

Responses to Referee #1

General comments:

This paper uses the CMAQ air quality model, driven by WRF meteorology to present various approaches to simulating lightning NO_x over the USA. These approaches utilise the NLDN lightning data to: 1) directly determine Lightning NO_x (LNO_x) in the model, 2) to combine with simulated convective precipitation to determine LNO_x, or 3) develop relationships between CP and lightning, that could then be applied to CP simulation when NLDN observations are not available. These 3 approaches are all valid approaches to consider and provide a useful comparison in this work. The authors describe the approaches and show how the models perform in different years in order to determine their robustness. The authors state that applying the NLDN observations directly will provide the highest fidelity LNO_x simulation. However, when observations are not available they conclude that the third option of parametrisation based on CP is appropriate, despite some issues which have been well-described.

In general, I am pleased to see such a paper. Very often lightning parametrisations are not well documented so this paper is welcomed. Furthermore, the thorough description of the 3 approaches will serve other modelling groups well should they be trying to decide how best to develop a lightning scheme for their own models. However, the paper is not ready for publication in its current form.

We thank the reviewer for the overall positive assessment of the manuscript and for the constructive comments. Incorporation of the reviewer's suggestions and revisions in response to the comments has greatly improved the revised manuscript.

Firstly, data description sections for the NLDN data, and the WRF driving model, and how it couples to CMAQ, need to be added.

In this application, WRF and CMAQ were run separately (offline). CMAQ used the meteorological fields output by WRF and prepared using MCIP as input files. We have now added a data description and model configuration section after the introduction section to address the NLDN data source and model configuration issues.

Secondly, there is no discussion of appropriateness for chemical transport and reactions of applying a LNO_x scheme that does not depend on the underlying simulated convection (through use of CP), as in the case with one scheme presented (hNLDN). This point is not a hindrance for the results of this paper which only looks at the LNO_x itself, but it may be an issue should one look at ozone or OH for example.

In all the schemes, the lightning produced NO is treated as an emitted species and its atmospheric flux due to lightning is added to the existing NO from other emissions. This NO then undergoes the same chemical and physical processes as any other emission species does. In terms of the potential mismatch between LNO production and convective transport of other ozone precursors that could occur with the hNLDN scheme, we would recommend running WRF with lightning assimilation (Heath et al., 2016), then convection will be forced to occur at the correct times and locations, and will consequently eliminate any such possible mismatch.

We have provided additional information and recommended the use of lightning assimilation in WRF simulations in Section 3.3: Updates to the lightning module and the LNO production scheme.

Thirdly, the parametrisation developed has relationships that are highly spatially dependent, and therefore the caveats to applying it to different climates must be discussed. In summary, I can see that all the approaches presented here can have their uses, but that better data description and discussion of caveats is needed.

Yes, we agree. We have now revised our manuscript to provide the caveat and removed the obscure description regarding the application in areas outside the study domain.

Specific comments:

L33. "future climate studies": I think it is debatable whether the model can do this because it does not seem necessary to me that the spatial dependency of relationships developed for fig5 will hold in different climates. The authors must at least include discussion of this in the main text and justify their opinion.

LNOx emission estimates for future climate scenarios are needed to adequately assess both air quality and atmospheric deposition amounts under these scenarios. We include the description here to help serve this need through the development, application and evaluation of the pNLDN approach that attempts to parameterize LNOx emissions as a function of convective rain using historical data. We nevertheless acknowledge the relationship may not hold if the climate changes dramatically in a such that the range of change is outside that of the magnitude of the historical data. We have now added the caveat in the summary and conclusions.

L33. "simulations focused outside the NLDN region": Given the spatially dependent relationships of the model produced, and that there have only been produced over the NLDN region, I don't see how a model has been developed that simulate anywhere else. Please can authors clarify how their model can be applied elsewhere in the main text. Otherwise, I can see that a method has been developed that could be applied elsewhere where lightning observations exist, so a statement to this effect could still be included.

We agree with the reviewer that the current discussion is confusing. We have removed this description in the revised manuscript.

L65. I think the Murray (2016) paper on lightning and air quality would be nice reference to include here <https://link.springer.com/article/10.1007%2Fs40726-016-0031-7>

We already reference this publication at multiple locations in the manuscript text.

L84. This is just one paper that has provided extra evidence on LNOx per flash, and it looks only at the gulf of mexico. For this statement you need to reference at least a selection of the raft of studies that have added to this estimate since the 2007 schumann and huntrieser review. Here's some clues, they are not all required (it's not a review) but hopefully you can find some of them (Huntrieser et al., 2008; Cooray et al., 2009; Huntrieser et al., 2009; Bucsela et al., 2010; Ott et al., 2010; Huntrieser et al., 2011; Miyazaki et al., 2014; Pollack et al., 2016)

We have now added Bucsela et al., 2010; Huntrieser et al., 2009 and 2011; Ott et al., 2010, in addition to Pickering et al. 2016.

Before section 2. Need a description of the NLDN since it is integral to this paper. Notably, is it cloud-to-ground or total lightning? You also need some basic description of the WRF model and its version used here, since that is driving the convective precipitation variable that is integral to the paper.

Thank you for the suggestion. We have now added the necessary information in the data source and model configuration section.

L132. "A local adjustment is applied...": Is this done at the end of each month simulation. Or maybe CMAQ is not run at the same time WRF? You need to clarify these details of the model setup, for it to make sense how the LNOx scheme is being applied.

CMAQ is run offline, i.e., WRF fields were processed using MCIP to provide hourly input for CMAQ simulations. The local adjustment factor varies monthly and is applied at each hour to the input LNOx emissions. We have now provided the clarification in the "data source and model configuration" section.

Fig1. Ideally all the starting points (inputs) would be on the left, leading then to the outputs on the right. I believe these starting points are "NLDN raw data", "ICCG climatology", and "Gridded met data". This would make the flow clearer.

Thanks for the suggestion. In the revised manuscript, we have revised the figure as suggested.

L141. "yield": I find this term confusing. DO you mean NOx per flash? Flashes per CP? Or something else? Please clarify.

Yes, it means the lightning flash yield per unit of CP. We have now provided this clarification.

Eq3. I'm not entirely clear why Ratio_NLDN2CP and LTratio are both needed. Can the same thing not be achieved with LTratio = sum(NLDN)/sum(CP)? i.e. apart from the cap of 50, you are fitting a gradient with zero-intercept to each grid cell? Anyway, this is an existing scheme that's already been used so I guess it is what is. There's certainly no problem, I just think it would be clearer not to have two parameters where one would do. If there is a good reason, then it would be worth adding it to the text.

Eq 3. I think it's kind of being implied throughout that NLDN is just CG flashes. This is the only way this equation would make sense to me. See earlier comment, please add a description of NLDN early on where you make this explicit.

Thanks for the comments. It is true that this is an existing scheme that is in the process of being replaced with the updated scheme.

Yes, it would be possible to combine Ratio_NLDN2CP and LTratio into one term that varies with location and month. However, we chose to break it into a term that varies just with month (Ratio_NLDN2CP that converts from mm of convective precipitation per hour to flashes per hour) and a term that varies with location and month (LTratio, unitless). The rationale was that LTratio could be set to 1 for some applications and allowed to vary for others.

L164 onwards: this could be a separate subsection in order to break up the various components a bit more clearly.

Thanks. We have now separated this part as Section 3.2.

L164-173. Would be helpful to show a figure of an example distribution, or better an example IC distribution and CG distribution, and the combined distribution.

An example vertical lightning NO distribution is available in Allen et al. (2012), Fig. 1. In all the schemes as shown by the equations in the manuscript, the total column of lightning NO emissions is generated based on lightning flashes, then the column NO is distributed vertically. We don't vertically distribute either IC or CG flashes. Additional clarification is provided in the new data source and model configuration section.

Eq7. Doesn't the ICCG_ratio need to come into the vertical profile equations somewhere? Possibly this equation. Otherwise the final vertical weightings of the LNOx column will assume equal numbers of each flash type?

The total number of CG and IC flashes are determined first, the vertical profile equations are applied separately, and then the total emissions from each source are summed.

Eq7. Why multiply by 0.2? Isn't that something to do with the ocean grid cells, but isn't the lower distribution for CG flashes?

