

1	Simulating Lightning NO _x Production in CMAQv5.2:
2	Evolution of Scientific Updates
3	
4 5	Daiwen Kang ¹ *, Kenneth Pickering ² , Dale Allen ² , Kristen Foley ¹ , David Wong ¹ , Rohit Mathur ¹ , and Shawn Roselle ¹
6 7	¹ National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
8 9	² Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21 22	*Corresponding author: Daiwen Kang, US EPA, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA. Tel.: 919-541-4587; fax: 919-541-1379; e-mail: kang.daiwen@epa.gov
23	
24	

25

Abstract

26	This work describes the lightning NO _X (LNO _X) production schemes in the Community
27	Multiscale Air Quality (CMAQ) model. We first document the existing LNO _X production
28	scheme and associated LNOx vertical distribution algorithm. We then describe updates that
29	were made to the scheme originally based on monthly National Lightning Detection Network
30	(mNLDN) observations. The updated scheme uses hourly NLDN (hNLDN) observations. These
31	NLDN-based schemes are good for retrospective model applications when historical lightning
32	data are available. For applications when observed data are not available (i.e., air quality
33	forecasts, future climate studies, and simulations focused outside the NLDN), we have developed
34	a scheme that is based on linear and log-linear parameters derived from regression of multiyear
35	historical NLDN (pNLDN) observations and meteorological model simulations. Preliminary
36	assessment for total column LNOx production reveals that the mNLDN scheme overestimates
37	LNO_X by over 40% during summer months compared with the updated hNLDN scheme that
38	reflects the observed lightning activity more faithfully in time and space. The pNLDN
39	performance varies with year, but it generally produced LNO _X columns that are comparable to
40	hNLDN and mNLDN, and in most cases, it outperformed mNLDN. Nevertheless, when no
41	observed lightning data are available, pNLDN can provide reasonable estimates of LNOx
42	emissions over time and space for this important natural NO _X source that influences air quality
43	regulations.
44	
45	
45	
46	
47	
48	
49	
50	
51	

