and perhaps intertwined

with, the issues found with leaf wetness. Consequently, soil temperature and all soil fluxes in CLM also had a higher degree of

daily fluctuation than their measured datasets [Figure 9]. These variables (soil moisture, soil temperature, and soil heat flux)480

are highly related each other, and they are also linked with the canopy condition, so it was difficult to precisely diagnose the

cause of such high variation in the soil system. Additionally, the CLM results had low relative humidity in the canopy airspace

during than daytime. This difference could also affect other physiological simulation results, such as transpiration rates. Such

overresponse to incoming solar radiation may have been caused by the failure of energy partitioning and the estimation of aero-

dynamic resistance, but it was challenging to attribute the error precisely. For instance, ET was overestimated in the daytime,485

which resulted in low thermal exchange between the surface and the atmosphere according to the energy balance. On the other

hand, the temperature gradients between the atmosphere, the canopy, and the ground were higher than anticipated [Figure 8],

which was possibly triggered by the error of aerodynamic parameters. We note that the aerodynamic resistance was likewise

affected by the air temperature gradient, making them interdependent.

Adjustments in light-related parameters (e.g., LAI, leaf angle, and optical depth) did not noticeably improve model results.490

The ratio of the absorbed energy on the soil surface to the total incoming solar radiation in CLM was 0.0342, but our PAR profile

data [Figure 3e] indicated the ratio should be lower, around 0.01. Even though the modeled ground surface tended to receive

excess solar energy, changing this value did not seem to result in significant improvement in any simulated variables, because

it was a relatively low portion of the energy budget. Likewise, increasing LAI to 7.7, based on nearby site measurements (Teale

et al., 2014), only slightly alleviated issues associated soil temperatures and made no difference in canopy temperatures. We495

have also tested with different leaf angles, which are directly related to the optical depth (K), but there was no significant

difference; a change in leaf angle from χL=0.1 to χL=0.4 resulted in a 0.3 C◦ decrease in ground surface temperature. These

supplementary tests indicated that the reduction of absorbed solar radiation on the ground and the some changes of parameters

for soil albedo did not significantly alter canopy temperatures. The problem may more likely be caused by errors in the

aerodynamic resistance above the canopy or oversimplified canopy structures, as has been reported in other studies (Wang500

et al., 2014; Chen et al., 2010; Zheng et al., 2012; Zeng et al., 2012).

A complete multi-layer scheme may be necessary to improve the model. From the vegetation temperature analysis, we find

that both CLM5 and CLM4.5 used a two big-leaf scheme as sunlit/shade area in the canopy. However, this module works only

for incoming solar radiation, not for leaf temperature or canopy air temperature. Based on measured data, the air temperature

differences along heights within the canopy were not significant, but partitioning leaf temperature into sunlit and shaded values505

may be a promising adjustment due to the fact that the two have somewhat different behaviors. This effect was evident in

measured versus modeled vegetation temperatures [Figure 10a]; the fraction of sunlit LAI for these plots was about 26% in
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CLM). The fraction of leaf wetness also represents the entire canopy area in CLM, which seems too physically simplified. The

higher locations in the canopy tended to be more easily wetted/dried than the lower locations; the more exposed canopy area

(higher location) was normally wetter than shaded canopy area [Figure 7e; Figure 7f].510

Vegetation temperature affected energy flux via its relationship to canopy air temperature (Ta) and physiological processes

such as transpiration (Wang et al., 2014). The problem of skin (surface/leaf) temperature appeared in this study as in other

reports (Wang et al., 2014; Chen et al., 2010; Zheng et al., 2012; Zeng et al., 2012). Some researchers have attributed these

issues to incorrect parameterization of roughness length for heat and have made a number of advances toward reducing these

errors (Yang et al., 2002; Wang et al., 2014; Chen et al., 2010; Zheng et al., 2012; Zeng et al., 2012). However, we noted that515

our case is different since most studies discussed low diurnal variations and underestimations. The one-to-one comparisons

between the canopy air temperature and the leaf surface temperature [Figure 10c; Figure 10d] indicated that Tv on sunlit leaves

normally followed the canopy air temperature (i.e., leaf thermoregulation), as described in other literature (Michaletz et al.,

2016). However, CLM does not consider such leaf thermoregulation processes.