We agree that equation 7 in its current form could be confusing. To address the reviewer's question and avoid confusion for other readers, in the revised manuscript we have recast equation 7 as follows:

$$W = (Bottom_{Frac} - Top_{Frac}) \times F1 + (Bottom2_{Frac} - Top2_{Frac}) \times F2$$

In Equation 7, the weight (W) at each layer is the combination of two distribution density. The sum of each density through all the model column (all vertical layers) should be 1. However, the wider distribution (WMU=350 hPa, and WSIGMA = 200 hPa) extends beyond the top of the model domain, as such the sum of the first distribution is less than 1 (~0.93), while the second distribution (WMU=600 hPa and WSIGMA = 50 hPa) does add up to 1. Thus, in order to ensure that the sum of W through all the layers is equal to 1 and while also resembling the vertical distribution shown in Allen et al. (2012), each distribution needs to be scaled. The scaling factors F1 and F2 in the revised equation thus control the relative contributions of the two distributions to the vertical allocation of lightning emission. In the current CMAQ configuration, F1 = 1, and F2 = 0.2 (default). Also note that the vertical distribution obtained by this methodology is insensitive to the particular IC/CG ratio present in a given grid cell. When information regarding the vertical distributions for IC/CG flashes becomes available (for example, Lightning Mapping Array data could be used to obtain nominal distributions for IC and CG flashes), the factors F1 and F2 could be derived based on the IC/CG ratio at a particular grid cell to possibly represent variability in LNOx vertical distribution more accurately in time and space.

Section 2.2. This updated lightning scheme no longer depends on where convection occurs in WRF. This is often thought to be problematic because in some cases LNOx will not be transported and react as though in a convective environment. Please acknowledge this aspect of the update and give arguments for why it is appropriate.

As we mentioned earlier, in all the schemes, the lightning produced NO is treated as an emission species and it is added to the existing NO from other emissions, then it undergoes the same chemical/photochemical and physical processes as any other emission species do. In terms of the potential mismatch between LNO production and convective transport of other ozone precursors that

could occur with the hNLNDN scheme, we would recommend running WRF with lightning assimilation (Heath et al., 2016), so that convection will be forced to occur at the correct times and locations, which will eliminate any such mismatch. We have provided additional information and recommended the use of lightning assimilation in WRF simulations in Section 3.3: Updates to the lightning module and the LNO production scheme.

Fig2. Could add an extra bar for all month correlation.

It has been added in the revised Figure 2.

Fig2. Are all the bars significant? There's only 12 points for each, so worth checking. Could just add a horizontal line at the correlation needed for significance at 5% level.

Yes, this Figure has modified as suggested.

Fig3. Please use grey for where there is no data, and a different colour for where values are close to zero. Also, rainbow colour bars are unappealing for several reasons <https://www.climate-lab-book.ac.uk/2014/end-of-the-rainbow/> Please consider changing it.

We have revised the figure as suggested.

Fig3 scatter. You could add lines of best fit for each colour, and for all, to make things a little clearer.

It has been revised as suggested.

L236. "East and west". R1 and R5? Or all regions and R5? Please clarify what east and west refers to.

We have modified both the text and the figure caption to convey that R1 constitutes the West region while R2-R5 constitute the East region.

L241. "...and the log-linear is stronger in the upper value range.....". There doesn't look to be much in it to me, the spread around the log-linear best fit line is similar all the way along. I would just remove this end part of the sentence.

The sentence is revised as suggested.

Fig5. Could add a panel for the NLNDN lightning climatology. This will help interpret the relevance of each location.

The NLNDN Lightning flashes over the same modeling domain for July 2012 and January and July 2013 were presented in our earlier publication (Heath et al., 2016).

Fig5. These fits by location make it questionable to apply in a different climate. It is quite possible the response of lightning to CP for a location could change in a different climate, e.g. updraught strength could feasibly reduce but CP increase. This could affect the lightning production. You need to discuss this point if you want to include any claim that the model can be applied to different climates.

Thanks, we have revised the manuscript as suggested.

Fig6. Are the log-linear slopes and the intercepts also stable over time? Either add the plots to the figure5 or describe in the text

Additional panel for the log-linear parameters has been added in the revised Figure 6.

L280. Is the same version of WRF not used for the whole time period? This must be explained in a WRF data description section that needs to be added before section 2.

The clarification has been added as suggested in the data source and model configuration section.

L314. "...dynamic cutoff values are used...": please show the resultant column LNOx annual cycle with this approach on fig8

In Figure 9a, the red line is the resultant column LNOx using the dynamic cutoff values. This same line is now also added to the revised Figure 8 as suggested.

Fig9. Why only these 2 years. Would be fine to have many panels of all available years. Or if these years demonstrate a particular point then fine, but it would be good to add an extra panel with a climatology of each model, with standard deviation bars of each month to show interannual variability

We are able to add more panels for additional years. Since we have been using 2011 and 2013 as the representative years through the manuscript, we would like to stick to these two years to make it consistent. We are working to make additional analysis on all the available years to also assess trends and spatial variability – these will be reported in a future contribution.

L336. "...poor simulation of 2011 precip...": I think this is too strong. You have not shown the precip is poorly simulated, you have shown that the model based on CP doesn't work as well 2011. Lightning depends on many factors that may not be captured by CP variability. One of these factors may have varied in 2011 leading to poor model performance. I think you can say that one possible explanation for poor model performance is if CP was poorly simulated. If you want to say any more then you need to get precip observations and compare to the simulation.

Thanks for the suggestion, we have revised the description to remove the obscurity.

Fig10. Variance of pNLDN looks too low compared to hNLDN. I think it's worth mentioning this in the text.

We have added the description.

Fig11. Colour scale on this figure is not helpful. There needs to be a much larger upper value in order to see the detail. Or a logscale is often useful for such plots.

This Figure has been revised as suggested. Thanks.

L347. "...agree with each other for both years...": I can't tell if this is true because the colour scale lose so much of the detail through saturating.

The revised figure should make it clearer and we have revised the description accordingly.

L352. “..without including observations”: although reanalysis is driving the WRF model? This is something that needs to be clarified in WRF data description section.

By the observations here we mean that the lightning flash observations. We have added the clarification in the data source and model configuration section.

L363. Worth commenting here what other schemes are also available in WRF to do the same thing. E.g. I presume a cloud-top height scheme exists?

The WRF model itself doesn't simulate lightning and thus it doesn't provide lightning NO_x production schemes. The WRF-Chem model does contain the cloud-top-height lightning prediction scheme, as well as LNO_x schemes.

L386. Perhaps worth adding a bit more positivity regarding your paper along the lines of: “In this paper we have developed and demonstrated a method that can now be applied to new observations as they become available.”

Thanks, this point is well taken.

Technical comments:

L120. “inline”: Do you mean “online”? or maybe “interactive”?

All these words are interchangeably used in the modeling community. To add a little more clarification, we described it as “based on simulated parameters at run time” versus using static emission inputs.

L139. “...in that...”: “in which”?

Thanks, it has been revised as suggested.

Fig1. Can the quality of the image be increased? The text isn't as clear as it could be. Increase the font size too?

Yes, in the revised manuscript, we have improved the quality of all the figures.

L167 “as in Wang...”: “drawing from Wang who...”?

Thanks, this part of the sentence has been removed as suggested by Reviewer 2.

Fig3 caption. “.. for other months”. “...for other months (not shown)”

Thanks, it has been revised as suggested.

Fig5. Can the image quality be increased.

Figures in general are of poor image quality. Please can the dpi be increased.

Yes, all the figure quality has been improved by separating them from the main text (the resolution was degraded when the figures were inserted into the main text).

L372. "2018": we are now in 2019. Rephrase the sentence

Thanks, we have revised the description with updated reference.

Responses to Referee #2

The manuscript introduces an updated scheme for calculating the lightning NOx emissions by using the gridded hourly NLDN flash data. The updated scheme has improvements in simulating the NOx emissions compared with the previous scheme using the monthly NLDN flash data, which also requires two different scale factors in determining the lightning flash. The study also developed another scheme using linear and log-linear parameters, which is suitable to use when the hourly lightning flash data are not available, or the air quality simulations are set up to run real-time forecast, or future climate simulations. I personally appreciate the content and scope this study introduced. Natural source, such as lightning, will play an important role in determining the O₃ attainment, especially in the western U.S. I think the manuscript is acceptable to be published by the journal. I have some comments that need the authors to address.

We thank the reviewer for his/her positive comments and recommendation for publication.

Major comments:

Allen et al. (2010, 2012) developed the lightning scheme also using the flash rates from the NLDN, the same as the author proposed. I did not see what updates or advances the authors made considering that. Is that mainly because Allen et al. used monthly flash rates, while the authors used hours? Please elaborate.

The lightning scheme in CMAQ5.0 was developed by Allen et al. (2010, 2012) and was based on monthly NLDN data. In order to redistribute the monthly data into the modeling domain for hourly simulations, additional factors are applied based on the meteorological model predicted convective precipitation. Yes, the use of hourly NLDN data is one of the advances over the existing scheme in CMAQ5.0. When the hourly NLDN data are used, the lightning flashes are directly converted into lightning NO without dependence on the quality of the meteorological fields. In addition, the averaging over neighboring grid boxes and use of both linear and non-linear fits in the pNLDN scheme results in a better fit than in Allen et al.

The quality of the figures embedded in the manuscript are really low. I suggest the authors prepare clear plots when they submitted the manuscripts for review.