52 **1. Introduction**

 heating of air molecules during a lightning discharge and subsequent rapid cooling of the hot lightning channel (Chameides, 1986). As one of the major natural sources of NO_X, LNO_X is mainly produced in the middle and upper troposphere. It plays an essential role in regulating ozone (O₃) mixing ratios and influences the oxidizing capacity of the troposphere (Murray, 2016). Despite much effort in both observing and modeling LNO_X during the past decade, considerable uncertainties still exist with the quantification of LNO_X production and distribution in the troposphere (Ott et al., 2010). Most studies estimate global LNO_X production ranging from 2 to 8 Tg (N) yr⁻¹ or about 10-15% of the total NO_x budget (Schumann and Huntrieser, 2007). However, owing to the concerted efforts to reduce anthropogenic NO_x emissions within the U.S. in recent decades, it is expected that the relative burden of LNO_X and its associated impact on atmospheric chemistry will increase. As a result, it is important to include LNO_X even when modeling ground-level air quality and the interaction of air-surface exchange processes. To simulate the amount of LNO_X production in space and time in a chemical transport model (CTM), it is important to know: 1) where and when lightning flashes occur, 2) the amount of LNO_X produced per flash, and 3) how LNO_X is vertically distributed. Historically, the lightning flash rates are derived with the aid of parameterizations in CTMs (Price and Rind, 1992; Allen et al.,2000, 2010, 2012; Barthe et al., 2007; Miyazaki et al., 2014). Various schemes have been developed for determining LNO_X production per flash based on assumptions regarding LNO_X production efficiency per flash or the energy ratio of cloud-to-ground (CG) flashes to intra-cloud (IC) flashes (Schumann and Huntrieser, 2007). The parameterizati	53	Lightning nitrogen oxides (LNO _X ; $NO_X = NO + NO_2$) are produced by the intense
 mainly produced in the middle and upper troposphere. It plays an essential role in regulating ozone (O₃) mixing ratios and influences the oxidizing capacity of the troposphere (Murray, 2016). Despite much effort in both observing and modeling LNOx during the past decade, considerable uncertainties still exist with the quantification of LNOx production and distribution in the troposphere (Ott et al., 2010). Most studies estimate global LNOx production ranging from 2 to 8 Tg (N) yr⁻¹ or about 10-15% of the total NOx budget (Schumann and Huntrieser, 2007). However, owing to the concerted efforts to reduce anthropogenic NOx emissions within the U.S. in recent decades, it is expected that the relative burden of LNOx and its associated impact on atmospheric chemistry will increase. As a result, it is important to include LNOx even when modeling ground-level air quality and the interaction of air-surface exchange processes. To simulate the amount of LNOx production in space and time in a chemical transport model (CTM), it is important to know: 1) where and when lightning flashes occur, 2) the amount of LNOx produced per flash, and 3) how LNOx is vertically distributed. Historically, the lightning flash rates are derived with the aid of parameterizations in CTMs (Price and Rind, 1992; Allen et al.,2000, 2010, 2012; Barthe et al., 2007; Miyazaki et al., 2014). Various schemes have been developed for determining LNOx production per flash based on assumptions regarding LNOx production efficiency per flash or the energy ratio of cloud-to-ground (CG) flashes to intra-cloud (IC) flashes (Schumann and Huntrieser, 2007). The parameterizations, derived based on theoretical analysis (e.g., Price et al. 1997), laboratory studies (Wang et al., 1998), limited aircraft or satellite observations, or a combination of these methods, are generally <li< td=""><td>54</td><td>heating of air molecules during a lightning discharge and subsequent rapid cooling of the hot</td></li<>	54	heating of air molecules during a lightning discharge and subsequent rapid cooling of the hot
 ozone (O3) mixing ratios and influences the oxidizing capacity of the troposphere (Murray, 2016). Despite much effort in both observing and modeling LNOx during the past decade, considerable uncertainties still exist with the quantification of LNOx production and distribution in the troposphere (Ott et al., 2010). Most studies estimate global LNOx production ranging from 2 to 8 Tg (N) yr⁻¹ or about 10-15% of the total NOx budget (Schumann and Huntrieser, 2007). However, owing to the concerted efforts to reduce anthropogenic NOx emissions within the U.S. in recent decades, it is expected that the relative burden of LNOx and its associated impact on atmospheric chemistry will increase. As a result, it is important to include LNOx even when modeling ground-level air quality and the interaction of air-surface exchange processes. To simulate the amount of LNOx production in space and time in a chemical transport model (CTM), it is important to know: 1) where and when lightning flashes occur, 2) the amount of LNOx produced per flash, and 3) how LNOx is vertically distributed. Historically, the lightning flash rates are derived with the aid of parameterizations in CTMs (Price and Rind, 1992; Allen et al.,2000, 2010, 2012; Barthe et al., 2007; Miyazaki et al., 2014). Various schemes have been developed for determining LNOx production per flash based on assumptions regarding LNOx production efficiency per flash or the energy ratio of cloud-to-ground (CG) flashes to intra-cloud (IC) flashes (Schumann and Huntrieser, 2007). The parameterizations, derived based on theoretical analysis (e.g., Price et al. 1997), laboratory studies (Wang et al., 1998), limited aircraft or satellite observations, or a combination of these methods, are generally too simplified and have large uncertainties (Miyazaki et. al., 2014) and cannot represent well the	55	lightning channel (Chameides, 1986). As one of the major natural sources of NO _X , LNO _X is
 2016). Despite much effort in both observing and modeling LNOx during the past decade, considerable uncertainties still exist with the quantification of LNOx production and distribution in the troposphere (Ott et al., 2010). Most studies estimate global LNOx production ranging from 2 to 8 Tg (N) yr⁻¹ or about 10-15% of the total NOx budget (Schumann and Huntrieser, 2007). However, owing to the concerted efforts to reduce anthropogenic NOx emissions within the U.S. in recent decades, it is expected that the relative burden of LNOx and its associated impact on atmospheric chemistry will increase. As a result, it is important to include LNOx even when modeling ground-level air quality and the interaction of air-surface exchange processes. To simulate the amount of LNOx production in space and time in a chemical transport model (CTM), it is important to know: 1) where and when lightning flashes occur, 2) the amount of LNOx produced per flash, and 3) how LNOx is vertically distributed. Historically, the lightning flash rates are derived with the aid of parameterizations in CTMs (Price and Rind, 1992; Allen et al.,2000, 2010, 2012; Barthe et al., 2007; Miyazaki et al., 2014). Various schemes have been developed for determining LNOx production per flash based on assumptions regarding LNOx production efficiency per flash or the energy ratio of cloud-to-ground (CG) flashes to intra-cloud (IC) flashes (Schumann and Huntrieser, 2007). The parameterizations, derived based on theoretical analysis (e.g., Price et al. 1997), laboratory studies (Wang et al., 1998), limited aircraft or satellite observations, or a combination of these methods, are generally too simplified and have large uncertainties (Miyazaki et al., 2014) and cannot represent well the regional and temporal variability of lightning activity (Boccippio, 2001; Medici et al., 2017).<!--</td--><td>56</td><td>mainly produced in the middle and upper troposphere. It plays an essential role in regulating</td>	56	mainly produced in the middle and upper troposphere. It plays an essential role in regulating
 considerable uncertainties still exist with the quantification of LNOx production and distribution in the troposphere (Ott et al., 2010). Most studies estimate global LNOx production ranging from 2 to 8 Tg (N) yr⁻¹ or about 10-15% of the total NOx budget (Schumann and Huntrieser, 2007). However, owing to the concerted efforts to reduce anthropogenic NOx emissions within the U.S. in recent decades, it is expected that the relative burden of LNOx and its associated impact on atmospheric chemistry will increase. As a result, it is important to include LNOx even when modeling ground-level air quality and the interaction of air-surface exchange processes. To simulate the amount of LNOx production in space and time in a chemical transport model (CTM), it is important to know: 1) where and when lightning flashes occur, 2) the amount of LNOx produced per flash, and 3) how LNOx is vertically distributed. Historically, the lightning flash rates are derived with the aid of parameterizations in CTMs (Price and Rind, 1992; Allen et al.,2000, 2010, 2012; Barthe et al., 2007; Miyazaki et al., 2014). Various schemes have been developed for determining LNOx production per flash based on assumptions regarding LNOx production efficiency per flash or the energy ratio of cloud-to-ground (CG) flashes to intra-cloud (IC) flashes (Schumann and Huntrieser, 2007). The parameterizations, derived based on theoretical analysis (e.g., Price et al. 1997), laboratory studies (Wang et al., 1998), limited aircraft or satellite observations, or a combination of these methods, are generally too simplified and have large uncertainties (Miyazaki et. al., 2014) and cannot represent well the regional and temporal variability of lightning activity (Boccippio, 2001; Medici et al., 2017). Over the past decades, our understanding of the production and distribution of LNOx has	57	ozone (O3) mixing ratios and influences the oxidizing capacity of the troposphere (Murray,
 in the troposphere (Ott et al., 2010). Most studies estimate global LNOx production ranging from 2 to 8 Tg (N) yr⁻¹ or about 10-15% of the total NOx budget (Schumann and Huntrieser, 2007). However, owing to the concerted efforts to reduce anthropogenic NOx emissions within the U.S. in recent decades, it is expected that the relative burden of LNOx and its associated impact on atmospheric chemistry will increase. As a result, it is important to include LNOx even when modeling ground-level air quality and the interaction of air-surface exchange processes. To simulate the amount of LNOx production in space and time in a chemical transport model (CTM), it is important to know: 1) where and when lightning flashes occur, 2) the amount of LNOx produced per flash, and 3) how LNOx is vertically distributed. Historically, the lightning flash rates are derived with the aid of parameterizations in CTMs (Price and Rind, 1992; Allen et al.,2000, 2010, 2012; Barthe et al., 2007; Miyazaki et al., 2014). Various schemes have been developed for determining LNOx production per flash based on assumptions regarding LNOx production efficiency per flash or the energy ratio of cloud-to-ground (CG) flashes to intra-cloud (IC) flashes (Schumann and Huntrieser, 2007). The parameterizations, derived based on theoretical analysis (e.g., Price et al. 1997), laboratory studies (Wang et al., 1998), limited aircraft or satellite observations, or a combination of these methods, are generally too simplified and have large uncertainties (Miyazaki et. al., 2014) and cannot represent well the regional and temporal variability of lightning activity (Boccippio, 2001; Medici et al., 2017). Over the past decades, our understanding of the production and distribution of LNOx has been greatly improved with the aid of ground-based lightning detection networks (e.g., Nag et al.,	58	2016). Despite much effort in both observing and modeling LNOx during the past decade,
 2 to 8 Tg (N) yr⁻¹ or about 10-15% of the total NO_x budget (Schumann and Huntrieser, 2007). However, owing to the concerted efforts to reduce anthropogenic NO_x emissions within the U.S. in recent decades, it is expected that the relative burden of LNO_x and its associated impact on atmospheric chemistry will increase. As a result, it is important to include LNO_x even when modeling ground-level air quality and the interaction of air-surface exchange processes. To simulate the amount of LNO_x production in space and time in a chemical transport model (CTM), it is important to know: 1) where and when lightning flashes occur, 2) the amount of LNO_x produced per flash, and 3) how LNO_x is vertically distributed. Historically, the lightning flash rates are derived with the aid of parameterizations in CTMs (Price and Rind, 1992; Allen et al.,2000, 2010, 2012; Barthe et al., 2007; Miyazaki et al., 2014). Various schemes have been developed for determining LNO_x production per flash based on assumptions regarding LNO_x production efficiency per flash or the energy ratio of cloud-to-ground (CG) flashes to intra-cloud (IC) flashes (Schumann and Huntrieser, 2007). The parameterizations, derived based on theoretical analysis (e.g., Price et al. 1997), laboratory studies (Wang et al., 1998), limited aircraft or satellite observations, or a combination of these methods, are generally too simplified and have large uncertainties (Miyazaki et. al., 2014) and cannot represent well the regional and temporal variability of lightning activity (Boccippio, 2001; Medici et al., 2017). Over the past decades, our understanding of the production and distribution of LNO_x has been greatly improved with the aid of ground-based lightning detection networks (e.g., Nag et al., 2014; Rodger et al., 2006), aircraft measurements for specific storms (e.g.,	59	considerable uncertainties still exist with the quantification of LNO _X production and distribution
 However, owing to the concerted efforts to reduce anthropogenic NO_x emissions within the U.S. in recent decades, it is expected that the relative burden of LNO_x and its associated impact on atmospheric chemistry will increase. As a result, it is important to include LNO_x even when modeling ground-level air quality and the interaction of air-surface exchange processes. To simulate the amount of LNO_x production in space and time in a chemical transport model (CTM), it is important to know: 1) where and when lightning flashes occur, 2) the amount of LNO_x produced per flash, and 3) how LNO_x is vertically distributed. Historically, the lightning flash rates are derived with the aid of parameterizations in CTMs (Price and Rind, 1992; Allen et al.,2000, 2010, 2012; Barthe et al., 2007; Miyazaki et al., 2014). Various schemes have been developed for determining LNO_x production per flash based on assumptions regarding LNO_x production efficiency per flash or the energy ratio of cloud-to-ground (CG) flashes to intra-cloud (IC) flashes (Schumann and Huntrieser, 2007). The parameterizations, derived based on theoretical analysis (e.g., Price et al. 1997), laboratory studies (Wang et al., 1998), limited aircraft or satellite observations, or a combination of these methods, are generally too simplified and have large uncertainties (Miyazaki et. al., 2014) and cannot represent well the regional and temporal variability of lightning activity (Boccippio, 2001; Medici et al., 2017). Over the past decades, our understanding of the production and distribution of LNO_x has been greatly improved with the aid of ground-based lightning detection networks (e.g., Nag et al., 2014; Rodger et al., 2006), aircraft measurements for specific storms (e.g., Huntrieser et al., 	60	in the troposphere (Ott et al., 2010). Most studies estimate global LNO _X production ranging from
 in recent decades, it is expected that the relative burden of LNOx and its associated impact on atmospheric chemistry will increase. As a result, it is important to include LNOx even when modeling ground-level air quality and the interaction of air-surface exchange processes. To simulate the amount of LNOx production in space and time in a chemical transport model (CTM), it is important to know: 1) where and when lightning flashes occur, 2) the amount of LNOx produced per flash, and 3) how LNOx is vertically distributed. Historically, the lightning flash rates are derived with the aid of parameterizations in CTMs (Price and Rind, 1992; Allen et al.,2000, 2010, 2012; Barthe et al., 2007; Miyazaki et al., 2014). Various schemes have been developed for determining LNOx production per flash based on assumptions regarding LNOx production efficiency per flash or the energy ratio of cloud-to-ground (CG) flashes to intra-cloud (IC) flashes (Schumann and Huntrieser, 2007). The parameterizations, derived based on theoretical analysis (e.g., Price et al. 1997), laboratory studies (Wang et al., 1998), limited aircraft or satellite observations, or a combination of these methods, are generally too simplified and have large uncertainties (Miyazaki et. al., 2014) and cannot represent well the regional and temporal variability of lightning activity (Boccippio, 2001; Medici et al., 2017). Over the past decades, our understanding of the production and distribution of LNOx has been greatly improved with the aid of ground-based lightning detection networks (e.g., Nag et al., 2014; Rodger et al., 2006), aircraft measurements for specific storms (e.g., Huntrieser et al., 	61	2 to 8 Tg (N) yr ⁻¹ or about 10-15% of the total NO _x budget (Schumann and Huntrieser, 2007).
