
[Cover Letter] 

 

Dear Reviewers,  

 

Thank you for the opportunity to respond to comments on our manuscript. We are grateful to the 

reviewers that have reviewed our manuscript and provided us with valuable feedback. Your insightful 

comments lead to a number of improvements in the current version. We considered them carefully and 

did our best to appropriately address them. We welcome your continued input.  

 

Sincerely, 

Jaeyoung Song, Ph.D., Postdoctoral Researcher 

Department of Civil and Environmental Engineering 

Texas A&M University 

 

Reply to Reviewer 1 
 

[General Comment 1] Song and colleagues present comparisons between observations and two versions 

of the Community Land Model in Costa Rica. I totally agree that we need more model evaluations in the 

wet tropics, which is a pivotal region in the evolution of the future carbon cycle. 

 (a) But for this we have to firstly compare apples with apples and we secondly need not only model 

evaluations but also show ways how to improve the models. For example, I think that the comparison 

between observed PAR and modelled PAR is a very inaccurate comparison because the PAR sensors 

where shaded by a nearby emergent tree while the model calculated PAR from incoming global radiation 

above the emergent tree. (b) One could have also added radiation reading the ground, which is part of the 

two-stream approximation, to Figure 3e to compare with the 10 m observations. (c) An example for the 

second point would be that slope and aspect could have been implemented pretty easily in CLM by 

simply changing the zenith angle. This does not mean a full implementation of slope and aspect in the 

whole land surface model as an offline and online model running on the whole globe but it would have 

shown a way to improve the model. 

 

Response to General Comment 1: We take the reviewers point that it can be difficult to properly 

compare the single-layer model with existing point-scale datasets. The single-layer model cannot provide 

outputs to plausibly compare with profile data like PAR and leaf wetness, especially for such a complex 

site. We attempted to make as direct of a comparison as possible and disagree that the values we selected 

were unfair; we have added some text, as shown below, to help clarify. 

 

Response to General Comment 1(a): In Figure 4e (formerly Figure 3e), we show only those PAR values 

that are associated with the shaded fraction, as described on L309 (formerly L297): “The measured PAR 

values, generated by sensors somewhat shaded by the upper canopy, were diurnally skewed compared 

with shaded PAR from CLM.” For this comparison, we do not include the sunlit PAR calculated by CLM 

or the top-most observation (44 m). At this site, the 38 m sensor can be sunlit for a portion of the day 

(e.g., in the morning due to the sloping surface), so we cannot precisely define it as a shaded location. 

Hence, we provided diurnal-variation plots for all possible shaded PAR data. We revised the manuscript, 

adding the text below: 

 

1. L332 - “The APAR, including sunlit and shade leaf area, was estimated in CLM using measured 

incoming solar radiation above the canopy at 44 m.” 

 



Response to General Comment 1(b): CLM does not calculate ground PAR values. We could add it in 

Figure 4e (it was Figure 3e) by estimation, but the ratio of the absorbed energy was provided at L533 

(formerly L491): “The ratio of the absorbed energy on the soil surface to the total incoming solar 

radiation in CLM was 0.03, but our PAR profile data [Figure 4e] indicated the ratio should be lower, 

around 0.01”. Also, we have ground flux comparison too [Figure 10].  To clarify, we added: 

 

2. L534 - “The average incoming solar radiation in the daytime was around 300 W/m2. Estimated 

absorbed energy on ground and vegetation in CLM and the received energy at 10 m PAR sensor 

(unit was converted) were 9.4, 252.5, and 3.1 W/m2.” 

  

Response to General Comment 1(c): As suggested, we modified the radiative transfer models by 

applying different angles. It showed a slight difference, but also resulted in other errors (e.g., skewed 

PAR to the opposite side). This is mainly because incoming radiation consists of direct and indirect 

radiation. The slope effect is primarily related to the direct radiation. However, diffusive radiation 

(indirect) also occupies quite a significant portion. Hence, the modification of only direct radiation did not 

give dramatic improvement. We updated:  

 

3. L317 - “This feature can be important because the hill-slope surface is more sensitive to sun 

angles. It can affect to determine the sunlit/shaded area. Simple manipulation was attempted by 

changing the solar angle to mimic the slope effect on albedo [Figure 4c; Figure4d; Figure 4e]. 

The cosine zenith was re-estimated by pushing back 30 degrees, to apply to the light extinction 

coefficient K in two-stream approximation. This simple modification reduced some the skewness 

of albedo [Figure 4d]. However, shaded PAR showed opposite behavior compared to the 

observation, mainly because sunlit area was increased.” 

 

4. Figure 4c,d,e were updated. 

 

5. L446 - “A simple modification to albedo was attempted but it requires more complicated 

manipulation to match variables other than albedo (e.g., PAR). This finding suggests multiple 

layer scheme is necessary to properly represent light penetration.” 

 

Finally, we have tested different photosynthesis models (Leuning model (Leuning, 1995), WUE (Katul et 

al., 2010)), leaf wetness models (Aston, 1979), and solar angle parameters as above. We just briefly 

mentioned some tests in the context. The problem was that these updates did not provide significant 

improvement or caused other issues. We have decided to improve the model structure first before deeply 

studying the update of parameters. We have updated and tested the multi-layered CLM, which provided a 

significant improvement, and this is the subject of our next paper. Hence, we decided to submit this 

manuscript as a model evaluation paper, which we considered to be the first step in this ongoing process. 

We believe that adding some information briefly about what we have tested can resolve this issue. 

 

[Major Comment 1] (a) In this respect, the eddy measurements were surely far from optimal. One 

should then be also quite cautious in their interpretation. (b) I was really quite worried by the repeated 

claim that the quantum efficiency of photosystem II should be much lower. This claim comes from simple 

comparison of uncertain GPP estimates with APAR values, which come either from the net radiation 

sensor above the canopy or from the shaded PAR sensors, which are up to 70% different (not specified in 

the manuscript). It should be at least surprising that the estimated GPP does not show any saturation. 

Instead of the quantum efficiency, also APAR could be wrong. The analysis via an apparent quantum 

yield neglects. for example, also sun and shaded leaves. An apparent quantum yield could be lower than 

the quantum efficiency because of a wrong partitioning of sun and shaded leaves, a decrease of nitrogen 



within the canopy that is non-exponential, wrong leaf temperatures, etc. Nothing like this is discussed in 

the manuscript. 

 

Response to Major Comment 1(a): Yes, the eddy-covariance measurements are not optimal, as 

mentioned in this manuscript. Although the system was located above the canopy and had some distance 

from the emergent tree (because of the steep surface), but we could not sure how well the sensor 

represents the site’s fluxes. We believe that neither the model or the data should be considered as “truth”, 

but that they can both provide valuable insights, and have attempted to convey that uncertainty in the 

paper. We also found a partial solution through a multi-layered scheme mentioned above. 

 

Response to Major Comment 1(b): About the quantum efficiency GPP appears saturation [Figure R1]. 

Also, a two-stream approximation method estimated APAR through CLM, which is used widely in our 

community. Hence, I believe that APAR estimation should be reasonable although [Figure 4e; Figure 4f] 

indicates there is a possible error determining sunlit and shaded PAR. Here, the actual APAR value of this 

field should be higher than the flat forest by larger sunlit area, because a canopy is placed in semi-open 

space due to the slope effect. In this circumstance, the quantum yield and the quantum efficiency should 

be lower. As the reviewer pointed out, the estimation of APAR cannot be sufficient because default CLM 

does not take or provides a spatial radiation profile. We also mentioned this could not be an exact solution 

at L343 (previously L320) – “For this study, Φ was modified to get proper α, but the issue should be 

revisited in future studies.”. Also, we revised this manuscript as below: 

 

6. L340 - “Of course, this analysis itself has a possible error by the eddy-covariance measurement 

and APAR estimation. APAR, which estimated by CLM, contains only sunlit and shade leaf area, 

making it too simplistic.” 

 

 
Figure R1:GPP box plot from the observation. The initial slope was reestimated using data belonging to the initial 

part. The slope parameter is 0.026, which is slightly higher. Also, we can recognize GPP saturation. 

 

 

The reviewer’s comment that “An apparent quantum yield could be lower than the quantum efficiency” is 

an excellent point for discussion. However, we don’t have a direct measurement to compare these two. 

Instead, we derived equation to connect between the apparent quantum yield and the quantum efficiency. 

Hence, this study was not for comparison between apparent quantum yield and quantum efficiency. 



Instead, this study has an assumption that apparent quantum yield was estimated through 

∂Jx/∂IAPAR×0.667×0.25 at IAPAR = 0.  Also, we revised this manuscript as below: 

 

 

7. L206 - “It is worth noting that the differential has brought independence from Jmax at zero APAR, 

which is highly related to nitrogen and leaf temperature.” 

 

 
Figure R2: Light-limit curve with different Jc,max25. In this study, except for the influence of daylength, jc,max25 is 

approximately 59 µmol m-2 s-1. 

 

We agree that the error can be caused by the incorrect partitioning of sun and shaded leaves, a decrease of 

nitrogen within the canopy, or incorrect leaf temperatures. However, the effect on this parameter’s change 

was not found to be significant in this study and some are already discussed in a previous study [Bonan 

2011]. First, APAR was already partitioned as sunlit and shade leaf in the model in CLM. At this point, 

we believe that further structure’s improvement via a multi-layered model is necessary for full 

partitioning. Here, the `model-layered model’ means not for radiative transfer but a full energy-mass 

balance scheme (e.g., CLM-ml). Second, as we can see in [Figure R2; Figure 5a], the change of Jc,max25 

tends to limit the maximum rate but does not affect the initial slope in CLM. The leaf temperature and 

nitrogen parameter (e.g., by LUNA-scaling model or BGC) affect Vc,max25, and Jc,max25., not a quantum 

efficiency. Here, Vc,max25, and Jc,max25 are proportionally related. The scaling and decrease of nitrogen 

within the canopy were also discussed using a multi-layer scheme in [Bonan 2011], and the updated 

model still has errors in equatorial region. Last, shade and sunlit leaf temperatures did not show a 

significant difference as much as affecting Jc,max25 [Figure 11a]. The sensitive parameter to change the 

initial slope was quantum efficiency and curvature parameter. We added: 

 

8. L473 - “The analysis contains possible errors caused by the simplified model for APAR and 

measurement error for GPP.” 

 

[Major Comment 2] For me the interesting part starts at Figure 7. I think that one can learn most about 

leaf wetness and model temperatures from the current data set. And it looks like that the single leaf 

temperature for sunlit and shaded leaves might be the main culprit of the model deficiencies. Wrong leaf 

temperatures lead also to erroneous canopy evaporation and hence wrong leaf wetness. The single 

vegetation temperature is not enough discussed in the manuscript. The literature about scaling (e.g. Wang 

and Leuning 1998, de Pury and Farquhar 1999) is neglected. Soil temperature, G, soil evaporation all 



depend on the short-wave and the long-wave radiation reaching the ground. The former could be 

compared to PAR at 10 m, which would give a hint if it is the radiation scheme that needs updating or the 

calculation of canopy and/or canopy air temperature. 

 

Response to Major Comment 2: The small difference between sunlit and shade leaf temperature, as 

shown in the observation, may not give a notable change of leaf wetness. What we expect here is to apply 

a multi-layer scheme for profiled leaf wetness, including the vertical energy and water exchange schemes, 

which would provide many degrees of difference in leaf temperature and the leaf wetness. Since the 

measurements also have a large scale, we cannot identify the leaf temperature for all spots. We modified 

some context based on reviewer's suggestion as: 

 

9. L493 - “We have tested more complicated interception models (e.g., Aston 1979), but they 

produced only a small difference in the leaf wetness.” 

10. L495 - “Our observations also showed variations in behavior based on height within the canopy, 

and such changes imply that more layers are necessary for accurate predictions of canopy water 

storage.” 

11. L553 - “Maybe, the sunlit area should intercept the precipitation first, and dry out faster than the 

shaded area. On the other hand, this two-layer scheme still involves up-scaling issues to embrace 

in-canopy variability such as the vertical segmentation of the light, physiological parameters, and 

the energy exchange (Bonan et al., 2011; Wang and Leuning, 1998; De Pury and Farquhar, 

1999).” 

12. L557 - new paragraph was added. It reads, “Vegetation temperature affected energy flux via its 

relationship to canopy air temperature (Ta) and physiological processes such as transpiration 

(Wang et al., 2014). The problem of skin (surface/leaf) temperature appeared in this study as in 

other reports (Wang et al., 2014; Chen et al., 2010; Zheng et al., 2012; Zeng et al., 2012). Some 

researchers have attributed these issues to incorrect parameterization of roughness length for heat 

and have made a number of advances toward reducing these errors (Yang et al., 2002; Wang et 

al., 2014; Chen et al., 2010; Zheng et al., 2012; Zeng et al., 2012). However, we noted that our 

case is different since most studies discussed low diurnal variations and underestimations. The 

one-to-one comparisons between the canopy air temperature and the leaf surface temperature 

[Figure 11c; Figure 11d] indicated that Tv on sunlit leaves normally followed the canopy air 

temperature (i.e., leaf thermoregulation), as described in other literature (Michaletz et al.,2016). 

However, CLM does not consider such leaf thermoregulation processes.” 