In the revised manuscript, the plots are separate from the main text and the resolution is improved.

Minor comments:

Line 28: suggest to remove “scheme and associated LNOx”

Following the reviewer’s suggestion, we have modified the sentence to read: “We first document the existing LNOX production and vertical distribution algorithm”.

Line 64-65: the authors should add some references listing how the previous studies about lightning NOx affect surface ozone, before the authors could make the conclusion of the importance of LNOx.

Many of the references already cited earlier in this paragraph (Murphy, 2016; Ott et al., 2010; and Schumann and Huntrieser, 2007) discuss and summarize estimated impacts of

lightning NOx on surface ozone. We believe these studies provide adequate justification for the importance of LNOx on atmospheric chemistry and resultant air quality.

Line 82: remove “For instance”

Thanks. It is revised as suggested.

Line 94: use abbreviations for “could-to-ground” since it was defined before

Thanks. Change has made.

Line 97-106: I suggest moving this parts into methodology.

Thanks for the suggestion, but we think that this description better fits in the introduction section.

Line 108: what is old and new scheme? It is confusing since the manuscript mentioned at least 4 schemes: previous parameterizations; Allen et al. 2010; hourly NLDN, and the newly developed parametrization scheme.

Following the reviewer’s suggestion, we have now modified the sentence as “a preliminary assessment of the spatial and temporal distribution of LNO columns in the existing (mNLDN), updated (hNLDN), and newly developed (pNLDN) schemes.”

Line 120: I suggest to remove this paragraph since this lightning NOx option was not discussed later in the manuscript any more.

There are two purposes for developing this manuscript: 1) to update the existing schemes using the most up-to-date information and develop a generic scheme for use without observed lightning data, 2) to document the schemes used in previous CMAQ releases. Even though the preliminary parameterization scheme wasn’t discussed later in the manuscript (due to production of unrealistic high LNO rates), we still want to keep it because it existed in earlier CMAQ versions. We feel that inclusion of this brief discussion would be useful to model users who have also used previous versions of the modeling system and these earlier LNOx parameterizations.

Line 131: to convert “what”?

To address the reviewer’s question, we have reworded this discussion to (line 164-166 of the revised manuscript as “First, a global factor (lightning yield) is applied at each grid cell to produce lightning flashes from model CP. Then, a local adjustment (LTratio) is applied at each grid cell to ensure that the local CP- and NLDN-based flash rates match.”

Line 167-168: remove “Wang et al (1998)”

Thank you for catching the typo. It is now removed.

Line 170: change to “and NO produced by CG flashes at a lower layer of the atmosphere (600hPa)”

Thanks. Change is made as suggested.

Line 211: CP was already defined in previous content

Thanks. It has been revised.

Line 211: In section 4, the authors used the different version and configurations of WRF to explain the performances of different years LNOx simulations. So here it would be helpful to show the verions/configuration of the WRF from 2002 to 2014.

To address the reviewer's suggestion, we have reworded the discussion on lines 251-253 of the revised manuscript as: "We analyzed meteorological fields generated by the WRF model simulations from 2002 to 2014 over the continental United States to examine the relationship between the observed lightning flashes and the predicted CP. Though the WRF model has evolved over a few versions (from version 3.4 to 3.8), the Kain-Fritsch (KF) convective scheme (Kain and Fritsch, 1990) was used consistently in simulations for all years." We have also added a data description and model configuration section after introduction to address the model configuration issue.

Line 245: convective precipitation was defined earlier

It is now revised.

Line 276-277: rewrite this sentence.

This sentence has been rewritten and now reads (lines 305-309)"As indicated in Figure 6, the spatial patterns of slopes generated using data from different time periods for both linear (upper panel) and log-linear regressions (lower panel) are similar except that larger values are created over the Great Plains east of the mountains when the most recent years' data (2009-2014) were used to perform the linear regression .

Line 280: see comments earlier. Please list the differences for the WRF versions.

Thanks, we have now added the information in the new data source and model configuration section.

Line 335-337: how the authors make the conclusions that the poor relations of NLDN flashes and model predicted CP was associated with the poor simulations of precipitation by WRF?

We agree with both reviewers that poor correlation between NLDN flashes and modeled convective precipitation may not completely be attributable to poor precipitation simulation by WRF. We have revised the discussion to now discuss other factors (in addition to WRF simulation errors) than can influence this poor correlation.

Simulating Lightning NO_x Production in CMAQv5.2: Evolution of Scientific Updates

Daiwen Kang^{1*}, Kenneth Pickering², Dale Allen², Kristen Foley¹, David Wong¹, Rohit Mathur¹,
and Shawn Roselle¹

¹National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA

²Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA

*Corresponding author: Daiwen Kang, US EPA, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA. Tel.: 919-541-4587; fax: 919-541-1379; e-mail: kang.daiwen@epa.gov

25

Abstract

26 This work describes the lightning NO_x (LNO_x) production schemes in the Community
27 Multiscale Air Quality (CMAQ) model. We first document the existing LNO_x production
28 scheme and ~~associated LNO_x~~ vertical distribution algorithm. We then describe updates that
29 were made to the scheme originally based on monthly National Lightning Detection Network
30 (mNLDN) observations. The updated scheme uses hourly NLDN (hNLDN) observations. These
31 NLDN-based schemes are good for retrospective model applications when historical lightning
32 data are available. For applications when observed data are not available (i.e., air quality
33 forecasts ~~and, future climate studies~~ ~~that assume under similar climate conditions, and~~
34 ~~simulations focused outside the NLDN~~), we have developed a scheme that is based on linear and
35 log-linear parameters derived from regression of multiyear historical NLDN (pNLDN)
36 observations and meteorological model simulations. Preliminary assessment for total column
37 LNO_x production reveals that the mNLDN scheme overestimates LNO_x by over 40% during
38 summer months compared with the updated hNLDN scheme that reflects the observed lightning
39 activity more faithfully in time and space. The pNLDN performance varies with year, but it
40 generally produced LNO_x columns that are comparable to hNLDN and mNLDN, and in most
41 cases, it outperformed mNLDN. Thus~~Nevertheless~~, when no observed lightning data are
42 available, pNLDN can provide reasonable estimates of LNO_x emissions over time and space for
43 this important natural NO_x source that influences air quality regulations.

44

45

46

47

48

49

50

51

52

53 **1. Introduction**

54 Lightning nitrogen oxides (LNO_x; $\text{NO}_x = \text{NO} + \text{NO}_2$) ~~is~~ are produced by the intense
55 heating of air molecules during a lightning discharge and subsequent rapid cooling of the hot
56 lightning channel (Chameides, 1986). Since NO and NO₂ are often coexistent in equilibrium
57 after immediate release, they~~it~~ are often collectively referred to as nitrogen oxides (NO_x; NO_x
58 $= \text{NO} + \text{NO}_2$). And for NO_x produced by lightning flashes, it is also referred to as lightning
59 NO_x (LNO_x) in the literature. As one of the major natural sources of NO_x, LNO_x is mainly
60 produced in the middle and upper troposphere. It plays an essential role in regulating ozone (O₃)
61 mixing ratios and influences the oxidizing capacity of the troposphere (Murray, 2016). Despite
62 much effort in both observing and modeling LNO_x during the past decade, considerable
63 uncertainties still exist with the quantification of LNO_x production and distribution in the
64 troposphere (Ott et al., 2010). Most ~~t~~ studies estimates of global LNO_x production range~~ing~~ from
65 2 to 8 Tg (N) yr⁻¹, which is ~~or about~~ 10-15% of the total NO_x budget (Schumann and Huntrieser,
66 2007). However, owing to the concerted efforts to reduce anthropogenic NO_x emissions within
67 the U.S. in recent decades, it is expected that the relative burden of LNO_x and its associated
68 impact on atmospheric chemistry will increase. As a result, it is important to include LNO_x even
69 when modeling ground-level air quality and the interaction of air-surface exchange processes.

70 To simulate the amount of LNO_x production in space and time in a chemical transport
71 model (CTM), it is important to know: 1) where and when lightning flashes occur, 2) the amount
72 of LNO_x produced per flash, and 3) how LNO_x is vertically distributed. Historically, the
73 lightning flash rates are derived with the aid of parameterizations in CTMs (Price and Rind,
74 1992; Allen et al., 2000, 2010, 2012; Barthe et al., 2007; Miyazaki et al., 2014). Various schemes
75 have been developed for determining LNO_x production per flash based on assumptions
76 regarding LNO_x production efficiency per flash or the energy ratio of cloud-to-ground (CG)
77 flashes to intra-cloud (IC) flashes (Schumann and Huntrieser, 2007). The parameterizations,
78 derived based on theoretical analysis (e.g., Price et al. 1997), laboratory studies (Wang et al.,
79 1998), limited aircraft or satellite observations, or a combination of these methods, are generally
80 too simplified and have large uncertainties (Miyazaki et. al., 2014) and cannot represent well the
81 regional and temporal variability of lightning activity (Boccippio, 2001; Medici et al., 2017).