 atmospheric chemistry will increase. As a result, it is important to include LNO_X even when modeling ground-level air quality and the interaction of air-surface exchange processes. To simulate the amount of LNO_X production in space and time in a chemical transport model (CTM), it is important to know: 1) where and when lightning flashes occur, 2) the amount of LNO_X produced per flash, and 3) how LNO_X is vertically distributed. Historically, the lightning flash rates are derived with the aid of parameterizations in CTMs (Price and Rind, 1992; Allen et al.,2000, 2010, 2012; Barthe et al., 2007; Miyazaki et al., 2014). Various schemes have been developed for determining LNO_X production per flash based on assumptions regarding LNO_X production efficiency per flash or the energy ratio of cloud-to-ground (CG) flashes to intra-cloud (IC) flashes (Schumann and Huntrieser, 2007). The parameterizations, derived based on theoretical analysis (e.g., Price et al. 1997), laboratory studies (Wang et al., 1998), limited aircraft or satellite observations, or a combination of these methods, are generally too simplified and have large uncertainties (Miyazaki et. al., 2014) and cannot represent well the regional and temporal variability of lightning activity (Boccippio, 2001; Medici et al., 2017). Over the past decades, our understanding of the production and distribution of LNO_X has been greatly improved with the aid of ground-based lightning detection networks (e.g., Nag et al., 2014; Rodger et al., 2006), aircraft measurements for specific storms (e.g., Huntrieser et al., 	62	However, owing to the concerted efforts to reduce anthropogenic NO _x emissions within the U.S.
 modeling ground-level air quality and the interaction of air-surface exchange processes. To simulate the amount of LNOx production in space and time in a chemical transport model (CTM), it is important to know: 1) where and when lightning flashes occur, 2) the amount of LNOx produced per flash, and 3) how LNOx is vertically distributed. Historically, the lightning flash rates are derived with the aid of parameterizations in CTMs (Price and Rind, 1992; Allen et al.,2000, 2010, 2012; Barthe et al., 2007; Miyazaki et al., 2014). Various schemes have been developed for determining LNOx production per flash based on assumptions regarding LNOx production efficiency per flash or the energy ratio of cloud-to-ground (CG) flashes to intra-cloud (IC) flashes (Schumann and Huntrieser, 2007). The parameterizations, derived based on theoretical analysis (e.g., Price et al. 1997), laboratory studies (Wang et al., 1998), limited aircraft or satellite observations, or a combination of these methods, are generally too simplified and have large uncertainties (Miyazaki et. al., 2014) and cannot represent well the regional and temporal variability of lightning activity (Boccippio, 2001; Medici et al., 2017). Over the past decades, our understanding of the production and distribution of LNOx has been greatly improved with the aid of ground-based lightning detection networks (e.g., Nag et al., 2014; Rodger et al., 2006), aircraft measurements for specific storms (e.g., Huntrieser et al., 	63	in recent decades, it is expected that the relative burden of LNOx and its associated impact on
To simulate the amount of LNOx production in space and time in a chemical transport model (CTM), it is important to know: 1) where and when lightning flashes occur, 2) the amount of LNOx produced per flash, and 3) how LNOx is vertically distributed. Historically, the lightning flash rates are derived with the aid of parameterizations in CTMs (Price and Rind, 1992; Allen et al.,2000, 2010, 2012; Barthe et al., 2007; Miyazaki et al., 2014). Various schemes have been developed for determining LNOx production per flash based on assumptions regarding LNOx production efficiency per flash or the energy ratio of cloud-to-ground (CG) flashes to intra-cloud (IC) flashes (Schumann and Huntrieser, 2007). The parameterizations, derived based on theoretical analysis (e.g., Price et al. 1997), laboratory studies (Wang et al., 1998), limited aircraft or satellite observations, or a combination of these methods, are generally too simplified and have large uncertainties (Miyazaki et. al., 2014) and cannot represent well the regional and temporal variability of lightning activity (Boccippio, 2001; Medici et al., 2017). Over the past decades, our understanding of the production and distribution of LNOx has been greatly improved with the aid of ground-based lightning detection networks (e.g., Nag et al., 2014; Rodger et al., 2006), aircraft measurements for specific storms (e.g., Huntrieser et al.,	64	atmospheric chemistry will increase. As a result, it is important to include LNO _X even when
 model (CTM), it is important to know: 1) where and when lightning flashes occur, 2) the amount of LNO_X produced per flash, and 3) how LNO_X is vertically distributed. Historically, the lightning flash rates are derived with the aid of parameterizations in CTMs (Price and Rind, 1992; Allen et al.,2000, 2010, 2012; Barthe et al., 2007; Miyazaki et al., 2014). Various schemes have been developed for determining LNO_X production per flash based on assumptions regarding LNO_X production efficiency per flash or the energy ratio of cloud-to-ground (CG) flashes to intra-cloud (IC) flashes (Schumann and Huntrieser, 2007). The parameterizations, derived based on theoretical analysis (e.g., Price et al. 1997), laboratory studies (Wang et al., 1998), limited aircraft or satellite observations, or a combination of these methods, are generally too simplified and have large uncertainties (Miyazaki et. al., 2014) and cannot represent well the regional and temporal variability of lightning activity (Boccippio, 2001; Medici et al., 2017). Over the past decades, our understanding of the production and distribution of LNO_X has been greatly improved with the aid of ground-based lightning detection networks (e.g., Nag et al., 2014; Rodger et al., 2006), aircraft measurements for specific storms (e.g., Huntrieser et al., 	65	modeling ground-level air quality and the interaction of air-surface exchange processes.
 of LNOx produced per flash, and 3) how LNOx is vertically distributed. Historically, the lightning flash rates are derived with the aid of parameterizations in CTMs (Price and Rind, 1992; Allen et al.,2000, 2010, 2012; Barthe et al., 2007; Miyazaki et al., 2014). Various schemes have been developed for determining LNOx production per flash based on assumptions regarding LNOx production efficiency per flash or the energy ratio of cloud-to-ground (CG) flashes to intra-cloud (IC) flashes (Schumann and Huntrieser, 2007). The parameterizations, derived based on theoretical analysis (e.g., Price et al. 1997), laboratory studies (Wang et al., 1998), limited aircraft or satellite observations, or a combination of these methods, are generally too simplified and have large uncertainties (Miyazaki et. al., 2014) and cannot represent well the regional and temporal variability of lightning activity (Boccippio, 2001; Medici et al., 2017). Over the past decades, our understanding of the production and distribution of LNOx has been greatly improved with the aid of ground-based lightning detection networks (e.g., Nag et al., 2014; Rodger et al., 2006), aircraft measurements for specific storms (e.g., Huntrieser et al., 	66	To simulate the amount of LNOx production in space and time in a chemical transport
 lightning flash rates are derived with the aid of parameterizations in CTMs (Price and Rind, 1992; Allen et al.,2000, 2010, 2012; Barthe et al., 2007; Miyazaki et al., 2014). Various schemes have been developed for determining LNOx production per flash based on assumptions regarding LNOx production efficiency per flash or the energy ratio of cloud-to-ground (CG) flashes to intra-cloud (IC) flashes (Schumann and Huntrieser, 2007). The parameterizations, derived based on theoretical analysis (e.g., Price et al. 1997), laboratory studies (Wang et al., 1998), limited aircraft or satellite observations, or a combination of these methods, are generally too simplified and have large uncertainties (Miyazaki et. al., 2014) and cannot represent well the regional and temporal variability of lightning activity (Boccippio, 2001; Medici et al., 2017). Over the past decades, our understanding of the production and distribution of LNOx has been greatly improved with the aid of ground-based lightning detection networks (e.g., Nag et al., 2014; Rodger et al., 2006), aircraft measurements for specific storms (e.g., Huntrieser et al., 	67	model (CTM), it is important to know: 1) where and when lightning flashes occur, 2) the amount
 1992; Allen et al.,2000, 2010, 2012; Barthe et al., 2007; Miyazaki et al., 2014). Various schemes have been developed for determining LNOx production per flash based on assumptions regarding LNOx production efficiency per flash or the energy ratio of cloud-to-ground (CG) flashes to intra-cloud (IC) flashes (Schumann and Huntrieser, 2007). The parameterizations, derived based on theoretical analysis (e.g., Price et al. 1997), laboratory studies (Wang et al., 1998), limited aircraft or satellite observations, or a combination of these methods, are generally too simplified and have large uncertainties (Miyazaki et. al., 2014) and cannot represent well the regional and temporal variability of lightning activity (Boccippio, 2001; Medici et al., 2017). Over the past decades, our understanding of the production and distribution of LNOx has been greatly improved with the aid of ground-based lightning detection networks (e.g., Nag et al., 2014; Rodger et al., 2006), aircraft measurements for specific storms (e.g., Huntrieser et al., 	68	of LNO _X produced per flash, and 3) how LNO _X is vertically distributed. Historically, the
 have been developed for determining LNO_x production per flash based on assumptions regarding LNO_x production efficiency per flash or the energy ratio of cloud-to-ground (CG) flashes to intra-cloud (IC) flashes (Schumann and Huntrieser, 2007). The parameterizations, derived based on theoretical analysis (e.g., Price et al. 1997), laboratory studies (Wang et al., 1998), limited aircraft or satellite observations, or a combination of these methods, are generally too simplified and have large uncertainties (Miyazaki et. al., 2014) and cannot represent well the regional and temporal variability of lightning activity (Boccippio, 2001; Medici et al., 2017). Over the past decades, our understanding of the production and distribution of LNO_x has been greatly improved with the aid of ground-based lightning detection networks (e.g., Nag et al., 2014; Rodger et al., 2006), aircraft measurements for specific storms (e.g., Huntrieser et al., 	69	lightning flash rates are derived with the aid of parameterizations in CTMs (Price and Rind,
 regarding LNO_X production efficiency per flash or the energy ratio of cloud-to-ground (CG) flashes to intra-cloud (IC) flashes (Schumann and Huntrieser, 2007). The parameterizations, derived based on theoretical analysis (e.g., Price et al. 1997), laboratory studies (Wang et al., 1998), limited aircraft or satellite observations, or a combination of these methods, are generally too simplified and have large uncertainties (Miyazaki et. al., 2014) and cannot represent well the regional and temporal variability of lightning activity (Boccippio, 2001; Medici et al., 2017). Over the past decades, our understanding of the production and distribution of LNO_X has been greatly improved with the aid of ground-based lightning detection networks (e.g., Nag et al., 2014; Rodger et al., 2006), aircraft measurements for specific storms (e.g., Huntrieser et al., 	70	1992; Allen et al., 2000, 2010, 2012; Barthe et al., 2007; Miyazaki et al., 2014). Various schemes
 flashes to intra-cloud (IC) flashes (Schumann and Huntrieser, 2007). The parameterizations, derived based on theoretical analysis (e.g., Price et al. 1997), laboratory studies (Wang et al., 1998), limited aircraft or satellite observations, or a combination of these methods, are generally too simplified and have large uncertainties (Miyazaki et. al., 2014) and cannot represent well the regional and temporal variability of lightning activity (Boccippio, 2001; Medici et al., 2017). Over the past decades, our understanding of the production and distribution of LNOx has been greatly improved with the aid of ground-based lightning detection networks (e.g., Nag et al., 2014; Rodger et al., 2006), aircraft measurements for specific storms (e.g., Huntrieser et al., 	71	have been developed for determining LNOx production per flash based on assumptions
 derived based on theoretical analysis (e.g., Price et al. 1997), laboratory studies (Wang et al., 1998), limited aircraft or satellite observations, or a combination of these methods, are generally too simplified and have large uncertainties (Miyazaki et. al., 2014) and cannot represent well the regional and temporal variability of lightning activity (Boccippio, 2001; Medici et al., 2017). Over the past decades, our understanding of the production and distribution of LNOx has been greatly improved with the aid of ground-based lightning detection networks (e.g., Nag et al., 2014; Rodger et al., 2006), aircraft measurements for specific storms (e.g., Huntrieser et al., 	72	regarding LNOx production efficiency per flash or the energy ratio of cloud-to-ground (CG)
 1998), limited aircraft or satellite observations, or a combination of these methods, are generally too simplified and have large uncertainties (Miyazaki et. al., 2014) and cannot represent well the regional and temporal variability of lightning activity (Boccippio, 2001; Medici et al., 2017). Over the past decades, our understanding of the production and distribution of LNOx has been greatly improved with the aid of ground-based lightning detection networks (e.g., Nag et al., 2014; Rodger et al., 2006), aircraft measurements for specific storms (e.g., Huntrieser et al., 	73	flashes to intra-cloud (IC) flashes (Schumann and Huntrieser, 2007). The parameterizations,
 too simplified and have large uncertainties (Miyazaki et. al., 2014) and cannot represent well the regional and temporal variability of lightning activity (Boccippio, 2001; Medici et al., 2017). Over the past decades, our understanding of the production and distribution of LNOx has been greatly improved with the aid of ground-based lightning detection networks (e.g., Nag et al., 2014; Rodger et al., 2006), aircraft measurements for specific storms (e.g., Huntrieser et al., 	74	derived based on theoretical analysis (e.g., Price et al. 1997), laboratory studies (Wang et al.,
 regional and temporal variability of lightning activity (Boccippio, 2001; Medici et al., 2017). Over the past decades, our understanding of the production and distribution of LNO_X has been greatly improved with the aid of ground-based lightning detection networks (e.g., Nag et al., 2014; Rodger et al., 2006), aircraft measurements for specific storms (e.g., Huntrieser et al., 	75	1998), limited aircraft or satellite observations, or a combination of these methods, are generally
 Over the past decades, our understanding of the production and distribution of LNO_x has been greatly improved with the aid of ground-based lightning detection networks (e.g., Nag et al., 2014; Rodger et al., 2006), aircraft measurements for specific storms (e.g., Huntrieser et al., 	76	too simplified and have large uncertainties (Miyazaki et. al., 2014) and cannot represent well the
 greatly improved with the aid of ground-based lightning detection networks (e.g., Nag et al., 2014; Rodger et al., 2006), aircraft measurements for specific storms (e.g., Huntrieser et al., 	77	regional and temporal variability of lightning activity (Boccippio, 2001; Medici et al., 2017).
2014; Rodger et al., 2006), aircraft measurements for specific storms (e.g., Huntrieser et al.,	78	Over the past decades, our understanding of the production and distribution of LNO _X has been
	79	greatly improved with the aid of ground-based lightning detection networks (e.g., Nag et al.,
2011), satellite observations (Pickering et al., 2016; Medici et al., 2017; Boersma et. al., 2005),	80	2014; Rodger et al., 2006), aircraft measurements for specific storms (e.g., Huntrieser et al.,
	81	2011), satellite observations (Pickering et al., 2016; Medici et al., 2017; Boersma et. al., 2005),