 

[General Comment 2] In summary, I would recommend to refocus the manuscript to the temperatures 

and leaf wetness. If you provide ideas how to improve the model, the manuscript might fit to GMD. At 

the moment, the manuscript matches rather the scope of Biogeosciences. The latter would also offer the 

possibility to highlight more the unique observations. They are much more criticizable in the context of a 

model comparison. 

 

Response to General Comment 2: We respectfully disagree, as this manuscript provided 12 figures for 

temperature and leaf wetness, which occupy about 30% of our results. Focusing on these two variables 

could be problematic, because they are so heavily entwined with carbon/vapor fluxes, as described in this 

manuscript. We originally attempted to demonstrate additional improvements to the model here, however, 

we found that it made the manuscript far too lengthy. As such, we decided to submit this manuscript as a 

model evaluation paper and the other part as model improvement paper separately. On the other hand, we 

do see the rationale behind the recommendation. As a compromise solution, we added a discussion of 

slope effect to improve the model. The next set of work would require a multi-layer scheme (i.e., the 

subject of the second paper), so we provided more details on it in the discussion session. 

 



[Some specific remarks]: 

S1. The introduction reads like a defense why we need model-data comparisons in the wet tropics. This is 

more than obvious to me. 

Response: In the introduction, we attempted to contextualize our work for both the LSM/ESM 

community as well as tropical system researchers who may be less familiar with the modeling deficits. 

We added a paragraph in the introduction based on Reviewer 2’s suggestion at L72. If there are other 

specific areas we should include in our background, we would appreciate additional feedback. 

 

S2. I could not access the PhD thesis Song (2019), while I would have been interested to know how he 

determined LAI. 

Response: A brief explanation was at L128, and also added to Figure 2. Moreover, we newly added the 

detailed information in Appendix A. 

 

S3. I could not find the figure that show that the “predominant winds flow parallel to the valley (e.g., N-

S) and not perpendicular to the mountain slope.” (line 132f). Why e.g.? 

Response: We have eliminated “e.g.” and modified the figure by inserting “E-W” to indicate 

directionality. 

 

S4. Line 170ff has already opinions about model formulations in the method section. 

Response: We moved it to the discussion section (L486). 

 

S5. A 100 year spinup? This is much too long for energy and water and not enough for carbon. 

Response: Yes. It should be 30 years, but it ran more just in case. This simulation was not conducted 

using the BGC module of CLM, so longer spinup for carbon is not necessary. 

 

S6. There is often the mentioning of “oversimplification”. Is a process that is not implemented in a model 

an oversimplification? 

Response: Yes, we agree that all models are oversimplifications of reality. However, we use the term in 

the relative sense.  For instance, a single-layer model is very simplified compared to a multi-layer 

scheme. Also, a sub-model, such as the interception model, exists in CLM, but the process is too simple. 

In these cases, we also used “oversimplified” when this simple model causes an error. We have adjusted 

the language throughout to clarify, using the terms “relatively oversimplified” and “too simplistic” as 

replacements. 

 

S7. Line 362-375 is gibberish. I did not understand the sentences. 

Response: L385: Updated. “Intercepted precipitation was usually too high in CLM compared to observed 

leaf wetness [Figure 8c; Figure 8d]. The values in [Figure 8c] and [Figure 8d] were the increasing rate of 

leaf wetness due to precipitation. large and thick markers indicate the average of values. The collected 

data was conditioned upon the absence of a rainfall event at least 2 hours prior and an initial leaf wetness 

lower than 0.2. [Figure 8c] shows 0.5-hour rainfall events (one consecutive event in 30-min scale) and 

[Figure 8d] is for 2 hours rainfall events (four consecutive events). This increment was directly related to 

canopy interception: the usual increment for 2-hour (and 30-min) rain was 0.71(0.33) at a 38 m height 

data, 0.48(0.28) at a 3 m height data, around 0.88(0.73) in CLM5, 0.97(0.77) in CLM5 fmx=1, and 0.94 

(0.46) in CLM4.5. The modified interception model (CLM5 fmx=1) from Eq. (3) resulted in higher 

interception rate than CLM4.5 fmx=1 [Eq. (2)]. The interception rate also seemed higher with CLM5 

fmx=1 than with original CLM5 as in [Figure 8c] because CLM5 fmx=1 had a higher canopy evaporation 

rate. This effect resulted in the acceleration of canopy evaporation while allowing interception to play a 

larger role in the canopy water balance. In the one-to-one comparison, the increase of leaf wetness in 

CLM was usually higher than in measured data. Consequently, the wet canopy fraction at the beginning 

of the drying process was usually higher in CLM than in the measurements: 0.63 at the 38 m observation, 



0.47 at the 3 m observation, 0.96 in CLM5, 0.9 in CLM5 fmx=1, and 0.78 in CLM4.5 (see y-axis data at 

x-axis in [Figure 7e]).” 

 

S8. Section 3.5: I think that the formulation “the simulated temperature might be overly sensitive to 

incoming solar radiation” is unphysical to say the least. Be more specific, more process-related. 

Response: Added some explanation L411: “In other words, the simulated temperature may be overly 

sensitive to incoming solar radiation, like leaf wetness, which is likely given that overestimation and 

underestimation cycle followed the solar cycle.” 

 

S9. Line 425: “This study demonstrates the possibility of reducing predictive uncertainty by adapting the 

model to mimic such slope effect ...” The study did not show this. It only demonstrated that one can 

improve comparison by reducing the quantum efficiency. This is not mimicking a slope effect. 

Response: We changed it into “The study found that slope affected various data and outputs to an 

important degree” at L451. 

 

S10. Line 508ff mentions a good point and this should be elaborated. How could this be improved? 

Should there be different wetness fractions for sunlit and for shaded leaves? How would you implement 

this? If light changes. i.e. the fraction of sunlit and shaded leaves change as well, what would you do with 

the excess (or missing) water that come from purely changing the fractions without any evaporation or 

percolation yet? What other models would be less “physically simplified”? The Gash model? The Rutter 

model? 

Response: We elaborated this part (L553) and added a paragraph at L557 (see #11 and #12 in Response 

to Major Comment 2) 
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Reply to Reviewer 2 
 

[General Comment 1] In the presented manuscript, the authors provide a comprehensive assessment of 

the performance of the two latest versions of the Community Land Model (CLM4.5 and CLM5.0) at a 

tropical montane forest in Costa Rica. A broad range of measurements are available at the chosen location 

including radiation fluxes, CO2 fluxes, water vapor fluxes, leaf wetness, temperatures at different 

locations in and around the canopy, and the ground heat flux. The authors identify a number of 

discrepancies between the field measurements and the two model versions including an over-estimation 

of the surface albedo, the gross primary productivity, ET, the leaf wetness, and the diurnal variability of 

temperature. Also, they demonstrate that the overestimation of the gross primary productivity by the 

model could be alleviated be choosing a lower value for the quantum efficiency of photosystem II than 

the default value. Further, decreasing the maximum fraction of wet leaves in CLM5.0 reduced the 

overestimation of ET. 

 

Overall, studies such as the one presented here provide valuable insights for further developing the model 

and I could learn a lot about the model from reading the study. Therefore, I think the manuscript is 

definitely worth publication. However, it was sometimes hard to follow. A lot of the detailed comments 

below address such issue and are hopefully helpful in increasing the readability of the text. Also, I wonder 

whether the model was challenged with an unfair comparison on some aspects: 

 

Response to General Comment 1: 

The reviewer summarizes the main point which authors want to deliver through this manuscript and gave 

constructive comments to improve its delivery and structure. We installed the measurement carefully and 

used the data for the fairest comparison possible. However, different observation such as ET/TR can 

provide unexpected output due to measurement error but also different methods and scales. We believe 

that these issues and the unfair comparison can occur because of the complexity of the terrain. However, 

we cannot yet identify the reason with certainty using the data and CLM. This examination can be a 

simple comparison between model and data but also a test for the measurements. We also found a partial 

solution through a multi-layered scheme (CLM-ml), which is too complex to describe in this manuscript, 

but is the subject of one we will soon submit.  

 

[Major Comment 1] (a) ET/TR: If I interpret Fig. 6 c correctly, the average TR from the sapflow 

measurements is as large or even larger than the average ET from the EC measurements (integrated over 

the entire day). This would imply that either the sapflow measurements overestimate TR (because the 

sampled trees are not representative? The setup described in Aparecido et al., 2016 is convincing though.) 

or the EC measurements underestimate ET (because the EC method is problematic on sloped terrain?), as 

one would expect that ET is higher than TR at a site with considerable interception by leaves. In fact, the 

simulated TR of the CLM versions seems to be quite realistic. (b) Also, I wonder whether it makes sense 

to exclude nighttime water fluxes from the analysis with the argument that CLM does not represent 

nighttime TR. As the authors mention in lines 240-245, the sapflow measurements exhibit a temporal lag, 

where part of the daytime TR originates from plant water uptake during the night. Wouldn’t it make more 



sense to compare values integrated over the entire day for a fairer comparison? I agree that the diurnal 

cycle of ET is relevant and should ideally be captured by the model. But still as a starting point, a good 

representation of the daily average value is already important. 

 

Response to Major Comment 1(a): This is a good point that the transpiration rate (TR) seems higher 

than the total vapor flux from the eddy-covariance (EC) measurement, which is one of the interesting 

parts of our site and still under on-going study. Since TR was estimated by many sensors, and the eddy-

covariance system was placed above the canopy and the sensor was located at a quite open place 

concerning the predominant wind direction, we assumed that those observations were reasonable. Here, 

the most likely reason of this issue is a spatial discrepancy between the footprint of the EC system and the 

extent of the sapflow plot. Our previous work has shown that large trees contribute disproportionately to 

the overall flux. In addition to the scale issue between two methods, we can also suspect the influence of a 

near emergent tree on EC measurement. This interference by the up-slope tree can occur anywhere in a 

mountain area. Therefore, it is still an interesting question of how to handle the horizontal influence 

beyond the traditional turbulence model. We have also suggested a partial solution to this issue in a 

follow-on manuscript, which uses a multi-layer canopy model (CLM-ml). We added a paragraph to 

discuss this: 

 

1. L506 - “From the similarity of two observations (EC vs. TR), we suspect the influence of a near 

emergent tree on the EC measurements, which is possibly diagnosed by the advanced model (e.g., 

profiled simulation). Such interference by the up-slope tree can occur anywhere in a sloped area 

and the CLM insufficiently represents spatial variability. Also, the TR was estimated using more 

than 40 trees with a 2200 m2 plot. However, this plot is not necessarily situated such that. In this 

case, a demographic model for TR and a multi-layer model for EC measurements may be useful 

to give more perspectives and address this problem. These might resolve the spatial scale issue 

and provide a method to handle some heterogeneity in the canopy (e.g., the emergent tree) 

beyond the traditional turbulence model.” 

 

Response to Major Comment 1(b): Yes, the setup described in Aparecido (2016) is convincing, 

although the temporal-lag of the sap-flow rate cannot clearly explain yet. We suspect this is related to the 

water storage capacity (i.e., capacitance) of such large trees. Hence, we updated [Table 1] to provide daily 

TR with and without nighttime TR. The daytime diurnal variation for sap-flow showed an apparent delay 

that we can identify a particular time between two peaks compared to the EC data. We agree with the 

reviewer that the nighttime sap-flow rate can occur to recharge the sap water because there are many tall 

and huge trees. The nighttime sap-flow is a quite constant flow (long-delayed flow) [Figure R1]. 

However, Figure 6d shows the sap-flow rate still reasonably follows the simulated TR on a short time 

scale. This was why we removed night-time TR in this analysis with the assumption that it is not realistic. 

Therefore, we cannot confidently conclude that the sap-flow data has such a long delay because the 

simulated transpiration in CLM immediately responds to sun-light. We need to note that the sap-flow rate 

was measured through many trees. We believe that the error of the sap-flow is minimal to represent the 

forest, although the upscaling contains different temporal delays. We updated the manuscript based on 

this discussion as below: 

 

2. L253 - “However, taking into account that the nighttime sap-flow rate possibly occurs to recharge 

the sap water stored with the tree boles, an additional comparison was made without the 

elimination of nighttime value.” 

 

 



  
Figure R3: Daily TR and Daytime TR comparison. 

 

[Major Comment 2] Leaf wetness: I am not sure whether I understood the normalization correctly. 0 

corresponds to complete dryness of the leaves and 1 for fwet = fwetmax in the respective model 

configuration? If this is the case the actual maximum in the diurnal cycle of the leaf wetness in CLM5 

would be ~0.7∙0.05 = 0.035. This would mean that CLM5 vastly underestimates the leaf wetness 

compared to the measurements rather than overestimate it as Fig. 7 suggests. Also why did you not test 

for an intermediate fwetmax (e.g., 0.5)? 

 

Response to Major Comment 2: Yes, this can be confusing. The reviewer understood correctly about 

leaf wetness (fwet), which ranges from 0 to 1 in CLM4.5. However, CLM5 forces the use of a range from 

0 to 0.05, and 0.05 is not a scale factor.  So, if (W𝑐𝑎𝑛 ∙ W𝑚𝑎𝑥
−1 )2∙3

−1
 was 0.7 in CLM4.5, it would be 0.05 

in CLM5. It is just giving a limit on the leaf wetness that cannot exceed 0.05. Another confusing part is 

the canopy water amount (Wcan) at Eq (4). This amount was not related to 0.05 but limited by Wmax. In 

summary, fwet was used for the evaporation rate and transpiration rate, not for the amount. With fwetmax 

=0.05, Wcan tends to hold more water due to the low evaporation rate. Therefore, for Figure 7b, this leaf 

wetness was re-estimated using Wcan for a fair comparison, as described at line 275. About fwetmax = 0.5, 

this is not complicated process so we can expect that fwetmax = 0.5 will give a result between fwetmax = 0.05 

and fwetmax = 1. To clarify, we added the following text: 

 

3. L182 - “For instance, if fwet was 0.7, fwet would become 0.05”. 

 

 

 

[Specific Comments]: 

 

S1. L17: I am not sure what the authors mean by climate cycles. 