82 Over the past decades, our understanding of the production and distribution of LNO_x has been
83 greatly improved with the aid of ground-based lightning detection networks (e.g., Nag et al.,
84 2014; Rodger et al., 2006), aircraft measurements for specific storms (e.g., Huntrieser et al.,
85 2011), satellite observations (Pickering et al., 2016; Medici et al., 2017; Boersma et. al., 2005),
86 and modeling studies (e.g. Zoghzoghy et al., 2015; Cummings et al., 2013). ~~For instance, even~~ Even
87 though there are still substantial sources of uncertainty, the LNO_x production rate per flash is
88 now more robust than earlier literature estimates ([Bucsela et al., 2010](#); [Huntrieser et al., 2009 and](#)
89 [2011](#); [Pickering et al., 2016](#); [Ott et al., 2010](#)).

90 A LNO_x production module, based on the lightning flash rate and LNO_x
91 parameterizations of Allen et al. (2010), was first introduced in the Community Multiscale Air
92 Quality (CMAQ) (Byun and Schere, 2006) model Version 5.0 (CMAQv5.0) that was released in
93 2012. That scheme, like the schemes used in previous works (Kaynak et al., 2008; Smith and
94 Mueller, 2010, and Koo et al., 2010), uses flash rates from the National Lightning Detection
95 Network (NLDN) (Orville et al., 2002) to constrain LNO_x. Specifically, LNO_x production is
96 proportional to convective precipitation and is scaled locally so that the monthly average
97 convective-precipitation based flash rate in each grid cell matches the average of monthly total
98 NLDN flash rate, where the latter is obtained by multiplying the detection-efficiency adjusted
99 ~~cloud-to-ground~~CG flash rate by Z+1, where Z is the climatological IC/CG ratio from Boccippio
100 et al. (2002). This scheme, even though it is constrained by NLDN data, depends on the upstream
101 convective precipitation predicted by the meteorological model, that [may be resolution](#)
102 [dependent and itself](#) generally shows low skill and large regional variations (e.g., Casati et al.,
103 2008). With the availability of NLDN lightning flash data, an algorithm is implemented to
104 estimate hourly LNO_x production from NLDN lightning flash data, avoiding the dependence on
105 the presence of convective precipitation in the model. For modeling exercises where the
106 observed lightning flashes are not available (e.g., real-time air quality forecasts; [and past- or](#)
107 [future-year projection studies, and air quality simulations focused outside the NLDN](#)), different
108 options are needed to provide the LNO_x estimates. A LNO_x parameterization scheme is
109 developed based on the relationship between the observed NLDN lightning flashes and modeled
110 convective precipitation from a set of Weather Research and Forecasting (WRF) model

111 simulations (the model used to create meteorological inputs for CMAQ) ~~offrom~~ 2002 to 2014
112 over the continental United States.

113 In this manuscript, we present the updates/development of the LNO_x module that was
114 released in CMAQ version 5.2 in June 2017 and a preliminary assessment of ~~the spatial and~~
115 ~~temporal distribution of LNO columns in the existing (mNLDN), updated (hNLDN), and newly~~
116 ~~developed (pNLDN) previous and~~ schemes. ~~in their production of total LNO_x columns in~~
117 ~~space and time.~~ In a follow-on manuscript, a comprehensive evaluation of model performance
118 with the various schemes will be presented.

119 Section 2 of this paper provides the data description and model configurations. Section 3
120 ~~2 of this paper~~ describes the existing and updated LNO_x schemes in CMAQ that are based on the
121 NLDN data. Section 43 presents an analysis of the historical relationship between NLDN
122 lightning flashes and model-predicted convective precipitation. Section 54 provides the
123 derivation of parameterization scheme based on the analysis in Section 43. Section 65 is the
124 assessment of the ~~old and new~~mNLDN, hNLDN, and pNLDN schemes on their production of
125 total LNO_x columns. With discussions, we conclude this study in Section 76.

126

127 2. Data source and model configuration

128 2.1 NLDN data

129 The observed lightning activity data with CG flashes were obtained from the National
130 Lightning Detection Network (NLDN) (Orville, 2008). The raw CG flashes from the raw data
131 were gridded onto the modeling horizontal grid cells with either hourly for use in the hNLDN
132 scheme and then values or being aggregated into monthly mean (hourly) values for use in the
133 mNLDN scheme depending on the scheme used. The NLDN CG flashes have a detection
134 efficiency of 90%-95% and a location accuracy of approximately 500 m. The detection
135 efficiency for NLDN IC flashes is generally lower and more variable (Zhu et al., 2016), so the
136 climatological IC/CG ratio developed by Boccippio et al. (2001) is used to quantify LNO
137 production by IC flashes.

138 2.2 Model configurations

139 The meteorological fields used in developing the LNO schemes are provided by WRF
140 (Stamarock and Klemp, 2008). The WRF output fields were processed using the Meteorology-
141 Chemistry Interface Processor (MCIP) to provide input for CMAQ modeling system (Otte and
142 Pleim, 2010). We leveraged on the archived WRF simulations from 2002 to 2014 to derive the
143 regression-based scheme (pNLDN). The archived meteorological outputs were generated from
144 three WRF versions: version 3.4 for 2002-2005, version 3.7 for 2006-2013, and version 3.8 for
145 2014.

146 NO is the direct product of lightning flashes, and after release, a large portion of it can be
147 quickly turned into NO₂ by reaction with O₃ and other species in the atmosphere. Under most
148 circumstances, NO and NO₂ coexist in under the chemical/photochemical equilibrium, so
149 traditionally the lightning produced nitrogen oxides are generally referred to as LNO_x. But only
150 NO is involved in the actual implementation of the schemes in CMAQ. We, hereafter, refer to
151 all the schemes as LNO schemes. All the LNO schemes include three steps: 1) derive or use
152 observed lightning flashes at a grid cell, 2) translate the lightning flashes into total column
153 lightning NO at the grid cell, and 3) distribute the total column NO among into model layers
154 based on vertical distribution algorithms. After the lightning NO is injected into the vertical
155 layers, it is then combined with (added to) the existing NO from other emissions (both
156 anthropogenic and biogenic sources). From there, it undergoes the same chemical/photochemical
157 and physical processes as any other species do.

158 **2.3. Description of the LNO_x module in CMAQ: existing schemes and updates**

159 **32.1 Lightning module and the existing LNO_x schemes**

160 Beginning with CMAQv5.0, the LNO_x module contains two options for inline (based on
161 model simulated parameters at the run time) LNO_x production. The first option is an over-
162 simplified parameterization that assumes that ~~any~~ 1 mm hour⁻¹ of convective precipitation (CP)
163 corresponds to 147 lightning flashes for a 36_x36 km² horizontal grid cell (which should be
164 scaled for other resolutions). A preliminary analysis indicated that this scheme produced
165 unrealistically excessive LNO_x during summer months (not shown). This option was removed
166 from CMAQ in version 5.2.

167 The second option in CMAQv5.0 was developed by Allen et. al. (2010; 2012) and
 168 utilized monthly National Lightning Detection Network (hereafter referred to as mNLDN) flash
 169 data. In this scheme, flashes are assumed to be proportional to CP with the relationship varying
 170 locally with a two-step adjustment so that monthly average CP-based flash rates match the
 171 NLDN observations. First, a global factor (lightning yield) is applied at each grid cell to ~~econvert~~
 172 ~~produce lightning flashes~~ from model CP ~~to flashes~~. Then, a local adjustment (LTratio) is
 173 applied at each grid cell to ensure that the local CP- and NLDN-based flash rates match. Figure
 174 1 shows the data preprocessing for LNO_x production using mNLDN data in CMAQ. First, CG
 175 flashes are gridded onto the modeling grid that is specified in the model input meteorological file
 176 using the Fortran program, NLDN_2D. The output (GRIDDED NLDN IOAPI) is the monthly
 177 mean lightning flash density (LFD) over the model domain in IOAPI format. Ocean_factor,
 178 Calc_strike_factor, and ICCG are R scripts ~~that are used to convert NLDN CG flashes to~~
 179 ~~quantities that are proportional to LNO production. The in which that the Ocean_factor script~~
 180 ingests the land-ocean mask and indicates values of 1 for grid cells that contain land and 0.2 for
 181 grid cells that only contain ocean. A value of 0.2 is used for oceanic-grid cells because the
 182 ~~amount of lightning produced per unit of convective rain is very lightning flash yield from CP of~~
 183 ~~marine convection is~~ approximately five times less ~~for marine convection than for that of~~
 184 continental convection (Christian, et al., 2003). The Calc_strike_factor script ingests the gridded
 185 NLDN CG lightning flash data and the CP values predicted by the upstream meteorological
 186 model WRF to calculate the Ratio_NLDN2CP according to the following equation:

$$187 \text{Ratio_NLDN2CP} = \frac{\sum_{i=1}^{nT} \sum_{j=1}^{nC} \text{NLDN flashes}}{\sum_{i=1}^{nT} \sum_{j=1}^{nC} \text{CP}} \quad (1)$$

188 where nT is the total time steps, and nC is the total grid cells. Ratio_NLDN2CP is the ratio of the
 189 monthly average total flashes over the domain to the monthly average CP over the domain, and it
 190 is used to convert the CP values to flash rates. The ICCG script interpolates the climatological
 191 IC/CG ratio (Boccippio et al., 2001) onto the model grid cells according to their geographical
 192 location and month of the year. Then the Fortran program, LTNG_2D_DATA, collects all the
 193 information generated in the prior steps plus the LNO_x production rate: moles NO per CG
 194 (MOSLN) and IC (MOLSNIC) flash to generate one input file (one file for each month of the
 195 year) that contains all the lightning parameters needed by the CMAQ lightning module. An

196 additional local adjustment factor LTratio (monthly value at each grid cell) is needed to ensure
197 that the local CP- and NLDN-based CG flash rates match.