and modeling studies (e.g. Zoghzoghy et al., 2015; Cummings et al., 2013). For instance, even

though there are still substantial sources of uncertainty, the LNO_X production rate per flash is

now more robust than earlier literature estimates (Pickering et al., 2016).

A LNO_X production module, based on the lightning flash rate and LNO_X 85 parameterizations of Allen et al. (2010), was first introduced in the Community Multiscale Air 86 Quality (CMAQ) (Byun and Schere, 2006) model Version 5.0 (CMAQv5.0) that was released in 87 2012. That scheme, like the schemes used in previous works (Kaynak et al., 2008; Smith and 88 Mueller, 2010, and Koo et al., 2010), uses flash rates from the National Lightning Detection 89 90 Network (NLDN) (Orville et al., 2002) to constrain LNOx. Specifically, LNOx production is proportional to convective precipitation and is scaled locally so that the monthly average 91 convective-precipitation based flash rate in each grid cell matches the average of monthly total 92 NLDN flash rate, where the latter is obtained by multiplying the detection-efficiency adjusted 93 94 cloud-to-ground flash rate by Z+1, where Z is the climatological IC/CG ratio from Boccippio et al. (2002). This scheme, even though it is constrained by NLDN data, depends on the upstream 95 convective precipitation predicted by the meteorological model, that itself generally shows low 96 skill and large regional variations (e.g., Casati et al., 2008). With the availability of NLDN 97 lightning flash data, an algorithm is implemented to estimate hourly LNOx production from 98 NLDN lightning flash data, avoiding the dependence on the presence of convective precipitation 99 in the model. For modeling exercises where the observed lightning flashes are not available (e.g., 100 real-time air quality forecasts, future-year projection studies, and air quality simulations focused 101 outside the NLDN), different options are needed to provide the LNO_X estimates. A LNO_X 102 parameterization scheme is developed based on the relationship between the observed NLDN 103 lightning flashes and modeled convective precipitation from a set of Weather Research and 104 Forecasting (WRF) model simulations (the model used to create meteorological inputs for 105 106 CMAQ) from 2002 to 2014 over the continental United States.

In this manuscript, we present the updates/development of the LNO_X module that was
released in CMAQ version 5.2 in June 2017 and a preliminary assessment of old and new
schemes in their production of total LNO_X columns in space and time. In a follow-on manuscript,
a comprehensive evaluation of model performance with the various schemes will be presented.

Section 2 of this paper describes the existing and updated LNO_X schemes in CMAQ that are based on the NDLN data. Section 3 presents an analysis of the historical relationship between NLDN lightning flashes and model-predicted convective precipitation. Section 4 provides the derivation of parameterization scheme based on the analysis in Section 3. Section 5 is the assessment of the old and new schemes on their production of total LNO_X columns. With discussions, we conclude this study in Section 6.

117

118 2. Description of the LNO_X module in CMAQ: existing schemes and updates

119 **2.1 Lightning module and the existing LNO**_X schemes

Beginning with CMAQv5.0, the LNO_X module contains two options for inline (based on model simulated parameters at the run time) LNO_X production. The first option is an oversimplified parameterization that assumes that any 1 mm hour⁻¹ convective precipitation (CP) corresponds to 147 lightning flashes for a 36x36 km² horizontal grid cell (which should be scaled for other resolutions). A preliminary analysis indicated that this scheme produced unrealistically excessive LNO_X during summer months (not shown). This option was removed from CMAQ in version 5.2.

The second option in CMAQv5.0 was developed by Allen et. al. (2010; 2012) and utilized monthly National Lightning Detection Network (hereafter referred to as mNLDN) flash data. In this scheme, flashes are assumed to be proportional to CP with the relationship varying locally with a two-step adjustment so that monthly average CP-based flash rates match the NLDN observations. First, a global factor (lightning yield) is applied at each grid cell to convert from model CP to flashes. Then, a local adjustment (LTratio) is applied at each grid cell to ensure that the local CP- and NLDN-based flash rates match. Figure 1 shows the data

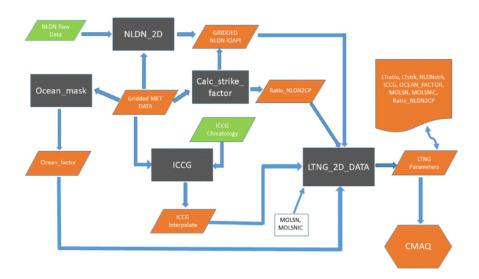


Figure 1. Flowchart of data preprocessing for LNO_X production using mNLDN scheme in CMAQ. The black diamonds are the R scripts or Fortran programs and the texts within the diamonds are the names of the scripts/programs used with CMAQ release, the green parallelograms are external data files and the orange parallelograms are output files, and MOLSN and MOLSNIC are two constant values.