In conclusion, we have tested CLM’s predictions of land-atmosphere processes in a mountainous tropical rainforest. This520

study determined the degree to which global-scale parameterizations work at this unique site. Very few case studies like this

are currently available, and these results have provided some unique insights. We found that CLM5 has some advantages over

CLM4.5 under wet and steep conditions. However, CLM5 does not yet sufficiently resolve a number of critical problems, such

as in the partitioning the energy balance). Model updates to the representation of in-canopy processes and features - namely

photosynthesis, turbulence transport , canopy structure - are still needed to capture temperature variations and physiological525

activity. More importantly, further investigation into including terrain slope effects into the models is required.

Additionally, we found that canopy temperatures and leaf temperatures were over-sensitive to incoming solar radiation.

These errors caused a number of cascading issues: low relative humidity near the canopy surface, subsequently affecting tree

physiological processes, and excessive heating of the soil surface, leading to unrealistically high average and day-to-night

differences in soil temperatures and soil heat fluxes. The formulation describing leaf wetness processes is too simplified, which530

caused model failure for the frequently rainy areas. Transpiration rate, which was the largest part of latent heat flux at the

site, as well as carbon uptake through photosynthetic activity, were also over-estimated in CLM. In the photosynthesis model,

quantum efficiency also needs to be re-parameterized. Ultimately, however, it may be necessary to apply a two big leaf scheme

or multi-layer scheme to better depict the multi-faceted interactions between leaf wetness, temperature, and shading to properly

represent canopy processes in tall, dense, or mountainous forests such as this.535

Based on these new findings, further investigations are necessary. In particular, actual improvement at this study site by

applying new parameterizations and global-scale tests will be the next goal. Also, to enhance the reliability of the land surface

model, more observations of water movement and energy exchange are essential at both this site and other locations in the

neotropics. Tracking the spatial heterogeneity of variables related to canopy structure (e.g., leaf temperatures, leaf distributions,

canopy water) is particularly important.540
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Figure 7. (a) TR/ET versus leaf wetness and classified by relative humidity [0-1]; (b) The ensemble diurnal variation of leaf wetness; (c)

and (d) indicate interception rates; (e) and (f) are the behavior of drying canopy. The marked lines are from measurements, and lines are

estimated from CLM.
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Figure 8. The ensemble diurnal variation of air temperatures. Canopy Levels at 22-33m and 1-5m are measured air temperatures, Ta rep-

resents air temperature at 28.075m in CLM, and Tg is ground air temperature at 0.01m in CLM. ‘Ts -0.02m’ is measured/simulated soil

temeprature. In (a), both CLM4.5 and CLM5 is overestimated in daytime (+0.8 and +1 C◦) and underestimated during the nighttime (-1.9

and -1.1 C◦). In (b), differences between ‘Measured Ta 01-05m’ and all CLM values (CLM5.0 Tg, CLM4.5 Tg, CLM5.0 Ts, and CLM4.5

Ts) are -0.39, -0.14, -0.32, and -0.06 in daytime and -0.02, 0.18, -0.11, and 0.08 C◦ in nighttime. Differences with ‘Measured Ts -0.02m’

are -0.04, 0.21, 0.03, and 0.30 in daytime and 0.90, 1.10, 0.81, and 1 C◦ in nighttime.

Figure 9. The ensemble diurnal variation of soil/ground heat fluxes (into soil +) (left) and soil evaporation.
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Figure 10. (a) The diurnal variation of leaf temperatures with measured canopy air temperatures; (b) The one to one plot of leaf temperatures:

CLM vegetation temperatures (Tv) are compared with measured values for the both gauged shade (Shade Tv) and sunlit (Sunlit Tv) vegetation

temperatures; (c) The one to one plots about measured canopy air temperatures versus measured leaf temperatures (sunlit and shade); (d) The

one to one plots about canopy air temperatures versus leaf temperatures from CLM (CLM5 Ta vs CLM5 Tv) and observation (Canopy Ta

22-38m vs averaged Tv from sunlit and shade Tv): Averaged Tv is estimated through (LAIShade×TvShade+LAISunlit×TvSunlit)/LAI .

In (a), daytime differences ‘CLM 5.0 Tv’ minus measurments (’Measured Ta 22-38m’, ‘Measured Shade Tv’, and ‘Measured Sunlit Tv’) are

1.1, 2.4, and 1.0. In nighttime, the differences are -2, -0.3, and -1.8 C◦. CLM5 normally 0.2 higher in daytime and 0.8 higher in nighttime.
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