198
$$LTratio = \frac{\sum_{i=1}^{nT} NLDNflashes}{\sum_{i=1}^{nT} CP \times Ratio_NLDN2CP} \quad (2)$$

199 This value is capped at 50 to avoid ~~placing estimating~~ excessive amounts of lightning-NO
200 emissions in ~~model~~ grid cells with ~~much less minimal~~ CP ~~than observed in an attempt to match~~
201 ~~observed monthly flash rates~~. Finally, the moles of NO produced per hour and grid cell is
202 calculated in the lightning module in CMAQ as:

203
$$CLNO = CP \times Ratio_NLDN2CP \times LTratio \times Ocean_factor \times (MOLSN + MOLSNIC \times ICCG) \quad (3)$$

204 where CLNO is the moles of NO, and Ratio_NLDN2CP x LTratio x Ocean_factor is the
205 lightning yield per unit CP.

206 3.2 Vertical distribution algorithm

207 The moles of LNO_x are then distributed vertically using the two-peak algorithm
208 described in Allen et al. (2012), which is a preliminary version of the segment-altitude
209 distributions (SADs) of flash channel segments derived from Northern Alabama Lightning
210 Mapping Array data by Koshak et al (2014) convolved with pressure, ~~as in Wang et al. (1998)~~
211 ~~found LNO_x was proportional to pressure in laboratory experiments~~. A two-peak distribution is
212 used because NO produced by IC flashes ~~occurs is centered~~ at a higher layer of the atmosphere
213 (350 hPa) ~~than and than~~ NO produced by CG flashes ~~at a lower layer of the atmosphere~~ (600
214 hPa). Accordingly, LNO_x is distributed with two Gaussian normal distributions: the upper
215 distribution has a mean pressure of 350 hPa and a standard deviation of 200 hPa, and the lower
216 distribution has a mean pressure of 600 hPa and a standard deviation of 50 hPa. For each CMAQ
217 layer, the pressure (p) is calculated as following:

218
$$p = \sigma \times (psfc - ptop) + ptop \quad (4)$$

219 where σ is the sigma value of the layer, psfc is the surface pressure, and ptop is the pressure at
220 the top of the model domain.

221 At each pressure level (p), the ~~cumulative distribution function (CDF) parameter for~~
222 ~~a standardized Gaussian parameter normal distribution~~ (x) is calculated as:

223
$$x = (p - WMU) / (\sqrt{2} \times WSIGMA) \quad (5)$$

224 where WMU is the mean value of the distribution (either 600 hPa or 350 hPa), and WSIGMA is
225 the standard deviation of the distribution (either 50 hPa or 200 hPa).

226 Then the fraction of the column emissions at the pressure p is calculated by the following
227 distribution function:

228
$$Frac(x) = 0.5 \times \{1.0 + SIGN(1.0, x) \times \sqrt{1.0 - e^{(-4.0 \times \frac{x^2}{\pi})}}\} \quad (6)$$

229 where SIGN is a function that produces 1.0 if $x \geq 0$, and -1.0 otherwise.

230 At each model layer, the weighted contribution is:

231
$$W = (Bottom_{Frac} - Top_{Frac}) \times F1 + (Bottom2_{Frac} - Top2_{Frac}) \times F20.2 \quad (7)$$

232 where W is the weight at a model layer, $Bottom_{Frac}$ and Top_{Frac} are the fractional contribution
233 calculated by Equation (6) at the bottom and top of the model layer, respectively, for the upper
234 distribution peak ($WMU = 350$ hPa, and $WSIGMA = 200$ hPa), and $Bottom2_{Frac}$ and $Top2_{Frac}$ are
235 for the lower distribution peak ($WMU = 600$ hPa and $WSIGMA = 50$ hPa). F1 and F2 are scaling
236 factors that control the relative contributions to W from the top and the bottom distributions,
237 respectively. Ideally, W would match the vertical profile presented in Figure 1 by Allen et al.
238 (2012) and the sum of W at all the layers is equal to 1. In the current CMAQ configuration, F1 =
239 1 and F2 = 0.2.

240 Finally, the LNO_x at each layer is:

241
$$LTEMIS(L) = W(L) \times CLNO \quad (8)$$

242 where $LTEMIS(L)$ is the LNO_x at layer L, $W(L)$ is the weight at layer L as calculated by
243 Equation (7), and $CLNO$ is the total column LNO_x .

244 **3.3 Updates to the lightning module and the LNO_x production scheme**

245 As described above, the LNO_x production scheme, mNLDN, calculates $CLNO$ using scaled
246 values of the convective precipitation. To simplify the procedure to generate LNO_x , in

247 CMAQv5.2 we used the gridded hourly NLDN (hNLDN) flash data in the lightning module,
248 which reduces Equation 3 to:

249
$$CLNO = NLDNCG \text{ flashes} \times Ocean_factor \times (MOLSN + MOLSNIC \times ICCG) \quad (9)$$

250 NLDNCG flashes are generated using a Fortran program adapted from NLDN_2D by reading in
251 the raw NLDN CG flashes, Ocean_factor and ICCG are the same as in Equation 3, but the R
252 scripts are replaced by a Fortran program to put all these parameters (including the parameters
253 associated with regression analysis described in the next two sections) into one file as parameter
254 input file for CMAQ. MOLSN and MOLSNIC have default values of 350 moles flash⁻¹, but they
255 can be modified in the CMAQ run script via environment variables.

256 Since the hNLDN scheme directly injects LNO into the modeling grid cells based on
257 observed CG flashes, there is a possibility that a disconnection exists between LNO and other
258 convectively transported precursor species for O₃ production. However, when the lightning
259 assimilation technique (Heath et al., 2016) based on the same observed lightning flashes is
260 applied in WRF simulations, other precursor species will be forced to occur at the correct times
261 and locations. Therefore, it is recommended that lightning assimilation be applied in WRF
262 simulations when hNLDN scheme is used in CMAQ to produce LNO emissions.

263 **3.4. Examining the relationship between NLDN flashes and modeled CP**

264 The existing LNO_x production schemes in CMAQ depend heavily on ~~convective~~
265 ~~precipitation~~(CP) amounts predicted by WRF. We analyzed meteorological fields generated by
266 the WRF model simulations from 2002 to 2014 over the continental United States to examine the
267 relationship between the observed lightning flashes and the predicted CP. Though the WRF
268 model has evolved over a few versions (from version 3.44 to 3.87), the Kain-Fritsch (KF)
269 convective scheme (Kain and Fritsch, 1990) was used consistently in simulations for all years.
270 We first examined the relationship between lightning flashes, which were aggregated into hourly
271 flash counts and gridded onto the modeling grid cells and the modeled hourly CP from WRF
272 over the continental US (12 km horizontal grid spacing). The results (not shown) showed little to
273 no correlation between the observed lightning flashes and the predicted CP, regardless of the
274 time period examined. However, when the lightning flashes and CP were each aggregated to
275 mean values over geographical regions (the entire modeling domain as the extreme) for each

month in the time series, as shown in Figure 2, the correlation between the two quantities was obvious. This suggests that although the model-predicted CP is not a good predictor of lightning events in space and time, it does show the skill to predict cumulative lightning activity across geographic regions for a given month. Further analysis of the relationship indicates unique distribution patterns in space over the contiguous United States through the years. As shown in Figures 3a and 3b, lightning yields per unit CP are smaller in the eastern US than in other areas confirming that the lightning yield varies regionally. ~~The original scheme used a universal lightning yield for the entire modeling domain, while Allen et al. (2012) allowed the yield to vary locally. This As shown in Equations 1 and 2, the original scheme and Allen et al. (2012) used a universal lightning yield for the entire modeling domain; however, this~~ analysis indicates that the yield is lowest in the east (Region 1) but similar in regions 2–5, which could be combined. Figure 4a shows the scatter plots and the corresponding linear regression equations, as well as the correlation coefficients (r). Again, the data points over the two regions (East: Region 1 and West: Regions 2-5 in Figure 3a) are distinct, and the slope (0.05) associated with the linear regression equation over the East is less than half of the value over the West (0.13), meaning that the lightning yield over the west is more than twice that over the eastern U.S. Further analysis reveals that better relationships exist when logarithmic translation is taken for both NLDN flashes and CP as shown in Figure 4b; i.e., after applying the translation, the correlation coefficients increased for both the West and East regions ~~and the log-linear relationship is stronger at the upper value range than that at the lower value range.~~