134

135 preprocessing for LNO_X production using mNLDN data in CMAQ. First, CG flashes are gridded 136 onto the modeling grid that is specified in the model input meteorological file using the Fortran program, NLDN 2D. The output (GRIDDED NLDN IOAPI) is the monthly mean lightning 137 flash density (LFD) over the model domain in IOAPI format. Ocean factor, Calc strike factor, 138 139 and ICCG are R scripts in that the Ocean factor ingests the land-ocean mask and indicates values of 1 for grid cells that contain land and 0.2 for grid cells that only contain ocean. A value 140 of 0.2 is used for oceanic-grid cells because the lightning yield of marine convection is 141 approximately five times less than that of continental convection (Christian, et al., 2003). The 142 Calc strike factor script ingests the gridded NLDN CG lightning flash data and the CP values 143 predicted by the upstream meteorological model WRF to calculate the Ratio NLDN2CP 144 145 according to the following equation:

146
$$Ratio_NLDN2CP = \frac{\sum_{i=1}^{nT} \sum_{j=1}^{nC} NLDNflashes}{\sum_{i=1}^{nT} \sum_{j=1}^{nC} CP}$$
(1)

where nT is the total time steps, and nC is the total grid cells. Ratio_NLDN2CP is the ratio of the
monthly average total flashes over the domain to the monthly average CP over the domain, and it

is used to convert the CP values to flash rates. The ICCG script interpolates the climatological 149 150 IC/CG ratio (Boccippio et al., 2001) onto the model grid cells according to their geographical location and month of the year. Then the Fortran program, LTNG 2D DATA, collects all the 151 information generated in the prior steps plus the LNO_X production rate: moles NO per CG 152 (MOSLN) and IC (MOLSNIC) flash to generate one input file (one file for each month of the 153 year) that contains all the lightning parameters needed by the CMAQ lightning module. An 154 additional local adjustment factor LTratio (monthly value at each grid cell) is needed to ensure 155 that the local CP- and NLDN-based CG flash rates match. 156

157
$$LTratio = \frac{\sum_{i=1}^{nT} NLDN flashes}{\sum_{i=1}^{nT} CP \times Ratio_NLDN2CP}$$
(2)

158 This value is capped at 50 to avoid estimating excessive amounts of lightning-NO emissions in

159 grid cells with minimal CP. Finally, the moles of NO produced per hour and grid cell is

160 calculated in the lightning module in CMAQ as:

161 $CLNO = CP \times Ratio_NLDN2CP \times LTratio \times Ocean_factor \times (MOLSN + MOLSNIC \times ICCG)$ (3)

where CLNO is the moles of NO, and Ratio_NLDN2CP x LTratio x Ocean_factor is thelightning yield per unit CP.

The moles of LNO_X are then distributed vertically using the two-peak algorithm 164 described in Allen et al. (2012), which is a preliminary version of the segment-altitude 165 distributions (SADs) of flash channel segments derived from Northern Alabama Lightning 166 Mapping Array data by Koshak et al (2014) convolved with pressure, as in Wang et al. (1998) 167 168 found LNOx was proportional to pressure in laboratory experiments. A two-peak distribution is used because NO produced by IC flashes occurs at a higher layer of the atmosphere (350 hPa) 169 than NO production by CG flashes (600 hPa). Accordingly, LNOx is distributed with two 170 Gaussian normal distributions: the upper distribution has a mean pressure of 350 hPa and a 171 172 standard deviation of 200 hPa, and the lower distribution has a mean pressure of 600 hPa and a standard deviation of 50 hPa. For each CMAQ layer, the pressure (p) is calculated as following: 173 $p = \sigma \times (psfc - ptop) + ptop$ 174 (4)

where σ is the sigma value of the layer, psfc is the surface pressure, and ptop is the pressure at the top of the model domain.

- 177 At each pressure level (p), the cumulative distribution function (CDF) parameter for a Gaussian
- 178 normal distribution (x) is calculated as:

179
$$x = (p - WMU)/(\sqrt{2} \times WSIGMA)$$
(5)

- 180 where WMU is the mean value of the distribution (either 600 hPa or 350 hPa), and WSIGMA is
- 181 the standard deviation of the distribution (either 50 hPa or 200 hPa).
- 182 Then the fraction of the column emissions at the pressure p is calculated by the following
- 183 distribution function:

184
$$Frac(x) = 0.5 \times \{1.0 + SIGN(1.0, x) \times \sqrt{1.0 - e^{(-4.0 \times \frac{x^2}{\pi})}}\}$$
(6)

- where SIGN is a function that produces 1.0 if $x \ge 0$, and -1.0 otherwise.
- 186 At each model layer, the weighted contribution is:

187
$$W = (Bottom_{Frac} - Top_{Frac}) + (Bottom_{2Frac} - Top_{2Frac}) \times 0.2$$
(7)

- 188 where W is the weight at a model layer, Bottom_{Frac} and Top_{Frac} are the fractional contribution
- 189 calculated by Equation (6) at the bottom and top of the model layer, respectively, for the upper
- distribution peak (WMU = 350 hPa, and WSIGMA = 200 hPa), and Bottom2_{Frac} and Top2_{Frac} are
- 191 for the lower distribution peak (WMU=600 hPa and WSIGMA = 50 hPa).
- 192 Finally, the LNO_X at each layer is:

$$LTEMIS(L) = W(L) \times CLNO$$
(8)

where
$$LTEMIS(L)$$
 is the LNO_X at layer L, $W(L)$ is the weight at layer L as calculated by

195 Equation (7), and CLNO is the total column LNO_X.

196 **2.2** Updates to the lightning module and the LNOx production scheme

- 197 As described above, the LNO_x production scheme, mNLDN, calculates CLNO using scaled
- values of the convective precipitation. To simplify the procedure to generate LNO_X, in
- 199 CMAQv5.2 we used the gridded hourly NLDN (hNLDN) flash data in the lightning module,
- 200 which reduces Equation 3 to:

201 $CLNO = NLDNCG flashes \times Ocean_factor \times (MOLSN + MOLSNIC \times ICCG)$ (9)

202 NLDNCG flashes are generated using a Fortran program adapted from NLDN_2D by reading in

203 the raw NLDN CG flashes, Ocean_factor and ICCG are the same as in Equation 3, but the R

scripts are replaced by a Fortran program to put all these parameters (including the parameters

associated with regression analysis described in the next two sections) into one file as parameter

input file for CMAQ. MOLSN and MOLSNIC have default values of 350 moles flash⁻¹, but they

207 can be modified in the CMAQ run script via environment variables.

208

3. Examining the relationship between NLDN flashes and modeled CP

The existing LNO_X production schemes in CMAQ depend heavily on convective precipitation 210 (CP) amounts predicted by WRF. We analyzed meteorological fields generated by the WRF 211 model simulations from 2002 to 2014 over the continental United States to examine the 212 relationship between the observed lightning flashes and the predicted CP. Though the WRF 213 model has evolved over a few versions (from version 3.1 to 3.7), the Kain-Fritsch (KF) 214 convective scheme (Kain and Fritsch, 1990) was used consistently in simulations for all years. 215 We first examined the relationship between lightning flashes, which were aggregated into hourly 216 flash counts and gridded onto the modeling grid cells and the modeled hourly CP from WRF 217 over the continental US (12 km horizontal grid spacing). The results (not shown) showed little to 218 no correlation between the observed lightning flashes and the predicted CP, regardless of the 219 time period examined. However, when the lightning flashes and CP were each aggregated to 220 mean values over geographical regions (the entire modeling domain as the extreme) for each 221 month in the time series, as shown in Figure 2, the correlation between the two quantities was 222 obvious. This suggests that although the model-predicted CP is not a good predictor of lighting 223 events in space and time, it does show the skill to predict cumulative lightning activity across 224 225 geographic regions for a given month. Further analysis of the relationship indicates unique distribution patterns in space over the contiguous United States through the years. As shown in 226 Figures 3a and 3b, lightning yields per unit CP are smaller in the eastern US than in other areas 227

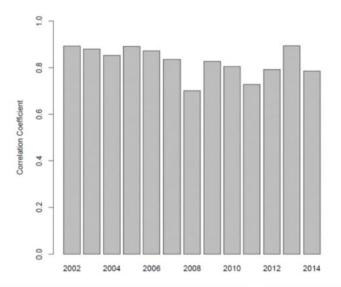


Figure 2. Correlation coefficients between 12 monthly mean NLDN lightning flash density and mean convective precipitation from 2002 to 2014 over the model domain.