Response: L17: “climate” was replaced by “carbon” 

 

S2. L24: Greater energy exchange than what? 

Response: L24: replaced with “greater energy exchange than a temperate forest” 

 

S3. L105: A brief statement about the seasonality could be of interest to the reader here. 



Response: L110: added “The dry season starts from January and continues until April, and the mean 

rainfall is about 195 mm per month. The wet season is from May until the end of the year: the average 

rainfall in the wet season is approximately 470 mm per month (Teale et al., 2014; Aparecido et al., 

2016).” 

 

S4. L108: The base of which mountain. Providing a map with the location of the two sites might help the 

reader to get a clearer picture of the field sites. 

Response: A new Figure 1 was added. Also added “It shares a boundary with the Children’s Eternal 

Rainforest” at L106. 

 

S5. L131: 33 or 34 m? In Fig. 1 the EC is located at a height of 33 m. Also what does IRGA stand for? 

Response: L138: updated them as “infrared gas analyzer (IRGA) are located at 33 m height” 

 

S6. L158-160: Soil moisture could still limit stomatal conductance in the model. However, it is probably a 

fine choice to neglect soil moisture limitation in this study, as ET and the carbon fluxes are on the high 

side in the model.  

Response: L164: “Soil moisture does not appear to limit stomatal conductance in the model; the 

predicted average value of transpiration wetness factor in CLM was typically around 95% in this study 

period and never fell below 50%for any 30-minute time period.” 

 

S7-8. L260: Are you sure you are talking of the canopy air temperature here and not the 2 m temperature? 

The canopy temperature Ts has a different definition if I understand correctly (see eq. 5.93 in the 

technical documentation of CLM5.0). 

Response: Ts is canopy temperature, but CLM does not provide the value as an output. We used 2-m 

temperature as Ts. Actual Ts should be between 2-m air temperature and vegetation temperature. Based 

on [Figure 11d], we can identify that their values would be close to each other so that using 2 m 

temperature would not a problem at this site. We updated the manuscript as below: 

L271: “CLM uses Ts term like Figure 3 as canopy Ta but not provides Ts as an output variable. This 2 m 

temperature, named as TSA in CLM, would nearest value from the canopy. Moreover, our profile data 

indicates that air temperature does not vary much in different height near the top canopy, and 28.075m is 

still within the canopy.” 

 

S9. L286-287: Albedo cannot explain the difference in the nighttime net radiation. Also, how is the 

albedo estimated? 

Response: Albedo, which is calculated based on shortwave radiation, is not estimated at night and is 

simply set to one in CLM. Nighttime net radiation should come from the vegetation cooling (longwave 

radiation). Added “daytime” for net radiation at L300. 

 

S10. L307: To me it is unclear what is meant by the BB parameter.  

Response: L326: it is the Ball-Berry Model (BB) slope parameter. Added “slope” to clarify. 

 

S11. Fig. 4: Are the APAR values in panels c and d from the observations or the model? Part of the 

discrepancy in the alphas could also originate from differences in PAR (Fig. 3 f). 

Response: APAR was estimated based on the two-stream approximation in CLM using observed 

incoming solar radiation. This is the similar comments to Reviewer1, and we added some information 

about APAR estimation and some discussion about the possible error in estimating alphas: 

L332: “The APAR, including sunlit and shade leaf area, was estimated in CLM using measured incoming 

solar radiation above the canopy at 44 m.” 

 



L340: “Of course, this analysis itself has a possible error by the eddy-covariance measurement and APAR 

estimation. APAR, which estimated by CLM, contains only sunlit and shade leaf area, making it too 

simplistic. Also, this method itself has a possible error, as shown in [Figure 4e; Figure4f].” 

 

S12. L344-345: The R² increased marginally for CLM5 when introducing phi=0.25. But, the slope and 

intercept are clearly deteriorated by this modification. So, I wouldn’t really talk of an improvement here. 

Response: That is true; we clarify: 

L366: “However, we cannot conclude that it was improved, since the low Phi changed the slope and 

intercept values. This change might also be influenced by other components such as leaf wetness.” 

 

S13. L390: Another relevant process could be energy storage in particular in the stem, which is missing in 

the default version of CLM5. This process was found to decrease the diurnal temperature range in forests 

and decrease the overestimation of turbulent heat fluxes in CLM5 (Swenson et al., 2019, Meier et al., 

2019). 

Response: A reviewer provided an excellent suggestion. We added such a discussion about energy 

storage: 

L565: “Additionally, adding storage flux can be influential in a rainforest due to its dense and tall canopy 

(Heidkamp et al., 2018), and this storage flux is not represented in CLM. The heat storage can be related 

to air under the canopy, but the role of vegetation biomass is also significant. Considering the heat storage 

of vegetation biomass reduced the diurnal temperature range in other studies (Swenson et al., 2019; Meier 

et al., 2019).” 

 

S14. L433: A nice study supporting and concretizing your claim for accounting for terrain effects: Fan et 

al. (2019). 

Response: L72: we added a paragraph based on the reviewer’s suggestion. It is as follows: “Land surface 

models have gradually increased in resolution with the improvement of observations through remote-

sensing technology. These changes have highlighted the importance of spatial variability in the land 

surface system. However, the models still cannot fully reflect the complexity of the surface. The current 

oversimplified parameterization is one cause of model error (Singh et al., 2015; Wood et al., 2011). For 

instance, hydrological processes are well studied at the catchment scale and reflect topographic gradients, 

but LSMs are known to simplify the effect of the topographic slope (Fan et al., 2019a). Critical zone 

science has a gap from the Earth system model which normally focuses on vertical flow (Fan et al., 

2019a; Clark et al., 2015). The failure to reflect spatial heterogeneity and hydrologic connectivity 

between large scale process (land-atmosphere fluxes) and microscale process (biogeochemical 

interactions) can be problematic (Clark et al., 2015).” 

 

[Technical Comments]: 

Response: We accept all these copy-editing changes as written, including the labeling of figures. For 

brevity, we do not list them here individually, but the new version of the manuscript reflects them. 
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Abstract. This study compares the performance of the Community Land Models (CLM4.5 and CLM5) against tower and

ground measurements from a tropical montane rainforest in Costa Rica. The study site receives over 4,000 mm of mean annual

precipitation and has high daily levels of relative humidity. The measurement tower is equipped with eddy-covariance and

vertical profile systems able to measure various micrometeorological variables, particularly in wet and complex terrain. In this

work, results from point-scale simulation for both CLM4.5 and its updated version (CLM5) are compared to observed canopy5

flux and micro-meteorological data. Both models failed to capture the effects of frequent rainfall events and mountainous to-

pography on the variables of interest (temperatures, leaf wetness, and fluxes). Overall, CLM5 alleviates some errors in CLM4.5

but CLM5 still cannot precisely simulate a number of canopy processes for this forest. Soil, air, and canopy temperatures, as

well as leaf wetness, remain too sensitive to incoming solar radiation rates despite updates to the model. As a result, daytime

vapor flux and carbon flux are overestimated, and modeled temperature differences between day and night are higher than10

those observed. Slope effects appear in the measured average diurnal variations of surface albedo and carbon flux, but CLM5

cannot simulate these features. This study suggests that both CLM models still require further improvements concerning en-

ergy partitioning processes, such as leaf wetness process, photosynthesis model, and aerodynamic resistance model for wet

and mountainous regions.

1 Introduction15

Tropical forests play a critical role in determining regional and global climate. Due to their significance for the global water

(Zhang et al., 2010; Choudhury and DiGirolamo, 1998) and carbon cycles (Huntingford et al., 2013; Beer et al., 2010), accurate

modeling of tropical regions is important for the prediction of future climate and climate change impacts. While tropical forests

occupy only 16% of the global land, forests in the tropics house 25% of the carbon stocks found in the terrestrial biosphere, and

account for 33% of global net primary production (NPP) (Bonan, 2008). They account for 33% of terrestrial evapotranspiration20

(ET), which ranges from 1,000 mm up to 2,200 mm per year and transpiration (TR) occupy its 70% (Schlesinger and Jasechko,

2014; Kume et al., 2011; Fisher et al., 2009; Loescher et al., 2005; Sheil, 2018). Hydrological processes in the humid tropics

are also distinctly characterized by warm, uniform temperatures, large inter-annual and spatial variability, intense rainfall, and
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greater energy exchange than a temperate forest accelerated by low albedos and high evaporative cooling (Wohl et al., 2012;

Bonan, 2008). The loss of such forests by climate change or human impact can influence their local climate, but also more25

remote regions (Lawrence and Vandecar, 2014).

Hence, building accurate land-surface models (LSMs) is important. LSMs, as a component of Earth system models (ESMs),

simulate the exchange of heat, water vapor, and carbon dioxide between the terrestrial surface and the atmosphere, based

essentially on the partitioning of net radiation (Wang et al., 2016). The models have been used for the prediction of future

climate and also its impacts on the land surface such as tropical and extra-tropical forests (Cox et al., 2013; Huntingford et al.,30

2013).

However, the models do not yet successfully capture the underlying complexity of land-atmosphere interactions (Cai et al.,

2014; Wang et al., 2014; Lawrence et al., 2011; Oleson et al., 2010). In particular, LSMs are known to make significant errors

in the prediction of carbon and water fluxes for tropical regions. The reasons for these issues are not entirely clear, even

though significant improvements have been made in this field of study (i.e., empirically and mechanistically). Lawrence et al.35

(2011) compared estimates obtained using two versions of the Community Land Model (CLM3.5 (Oleson et al., 2008) and

CLM4.0 (Oleson et al., 2010)) against observed sensible and latent heat flux data from FLUXNET (Baldocchi et al., 2001).

They found that CLM4.0 improved predictions compared to CLM3.5 for most sites across the network, but continued to show

low agreement for tropical sites. Bonan et al. (2011) updated CLM4.0 by modifying the structure of radiative transfer model

and physiological parameters for canopy processes, which resulted in notable improvements in CLM4.5 (Oleson et al., 2013)40

but overestimation of carbon and water vapor fluxes persisted in areas closest to the equator. The deficit is especially true for

tropical wet mountain rainforests, which have rarely been studied in the context of improving global LSMs, due to the lack

of long-term/uniformly distributed measurement and the small number of observation sites (Fisher et al., 2009; Wohl et al.,

2012).

To improve land surface models addressing tropical ecosystem biosphere-atmosphere interactions, accurately partitioning45

net radiation (energy) and water is critical for these models, especially with respect to estimating latent heat flux. Many

studies maintain that vapor fluxes in the tropical site are highly correlated (≈ 87%) with net radiation (Andrews, 2016; Fisher

et al., 2009; Hasler and Avissar, 2007; Loescher et al., 2005). Others found that leaf wetness is also an important control

(Andrews, 2016; Giambelluca et al., 2009). Some studies indicate that the impact of leaf wetness status on the model (which can

contribute 8%-20% of ET) can be detected depending on the canopy water storage capacity and rainfall pattern, although short50

duration and high intensity rainfall does not significantly affect canopy evaporation (Kume et al., 2011; Loescher et al., 2005).

For tropical sites, therefore, the interaction of interception and its evaporation must be included in the modeling framework.

Aerodynamic conductance has also been considered as a strong driver for evapotranspiration in tropical forest because the large

amount of precipitation and frequently wetted canopy conditions control leaf conductance (Shuttleworth, 1988; Loescher et al.,

2005). Vapor pressure deficit (VPD) has been shown to only slightly influence (≈ 14% predictor) tropical ET (Fisher et al.,55

2009; Kume et al., 2011). However, when assessing these studies, we can notice that the studies all highlight the importance and

difficulties of quantifying canopy-related water fluxes. ET dynamics are dependent on how these micrometeorological variables

are related to the latent heat flux within the energy balance. In tropical forests, the Bowen ratio is consistently less than one
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(Loescher et al., 2005), which implies that net radiation highly correlated with latent heat flux. Moreover, the forest canopy acts

like a well-watered crop without water limits (Loescher et al., 2005; Hasler and Avissar, 2007; Kume et al., 2011). Hence, how60

to accurately track water movement within the system (water balance) and predict the ET proportion of net radiation (energy

balance) is still a critical question.

Water-related variables are not our only concern, and cannot be independently considered in Earth system or land surface

system models. Other energy balance components and physiological elements (e.g., thermal flux, radiative transfers, photo-

synthesis, and respiration) are likewise important because they are dependent on the water. Normally, all LSMs handle such65

main variables (e.g., heat/vapor flux, carbon flux, and net radiation). However, recently the modeling community has embraced

additional components in order to represent more realistic processes and to resolve research questions related to soil carbon and

nitrogen cycling (Thornton et al., 2007), multi-layer plant canopies (Ryder et al., 2016; Launiainen et al., 2015; Bonan et al.,

2018), and even more sophisticated systems (e.g., urban settings, heat stress effects) (Lawrence et al., 2018; Buzan et al., 2015).