4.5. LNO_x scheme based on the relationship between NLDN flashes and CP

Statistically, the relationship between ~~CP on convective precipitation~~ rate and NLDN lightning flash rate over large regions suggests similar yields within each region. But considerable scatter still exists within each region and the overall statistics may be dictated by certain large values. As an estimate, the most direct approach would be to use regression equations to determine LNO_x from CP for western U.S. grid cells and regression equations for eastern U.S. grid cells as shown in Figures 4a and 4b. However, in addition to the concern associated with variations within a region ~~mentioned earlier~~, this direct application would also cause some practical problems: 1) the analysis regions are arbitrary; and 2) the LNO_x production would be spatially inconsistent with abrupt changes along the bordering grid cells separating regions. Therefore,

306 instead of deriving regression equations using the regional data, linear (log-linear) regression
307 equations are derived using data averaged over an area of adjacent grid cells (analogous to the
308 derivative concept to cut regions into small areas that cover adjacent model grid cells). In areas
309 that lack enough data points to perform the regression, data are filled using the inverse-distance
310 weighting (IDW) spatial interpolation technique (Lu and Wong, 2008). Figure 5 shows the
311 spatial linear (upper panel) and log-linear (lower panel) regression parameters and the correlation
312 coefficients over patches of 3×3 grid cells ($36 \times 36 \text{ km}^2$ in area) using the data from 2002 to
313 2014, respectively. As shown in Figure 5, significantly larger ~~r~~ slope values appear over the
314 Mountain West and Central Plains states indicating a greater lightning yield per unit CP over
315 these regions than in other regions. Comparison of the two correlation coefficient maps reveals
316 that the log-linear relationship has higher correlations over larger areas than the simple linear
317 relationship. However, both approaches have correlations >0.5 in regions with frequent lightning
318 activity.

319 **4.1 Stability over time**

320 A robust parameterization scheme should be relatively insensitive to the training time period.
321 In order to test this, the lightning yield (slope of the linear and log-linear regression was re-
322 calculated using data from 2002-2012 (P02-12), 2002-2014 but excluding 2011 and 2013 (P02-
323 14sb2), and 2009-2014 (P09-14). The rResults are shown in Figure 6. Cross-examination of As
324 indicated in Figure 6s-6a-c and Figure 5 (upper left), indicates that the spatial patterns of slopes
325 generated using data from different time periods for both linear (upper panel) and log-linear
326 regressions (lower panel) are very similar except that larger values are created except over the
327 Great Plains east of the mountains when the most recent years' data (2009-2014) were used to
328 perform the linear regression. This difference may be attributable to the evolution of the WRF
329 model and the NLDN data (Nag et al., 2014) through the years, and it also indicates that the
330 parameters need to be updated to include the most recent data available.

331 To test the sensitivity of LNO~~x~~ to the parameters derived from different time periods, Figure
332 7 shows the total monthly column LNO~~x~~ for 2011 and 2013 generated using different set of
333 parameters derived using linear regression from different time periods, and for comparison, the
334 LNO~~x~~ produced by the updated NLDN based scheme, hNLDN, described in Section 2 is also
335 included. As shown in Figure 7a, in 2011 the parameter schemes (pNLDN) (except for P09-14)

336 tend to underestimate LNO_x during summer months (June, July, and August, JJA) compared
337 with hNLDN scheme, but in 2013 (Figure 7b), the pNLDN schemes are mixed in producing
338 LNO_x with both over- and under- estimate during the summer months. In both years, very small
339 differences are observed with the pNLDN scheme with parameters from different time periods
340 except P09-14. P09-14 parameters seem to produce the most LNO_x during summer months in
341 both years making it the best to match LNO_x produced by hNLDN scheme in 2011 but it yields
342 more overestimation in June and July of 2013.

343 **4.25.2 Sensitivity to logarithmic scales**

344 As discussed earlier, the log-linear regression between NLDN lightning flashes and CP
345 produced better correlation coefficients than the simple linear regression. We also noticed,
346 however, that if the log scale parameters are applied to all the data, too much LNO_x is produced
347 relative to the hNLDN scheme, especially during winter months when both lightning activity and
348 convective precipitation occur less frequently. This high bias exists because the log scale tends
349 to inflate contributions from small values when linear regression is performed after the log
350 transformation. To test the impact of log scale on the production of LNO_x, we choose the
351 summer months (JJA) in 2011 and specify a series of cutoff values for CP (cm), that is, linear
352 regression parameters are applied if CP is smaller than a specific cutoff value, and log-linear
353 regression parameters are applied if otherwise. Figure 8 shows the monthly total column LNO_x
354 produced with CP cutoff values from 0.1 (P01) to 0.6 (P06) cm. As indicated in Figure 8, the
355 smaller the cutoff value is, the more LNO_x produced. When the cutoff value of 0.2 is applied,
356 LNO_x production best matched those produced by hNLDN; however, the summer months in
357 2011 are different from other years, in that significantly more lightning flashes and convective
358 precipitation were observed in the continental US, especially in the east and southeast US. When
359 the same cutoff value (0.2) is applied to other years, LNO_x is overestimated compared with that
360 produced by hNLDN scheme. For generalized application to all years, dynamic cutoff values are
361 used with this scheme [\(the result is also shown in Figure 8\)](#). Specifically, if CP is greater than the
362 intercept value at a location from linear regression, the log-linear regression parameters are used;
363 otherwise, the linear regression parameters are applied. This technique demonstrates acceptable
364 results for all the years studied.

365 **5.6 Assessment of LNO_x production schemes**

366 As a preliminary assessment of these LNO_x production schemes, we only investigate the
367 distribution of column LNO_x in time and space; a more detailed evaluation of the impact of these
368 schemes on air quality will be presented in a subsequent study.

369 Figure 9 shows the monthly total column LNO_x produced by the different schemes for the
370 years 2011 and 2013. For both years, mNLDN scheme tends to generate significantly more
371 LNO_x during warm months (May–September) than hNLDN and pNLDN schemes. Collectively
372 during May–September, mNLDN produced about 40% (39% in 2011 and 42% in 2013) more
373 LNO_x than hNLDN. The regression parameter-based scheme, pNLDN, underestimated LNO_x
374 during summer months (JJA) in 2011 compared to hNLDN, but the two schemes generally agree
375 well in 2013. As mentioned earlier, the significant underestimate of LNO_x by pNLDN may be
376 attributed to underestimated convective precipitation in WRF, which reduced the count of
377 lightning flashes during this period. There were about 17% more lightning flashes during JJA in
378 2011 than the same period in 2013 over the continental US. The relatively poor ~~simulation of~~
379 ~~2011 precipitation is also evident in Figure 2 as the~~ correlation coefficient between NLDN
380 flashes and model predicted CP values ~~in 2011 is also evident in Figure 2 which~~ was the second
381 least ~~in 2011~~ among the 13 years studied. The daily total column LNO_x produced by these
382 schemes for July 2011 and July 2013 is presented in Figure 10. Among the schemes, mNLDN
383 produced the most LNO_x on most of the days in July for both years. Except for a few days,
384 pNLDN underestimated LNO_x in 2011 relative to the other approaches, but in 2013 it produced
385 comparable results to hNLDN except that for the first few days of the month, LNO_x was
386 overestimated by pNLDN. ~~In addition, the day-to-day variance generaeted by pNLDN seems~~
387 ~~smaller compared with hNLDN for both years.~~

388 The spatial distributions of monthly total column LNO_x produced by each of the three
389 schemes over the contiguous United States for July 2011 and July 2013 are presented in Figure
390 11. Overall, the spatial patterns generally agree with each other for both years ~~with pNLDN~~
391 ~~producing relatively smaller values-a, especially but the patterns produced by pNLDN deviate~~
392 along the edges or over locations where LNO_x amounts are relatively small. Note that both
393 hNLDN and mNLDN are based on the same monthly observed data, so consequently they
394 produced similar spatial patterns. The pNLDN is derived based on the linear and log-linear
395 regression parameters using multiple years' historical observed data and model simulations with

396 different versions, and it is applied to a specific period without including observations.
397 Nevertheless, as the main intention for pNLDN to be applied is when there are no observed
398 lightning data available (such as air quality forecasts and past or future climate simulations with
399 similar climate conditions), it can provide the reasonable estimate for LNO_x comparable to
400 hNLDN and mNLDN.