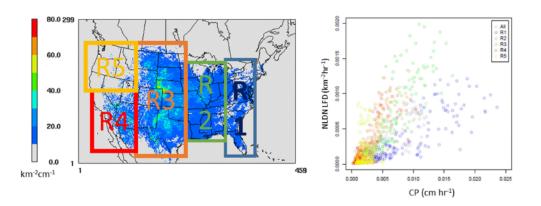
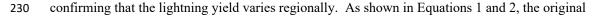
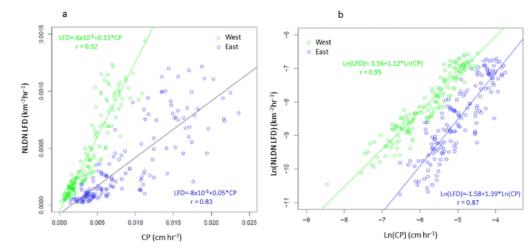



Figure 3. a. The ratio (background) between lightning flash density and modeled convective precipitation (CP) in July (2002-2014; similar patterns for other months) and the analysis regions (R1 to R5). b. Comparison of monthly mean NLDN lightning flash density (km⁻² hr⁻¹) and modeled convective precipitation for the domain (All) and regions (R1 to R5) from 2002-2014. Each plotted pixel represents the monthly mean value (13 (years) x 12 (months) total pixels) over each region.


229

- scheme and Allen et al. (2012) used a universal lightning yield for the entire modeling domain;
- however, this analysis indicates that the yield is lowest in the east (Region 1) but similar in
- regions 2–5, which could be combined. Figure 4a shows the scatter plots and the corresponding

linear regression equations, as well as the correlation coefficients (r). Again, the data points over

Figure 4. Comparison of monthly mean NLDN lightning flash density (km⁻² hr⁻¹) and modeled convective precipitation for the West (green) and East (blue) from 2002-2014: a. linear scale, b. logarithmic scale. Each plotted pixel represents the monthly mean value (13 (years) x 12 (months) total pixels) over each region.

the two regions (East and West) are distinct, and the slope (0.05) associated with the linear
regression equation over the East is less than half of the value over the West (0.13), meaning that
the lightning yield over the west is more than twice that over the eastern U.S. Further analysis
reveals that better relationships exist when logarithmic translation is taken for both NLDN
flashes and CP as shown in Figure 4b; the correlation coefficients increased for both the West and
East regions and the log-linear relationship is stronger at the upper value range than that at the
lower value range.

243

235

244 4. LNO_X scheme based on the relationship between NLDN flashes and CP

Statistically, the relationship between convective precipitation rate and NLDN lightning flash rate over large regions suggests similar yields within each region. But considerable scatter still exists within each region and the overall statistics may be dictated by certain large values. As an estimate, the most direct approach would be to use regression equations to determine LNOx from CP for western U.S. grid cells and regression equations for eastern U.S. grid cells as shown in Figures 4a and 4b. However, in addition to the concern associated with variations within a region mentioned earlier, this direct application would also cause some practical problems: 1) the

- analysis regions are arbitrary; and 2) the LNO_X production would be spatially inconsistent with
- abrupt changes along the bordering grid cells separating regions. Therefore, instead of deriving
- regression equations using the regional data, linear (log-linear) regression equations are derived
- using data averaged over an area of adjacent grid cells (analogous to the derivative concept to cut
- regions into small areas that cover adjacent model grid cells). In areas that lack enough data
- points to perform the regression, data are filled using the inverse-distance weighting (IDW)
- spatial interpolation technique (Lu and Wong, 2008).

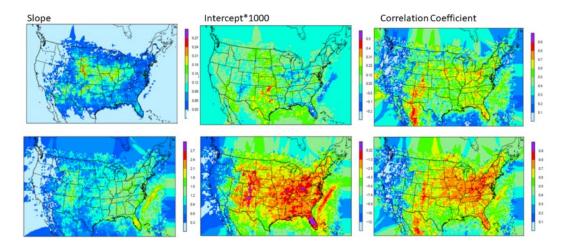


Figure 5. Parameters of linear (upper frame) and logarithmic linear (lower frame) regression parameters generated using all the data from 2002-2014: left column: Slope, middle column: Intercept, and right column: Correlation coefficient.

259

260 Figure 5 shows the spatial linear (upper panel) and log-linear (lower panel) regression parameters and the correlation coefficients over patches of 3x3 grid cells (36x36 km² in area) 261 using the data from 2002 to 2014, respectively. As shown in Figure 5, significantly large slope 262 values appear over the Mountain West and Central Plains states indicating a greater lightning 263 yield per unit CP over these regions than in other regions. Comparison of the two correlation 264 coefficient maps reveals that the log-linear relationship has higher correlations over larger areas 265 266 than the simple linear relationship. However, both approaches have correlations >0.5 in regions with frequent lightning activity. 267

268

270 **4.1 Stability over time**

- A robust parameterization scheme should be relatively insensitive to the training time period.
- 272 In order to test this, the lightning yield (slope of the linear regression was re-calculated using
- data from 2002-2012 (P02-12), 2002-2014 but excluding 2011 and 2013 (P02-14sb2), and 2009-
- 274 2014 (P09-14). Results are shown in Figure 6. Cross-examination of Figures 6a-c and Figure 5
- 275 (upper left) indicates that the spatial patterns of slopes generated using data from different time
- 276 periods are very similar except that larger values are created except over the Great Plains east of
- the mountains when the most recent years' data (2009-2014) were used to perform the linear

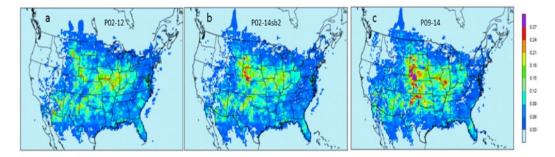


Figure 6. The slope maps from linear regression using data from different time period. a. Data from 2002-2012, b. Data from 2002-2014 excluding 2011 and 2013, c. Data from 2009-2014.

278

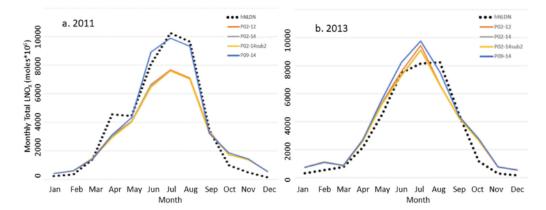
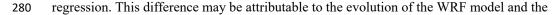
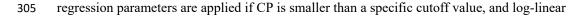



Figure 7. Total monthly column LNO_X over the model domain using parameters derived from different time periods for a. 2011 and b. 2013. NLDN: LNO_X is produced by the hourly NLDN lightning flashes, P02-12: parameters derived using data from 2002-2012, P02-14: parameters derived using data from 2002-2014, P02-14sb2: parameters derived using data from 2002-2014 excluding 2011 and 2013, P09-14: parameters derived using data from 2009-2014.

NLDN data (Nag et al., 2014) through the years, and it also indicates that the parameters need to
be updated to include the most recent data available.

To test the sensitivity of LNO_X to the parameters derived from different time periods, Figure 283 7 shows the total monthly column LNO_x for 2011 and 2013 generated using different set of 284 285 parameters derived using linear regression from different time periods, and for comparison, the LNOx produced by the updated NLDN based scheme, hNLDN, described in Section 2 is also 286 included. As shown in Figure 7a, in 2011 the parameter schemes (pNLDN) (except for P09-14) 287 tend to underestimate LNO_X during summer months (June, July, and August, JJA) compared 288 289 with hNLDN scheme, but in 2013 (Figure 7b), the pNLDN schemes are mixed in producing LNOx with both over- and under- estimate during the summer months. In both years, very small 290 differences are observed with the pNLDN scheme with parameters from different time periods 291 except P09-14. P09-14 parameters seem to produce the most LNO_X during summer months in 292 293 both years making it the best to match LNO_X produced by hNLDN scheme in 2011 but it yields more overestimation in June and July of 2013. 294


295

296 4.2 Sensitivity to logarithmic scales

As discussed earlier, the log-linear regression between NLDN lightning flashes and CP 297 produced better correlation coefficients than the simple linear regression. We also noticed, 298 299 however, that if the log scale parameters are applied to all the data, too much LNO_X is produced relative to the hNLDN scheme, especially during winter months when both lightning activity and 300 convective precipitation occur less frequently. This high bias exists because the log scale tends 301 302 to inflate contributions from small values when linear regression is performed after the log transformation. To test the impact of log scale on the production of LNOx, we choose the 303 304 summer months (JJA) in 2011 and specify a series of cutoff values for CP (cm), that is, linear

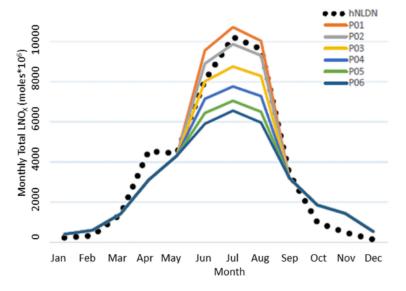


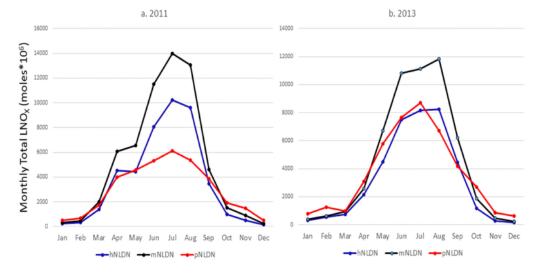
Figure 8. Total monthly column LNOx over the model domain using different CP cutoff values during summer months in 2011. hNLDN: LNO_X produced by the hNLDN scheme, P01-P06: CP (cm) cutoff values from 0.01 (P01), 0.02 (P02), to 0.06 (P06). Linear regression parameters are applied when CP is less than the cutoff value, and log-linear regression parameters are used if otherwise.