These changes have led to the development of a plethora of sub-models, making it difficult to identify a specific sub-model or70

set of sub-models from which model error arises.

Land surface models have gradually increased in resolution with the improvement of observations through remote-sensing

technology. These changes have highlighted the importance of spatial variability in the land surface system. However, the

models still cannot fully reflect the complexity of the surface. The current too simplistic parameterization is one cause of

model’s error (Singh et al., 2015; Wood et al., 2011). For instance, hydrological processes are well studied at the catchment75

scale and reflect topographic gradients, but LSMs are known to simplify the effect of the topographic slope (Fan et al., 2019a).

Critical zone science has a gap from the Earth system model which normally focuses on vertical flow (Fan et al., 2019a;

Clark et al., 2015). The failure to reflect spatial heterogeneity and hydrologic connectivity between large scale process (land-

atmosphere fluxes) and microscale process (biogeochemical interactions) can be problematic (Clark et al., 2015).

Hence, in order to properly parametrize global LSMs and to precisely represent complicated systems, such as the tropics80

and mountains, it is necessary to continue to diagnose land surface models using site-based data. Unique sites like tropical

mountain forests are valuable testbeds for model improvement because their environment is an "edge case" for the model; model

calibration under more extreme climate conditions can provide valuable insight for the utility of these models under conditions

of climate change. Using detailed variables, such as soil moisture/temperature, interception, and stomatal conductivity, site-

based studies can identify and alleviate errors in model sub-components. Such errors cannot be easily detected by the analysis85

of more integrative variables, such as albedo or net radiation.

Measurements including eddy-covariance tower systems have been widely used for the advance of global land surface mod-

els via calibration and validation (Bonan et al., 2012; Zaehle and Friend, 2010; Larsen et al., 2016; Chaney et al., 2016).

Gridded global data from the FLUXNET network is also available for model development at large scales (Bonan et al., 2011;

Jung, 2009). However, point-scale and stand-scale studies still form a core component of research at regional to global scales.90

In this study, CLM4.5 (Oleson et al., 2013) and its updated version (CLM5) (Lawrence et al., 2018) are employed, and mi-

crometeorological datasets from a tropical rainforest in Costa Rica are compared with these simulation results. The objectives

are four-fold:
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Figure 1. The map of the study site and the locations of the two towers (Andrews, 2016).

1. To compare the default mode and point-scale predictions of both CLM 4.5 and CLM 5.0 against micrometeorological

and flux measurements collected in a Costa Rican wet montane tropical forest;95

2. To identify the improvements in performance between the two CLM versions and shortcomings remaining in the newer

version (CLM5);

3. To discern errors caused by the unique environment at our study site (i.e., frequent rainfall and mountainous topography)

and to identify too simplistic formulations and incorrect parameters (i.e., interception/leaf-wetness models, photosyn-

thesis models, etc.); and100

4. To determine which canopy-atmosphere processes (i.e., sub-models) are most poorly represented, in order to suggest

priorities for future model improvements.

2 Methodology

2.1 Study Site

The field site is located at the Texas A&M University Soltis Center near San Isidro de Peñas Blancas in Costa Rica (10◦23′13′′N ,105

84◦37′33′′W , about 600 m above sea level) [Figure 1]. It shares a boundary with the Children’s Eternal Rainforest. This area

has a mean annual temperature of 24 C◦, relative humidity of 85%, and precipitation of 4200 mm (Teale et al., 2014). The

study area is classified as a moist, tropical premontane forest. The canopy height ranges from 24 to 45 m, and is located on

a steep eastern slope (Aparecido et al., 2016; Jung, 2009). Rainfall is frequent, and a little over two-thirds of days have one

or more rain events. The dry season starts from January and continues until April, and the mean rainfall is about 195 mm per110

month. The wet season is from May until the end of the year: the average rainfall in the wet season is approximately 470 mm

per month (Teale et al., 2014; Aparecido et al., 2016).
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2.2 Micrometeorological measurements

The site has two primary biometeorological measurement locations [Figure 1]. The main weather tower (hereafter called “Met

Tower”) is located in a flat, grass-covered clearing at the base of the mountain. The walk-up canopy access tower (hereafter115

called “Canopy Tower”) is located within the forest, on the eastern slope. The Met Tower measures meteorological conditions

without the influence of canopy processes and structure. Precipitation (mm; TE525, Campbell Scientific, Logan, UT), incom-

ing solar radiation, net radiation (W ·m−2; CNR1, Campbell Scientific), air temperature (C◦; HMP60, Campbell Scientific),

and relative humidity data (%; HMP60, Campbell Scientific) have been collected since 2010. The Canopy Tower has collected

the same variables as the Met Tower (with exception of precipitation). A suite of additional measurements, including green-120

house gas concentrations and fluxes, soil moisture, leaf wetness, and sap flow have been collected at the Met Tower since 2014.

An infrared, trace-gas profile system (AP200, Campbell Scientific, Logan, UT) and an eddy-covariance system (LI-7200, LI-

COR, Lincoln, NE; CSAT3, Campbell Scientific, Logan, UT) are used to collect micrometeorological data at various heights,

including concentrations and fluxes of vapor (i.e., H2O) and carbon dioxide (i.e., CO2), wind speed and its direction, and air

temperature. Additional data are also collected to track canopy processes: leaf wetness sensors at four different heights (LWS,125

Decagon Devices, Utah), photosynthetically active radiation (PAR) profiles (LI-190, LI-COR) at five heights, leaf area index

(LAI) profile using a lined PAR sensor (LI-191, LI-COR) and Beer-Lambert law (Appendix A), leaf temperature sensors for

sunlit and shade leaves (SI-111, Apogee Instruments, Logan, UT), soil heat flux (HFT3, Campbell Scientific), soil temperature

(5TE, Decagon Devices, WA), soil moisture (EC-4 and 10HS, Decagon Devices, WA), soil respiration (LI-8100A, LI-COR)

and transpiration from sap flow system. Aparecido et al. (2016) and Andrews (2016) present more detailed information about130

the sap flow system and the profile measurements, respectively. The datasets for this site, from 2014 to 2017, are available via

the OAKTrust repository (Miller et al., 2018a, b, c, d).

While the Canopy Tower exceeds the average canopy height, some known interference is present from a nearby emergent

tree [Figure 2], leading to a large gap in the canopy in-between heights of roughly 30 and 40 m. This configuration leads to

two main challenges. Above the gap, the upslope tree (emergent tree) provides a significant degree of shading, which leads135

to a 70% reduction in PAR between measurements at the down-slope canopy surface (32 m) and above the emergent tree (44

m). We also note that this configuration makes the eddy-covariance method less than ideal. However, the sonic anemometer

and infrared gas analyzer (IRGA) are located at 33 m height, extending away from the tower and clear of obstructions in

both the upwind and downslope directions [Figure 2]. As shown in the Figure 1 and 2, predominant winds flow parallel to

the valley (N-S) and not perpendicular to this eastern mountain slope. This configuration allows us to capture fluxes, albeit140

under a narrowed set of ambient conditions. Thus, these data are not necessarily sufficient for recording long-term, integrated

measures of ecosystem-level variables, like gross primary production. However, they are suitable for testing and validating

models, despite the heterogeneous structure created by the emergent tree.
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Figure 2. Sketch of Canopy Tower located in a plot within a mature premontane moist tropical forest in Costa Rica (right) with LAI profiles

highlighted (left) along with the location of the eddy-covariance system (EC, 33 m) and the Spire (44 m), which holds the net radiometer.

The leaf area index is given at 22 discrete points (100 points by spline interpolation) in the canopy (LAIz), and its sum (LAI) is equal to 6

m2 ·m−2 for this stand. The LAIz was estimated based a light profile data and Beer-Lambert law (Vose et al., 1995). The method how to

measure and derive LAIz explained in Appendix A.

2.3 Model Description

In this section, we briefly describe CLM’s structure and its formulation of the energy balance equation. Given the site’s ex-145

tremely high humidity and annual precipitation, we hypothesize that the sub-models related to water fluxes are the main sources

of prediction errors, and as such, the discussion focuses primarily on them. More detailed descriptions can be found in the tech-

nical manual (Lawrence et al., 2018; Oleson et al., 2013, 2010). Hereafter we use CLM in a general sense, applicable to both

CLM4.5 and CLM5, but provide the specific version number when distinguishing their respective behavior or the effects of

recent code modifications.150

CLM calculates the radiative transfer through the canopy and the ground surface, using the Two-stream approximation

method (Dickinson, 1983; Sellers et al., 1992; Bonan, 1996; Oleson et al., 2013), which is a starting point for land surface

models to determine the exchange of energy. In the procedure, the canopy structure (e.g., LAI, leaf angle) and the current

condition (e.g., wetness, solar angle) are main controllers to determine the absorptivity of incoming solar radiation (albedo).

Based on the absorbed incoming energy, fluxes of sensible heat, latent heat, and soil heat are estimated using the energy balance155
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Figure 3. Resistance network schemes incorporated within CLM for (a) sensible heat flux and (b) latent heat flux. Main state variables

are atmospheric potential temperature (θatm) and specific humidity (qatm), canopy air temperature (n) and specific humidity (qs), leaf

temperature (Tv) and its corresponding specific humidity (qv), and ground temperature (Tg) and its corresponding specific humidity (qg).

Relevant heights are the atmospheric reference height (zatm), the canopy roughness heigth (Z0), the groundwater roughness height (Z′0),

and the displacement height (d). Resistances are specified by their scalar (h for heat and w for water vapor), type (a for aerodynamic, b for

boundary layer, s for stomatal, or litter for litter), and lighting (sun or shade). Leaf wetness also exerts control on fluxes, via a wetness

fraction (fwet) and (L+S) is leaf and stem are index. Figure adapted after Oleson et al. (2013).

equation. For example, the canopy energy balance can be written as a function of vegetation temperature (Tv):

−Sv +Lv(Tv) +Hv(Tv) +LEv(Tv) = 0 (1)

where Sv is the absorbed solar radiation by canopy, Lv is the long wave radiation emitted by canopy, Hv is the sensible heat

flux, and LEv is the latent heat flux from the canopy, all of which are given in W ·m−2 (Oleson et al., 2013). Monin-Obukhov

Similarity Theory (MOST) is used to determine resistances along the soil-plant-atmosphere continuum [Figure 3], which is160

then used to calculateHv and LEv (Zeng et al., 1998; Oleson et al., 2013). Using a big-leaf model, CLM represents both sunlit

and shaded leaves (Dai et al., 2004).

The water balance equation tracks water flows through the system and connects to the energy balance via its dual controls

on ET. The first of these controls, the influence of soil moisture on stomatal conductance, is not considered in this study. Soil

moisture does not appear to limit stomatal conductance in the model; the predicted average value of transpiration wetness factor165

in CLM was typically around 95% in this study period and never fell below 50% for any 30-minute time period. Also, prior

work has determined that ET at the present study site is not limited by soil water deficits during normal to above-normal rainfall

years, such as the period from 2014 to 2016 (Andrews, 2016). On the other hand, leaf wetness can have an influence on this

site. While its effect is considered to be small in some ecosystems (Burns et al., 2018), previous studies have shown that leaf

wetness exerts significant influence on fluxes from rainforests in general (Loescher et al., 2005; Kume et al., 2011) and at this170

7



site specifically (Aparecido et al., 2017; Moore et al., 2018). CLM reflects these mechanisms as well in the resistance network

[Figure 3b], and the leaf wetness can prevent transpiration and contribute to canopy evaporation rates. Here, leaf wetness is

determined by the interception rate of incoming precipitation (Deardorff, 1978; Dickinson et al., 1993; Lawrence and Chase,

2007). The amount of interception qic is given in CLM4.5 as:

qic = 0.25 · qrain/snow · [1− e−0.5(L+S)] (2)175

and in CLM5 as:

qic = 1.00 · qrain/snow · tanh(L+S) (3)

where qrain/snow is the precipitation as liquid or snow, and 0.25 is a model coefficient. After determining intercepted rainfall,

canopy water storage (Wcan) is calculated through re-partitioning based on the condition of 0 5Wcan 5Wmax (mm), where

maximum canopy water storage (Wmax) is 0.1(L+S) (Dickinson et al., 1993; Oleson et al., 2013). Finally, fwet is180

fwet =

[
Wcan

Wmax

]2/3
(4)

Additionally, in CLM5, fwet cannot exceed a maximum value (fwetmax) of 0.05. For instance, if fwet was 0.7, fwet would

become 0.05. Finally, fdry is calculated as:

fdry =
(1− fwet) ·L

L+S
(5)

In Eq. (4), the 2/3 exponent was assumed following the original literature (Deardorff, 1978), because the canopy water tends185

not to be evaporated when it is set to one and evaporates too fast when close to zero (Deardorff, 1978).

Additionally, CLM mainly uses the Farquhar model (Farquhar et al., 1980; Oleson et al., 2013) for photosynthesic rates.