401

402 **6.7. Summary and discussions**

403 In this study, we described the LNO_x production schemes in the CMAQ model's lightning
404 module and updated the existing monthly NLDN observation-based scheme with the current
405 understanding and resources. For retrospective model applications, the hourly NLDN
406 observation-based scheme, hNLDN, is expected to provide the highest-fidelity spatial-temporal
407 LNO_x. If observations are not available, such as in air quality forecasts and future climate
408 studies, the linear and log-linear regression parameter-based scheme, pNLDN, provides a spatial-
409 temporal estimate of LNO_x. Note that even though the pNLDN scheme can provide LNO
410 estimates for past or future climate studies, the spatial dependency of the relationship presented
411 here may not hold under with significant changinge of climate conditions.

412 Large uncertainties are still associated with each of these schemes resulting from the various
413 assumptions common to all the LNO_x production schemes, e.g., the uniform NO_x production
414 rate per flash, the IC/CG ratios, the difference of LNO_x production rates over land and ocean,
415 and uniform vertical profiles in time and space. The regression parameter-based scheme suffers
416 additional uncertainties resulting from the way the parameters are derived. First, the CP values
417 were only produced by the KF convective scheme in this regression analysis. If other convective
418 schemes are used in the upstream meteorological model, the regression relationship will differ.
419 Spatially this scheme is only applicable to the area over which the regression analysis was
420 performed (here, the contiguous United States). In addition, the parameters may need to be
421 reproduced when the model resolution or version is changed or when updated observational data
422 and model simulations become available.

423 Lightning and LNO_x will remain an active research area in atmospheric sciences for the
424 forseable future. For example, lightning data from especially when the Geostationary Lightning

425 Mapper (GLM) ~~instruments on on board~~ the Geostationary Operational Environment Satellite
426 ~~(GOES) 16 and 17 R (GOES-R) series~~ (Goodman et al., 2013; ~~Rudlosky et al., 2019~~) are
427 ~~now becomes fully operational in 2018 publicly available~~. With more observations (both at
428 surface and in space) available, the assumptions associated with the LNO~~x~~ schemes will be
429 updated to reflect the evolving understanding of LNO~~x~~ production in time and space. For
430 example, Medici et al. (2017) recently updated IC/CG ratios over the contiguous United States
431 based on the relative occurrence of CG and IC flashes over an 18.5-year period. Their study
432 updates the Boccippio et al. (2001) climatology used in this study that employed 4-year datasets.
433 In addition, NASA George C. Marshall Space Flight Center is updating the vertical distributions
434 of lightning channel segments (SAD) based on 9-year North Alabama Lightning Mapping Array
435 (NALMA) datasets (W. Koshak, personal communication, 2018). In addition, the Lightning
436 Mapping Array data could be used to obtain nominal distributions of IC and CG flashes and that
437 information could be used to derive the scaling factors (F1 and F2) associated with the vertical
438 LNO distribution algorithm in Equation 7, thus the vertical LNO distribution could be
439 represented more accurately in time and space. When all these data are available, we will
440 examine and adapt these updates to the lightning parameterizations and make them available in
441 future CMAQ releases. In this paper we have developed and demonstrated a method that can
442 now be applied to new observations as they become available.

443

444 **Code and data availability**

445 CMAQ model documentation and released versions of the source code, including all model
446 code used in his study, are available at <https://www.epa.gov/cmaq>. The data processing and
447 analysis scripts are available upon request. The WRF model is available for download through
448 the WRF website (<http://www.wrf-model.org/index.php>).

449 The raw lightning flash observation data used are not available to the public but can be
450 purchased through Vaisala Inc. (<https://www.vaisala.com/en/products/systems/lightning-detection>). The immediate data except the lightning flash data behind the figures are available
451 from <https://zenodo.org/record/2590452> (Kang, et al., 2019). Additional input/output data for
452 CMAQ model utilized for this analysis are available upon request as well.

453

454

455

456 **Disclaimer:** The views expressed in this paper are those of the authors and do not necessarily
457 represent the views or policies of the U.S. EPA.

458

459 **Author Contribution**

460 **Daiwen Kang:** data collection, algorithm design, model simulation, analysis, and manuscript
461 writing.

462 **Kenneth Pickering:** algorithm formation and manuscript writing.

463 **Dale Allen:** algorithm formation and manuscript writing.

464 **Kristen Foley:** algorithm formation, data analysis, and manuscript writing.

465 **David Wong:** code update.

466 **Rohit Mathur:** manuscript writing.

467 **Shawn Roselle:** manuscript writing.

468

469 **Acknowledgement:**

470 The authors thank Brian Eder, Golam Sarwar, and Tanya Spero (U.S. /EPA) for their
471 constructive comments and suggestions during the internal review process.

472 **References**

473 Allen, D. J., Pickering, K. E., Stenchikov, G., Thompson, A., and Kondo, Y.: A three-
474 dimensional total odd nitrogen (NOy) simulation during SONEX using a stretched-grid
475 chemical transport model, *J. Geophys. Res.*, 105, doi:10.1029/2010JD014062, 2000.

476 Allen, D. J., Pickering, K. E., Duncan, B., and Damon, M.: Impact of lightning NO emissions on
477 North American photochemistry as determined using the Global Modeling Initiative
478 (GMI) model, *J. Geophys. Res.*, 115, doi:10.1029/2010JD014062, <http://dx.doi.org/10.1029/2010JD014062>, 2010.

479 Allen, D. J., Pickering, K. E., Pinder, R. W., Henderson, B. H., Appel, K. W., and Prados, A.:
480 Impact of lightning-NO on eastern United States photochemistry during the summer of
481 2006 as determined using the CMAQ model, *Atmos. Chem. Phys.*, 12, 1737–1758,
482 doi:10.5194/acp-12-1737-2012, 2012.

483 Barthe, C., Pinty, J. -P., and Mari, C.: Lightning-produced NO_x in an explicit electrical scheme
484 tested in a Stratosphere-Troposphere Experiment: Radiation, Aerosols, and Ozone case
485 study, *J. Geophys. Res.*, 112, D04302, doi:10.1029/2006JD007402, 2007.

486 Boccippio, D. J., Cummins, K. L., Christian, H. J., and Goodman, S. J.: Combined Satellite- and
487 Surface-Based Estimation of the Intracloud–Cloud-to-Ground Lightning Ratio over the
488 Continental United States, *Mon. Weather Rev.*, 129, 108–122, 2001.

490 Boersma, K. F., Eskes, H. J., Meijer, E. W., and Kelder, H. M.: Estimates of lightning NO_x
491 production from GOME satellite observations, *Atmos. Chem. Phys.*, 5, 2311–2331, 2005,
492 <http://www.atmos-chem-phys.net/5/2311/2005/>.

493 Bucsela, E. J., Pickering, K. E., Huntemann, T. L., Cohen, R. C., Perring, A., Gleason, J. F.,
494 Blakeslee, R. J., and Albrecht, R. I.: Lightning-generated NO_x seen by the ozone
495 monitoring instrument during NASA's Tropical Composition, Cloud and Climate
496 Coupling Experiment (TC4). *J. Geophys. Res.*, 115, D00J10,
497 doi:10.1029/2009JD013118, 2010.

498 Byun, D. W. and Schere, K. L.: Review of the governing equations, computational algorithms,
499 and other components of the Models-3 Community Multiscale Air Quality (CMAQ)
500 modeling system, *Appl. Mech. Rev.*, 59, 51-77, 2006.

501 Casati, B., Wilson, L., Stephenson, D., Nurmi, P., Ghelli, A., Pocernich, M., Damrath, U., Ebert,
502 E., Brown, B., and Mason, S.: Forecast verification: current status and future directions,
503 *Meteorol. Appl.*, 15, 3–18, 2008.

504 Chameides, W. L.: The role of lightning in the chemistry of the atmosphere. In *The Earth's*
505 *Electrical Environment*, Chapter 6, National Academy Press, Washington, D. C., ISBN 0-
506 309-03680-1, 1986.

507 Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler, D. E., Driscoll, K. T.,
508 Goodman, S. J., Hall, J. M., Koshak, W. J., Mach, D. M., and Stewart, M. F.: Global
509 frequency and distribution of lightning as observed from space by the Optical Transient
510 Detector, *J. Geophys. Res.*, 108(D1), 4005, doi:10.1029/2002JD002347, 2003.