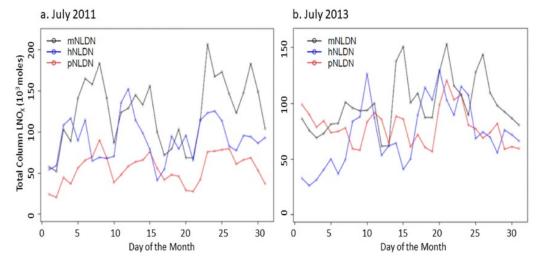
307	regression parameters are applied if otherwise. Figure 8 shows the monthly total column LNO_X
308	produced with CP cutoff values from 0.1 (P01) to 0.6 (P06) cm. As indicated in Figure 8, the
309	smaller the cutoff value is, the more LNO _X produced. When the cutoff value of 0.2 is applied,
310	LNOx production best matched those produced by hNLDN; however, the summer months in
311	2011 are different from other years, in that significantly more lightning flashes and convective
312	precipitation were observed in the continental US, especially in the east and southeast US. When
313	the same cutoff value (0.2) is applied to other years, LNO _X is overestimated compared with that
314	produced by hNLDN scheme. For generalized application to all years, dynamic cutoff values are
315	used with this scheme. Specifically, if CP is greater than the intercept value at a location from
316	linear regression, the log-linear regression parameters are used; otherwise, the linear regression
317	parameters are applied. This technique demonstrates acceptable results for all the years studied.
318	
319	

320

321 5. Assessment of LNO_X production schemes

- 322 As a preliminary assessment of these LNO_X production schemes, we only investigate the
- 323 distribution of column LNO_X in time and space; a more detailed evaluation of the impact of these
- schemes on air quality will be presented in a subsequent study.




Figure 9. Total monthly column LNOx over the model domain with different LNOx production schemes for 2011 and 2013

326 Figure 9 shows the monthly total column LNO_x produced by the different schemes for the years 2011 and 2013. For both years, mNLDN scheme tends to generate significantly more 327 328 LNOx during warm months (May-September) than hNLDN and pNLDN schemes. Collectively during May-September, mNLDN produced about 40% (39% in 2011 and 42% in 2013) more 329 LNOx than hNLDN. The regression parameter-based scheme, pNLDN, underestimated LNOx 330 during summer months (JJA) in 2011 compared to hNLDN, but the two schemes generally agree 331 well in 2013. As mentioned earlier, the significant underestimate of LNO_x by pNLDN may be 332 attributed to underestimated convective precipitation in WRF, which reduced the count of 333 lightning flashes during this period. There were about 17% more lightning flashes during JJA in 334 2011 than the same period in 2013 over the continental US. The relatively poor simulation of 335 336 2011 precipitation is also evident in Figure 2 as the correlation coefficient between NLDN flashes and model predicted CP values was the second least in 2011 among the 13 years studied. 337 The daily total column LNOx produced by these schemes for July 2011 and July 2013 is 338

- 339 presented in Figure 10. Among the schemes, mNLDN produced the most LNO_X on most of the
- days in July for both years. Except for a few days, pNLDN underestimated LNO_X in 2011
- relative to the other approaches, but in 2013 it produced comparable results to hNLDN except
- that for the first few days of the month, LNO_X was overestimated by pNLDN.

343

Figure 10. Total daily column LNOx over the model domain with different LNOx production schemes for 2011 and 2013

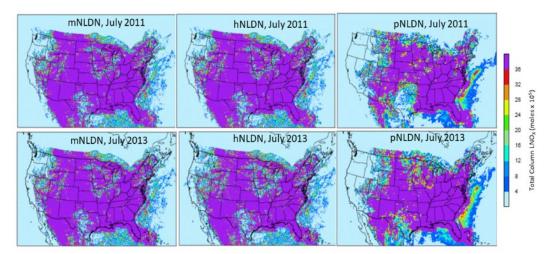


Figure 11. Spatial distribution of monthly column LNO_X with different LNO_X production schemes for July 2011 (upper frame) and July 2013 (lower frame)

344

schemes over the contiguous United States for July 2011 and July 2013 are presented in Figure

347 11. Overall, the spatial patterns generally agree with each other for both years, but the patterns 348 produced by pNLDN deviate along the edges or over locations where LNO_X amounts are relatively small. Note that both hNLDN and mNLDN are based on the same monthly observed 349 data, so consequently they produced similar spatial patterns. The pNLDN is derived based on the 350 linear and log-linear regression parameters using multiple years' historical observed data and 351 model simulations with different versions, and it is applied to a specific period without including 352 observations. Nevertheless, as the main intention for pNLDN to be applied is when there are no 353 observed lightning data available (such as air quality forecasts and future climate simulations), it 354 can provide the reasonable estimate for LNO_X comparable to hNLDN and mNLDN. 355

356

6. Summary and discussions

In this study, we described the LNO_X production schemes in the CMAQ model's lightning module and updated the existing monthly NLDN observation-based scheme with the current understanding and resources. For retrospective model applications, the hourly NLDN observation-based scheme, hNLDN, is expected to provide the highest-fidelity spatial-temporal LNO_X. If observations are not available, such as in air quality forecasts and future climate studies, the linear and log-linear regression parameter-based scheme, pNLDN, provides a spatialtemporal estimate of LNO_X.

Large uncertainties are still associated with each of these schemes resulting from the various 364 365 assumptions common to all the LNO_x production schemes, e.g., the uniform NO_x production rate per flash, the IC/CG ratios, the difference of LNO_x production rates over land and ocean, 366 and uniform vertical profiles in time and space. The regression parameter-based scheme suffers 367 additional uncertainties resulting from the way the parameters are derived. First, the CP values 368 369 were only produced by the KF convective scheme in this regression analysis. If other convective schemes are used in the upstream meteorological model, the regression relationship will differ. 370 371 Spatially this scheme is only applicable to the area over which the regression analysis was performed (here, the contiguous United States). In addition, the parameters may need to be 372 373 reproduced when updated observational data and model simulations become available.

Lightning and LNO_X will remain an active research area in atmospheric sciences, especially
when the Geostationary Lightning Mapper (GLM) on board the Geostationary Operational

- 376 Environment Satellite R (GOES-R) series (Goodman et al., 2013) becomes fully operational in
- 377 2018. With more observations (both at surface and in space) available, the assumptions
- associated with the LNO_X schemes will be updated to reflect the evolving understanding of
- 379 LNO_X production in time and space. For example, Medici et al. (2017) recently updated IC/CG
- ratios over the contiguous United States based on the relative occurrence of CG and IC flashes
- over an 18.5-year period. Their study updates the Boccippio et al. (2001) climatology used in
- this study that employed 4-year datasets. In addition, NASA George C. Marshall Space Flight
- 383 Center is updating the vertical distributions of lightning channel segments (SAD) based on 9-
- 384 year North Alabama Lightning Mapping Array (NALMA) datasets (W. Koshak, personal
- communication, 2018). When all these data are available, we will examine and adapt these
- updates to the lightning parameterizations and make them available in future CMAQ releases.
- 387

388 Code and data availability

CMAQ model documentation and released versions of the source code, including all model
code used in his study, are available at https://www.epa.gov/cmaq. The data processing and
analysis scripts are available upon request. The WRF model is available for download through
the WRF website (http://www.wrf-model.org/index.php).

The raw lightning flash observation data used are not available to the public but can be

394 purchased through Vaisala Inc. (https://www.vaisala.com/en/products/systems/lightning-

detection). The immediate data except the lightning flash data behind the figures are available

- from https://zenodo.org/record/2590452 (Kang, et al., 2019). Additional input/output data for
- 397 CMAQ model utilized for this analysis are available upon request as well.
- 398 399

Disclaimer: The views expressed in this paper are those of the authors and do not necessarily
 represent the views or policies of the U.S. EPA.

- 402
- 403 Author Contribution
- 404 Daiwen Kang: data collection, algorithm design, model simulation, analysis, and manuscript
 405 writing.
- 406 Kenneth Pickering: algorithm formation and manuscript writing.
- 407 **Dale Allen:** algorithm formation and manuscript writing.
- 408 Kristen Foley: algorithm formation, data analysis, and manuscript writing.

- 409 **David Wong**: code update.
- 410 **Rohit Mathur**: manuscript writing.
- 411 Shawn Roselle: manuscript writing.
- 412

413 Acknowledgement:

- 414 The authors thank Brian Eder, Golam Sarwar, and Tanya Spero (U.S. /EPA) for their 415 constructive comments and suggestions during the internal ratio process
- 415 constructive comments and suggestions during the internal review process.