In our site, air temperature varies little throughout the year, and CO2 concentration does not vary significantly. Consequently,

light-limited photosynthesis can be considered as a dominant process. The light-limited model wj (µmol·m−2s−1) in CLM is

developed based on the Farquhar model (Oleson et al., 2013) and can be written as:190

wj = 0.25JxCi, Ci =
ci− cp
ci + 2cp

(6)

where ci is intracelular CO2 concentration, cp is CO2 compensation point, assuming 4 electrons per CO2 molecule, Ci is a

function of ci and cp, and Jx (µmol ·m−2s−1) is the electron transport rate which can be estimated through

ΘJ2
x − (IPSII + Jmax)Jx + IPSIIJmax = 0 (7)

where Θ is a curvature parameter (Θ = 0.7 by default), Jmax (µmol ·m−2s−1) is maximum rate of electron transport. IPSII195

can be estimated as IPSII = 0.5Φ · IAPAR, where Φ is quantum efficiency of photosystem II (Φ = 0.85), 0.5 is for two photo-

systems for one electron, and IAPAR is absorbed PAR (µmol ·m−2s−1).

To further explore these relationships, Eq. (6) and Eq. (7) are simplified and recalculated to make them comparable to

apparent quantum yield (α). This is because the light-limited model has a hyperbolic shape and the shape changes influenced
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by other environmental conditions. However, the apparent quantum yield is a slope parameter (or the initial slope of the light-200

limited model) between absorbed-PAR and photosynthetic rate, which is a well known and simple parameter with a long

research history in the literature (Skillman, 2007; Evans, 2013). From Eq. (6), if ambient condition has cp ≈ 40µmol ·mol−1,

ca ≈ 400 and ci/ca ≈ 0.7, it gives ci ≈ 0.7 · 400µmol ·mol−1 (Launiainen et al., 2011; Katul et al., 2010) and Ci becomes

0.667. If ci becomes higher as atmospheric CO2 concentrations increase, it will approach 1. Through Eq. (6) and Eq. (7), the

initial quantum yield of CO2, also known as apparent quantum yield (α), can be estimated via ∂Jx/∂IAPAR× 0.667× 0.25,205

which can be used with simple-version models such as wj = α · IAPAR. It is worth noting that the differential has brought

independence from Jmax at zero APAR, which is highly related to nitrogen and leaf temperature. The theoretical maximum for

α should be ≈ 0.11, αwith saturated condition is approximately 0.075 (absence of photorespiration), and in normal atmosphere

condition α is about 0.05 which is estimated if Φ ≈ 0.6 in Eq. (7) (Evans, 2013; Raj et al., 2015; Skillman, 2007). These light-

limit models with different parameters are explored with observations in later section.210

2.4 Simulation Setup and Comparison Method

CLM was tested in point-scale mode and the satellite phenology (SP) mode with default settings, with exceptions noted below.

Extension modes, which consider additional processes such as dynamic global vegetation (DGVM), biogeochemical cycles

(BGC), or carbon-nitrogen cycling (CN) were in general not considered since they do not affect our study interests here (e.g.,

tree growth and stand competition). Input parameters for the simulation were determined using the ‘mksurfdata_map ’ utility215

provided in Community Earth System Model (CESM). The utility derives its values from satellite-based global datasets of

phenology, soils, and topography, provided by University Corporation for Atmospheric Research (UCAR) (Oleson et al.,

2013).

Based on multiple initial tests, we decided to use default parameters from the global surface data for our model, as varying

them had no significant influence on model performance. Location specific default parameters from the global dataset include:220

leaf area index (LAI , 5m2 ·m−2), stem area index (SAI , 0.8m2 ·m−2), canopy height (34 m), sand clay loam soil (47% sand,

26% clay, 27% silt), organic matter density (33 kg ·m−3), and color class (15). We need to note that default CLM cannot yet

reflect Leaf Area Density (LAD) as in [Figure 2]. Changing any of these parameters from the global values to local values

did not significantly affect the model’s results in our tests. This is perhaps because our LAI value is high enough to be the

dominant parameter, and the role of the soil is small. Moreover, the slope parameter exists in the model but it is not actually225

used in CLM’s radiative transfer, canopy process, and turbulence sub-models. Additionally, most of the measured parameters

at this site were not very different from the default values. Therefore, we decided to use the default setting except for some

significant differences as outlined below. The tropical, broadleaf evergreen tree (BET) plant functional type (PFT) was used as

the basis for representing the site’s specific landcover. The location in question had a default value of 30% BET tropical, 30%

of tropical broadleaf deciduous trees (BDT Tropical), and 25% for grass and crop which we altered to 100% BET for purposes230

of this study. The atmospheric reference height was set to 44 m to reflect the location of the net radiation sensor on the Canopy

Tower.
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As an input, a meteorological forcing data set for CLM was created based on the measurements collected on site. These

variables included half-hourly averages of wind speed (m · s−1), incoming solar radiation, relative humidity, air temperature,

air pressure, precipitation, and CO2 concentration. Comparison of the simulation was based on measurements taken at Canopy235

Tower; thus, Canopy Tower data was primarily used as forcing data when possible data was available. Average precipitation

and air temperature data collected at 10-m height at Met Tower were also used for data gap-filling. In most cases, weather

data obtained from the two towers were highly correlated, as the locations are less than 1 km away and only differ in their

immediate surroundings (i.e., forest vs. clearing) and slope degree (i.e., ∼45 degree slope vs. flat terrain).

Although flux methods cannot measure gross primary production (GPP) directly, it is an extremely important variable in240

the context of global carbon cycle modeling. In light of this, we estimated GPP based on net ecosystem exchange (NEE), net

ecosystem production (NEP), and ecosystem respiration (ER), where NEE ≈ NEP and GPP = NEP – ER. With eddy-covariance

data collected at the height of 33 m, NEP was estimated as CO2 flux + CO2 storage flux. Ecosystem respiration (ER) was

estimated to be around 1.2 (µmol ·m−2s−1) based on the nighttime data found using the u* threshold method (Papale, 2006;

Reichstein et al., 2005). This EC based data for CO2 and H2O flux can be still questionable due to the instrument configuration.245

However, comparison of the EC data and sap-flow data (discussed below) showed acceptable similarity, and these data were

accurate enough to give the information whether the model has a significant error.

For transpiration (TR), measured data and simulated transpiration rates are compared at daily timescales. For the comparison,

it is necessary to estimate or measure each major flux (partitioned flux) within ET. In this site, up-scaled sap-flow data provides

a transpiration rate (Aparecido et al., 2016), which in turns allows for water vapor flux partitioning. Although the sap-flow data250

at the site tends to lag temporally and nocturnal sap-flow occurs (shown later), it provides data to be used as a comparison at

a daily scale against CLM estimates. As CLM cannot represent nighttime transpiration, the nighttime sap flow data, collected

when the cosine zenith in CLM is less than zero, were eliminated from the comparison. However, taking into account that the

nighttime sap-flow rate possibly occurs to recharge the sap water, an additional comparison was made without the elimination

of nighttime value. This daily scale comparison is made by a one to one figure with R-squared value. Also, regression analysis255

provides additional information how much the model deviates from observation, as a slope of 1 and an intercept of 0 are

expected from model/measurement comparisons. We note that the intercept is related to the daily average value, and it should

be directly affected by the elimination of the nighttime transpiration and that a portion of this difference is related to the lag.

Unlike the radiative transfer models, CLM5 notably updated from CLM4.5 the physiological models for GPP and TR and

their associated parameters. The Ball-Berry Model (BB) (Ball et al., 1987) was supplanted by a combination of the Medlyn260

model for the stomatal conductivity (Medlyn et al., 2011), a plant hydraulic stress model (Bonan et al., 2014), and the Leaf Use

of Nitrogen for Assimilation (LUNA) routine (Ali, 2016). For the stomatal conductivity, regardless of the type of model (BB

or Medlyn model), the slope parameter, which links stomatal conductivity and carbon fixation (i.e., photosynthesis), has been

reduced by the model update. While the BB model still can be used for CLM5, its slope parameter has been changed from 9 to

7.3 for C3 plants. We have tested several options in CLM5 and determined that changing the stomatal conductivity model does265

not affect photosynthesis-related results (e.g., GPP) in our case.
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To facilitate comparisons, CLM requires to assign height of each output variable. In this case, each reference height was

determined based on given parameters in CLM: the displacement height was d= 23.45m, ground roughness height was z0mg =

z0vg = z0hg = 0.01m, and surface height was z0 = z0mv = 2.625m, so the canopy height became d+ z0 = 26.075m. For

instance, canopy air temperature (Ta) in CLM was 2 m temperature in this comparison study, and it had d+z0 +2 = 28.075m.270

CLM uses Ts term in Figure 3 as Ta but not provides as an output variable. This 2 m temperature, named as TSA in CLM,

would nearest value from the canopy. Moreover, our profile data indicates that air temperature does not vary much in different

height near the top canopy, and 28.075m is still within canopy. Our instrument heights did not exactly correspond to those

heights from CLM, so the nearest one or two data points was used for the comparison rather than interpolating all data.

Additionally, CLM5 has a low default leaf wetness ratio; the maximum is 0.05 as in Eq. (4). For fair comparison, all leaf275

wetness values from CLM were normalized to a [0-1] scale based on the water amount on canopy using Eq. (4). Additionally,

the question of whether or not to apply the power of 2/3 did not change our comparison results significantly.

Soil related data was spatially up-scaled and vertically interpolated to compare with the simulation. For the spatial up-scale,

soil temperatures and soil heat fluxes were measured at five different places near the Canopy Tower, and the vertical profile

data were also collected close to the base of the tower. For the vertical profile, CLM considers a larger number of soil layers.280

Therefore, the results of CLM were linearly interpolated, to compare with the measured data.

To initialize the simulations, CLM was first executed with a cold start (i.e., randomly produced initial values) and run for 100

years to get stable soil temperatures, cycling (through) the 6-year forcing data collected between the beginning of 2010 and the

end of 2015. Once stable soil temperatures were obtained, CLM was rerun for two years (2014 – 2016) at a 30-minute time step.

For some cases, linear regressions were performed to compare CLM outputs to field data. Goodness-of-fit of the regression285

analysis was determined based on coefficient of determination (R-squared) where appropriate. In this analysis, we focused

on the following variables: net radiation, PAR, albedo, CO2 flux, GPP, transpiration, latent heat flux, air temperature, leaf

temperature, leaf wetness, and soil-related variables. We additionally tested how changes in levels of maximum leaf wetness

(fwetmax) and quantum efficiency of photosystem (Φ) affected goodness-of-fit. Modifications of LAI, light extinction related

coefficients, and canopy heights (34m∼44m) were also tested. Unlike fwetmax and Φ, however, they provided no significant290

difference or better results, so comparison and discussion of them are not made here.

3 Simulation Results and Comparison

3.1 Net Radiation and Albedo

A comparison of light-related variables indicated the simulated land surfaces received less energy than field measurements,

but the difference was not significant. Simulated net radiation values were 20 W ·m−2 less than the average measured values,295

although diurnal patterns closely matched (R2=0.99). Net radiation in CLM was approximately 15 to 45 W ·m−2 lower than

field measurements during the daytime and 10 to 15W ·m−2 lower during the nighttime [Figure 4a; Figure 4b]. Little difference

(< 5W ·m−2,R2=0.99) was detected between CLM4.5 and CLM5. The simulated shortwave reflectance (albedo) in CLM was
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around 15% higher than the gauged albedo (+0.022 across all daytime data) [Figure 4c], which likely caused the differences in

daytime net radiation.300

Light data was clearly affected by the sloped terrain. Although the models were developed for all the global surface, sub-

grid scale heterogeneity in land surface elevations has not yet been implemented in CLM4.5/5.0. Albedo from CLM tended

to have a symmetric form, while the measured albedo had a skewed diurnal pattern [Figure 4c]. This skew caused a noticable

discrepancy with the modeled values in the early morning which peaked during mid-afternoon (+0.0517 at 3PM; [Figure 4c]).

The highest PAR intensity (or highest incoming solar radiation) occurred at 10 a.m. [Figure 4e], when the albedo difference305

between the observations and the simulation was smallest (+0.0214). In some parts, this may be caused by the too simple

albedo models, which cannot properly respond to the intensity of solar radiation/angle. However, the skewed albedo seen on

the measured data in [Figure 4c; Figure 4d] clearly indicates that CLM cannot represent the slope effect of the land surface.

Such skewed diurnal variations were also observed in the PAR profiles [Figure 4e; Figure 4f]. The measured PAR values,

generated by sensors somewhat shaded by the upper canopy, were diurnally skewed compared with shaded PAR from CLM. In310

contrast to the solar radiation above the canopy (i.e., the top of the tower, net radiation), the radiation profile started to become

skewed right after infiltrating the top canopy layer. When revisiting the effect of canopy gaps created by the emergent tree,

we observed that radiation values between the top of the canopy (≈ 400 W ·m−2 at 44 m from Net Radiation) and the next

nearest heights (≈ 110 W ·m−2 at 32-38 m from PAR) were considerably different (about 70-80% reduction from the top) as

mentioned before. The height of the primary canopy, consisting of the dominant trees, is about 38 m (Aparecido et al., 2016).315

Therefore, the shade effect (optical thickness) may be substantial, even though the emergent trees added minimal thickness.

This feature can be important because the hill-slope surface is more sensitive to sun angles. It can affect to determine the

sunlit/shaded area.

Simple manipulation was attempted by changing the solar angle to mimic the slope effect on albedo [Figure 4c; Figure 4d;

Figure 4e]. The cosine zenith was re-estimated by pushing back 30 degrees, to apply to the light extinction coefficient K in320

two-stream approximation. This simple modification reduced some the skewness of albedo [Figure 4d]. However, shaded PAR

showed opposite behavior compared to the observation, mainly because sunlit area was increased.