511 Cummings, K. A., Huntemann, T. L., Pickering, K. E., Barth, M. C., Skamarock, W. C., Holler,
512 H., Betz, H. -D., Volz-Thomas, A., and Schlager, H.: Cloud-resolving chemistry
513 simulation of a Hector thunderstorm, *Atmos. Chem. Phys.*, 13, 2737–2777,
514 doi:10.5194/acp-13-2757-2013, 2013.

515 Goodman, S. J., Blakeslee, R. J., Koshak, W. J., Mach, D., Bailey, J., Buechler, D., Carey, J.,
516 Schultz, C., Bateman, M., McCaul Jr., E., and Stano, G.: The GOES-R Geostationary
517 Lightning Mapper (GLM), *Atmos. Res.*, 125-126, 34-39,
518 doi:10.1016/j.atmosres.2013.01.006, 2013.

519 Heath, N. K., Pleim, J. E., Gilliam, R. C., and Kang, D.: A simple lightning assimilation
520 technique for improving retrospective WRF simulations. *J. Adv. Model. Earth Syst.*, 8, 1-
521 19, doi:10.1002/2016MS000735, 2016.

522 Huntrieser, H., Schlager, H., Lichtenstern, M., Roiger, A., Stock, P., Minikin, A., Höller, A.,
523 Schmidt, K., Betz, H.-D., Allen, G., Viciani, S., Ulanovsky, A., Ravegnani, F., and
524 Brunner, D.: NO_x production by lightning in Hector: first airborne measurements during
525 SCOUT-O3/ACTIVE. *Atmos. Chem. Phys.*, 9, 8377–8412, doi:10.5194/acp-9-8377-
526 2009, 2009.

527 Huntrieser, H., Schlager, H., Lichtenstern, M., Stock, P., Hamburger, T., Holler, H., Schmidt, K.,
528 Betz, H. D., Ulanovsky, A., and Ravegnani, F.: Mesoscale convective systems observed
529 during AMMA and their impact on the NO_x and O₃ budget over West Africa. *Atmos. Chem. Phys.*, 11, 2503–2536, doi:10.5194/acp-11-2503-2011, 2011.

530

531 Kang, D., Pickering, K., Allen, D., Foley, K., Wong, D., Mathur, R., and Roselle, S.: data set,
532 <https://doi.org/10.5281/zenod.2590452>, 2019.

533 Kaynak, B., Hu, Y., Martin, R. V., Russell, A. G., Choi, Y., and Wang, Y.: The effect of
534 lightning NO_x production on surface ozone in the continental United States. *Atmos. Chem. Phys.* 8(17):5151–5159. doi:10.5194/acp-8-5151-2008, 2008.

535

536 Koo, B., Chien, C. J., Tonnesen, G., Morris, R., Johnson, J., Sakulyanontvittaya T.,
537 Piyachaturawat, P., and Yarwood, G.: Natural emissions for regional modeling of
538 background ozone and particulate matter and impacts on emissions control strategies.
539 *Atmos. Environ.*, 44(19):2372–2382. doi:10.1016/j.atmosenv.2010.02.041, 2010. .

540 Lu, G. Y., and Wong, D. W.: An adaptive inverse-distance weighting spatial interpolation
541 technique, *Computers & Geosciences*, 34, 1044-1055, 2008.

542 Medici, G., Cummins, K. L., Cecil, D. J., Koshak, W. J., and Rudlosky, S. D.: The intracloud
543 lightning fraction in the contiguous United States, *Mon. Wea. Rev.*, 145, 4481–4499,
544 doi:10.1175/MWR-D-16-0426.s1, 2017

545 Miyazaki, K., Eskes, H. J., Sudo, K., and Zhang, C.: Global lightning NO_x production estimated
546 by an assimilation of multiple satellite data sets, *Atmos. Chem. Phys.*, 14, 3277-3305,
547 doi:10.5194/acp-14-3277-2014, 2014.

548 Murray, L. T.: Lightning NO_x and Impacts on Air Quality, *Curr Pollution Rep.*, doi:
549 10.1007/s40726-016-0031-7, 2016.

550 Nag, A., Murphy, M. J., Cummins, K. L., Pifer, A. E., and Cramer, J. A.: Recent Evolution of the
551 U.S. National Lightning Detection Network, 23rd Intl. Lightning Detection Conference,
552 Tucson, Arizona, USA, 18-19 March 2014.
553 <http://www.vaisala.com/en/events/ildcilmc/Pages/ILDC-2014-archive.aspx>

554 Novak, J. H. and Pierce, T. E.: Natural emissions of oxidant precursors, *Water Air Soil Poll.*, 67,
555 57-77, 1993.

556 Orville, R. E., Huffines, G. R., Burrows, W. R., Holle, R. L., and Cummins, K. L.: The North
557 American Lightning Detection Network (NALDN) – first results: 1998-2000, *Mon. Wea. Rev.*,
558 130, 2098–2109, 2002.

559 Orville, R. E.: Development of the National Lightning Detection Network, *Bull. Am. Meteorol. Soc.*, 89, 180–190, doi:10.1175/BAMS-89-2-180, 2008.

560

561 Ott, L. E., Pickering, K. E., Stenchikov, G. L., Allen, D. J., DeCaria, A. J., Ridley, B., Lin, R.-F.,
562 Lang, S., and Tao, W.-K.: Production of lightning NO_x and its vertical distribution

563 calculated from three-dimensional cloud-scale chemical transport model simulations, *J.
564 Geophys. Res.*, 115, D04301, doi:10.1029/2009JD011880, 2010.

565 [Otte, T. L., and Pleim, J. E.: The Meteorology-Chemistry Interface Processor \(MCIP\) for the
566 CMAQ modeling system: updates through MCIPv.3.4.1. Geosci. Model Dev., 3, 243-
567 256, doi:10.5194/gmd-3-243-2010, 2010.](#)

568 Pickering, K. E., Bucsela, E., Allen, D., Ring, A., Holzworth, R., and Krotkov, N.: Estimates of
569 lightning NO_x production based on OMI NO₂ observations over the Gulf of Mexico, *J.
570 Geophys. Res. Atmos.*, 121, 8668-8691, doi:10.1002/2015JD024179, 2016.

571 Price, C., Penner, J., and Prather, M.: NO_x from lightning 1. Global distribution based on
572 lightning physics, *J. Geophys. Res.*, 102, 5929-5941, 1997.

573 Price, C., and Rind, D.: A simple lightning parameterization for calculating global lightning
574 distributions. *J. Geophys. Res.*, 97, 9919-9933, doi:10.1029/92JD00719, 1992.

575 Rodger, C. J., Werner, S., Brundell, J. B., Lay, E. H., Thomson, N. R., Holzworth, R. H., and
576 Dowden, R. L.: Detection efficiency of the VLF World-Wide Lightning Location
577 Network (WWLLN): Initial case study. *Ann. Geophys.*, 24, 3197-3214,
578 doi:10.5194/angeo-24-3197-2006, 2006.

579 [Rudlosky, S. D., Goodman, S. J., Virts, K. S., and Bruning, E. C.: Initial Geostationary Lightning
580 Mapper Observations. Geophys. Res. Lett., 46, 1097-1104, doi:10.1029/2018GL081052,
581 2019.](#)

582 Schumann, U. and Huntrieser, H.: The global lightning-induced nitrogen oxides source, *Atmos.
583 Chem. Phys.*, 7, 3823-3907, doi:10.5194/acp-7-3823-2007, 2007.

584 Smith, S. N., and Mueller, S. F.: Modeling natural emissions in the Community Multiscale Air
585 Quality (CMAQ) Model-I: building an emissions data base. *Atmos Chem Phys.*,
586 10(10):4931-4952. doi:10.5194/acp-10-4931-2010, 2010.

587 [Skamrock, W. C., and Klemp, J. B.: A time-split nonhydrostatic atmospheric model for weather
588 research and forecasting applications. J. Comput. Phys., 227, 3465-3485,
589 doi:10.1016/j.jcp.2007.01.037, 2008.](#)

590 [Zhu, Y., Rakov, V. A., Tran, M. D., and Nag, A.: A study of National Lightning Detection
591 Network responses to natural lightning based on ground truth data acquired at LOG with
592 emphasis on cloud discharge activity. J. Geophys. Res., 121, 14,651-14,660,
593 doi:10.1002/2016JD025574, 2016.](#)

637 Zoghzoghy, F. G., Cohen, M. B., Said, R. K., Lehtinen, N. G., and Inan, U. S.: Ship-borne LF-
638 VF oceanic lightning observations and modeling, *J. Geophys. Res. Atmos.*, 120, 10890-
639 10902, doi:10.1002/2015JD023226, 2015.

640 Wang, Y., DeSilva, A. W., Goldenbaum, G. C., and Dickerson, D. D.: Nitric oxide production by
641 simulated lightning: Dependence on current, energy and pressure, *J. Geophys. Res.*, 103,
642 19,149-19,159, 1998.

643

644