416 **References**

417	Allen, D. J., Pickering, K. E., Stenchikov, G., Thompson, A., and Kondo, Y.: A three-
418	dimensional total odd nitrogen (NOy) simulation during SONEX using a stretched-grid
419	chemical transport model, J. <i>Geophys. Res.</i> , 105, doi:10.1029/2010JD014062, 2000.
420	Allen, D. J., Pickering, K. E., Duncan, B., and Damon, M.: Impact of lightning NO emissions on
421	North American photochemistry as determined using the Global Modeling Initiative
422	(GMI) model, J. Geophys. Res., 115, doi:10.1029/2010JD014062, http://dx.doi.
423	org/10.1029/2010JD014062, 2010.
424	Allen, D. J., Pickering, K. E., Pinder, R. W., Henderson, B. H., Appel, K. W., and Prados, A.:
425	Impact of lightning-NO on eastern United States photochemistry during the summer of
426	2006 as determined using the CMAQ model, <i>Atmos. Chem. Phys.</i> , 12, 1737–1758,
427	doi:10.5194/acp-12-1737-2012, 2012.
428 429 430	Barthe, C., Pinty, JP., and Mari, C.: Lightning-produced NOx in an explicit electrical scheme tested in a Stratosphere-Troposphere Experiment: Radiation, Aerosols, and Ozone case study, <i>J. Geophys. Res.</i> , 112, D04302, doi:10.1029/2006JD007402, 2007.
431	Boccippio, D. J., Cummins, K. L., Christian, H. J., and Goodman, S. J.: Combined Satellite- and
432	Surface-Based Estimation of the Intracloud–Cloud-to-Ground Lightning Ratio over the
433	Continental United States, <i>Mon. Weather Rev.</i> , 129, 108–122, 2001.
434 435 436	Boersma, K. F., Eskes, H. J., Meijer, E. W., and Kelder, H. M.: Estimates of lightning NOx production from GOME satellite observations, <i>Atmos. Chem. Phys.</i> , 5, 2311–2331, 2005, http://www.atmos-chem-phys.net/5/2311/2005/.
437 438 439	Byun, D. W. and Schere, K. L.: Rewiew of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system, <i>Appl. Mech. Rev.</i> , 59, 51-77, 2006.
440	Casati, B., Wilson, L., Stephenson, D., Nurmi, P., Ghelli, A., Pocernich, M., Damrath, U., Ebert,
441	E., Brown, B., and Mason, S.: Forecast verification: current status and future directions,
442	Meteorol. Appl., 15, 3–18, 2008.

443 444 445	Chameides, W. L.: The role of lightning in the chemistry of the atmosphere. In The Earth's Electrical Environment, Chapter 6, National Academy Press, Washington, D. C., ISBN 0-309-03680-1, 1986.
446	Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler, D. E., Driscoll, K. T.,
447	Goodman, S. J., Hall, J. M., Koshak, W. J., Mach, D. M., and Stewart, M. F.: Global
448	frequency and distribution of lightning as observed from space by the Optical Transient
449	Detector, J. Geophys. Res., 108(D1), 4005, doi:10.1029/2002JD002347, 2003.
450	Cummings, K. A., Huntemann, T. L., Pickering, K. E., Barth, M. C., Skamarock, W. C., Holler,
451	H., Betz, HD., Volz-Thomas, A., and Schlager, H.: Cloud-resolving chemistry
452	simulation of a Hector thunderstorm, <i>Atmos. Chem. Phys.</i> , 13, 2737–2777,
453	doi:10.5194/acp-13-2757-2013, 2013.
454	Goodman, S. J., Blakeslee, R. J., Koshak, W. J., Mach, D., Bailey, J., Buechler, D. Carey, J.,
455	Schultz, C., Bateman, M., McCaul Jr., E., and Stano, G.: The GOES-R Geostationary
456	Lighting Mapper (GLM), <i>Atmos. Res.</i> , 125-126, 34-39,
457	doi:10.1016/j.atmosres.2013.01.006, 2013.
458	Huntrieser, H., Schlager, H., Lichtenstern, M., Stock, P., Hamburger, T., Holler, H., Schmidt, K.,
459	Betz, H. D., Ulanovsky, A., and Ravegnani, F.: Mesoscale convective systems observed
460	during AMMA and their impact on the NOx and O3 budget overWest Africa. <i>Atmos</i>
461	<i>Chem Phys.</i> , 11(6):2503–2536. doi:10.5194/acp-11-2503-2011, 2011.
462	Kang, D., Pickering, K., Allen, D., Foley, K., Wong, D., Mathur, R., and Roselle, S.: data set,
463	https://doi.org/10.5281/zenod.2590452, 2019.
464	Kaynak, B., Hu, Y., Martin, R. V., Russell, A. G., Choi, Y., and Wang, Y.: The effect of
465	lightning NOx production on surface ozone in the continental United States. <i>Atmos Chem</i>
466	<i>Phys.</i> 8(17):5151–5159. doi:10.5194/acp-8-5151-2008, 2008.
467	 Koo, B., Chien, C. J., Tonnesen, G., Morris, R., Johnson, J., Sakulyanontvittaya T.,
468	Piyachaturawat, P., and Yarwood, G.: Natural emissions for regional modeling of
469	background ozone and particulate matter and impacts on emissions control strategies.
470	<i>Atmos. Environ.</i> ,44(19):2372–2382. doi:10.1016/j.atmosenv.2010.02.041, 2010.
471 472	Lu, G. Y., and Wong, D. W.: An adaptive inverse-distance weighting spatial interpolation technique, <i>Computers & Geosciences</i> , 34, 1044-1055, 2008.
473	Medici, G., Cummins, K. L., Cecil, D. J., Koshak, W. J., and Rudlosky, S. D.: The intracloud
474	lightning fraction in the contiguous United States, <i>Mon. Wea. Rev.</i> , 145, 4481–4499,
475	doi:10.1175/MWR-D-16-0426.s1, 2017
476	Miyazaki, K., Eskes, H. J., Sudo, K., and Zhang, C.: Global lightning NOx production estimated
477	by an assimilation of multiple satellite data sets, <i>Atmos. Chem. Phys.</i> , 14, 3277-3305,
478	doi:10.5194/acp-14-3277-2014, 2014.

479 480	Murray, L. T.: Lightning NO _x and Impacts on Air Quality, <i>Curr Pollution Rep.</i> , doi: 10.1007/s40726-016-0031-7, 2016.
481	Nag, A., Murphy, M. J., Cummins, K. L., Pifer, A. E., and Cramer, J. A.: Recent Evolution of the
482	U.S. National Lightning Detection Network, 23rd Intl. Lightning Detection Conference,
483	Tucson, Arizona, USA,18-19 March 2014.
484	<u>http://www.vaisala.com/en/events/ildcilmc/Pages/ILDC-2014-archive.aspx</u>
485 486	Novak, J. H. and Pierce, T. E.: Natural emissions of oxidant precursors, <i>Water Air Soil Poll.</i> , 67, 57-77, 1993.
487	Orville, R. E., Huffines, G. R., Burrows, W. R., Holle, R. L., and Cummins, K. L.: The North
488	American Lightning Detection Network (NALDN) – first results: 1998-2000, <i>Mon. Wea.</i>
489	<i>Rev.</i> , 130, 2098–2109, 2002.
490	Ott, L. E., Pickering, K. E., Stenchikov, G. L., Allen, D. J., DeCaria, A. J., Ridley, B., Lin, RF.,
491	Lang, S., and Tao, WK.: Production of lightning NOx and tis vertical distribution
492	calculated from three-dimensional cloud-scale chemical transport model simulations, <i>J.</i>
493	<i>Geophys. Res.</i> , 115, D04301, doi:10.1029/2009JD011880, 2010.
494	Pickering, K. E., Bucsela, E., Allen, D., Ring, A., Holzworth, R., and Krotkov, N.: Estimates of
495	lightning NOx production based on OMI NO ₂ observations over the Gulf of Mexico, J.
496	Geophys. Res. Atmos., 121, 8668-8691, doi:10.1002/2015JD024179, 2016.
497 498	Price, C., Penner, J., and Prather, M.: NO _X from lightning 1. Global distribution based on lightning physics, <i>J. Geophys. Res.</i> , 102, 5929-5941, 1997.
499 500	Price, C., and Rind, D.: A simple lightning parameterization for calculating global lightning distributions. <i>J. Geophys. Res.</i> , 97, 9919-9933, doi:10.1029/92JD00719, 1992.
501	Rodger, C. J., Werner, S., Brundell, J. B., Lay, E. H., Thomson, N. R., Holzworth, R. H., and
502	Dowden, R. L.: Detection efficiency of the VLF World-Wide Lightning Location
503	Network (WWLLN): Initial case study. <i>Ann. Geophys.</i> , 24, 3197–3214,
504	doi:10.5194/angeo-24-3197-2006, 2006.
505 506	Schumann, U. and Huntrieser, H.: The global lightning-induced nitrogen oxides source, <i>Atmos. Chem. Phys.</i> , 7, 3823-3907, doi:10.5194/acp-7-3823-2007, 2007.
507	Smith, S. N., and Mueller, S. F.: Modeling natural emissions in the Community Multiscale Air
508	Quality (CMAQ) Model-I: building an emissions data base. <i>Atmos Chem Phys.</i> ,
509	10(10):4931–4952. doi:10.5194/acp-10-4931-2010, 2010.
553	Zoghzoghy, F. G., Cohen, M. B., Said, R. K., Lehtinen, N. G., and Inan, U. S.: Ship-borne LF-
554	VF oceanic lightning observations and modeling, <i>J. Geophys. Res. Atmos.</i> , 120, 10890-
555	10902, doi:10.1002/2015JD023226, 2015.

556	Wang, Y., DeSilva, A. W., Goldenbaum, G. C., and Dickerson, D. D.: Nitric oxide production by
557	simulated lightning: Dependence on current, energy and pressure, J. Geophys. Res., 103,
558	19,149-19,159, 1998.

559