3.2 CO2 Flux (GPP)

All CLM versions (CLM4.5, CLM5, and CLM5BGC) overestimated GPP (6.7, 4.9, and 3.6 µmol ·m−2s−1) [Figure 5a; Figure

5b]. Results from the new version, CLM5, were generally more similar to the measured data than those in CLM4.5 [Figure325

5a]. CLM5 yielded lower photosynthetic rates than CLM4.5, possibly due to the lower BB slope parameter, and also due to

suppressed maximum rates of Vc,max25 and Jmax25 by LUNA and BGC mode. Inactivating the plant hydraulic stress model in

CLM5 increased the carbon-assimilation rate, while disabling the LUNA model decreases it in this site study. The prediction

for the middle range of photosynthetic rate (5-15 µmol ·m−2s−1) did not improve much compared with CLM4.5.

One of the possible causes of the discrepancy between the estimated GPP and its observed values may be the model de-330

termining the response to light-limitations [Figure 5b]. Comparison between absorbed PAR (APAR) versus GPP shows that

the initial slope of measured data is much lower than the simulated one [Figure 5c]. The APAR, including sunlit and shade
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leaf area, was estimated in CLM using measured incoming solar radiation above the canopy at 44 m. As previously explained

[Figure 5d], an extensive literature study Skillman (2007) and Evans (2013) showed the theoretical maximum for α should be

≈0.11, that α under saturated conditions is approximately 0.075 (absence of photorespiration), and that in normal atmospheric335

conditions α is about 0.05, which is estimated when considering Φ ≈0.6 in Eq. (7) (Evans, 2013; Raj et al., 2015; Skillman,

2007). From our observations, the fitted value for α was 0.021 (Φ ≈0.25). This low value may have been caused by other fac-

tors such as physiological stress or a scale problem. The fitted value was estimated from eddy-covariance measurement rather

than at the leaf-scale. By default, the α is around 0.07 in CLM4.5 and CLM5, with Ci=0.667, which is higher than 0.05 as

usually reported (Skillman, 2007; Ehleringer and Pearcy, 1983; Ehleringer and Björkman, 1977). Of course, this analysis itself340

has a possible error by the eddy-covariance measurement and APAR estimation. APAR, which estimated by CLM, contains

only sunlit and shade leaf area, making it too simplistic. Also, this method itself has a possible error, as shown in [Figure 4e;

Figure 4f]. For this study, Φ was modified to get proper α, but the issue should be revisited in future studies.

Test simulations with CLM4.5 and CLM5 were conducted using Φ=0.25 and Θ=0.7. When Φ was updated, both CLM4.5

and CLM5 performed better than before [Figure 6;Figure 5a]. This change resulted in more stable predictions, as judged by345

the middle range of GPP (5-15 µmol ·m−2s−1). Maximum GPP was reduced as expected [Figure 5d], and it was possible to

further fix such over reduction by updating Θ (curve shape), as shown on [Figure 5d]. In the simulated diurnal variation plot,

the trend was slightly shifted in the afternoon, also probably due to the effects of the topographical slope [Figure 6b]. Time-

dependent classification (i.e., regression lines with intercept forced through zero [Figure 6b]) and the fitted slopes indicated

that geographical features have an influence on photosynthetic activity, which is mostly caused by the radiative transfer models,350

like albedo. However, the model failed to accurately represent such features, since CO2 flux in CLM was lower in the morning

and higher in the afternoon.
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Figure 4. (a) and (b) - comparison of net radiation between CLM and measurement on Canopy Tower at 44m. (c) and (d) - albedo at 44m.

(e) and (f) - PAR comparision for shaded canopies. All left plots (a, c, and e) are ensemble diurnal variation and the right plots (b, d, and f)

are one to one comparison plots between CLM and measured data. Hysteresis depicted on (d) and (f) is based on hourly ensemble average

values for daytime. The ‘Modified’ is an attempt to mimic the slope effect by the simple update of the two-stream approximation.
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Figure 5. (a) The ensemble diurnal variation of CO2 flux: differences between Eddy Covariance (Canopy Tower 33m) and CLM in daytime

is 6.7, 4.9, and 3.6 µmol·m−2s−1 for CLM4.5, CLM5, and CLM5BGC, respectively; (b) One-to-one plot in reference to data shown in

figure (a); (c) APAR vs GPP, and wj is simulated with default parameters and Ci=0.667; (d) ‘A)’ is the theoretical maximum α≈0.11, ‘B)’ is

saturated/elevated condition α≈0.075 (absence of photorespiration), ‘C)’ is normal atmosphere condition α≈0.05 if Φ≈0.6, and ‘D)’ is a

fitted value α≈0.021 if Φ≈0.25 from our observation. In the legend, ‘[Θ]‘means the usage of hyperbolic function Eq. (7), where Θ is a

curvature parameter like ‘Elv[Θ]’. Without ‘[Θ]‘, only the slope parameter is active as ‘B) Elv’. The change of the slope can alter maximum

assimilation rate, and the alteration can be counterbalanced if Θ is modified.

3.3 H2O Flux

The effect of the change of fwetmax were detected in the model’s results for vapor fluxes [Figure 7]. Again, CLM5 has a low

leaf wetness coefficient (i.e., maximum rate is 0.05 as Eq. (4), which reduced canopy evaporation and elevate transpiration355

rate). In this simulation, fwetmax was considered as 1 for CLM5 (hereafter referred to as CLM5 fmx=1), and we used this

when we wanted to make a fairer comparison with CLM4.5
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Figure 6. Test simulation using Φ=0.25 and Θ=0.7 as in [Figure 5d]. By the modification of Φ, maximum GPP has been reduced. It is

possible to improve this model by updating Θ. r2 is a R-squared value without an intercept. The units for both (a) and (b) are the same as

µmol ·m−2s−1

Similarly to CO2 flux, total H2O fluxes of CLM5 were overestimated (2.1×10−5 mm·s−1 higher in daytime than eddy-

covariance values). Flux rates in the CLM5 fmx=1 simulations were reduced in comparison to those predicted by CLM4.5

[Figure 7a; Figure 7b]. The notable decrease (CLM4.5 & CLM5 with Φ=0.25) was due to the change of the quantum yield α360

parameter needed for GPP predictions [Figure 6]. Transpiration rates (TR) also showed similar trends, and this indicates that

TR is an important process in this site.

At the daily time scale, CLM4.5 produced the highest estimates for both ET and TR in comparison to the other versions

[Figure 7e; Figure 7f]. CLM5 yielded a notable reduction of ET and TR due to the newly implemented leaf wetness parameter

fwetmax. We can visually identify that applying a quantum efficiency of Φ=0.25 made fitted lines closer to the 1:1 line for365

both ET and TR [Figure 7e; Figure 7f]. However, we cannot conclude that it was improved, since the low Φ changed the slope

and intercept values. This change might also be influenced by other components such as leaf wetness. Here, correlations of

TR were slightly increased, by around 0.01 (R2
CLM4.5 = 0.67, R2

CLM5 = 0.68), when considering Φ = 0.25. On the other side,

the correlations of ET were decreased by around 0.1 (R2
CLM4.5 = 0.42, R2

CLM5 = 0.44) [Table 1]. When assuming a lower

quantum efficiency, the change in TR makes the fitted slope for ET decrease [Figure 7e], possibly since transpiration is a more370

influential component than evaporation in this site. Thus, TR drove ET rates when there was higher energy exchange condition

(i.e., warm, sunnier and drier time). On the other hand, these results also highlighted the importance of other sub-models such

as canopy evaporation.
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Figure 7. (a) The ensemble diurnal variation of total H2O flux, where “Measured 33m” is measured by Eddy Covariance (at 33m),

“Sapflow” is transpiration measured through sapflow, all “CLM” are about evapotranspiration (ET), ‘fmx=1’ sign represents fwetmax=1,

and ‘Φ=0.25’ means 0.25 applied to Φ in Eq. (7); (c) Partitioned H2O flux, where ET, TR, and VE are evapotranspiration, transpiration,

and canopy evaporation from CLM; (b, d) The one to one plots of (a) and (c); (e) and (f) Daily ET and TR (except nighttime) against

eddy-covariance and sapflow data.
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Table 1. Fitting parameters and regression coefficients for sap flow and eddy-covariance measurements versus simulation by CLM in daily

scale for [Figure 7e] and [Figure 7f]. The nighttime data are excluded (set to zero) for both and values in parentheses are with nighttime data.

The unit for the intercept is 10−6·mm·s−1.

Figure Line Model Data Slope Intercept R2

1 CLM5 0.92 9.98 0.51

2 CLM5 fmx=1 0.82 10.79 0.51

3 CLM4.5 1.04 8.06 0.55

4 CLM5 Φ=0.25 0.69 8.51 0.42

[Figure 7e]

5 CLM4.5 Φ=0.25

EC 33m

(ET)

0.75 7.65 0.44

1 CLM5 1.11 (1.01) +1.79 (-0.22) 0.80 (0.66)

2 CLM5 fmx=1 1.29 (1.17) -3.00 (-5.32) 0.81 (0.67)

3 CLM4.5 1.51 (1.37) -4.43 (-7.29) 0.81 (0.67)

4 CLM5 Φ=0.25 0.87 (0.79) -0.51 (-2.14) 0.80 (0.67)

[Figure 7f]

5 CLM4.5 Φ=0.25

Sapflow

(TR)

1.12 (1.03) -3.67 (-5.84) 0.80 (0.68)

3.4 Leaf Wetness

The leaf wetness fraction predicted by CLM was compared to observations made using capacitance sensors [Figure 8]. In375

the analysis, the ensemble diurnal variations of leaf wetness were plotted, where ‘38m’, ‘11m’, and ‘3m’ are measurement

heights and the others are leaf wetness from CLM5 (fwetmax=0.05), CLM5 fmx=1 (fwetmax=1), and CLM4.5 (fwetmax=1)

[Figure 8b]. The predicted leaf wetness was not in agreement with the diurnal leaf wetness variation measured at this site

[Figure 8b]. In particular, the night-time fraction of leaf wetness was significantly higher when compared with gauged data.

The biggest problem detected in this study was that intercepted canopy water was rarely evaporated in the model. The canopy380

water tended to accumulate, especially due to frequent nighttime rainfall that started in the late afternoon or high daytime

humidity which caused condensation. Daytime leaf wetness seems to be reasonably simulated [Figure 8b]. However, no trend

could be identified in the comparison between simulated and measured data (not displayed here), which indicated that the

formula cannot adequately represent actual behaviors of wet fraction in both CLM5 and CLM4.5.

Intercepted precipitation was usually too high in CLM compared to observed leaf wetness [Figure 8c; Figure 8d]. The values385

in [Figure 8c] and [Figure 8d] were the increasing rate of leaf wetness due to precipitation. large and thick markers indicate the

average of values. The collected data was conditioned upon the absence of a rainfall event at least 2 hours prior and an initial

leaf wetness lower than 0.2. [Figure 8c] shows 0.5-hour rainfall events (one consecutive event in 30-min scale) and [Figure 8d]

is for 2 hours rainfall events (four consecutive events). This increment was directly related to canopy interception: the usual

increment for 2-hour (and 30-min) rain was 0.71(0.33) at a 38 m height data, 0.48(0.28) at a 3 m height data, around 0.88(0.73)390

in CLM5, 0.97(0.77) in CLM5 fmx=1, and 0.94 (0.46) in CLM4.5. The modified interception model (CLM5 fmx=1) from Eq.

(3) resulted in higher interception rate than CLM4.5 fmx=1 [Eq. (2)]. The interception rate also seemed higher with CLM5

fmx=1 than with original CLM5 as in [Figure 8c] because CLM5 fmx=1 had a higher canopy evaporation rate. This effect
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resulted in the acceleration of canopy evaporation while allowing interception to play a larger role in the canopy water balance.

In the one-to-one comparison, the increase of leaf wetness in CLM was usually higher than in measured data. Consequently,395

the wet canopy fraction at the beginning of the drying process was usually higher in CLM than in the measurements: 0.63 at

the 38 m observation, 0.47 at the 3 m observation, 0.96 in CLM5, 0.9 in CLM5 fmx=1, and 0.78 in CLM4.5 (see y-axis data at

0 x-axis in [Figure 7e]).

Another analysis showed that leaf wetness behavior is highly sensitive to incoming solar radiation. The water state on a leaf

in [Figure 8e; Figure 8f] was tracked over consecutive no-rain events for 3 hours just right after last rain events in the daytime400

between 10:00 AM and 14:00. [Figure 8e] shows events with low solar radiation (0 - 300 W ·m−2) and [Figure 8f] shows

events when solar radiation was higher than 300 W ·m−2. Although it was difficult to gather data for these serial drying events

(each plot uses at least 12 groups of 6 consecutive half-hourly time with no rain), the result clearly indicated that leaf wetness

is strongly influenced by an increase of incoming solar radiation when fwetmax=1 (CLM5 fmx=1 and CLM4.5). In the case of

fwetmax=0.05 (CLM5), the drying rate is reasonable at low solar radiation, but it is higher than values observed during high405

incoming solar radiation. The measured data in the analysis showed relatively smaller values of leaf wetness at lower levels of

the canopy. This indicated that rainfall does not frequently reach the lower canopy, and thus interception rates are low there.

This finding would suggest that lower fwetmax values are reasonable.

3.5 Temperatures and Soil Flux

The simulated canopy air temperature in both CLM4.5 and CLM5 was overestimated during daytime (+0.8 and +1 C◦, re-410

spectively) and underestimated during the nighttime (-1.9 and -1.1 C◦, respectively) [Figure 8]. In other words, the simulated

temperature may be overly sensitive to incoming solar radiation, like leaf wetness, which is likely given that overestimation

and underestimation cycle followed the solar cycle. Updated MOST parameters improved nighttime air temperatures in CLM5

(Burns et al., 2018), but they were still underestimated. As reported in the previous section, water remaining on the canopy

during nighttime tended to be inefficiently evaporated [Figure 8b], which was also possibly related to low canopy temperature415

in CLM. At lower canopy levels, the ground air temperature at the surface was overestimated during daytime, and it was even

higher than air temperature at heights of 1 m - 5 m [Figure 9b].

The ground surface tended to have high energy exchange during daytime similar to the canopy processes. Considering the

soil temperatures [Figure 9] and the soil heat fluxes [Figure 10], we found they were overestimated during daytime and under-

estimated in the nighttime. Soil temperature and heat flux in CLM was highly variable. Soil evaporation rates in both CLM4.5420

and CLM5 were also overestimated compared with estimated data from soil respiration chamber measurements (LI8100) [Fig-

ure 10]. For daytime soil evaporation, the average difference from the observation was 5×10−7 mm·s−1 with CLM4.5 and

15×10−7 mm·s−1 with CLM5. The measured field value was around 1×10−7 mm·s−1. The simulated soil moistures also

had high variability with low mean water contents (around 0.2 m3·m−3) compared with gauged values (0.3-0.4 m3·m−3).

The overestimation of vegetation temperature (Tv) in both CLM4.5 and CLM5 also appeared in the daytime simulation (≈425

+ 1.0∼2.4 C◦) [Figure 11a; Figure 11b]. Another model test was also made using global forcing datasets (Qian et al., 2006) to

corroborate our simulations, and the result was very similar behavior (≈ + 5 C◦, not depicted here). The high Tv and Ta from
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CLM simulations resulted in lower relative humidity than gauged-based canopy air humidity. We note that the sunlit/shade

scheme in CLM does not consider two different vegetation temperatures, so it only takes a single variable Tv to represent the

entire canopy. Canopy temperature (Tv) in CLM should be an average of sunlit and shaded leaf temperature but the simulated430

results were far from our expectation [Figure 11a]. A comparison plot also showed significant error [Figure 11b]. The additional

comparisons indicate that Tv on sunlit leaves normally followed the canopy air temperature (leaf thermoregulation) but CLM

did not reproduce such behavior [Figure 11c; Figure 11d].

4 Discussion and Conclusions

In this study, two versions of the Community Land Model (CLM4.5 and CLM5), running primarily in the satellite phenology435

(SP) mode, were tested against measured data from a mountainous tropical rainforest in Costa Rica. Net radiation was under-

predicted by an average of -20 W ·m−2 [Figure 4a; Figure 4b] in both CLM4.5 and CLM5. The discrepancy was attributed to

CLM’s over-prediction of surface albedo, which was, on average, 0.022 lower in the measurements [Figure 4c; Figure 4d].

The effects of topographic slope clearly appeared in the diurnal plots for albedo/PAR [Figure 4] and for CO2 flux [Figure

6]. With respect to albedo, the hillslope shading effect magnified these discrepancies, with afternoon values having larger440

differences as the sun moved behind the north-south trending mountain [Figure 4]. The level of discrepancy varied according

to the diurnal cycle of the intensity of incoming solar radiation and the solar angle [Figure 4c; Figure 4d]. PAR profiles also

showed radiation levels within the canopy had a skewed, or hysteretic, cycle [Figure 4e; Figure 4f], which was not captured by

CLM. These results indicated that canopy radiative transfer, including the surface albedo and sunlit/shade separation, may need

to be better represented in advanced land surface models, in order to simulate a more realistic response to solar radiation or445

topographical slope. A simple modification of albedo was attempted, but it requires more complicated manipulation to satisfy

other than albedo (e.g., PAR). This finding suggests multiple layer scheme is necessary to properly represent light penetration.

More importantly, aerodynamic resistance models, such as MOST, are also currently incapable of representing a sloped terrain.

If the effects of both can be implemented in CLM, predictions can be highly improved for mountainous regions, especially if

they can be considered at a fine grid scale.450

The study found that slope affected various data and outputs to an important degree, and suggested that additional obser-

vations are necessary to examine and capture such features. Several past studies to compare and improve CLM have taken

a similar approach. However, they focused on specific sub-model performance (Burns et al., 2018; Swenson and Lawrence,

2014; Bonan et al., 2011), rather than studying the effects of spatial complexity. For albedo, the slope effects were minor in

this study; skewness in the diurnal average curve was relatively small, and it is difficult to identify the difference between455

measured and modeled net radiation curves. On the other hand, the skewness for PAR is significant, and this was obviously

related to the different response of GPP through time [Figure 6]. Such influence might not be noticeable if the GPP compar-

ison were not classified by time, because the error appears similar to white noise. If this effect is captured, the prediction of

physiological variables (e.g., GPP and TR) can be improved. We anticipate the same effect would be present in a wider range

of forests. Also, recent land surface models are becoming more elaborated by reflecting vertical (e.g., multi-layered canopies460
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(Bonan et al., 2018; Ryder et al., 2016)) and horizontal (e.g., vegetation demographics (Fisher et al., 2018) heterogeneity. The

performance of these advanced models would be affected by topographical characteristics. Hence, further investigation should

focus on both improved model parameterization for hillslopes and additional data from mountainous forests.

The simulated photosynthesis rates tended to be higher than those observed; these result have also been reported in similar

studies of montane rainforests (Fan et al., 2019b; Muñoz-Villers et al., 2012). Such errors could possibly be alleviated by465

updating parameters associated with light-limitation effects. For carbon flux (GPP) and transpiration (TR), the over-estimation

in CLM4.5 has been reduced in CLM5 [Figure 5b; Figure 7b; Figure 7d]. However, CLM5 and CLM-BGC seem to reduce

the maximum assimilation rate limit by lowering the BB slope and other photosynthesis-limiting parameters (i.e., Vc,max25 or

Jmax25). The curved-shape error in GPP, at the middle range of photosynthesis rates still exists compared with CLM4.5 [Figure

5b]. At this point, we suggest that the light-response photosynthesis model could be the cause. We briefly addressed the electron470

transport model (Eq. (6) and Eq. (7)), and tested it by changing quantum efficiency and curvature parameters [Figure 5c; Figure

5c]. The analysis of GPP and transpiration values showed that changing the fitted quantum efficiency parameter resulted in

better agreement with the observations and the effect of topographical slope appeared more clearly [Figure 6; Figure 7f]. The

analysis contains possible errors caused by the simplified model for APAR and measurement error for GPP.

Partitioning the water flux is a critical task and this needs more investigation of each sub-model. Errors in vapor flux were475

particularly difficult to diagnose since the discrepancy can be caused by the failure of any of the embedded sub-models,

although transpiration is the largest driver of the overall pattern of total vapor flux (ET) [Figure 7c]. Evapotranspiration (ET)

consists of three major components: soil evaporation, canopy evaporation, and transpiration. Therefore, an error in any one of

the sub-models can make the entire water flux (ET) inaccurate. We can also recognize that the comparison of total vapor flux

[Figure 7b] has much more uncertainty than CO2 flux [Figure 5b].480

Among the sub-models, canopy evaporation was key to proper partitioning for this site, and the process relies on both the

rainfall interception sub-model and the leaf wetness sub-model. Both ET and TR were affected by the canopy evaporation

[Figure 7a; Figure 7c], because leaf wetness suppressed transpiration and enhanced canopy evaporation in CLM [Figure 3b;

Figure 8a]. However, the leaf wetness variable in CLM caused a high degree of uncertainty in a number of analyses, including

ensemble diurnal variation [Figure 8b] and interception rate [Figure 8c; Figure 8d], possibly due to too simple throughfall485

processes as reported in a previous study (Fan et al., 2019b). In Eq (3), when the leaf-stem area index is high (L+S > 2)

the interception rate approaches 100% in CLM5. This value is questionable in our view because of the canopy in this site.

The observed tree having high LAI (far higher than 2 (m2 ·m−2)) does not cover 100% of the sky (≈ tanh(2)). On the other

hand, the value of 0.25 in Eq (2) for CLM4.5 seems too low. Leaf wetness related parameters are also optimized for large-scale

forcing (e.g., 6 hourly data). The improperly modeled canopy water levels and the wetted fraction resulted in errors in canopy490

evaporation which overreacted to the intensity of solar radiation or net radiation [Figure 8e; Figure 8f]. We observed some

improvement in CLM5 by low maximum wetness fwetmax but the simulated leaf wetness was still sensitive to the incoming

solar energy. We have tested more complicated interception models (e.g., Aston (1979)), but they resulted in only a small

difference in the leaf wetness. Such water-related processed can have vertical/spatial variation due to the structure and the
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shape of canopy and to the sloped topography. Our observations also showed variations in behavior based on height within the495

canopy, and such changes imply that more layers are necessary for accurate predictions of canopy water storage.

The new maximum leaf wetness applied in CLM5 may need to vary more by vegetation and leaf morphology, as highlighted

in a previous study (Fan et al., 2019b). Changing fwetmax had a significant impact on latent heat fluxes [Figure 7a; Figure

7c; Figure 7e; Figure 7f], contrary to the results noted by Burns et al. (2018). This affect could be attributed to much more

frequent rainfall at our site. Also, a low fwetmax is more reasonable for needle leaf species than it is for those with large, broad500

leaves. Leaf surfaces within the canopy cannot be easily fully-wetted even in this tropical forest. However, simply applying

fwetmax = 0.05 for all sites cannot be realistic. The role of leaf wet faction is not negligible in CLM, and the photosynthesis is

still sensitive to leaf wetness (fwet 5 0.4). At low relative humidity, the role becomes stronger [Figure 8a]. In our site, different

leaf wetness behaviors have been observed between upper and low layer of the canopy (Andrews, 2016), which may also be

an important characteristic for tracking leaf wetness, canopy evaporation, and ET.505

From the similarity of two observations (EC vs. TR), we suspect the influence of a near emergent tree on the EC measure-

ments, which is possibly diagnosed by the advanced model (e.g., profiled simulation). Such interference by the up-slope tree

can occur anywhere in a sloped area and the CLM insufficiently represents spatial variability. Also, the TR was estimated using

more than 40 trees with a 2200 m2 plot. However, this plot is not necessarily situated such that. In this case, a demographic

model for TR and a multi-layer model for EC measurements may be useful to give more perspectives and address this problem.510

These might resolve the spatial scale issue and provide a method to handle some heterogeneity in the canopy (e.g., the emergent

tree) beyond the traditional turbulence model.

Temperature-related variables were also problematic in CLM [Figure 9; Figure 10; Figure 11]. This issue may be caused by

errors in energy partitioning and modeling aerodynamic resistance. Daytime versus nighttime changes in canopy air tempera-

ture and leaf temperature in CLM were found excessive. By the high temperature, the relative humidity was low in the canopy515

airspace during the daytime. These errors could also affect other physiological simulation results, such as transpiration rates.

The error may be caused by turbulence. In the Burns et al. (2018) study, changing the MOST parameters partially corrected

underestimates of nighttime air temperature in CLM5. The source of error was similar to, and perhaps intertwined with, the

issues found with leaf wetness. Consequently, soil temperature and all soil fluxes in CLM also had a higher degree of daily

fluctuation than their measured counterparts [Figure 10]. These variables (soil moisture, soil temperature, and soil heat flux)520

are highly related each other, and they are also linked with the canopy condition (canopy air temperature, relative humidity,

and aerodynamic resistance). Therefore, it was difficult to precisely diagnose the cause of such high variation.

Vegetation temperature affected energy flux via its relationship to canopy air temperature (Ta) and physiological processes

such as transpiration (Wang et al., 2014). The problem of skin (surface/leaf) temperature appeared in this study as in other

reports (Wang et al., 2014; Chen et al., 2010; Zheng et al., 2012; Zeng et al., 2012). Some researchers have attributed these525

issues to incorrect parameterization of roughness length for heat and have made a number of advances toward reducing these

errors (Yang et al., 2002; Wang et al., 2014; Chen et al., 2010; Zheng et al., 2012; Zeng et al., 2012). However, we noted that

our case is different since most studies discussed low diurnal variations and underestimations. The one-to-one comparisons

between the canopy air temperature and the leaf surface temperature [Figure 11c; Figure 11d] indicated that Tv on sunlit leaves
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normally followed the canopy air temperature (i.e., leaf thermoregulation), as described in other literature (Michaletz et al.,530

2016). However, CLM does not consider such leaf thermoregulation processes.

Adjustments in light-related parameters (e.g., LAI, leaf angle, and optical depth) did not noticeably improve model results.

The ratio of the absorbed energy on the soil surface to the total incoming solar radiation in CLM was 0.03, but our PAR

profile data [Figure 4e] indicated the ratio should be lower, around 0.01. The average incoming solar radiation in the daytime

was around 300 W ·m−2. Estimated absorbed energy on ground and vegetation in CLM and the received energy at 10 m PAR535

sensor (unit was converted) were 9.4, 252.5, and 3.1W ·m−2. Even though the modeled ground surface tended to receive excess

solar energy, changing this value did not seem to result in significant improvement in any simulated variables, because it was a

relatively low portion of the energy budget. Likewise, increasing LAI to 7.7, based on nearby site measurements (Teale et al.,

2014), only slightly alleviated issues associated soil temperatures and made no difference in canopy temperatures. We have also

tested different leaf angles, which are directly related to the optical depth (K), but there was no significant difference; a change540

in leaf angle from χL=0.1 to χL=0.4 resulted in a 0.3 C◦ decrease in ground surface temperature. These supplementary tests

indicated that the reduction of absorbed solar radiation on the ground and the some changes of parameters for soil albedo did

not significantly alter canopy temperatures. The problem may more likely be caused by errors in the aerodynamic resistance

above the canopy or too simplistic canopy structures, as has been reported in other studies (Wang et al., 2014; Chen et al.,

2010; Zheng et al., 2012; Zeng et al., 2012).545

A complete big-leaf (two-layer) scheme may be necessary to improve the model. From the vegetation temperature analysis,

we find that both CLM5 and CLM4.5 used a two big-leaf scheme as sunlit/shade area in the canopy. However, this module

works only for incoming solar radiation, not for leaf temperature or canopy air temperature. Based on measured data, the

air temperature differences along heights within the canopy were not significant, but partitioning leaf temperature into sunlit

and shaded values may be a promising adjustment due to the fact that the two have somewhat different behaviors. This effect550

was evident in measured versus modeled vegetation temperatures [Figure 11a]; the fraction of sunlit LAI for these plots was

about 26% in CLM). The fraction of leaf wetness also represents the entire canopy area in CLM, which seems too simplistic.

Maybe, the sunlit area should intercept the precipitation first, and dry out faster than the shaded area. On the other hand, this

two-layer scheme still involves up-scaling issues to capture in-canopy variability such as the vertical segmentation of the light,

physiological parameters, and the energy exchange (Bonan et al., 2011; Wang and Leuning, 1998; De Pury and Farquhar,555

1999).

Beyond this two-layer structure, full profiled models, including momentum and mass conservation scheme with storage

flux, would be much more promising. It was not difficult to identify the vertical variability of micrometeorological variables

through observations (Andrews, 2016). For instance, the higher locations in the canopy tended to be more easily wetted/dried

than the lower locations; the more exposed canopy area (higher location) was normally wetter than shaded canopy area [Figure560

8e; Figure 8f]. Many layer schemes can provide the diverse degrees of temperature, leaf wetness, net radiation, which can

naturally give a more realistic function of fwetmax, temperature, interception, and physiological behavior than such single

or two-layer scheme. The structure update such applying a LAD profile (LAIz) as in [Figure 2] should conduct first before

re-parameterizing each sub-model. Such a multi-layer scheme would be a bridge between leaf scale parameters and canopy
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scale simulation. Additionally, adding storage flux can be influential in rain forest (dense and tall canopy) (Heidkamp et al.,565

2018), since the storage flux was not implemented in CLM. The heat storage can be related to air under the canopy, but the role

of vegetation biomass is significant. The considering heat storage of vegetation biomass reduced the diurnal temperature range

(Swenson et al., 2019; Meier et al., 2019).

In conclusion, we have tested CLM’s predictions of land-atmosphere processes in a mountainous tropical rainforest. This

study determined the degree to which global-scale parameterizations work at this unique site. Very few case studies like this570

are currently available, and these results have provided some unique insights. We found that CLM5 has some advantages over

CLM4.5 under wet and steep conditions. However, CLM5 does not yet sufficiently resolve a number of critical problems,

such as in the partitioning the energy. Model updates to the representation of in-canopy processes and features - namely

photosynthesis, turbulence transport , canopy structure - are still needed to capture temperature variations and physiological

activity. More importantly, further investigation into including terrain slope effects into the models is required.575

Additionally, we found that canopy temperatures and leaf temperatures were over-sensitive to incoming solar radiation.

These errors caused a number of cascading issues: low relative humidity near the canopy surface, subsequently affecting tree

physiological processes, and excessive heating of the soil surface, leading to unrealistically high average and day-to-night

differences in soil temperatures and soil heat fluxes. The formulation describing leaf wetness processes is too simplified, which

caused model failure for the frequently rainy areas. Transpiration rate, which was the largest part of latent heat flux at the580

site, as well as carbon uptake through photosynthetic activity, were also over-estimated in CLM. In the photosynthesis model,

quantum efficiency also needs to be re-parameterized. Other attempts such as slope effect to a radiative transfer scheme and

more complex interception model did not give significant improvement. Ultimately, however, it may be necessary to apply a

complete big leaf scheme (two-layer scheme) or multi-layer scheme to better depict the multi-faceted interactions between leaf

wetness, temperature, and shading to properly represent canopy processes in tall, dense, or mountainous forests such as the585

location of this study.

Based on these new findings, further investigations are necessary. In particular, actual improvement at this study site by

applying multi-layer scheme and new parameterizations and global-scale tests will be the next goal. Also, to enhance the

reliability of the land surface model, more observations of water movement and energy exchange are essential at both this

site and other locations in the neotropics. Tracking the spatial heterogeneity of variables related to canopy structure (e.g., leaf590

temperatures, leaf distributions, canopy water) is particularly important.
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Figure 8. (a) TR/ET versus leaf wetness and classified by relative humidity [0-1]; (b) The ensemble diurnal variation of leaf wetness; (c)

and (d) indicate interception rates; (e) and (f) are the behavior of drying canopy. The marked lines are from measurements, and lines are

estimated from CLM.
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Figure 9. The ensemble diurnal variation of air temperatures. Canopy Levels at 22-33m and 1-5m are measured air temperatures, Ta rep-

resents air temperature at 28.075m in CLM, and Tg is ground air temperature at 0.01m in CLM. ‘Ts -0.02m’ is measured/simulated soil

temeprature. In (a), both CLM4.5 and CLM5 is overestimated in daytime (+0.8 and +1 C◦) and underestimated during the nighttime (-1.9

and -1.1 C◦). In (b), differences between ‘Measured Ta 01-05m’ and all CLM values (CLM5.0 Tg, CLM4.5 Tg, CLM5.0 Ts, and CLM4.5

Ts) are -0.39, -0.14, -0.32, and -0.06 in daytime and -0.02, 0.18, -0.11, and 0.08 C◦ in nighttime. Differences with ‘Measured Ts -0.02m’

are -0.04, 0.21, 0.03, and 0.30 in daytime and 0.90, 1.10, 0.81, and 1 C◦ in nighttime.

Figure 10. The ensemble diurnal variation of soil/ground heat fluxes (into soil +) (left) and soil evaporation.
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Figure 11. (a) The diurnal variation of leaf temperatures with measured canopy air temperatures; (b) The one to one plot of leaf temperatures:

CLM vegetation temperatures (Tv) are compared with measured values for the both gauged shade (Shade Tv) and sunlit (Sunlit Tv) vegetation

temperatures; (c) The one to one plots about measured canopy air temperatures versus measured leaf temperatures (sunlit and shade); (d) The

one to one plots about canopy air temperatures versus leaf temperatures from CLM (CLM5 Ta vs CLM5 Tv) and observation (Canopy Ta

22-38m vs averaged Tv from sunlit and shade Tv): Averaged Tv is estimated through (LAIShade×TvShade+LAISunlit×TvSunlit)/LAI .

In (a), daytime differences ‘CLM 5.0 Tv’ minus measurments (’Measured Ta 22-38m’, ‘Measured Shade Tv’, and ‘Measured Sunlit Tv’) are

1.1, 2.4, and 1.0. In nighttime, the differences are -2, -0.3, and -1.8 C◦. CLM5 normally 0.2 higher in daytime and 0.8 higher in nighttime.
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Data availability. All field data used in this study are archived in the OAKTrust repository (Miller et al., 2018a, b, c, d). Input forcing data

for the simulation (Song, 2020) and CLM model code (Sacks, 2020) are available via Github.

Appendix A: Generate leaf area density (LAD) based on Beer-Lambert Law

This site has a tower within steep forest between two big trees. At the top (44 m), Net Radiation sensor (CNR1) is located which595

can provide incoming solar radiation data. Our analysis was based on Photosynthetically Active Radiation (PAR) sensors, so

the solar data was converted into PAR data through multiplying by 0.5 · 4.5 (µmol ·m−2 · s−1) · (W ·m−2)−1. Except the top

sensors, 5 PAR sensors (static) were located along with various heights. These data have been measured since 2014 in 5 minute

scale. Also, Line Quantum sensor (non-static) was utilized to measure PAR profile in short term on 2016/01/31, 2016/02/01,

and 2016/02/04 in sunny day [Figure A1], which is a very short time period but provides higher vertical resolutions. When600

the line sensor was on, the time scale was set into 1 second scale for both the line sensor and static sensors. Each level was

measured for at least 1 min. However, the top sensor still had 5 min scale. Therefore, the top sensor data was downscaled into 1

second scale (as mean value) to normalize the line and the static sensor by it. Such downscaling does not affect much our study

result, compared with downscaled static data. Also, the weather condition (incoming solar radiation) did not change abruptly

during the field campaign.605

Figure A1. Data points by the Line Quantum Sensor with 10s scale (2016/01/31 10:00-11:30, 2016/02/01 15:00-16:00, 2016/02/04 09:00-

12:00). In the first day (the first up and down), data points stay longer at each level. In the other days, it is shorter but measured multiple

times

LAD is approximately estimated based on Beer-Lambert Law (Lalic et al., 2013; Maass et al., 1995). This is a appropriate

method because the most of LSMs follow this law to estimate radiative transfers which has critical influence on the land surface

energy balance. The Beer-Lambert Law can be written as

ln

(
Qz
Qmax

)
= − k

cosθ
·LAI(z) (A1)

where Qz is Photosynthetically active radiation (PAR) at level z, Qmax is maximum PAR at uppermost location, k is the

canopy extinction coefficient, LAI(z) is cumulative leaf area index (LAI) at z level, and θ is solar zenith angle. Using the610

equation, leaf area index profile LAI(z) can be estimated through θ and measured Q which vary in time and height. If the time

dependent variables are moved into the left-hand side, the relationship for LAI(z) can be established via averaging the time
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dependent term E[X(t)]t as

E

[(
Qt,z
Qt,max

)cosθt]
t

= e−k·LAI(z) = q̄z (A2)

where q̄z is normalized light extinction. The PAR data Qt,z can be measured using static sensors on the tower at 5 locations

for a long term observation, or Line Quantum Sensor (LQS) for high vertical resolution (20 levels) timely matching with tower615

sensors. We need to note that measured data by LQS is not comparable itself between different levels because each level cannot

be simultaneously measured [Figure A2]. Therefore, continuously observed data on the top of the tower were employed as a

reference and the PAR profiles were regenerated using Eq.(A2). In the same way, the other 5 static sensors on the tower was

also used to estimate light extinction data for validation.

Figure A2. Data availability at each level by the Line Quantum Sensor (gray) and Top sensor (dark gray) for Eq.(A2) about single field work

(Up and Down)

Based on this idea, Eq.(A2) for LQS is rewritten as620

q̄z = E

( QLQSt,z

QTowert,max

)cosθt
t

(A3)
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where QLQSt,z is measured data through LQS and this can be also tower data QTowert,z for the comparison. Also, LAI(z) is

cumulative LAD, so LAD is written as an integration form of

LAI(z) = −
z∫

ztop

LAD(z)dz = −LAItot

z∫
ztop

a(z)dz (A4)

where a(z) is leaf area density function (m2 ·m−3):
∫ z
ztop

a(z)dz = 1, ztop is a height of the top, so LAI(ztop) refers to total

LAI (LAItot). Then, after combining Eq. (A2) and Eq. (A4), the two are rewritten as

log(q̄z) = −k ·LAItot

z∫
ztop

a(z)dz (A5)

To get the density a(z), it is differentiated as625

log(q̄z)
′ = k ·LAItot · a(z) (A6)

The numerical results about the log(q̄z) and log(q̄z)
′ are shown in Figure (A3). All data set was smoothed by spline interpola-

tion method. Finally, All negative values were eliminated in the last step to get LAD profiles. In general, k ·LAItot is constant

so it is one parameter model. If LAItot is known, k can be estimated through Eq. (A5) and Eq. (A6).

This analysis indicates that very short period data and simple field measurement can produce LAD profiles. The PAR profiles

were measured via LQS and the LAD data were estimated from the equations Eq. (A5) and Eq. (A6). The profiles from LQS630

has high vertical resolution and short temporal period. The simulation results are compared with data from several fixed sensors

on the tower which has a long term data sets, and show the both data is well matched each other [Figure A4].
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Figure A3. Each calculation steps for LAD and LAI(z) profile. ln[qz] is equal to −k ·LAI(z), and ∆ln[qz]/∆z is identical to −k ·LADz

but any value less than zero was set to zero.
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Figure A4. PAR/PARTop profile is measured based on Eq.(A2). ‘Tower 2014-15’ is measured data at the tower from 2014 to 2015. ‘Tower

Jan2016’ is measured data at the same time with LQS data.
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