
Reply to Reviewer 1 for the manuscript

RadNet: Exploring deep learning architectures

for longwave radiative transfer

We thank the reviewer for their suggestions and their careful evaluation
of our work. We agree with the reviewer that exploring di↵erent architecture
optimizations would be interesting; however, within the framework we have
proposed, evaluating a model is not just a matter of a few hours of work. It
involves not only evaluating the o✏ine RMS error and performance gain of any
such optimization, but also evaluating its performance with a single column
model and ensuring the model works well with other components to produce
stable integration. In this light, we thank the reviewer for their understanding.

1 Comments

1. Again, I thank the authors for addressing my comments. I have

to admit I am disappointed that, despite asking twice, the authors

refused to perform any new experiments, even though this should

only take a few hours. I still believe that adding more network

experiments would have made the paper much more interesting. I

still have one complaint about the CNN experiments and their interpretation

(see below). However, the paper probably has just enough merit

to be published as is. I leave it to the authors to decide what

to do with my final comments.

CNN Experiments: I only just realized 2D convolutions were used.

I guess I just assumed that the convolutions are 1D. This choice

is odd. From my point of view (and that of others I believe)

the more natural choice would have been to use 1D convolutions

and treat the different variables as channels. Again, a comparison

of these two would have been really interesting, but I assume

that the authors aren’t willing to perform new experiments...

Response: We thank the reviewer for taking their thorough under-
standing of our work and the e↵ort they have made to suggest ways to
optimise our experiments, especially the CNN-based ones. Our motiva-
tion to use 2D filters instead of 1D was to give more freedom to the CNN
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to learn the relations among the variables at the same vertical level. 2D
filters allow the CNN to learn, for instance, that co-located local changes
in temperature and specific humidity (in the presence of an inversion, for
example) produce a di↵erent solution as compared to changes that are not
co-located.
As the reviewer points out, this choice of permitting the CNN to learn the
e↵ects of correlations between di↵erent fields leads to slower performance.
A detailed study of the accuracy-performance trade-o↵ for such a choice
would indeed be interesting to explore.
We have now explicitly pointed out this design choice in our paper (Line
166–168) and highlight the tradeo↵ it represents in the discussion section
(Line 341–344).

2. In any case, one of the key conclusions of the paper (it’s in

the abstract) is that CNNs are more accurate but slow. But what

I think makes the CNN models slow is the huge Dense layer, I would

assume. Performing a fully-convolutional experiment would have

shed light on this. In the absence of these clarifying experiments

I would suggest being more careful with the wording because, from

my point of view, the experiments do not support the current claim.

Response: We agree with the reviewer. We have pointed out the
limitations of our conclusions in line 362–366. We have also noted in the
abstract that our conclusions hold only for conventional CNNs.
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Abstract. Simulating global and regional climate at high resolution is essential to study the effects of climate change and

capture extreme events affecting human populations. To achieve this goal, the scalability of climate models and efficiency of

individual model components are both important. Radiative transfer is among the most computationally expensive components

in a typical climate model. Here we attempt to model this component using a neural network. We aim to study the feasibility

of replacing an explicit, physics-based computation of longwave radiative transfer by a neural network emulator, and assessing5

the resultant performance gains. We compare multiple neural-network architectures, including a convolutional neural network

and our results suggest that the performance loss from the use of
:::::::::::
conventional convolutional networks is not offset by gains

in accuracy. We train the networks with and without noise added to the input profiles and find that adding noise improves the

ability of the networks to generalise beyond the training set. Prediction of radiative heating rates using our neural network

models achieve up to 370x speedup on a GTX 1080 GPU setup and 11x speedup on a Xeon CPU setup compared to the a10

state of the art radiative transfer library running on the same Xeon CPU. Furthermore, our neural network models yield less

than 0.1 Kelvin per day mean squared error across all pressure levels. Upon introducing this component into a single column

model, we find that the time evolution of the temperature and humidity profiles are physically reasonable, though the model

is conservative in its prediction of heating rates in regions where the optical depth changes quickly. Differences exist in the

equilibrium climate simulated when using the neural network, which are attributed to small systematic errors that accumulate15

over time. Thus, we find that the accuracy of the neural network in the “offline” mode does not reflect its performance when

coupled with other components.

1 Introduction

Computational models of Earth’s climate are essential tools to advance our understanding of the climate system and our ability

to predict its response to perturbations such as increased levels of greenhouse gases. Climate models contain algorithmic20

representations of the various components of the climate system like the atmosphere, ocean, sea ice and land surface. Our ability

to predict future changes in climate depends crucially on the accuracy of these models and the extent to which interactions

between various components of the climate system are represented.

A basic requirement for increased model fidelity, particularly at the regional scale, is increased spatial resolution. However,

the computational burden increases roughly as the fourth power of spatial resolution (since resolution must increase along all25
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three spatial dimensions, and the time step reduced to ensure numerical stability). To address this problem, various approaches

have been used including improved model scalability (Dennis and Loft, 2011) and the use of low-precision floating point

operations (Palmer, 2014).

Long simulations using high resolution climate models are needed to explore key questions in climate research, particu-

larly changes in the statistics weather extremes such as windstorms and precipitation events. Radiative transfer (RT) in the30

atmosphere is among the most computationally burdensome components of such simulations. While the basic equations for

calculating RT are straightforward, the complex nature of the absorption bands of greenhouse gases such as carbon dioxide and

water vapour requires separate calculation over a very large number of small spectral intervals to obtain accurate results. Since

such a line-by-line calculation is extremely computationally intensive and not feasible in a realistic climate model integration, it

is necessary to group individual absorption lines into bands or clusters with similar properties as in the correlated-k method (Fu35

and Liou, 1992). Such methods can dramatically improve the computational performance while retaining adequate accuracy in

the computation. Many state-of-the-art climate models use the Rapid Radiative Transfer Model for General circulation models

(RRTMG). RRTMG is based on the single-column correlated k-distribution reference model RRTM (Iacono et al., 2008b).

RRTMG tries to strike a balance betweeen computational complexity and accuracy by reducing the number of calculations per

band while ensuring fidelity with the RRTM code (Iacono et al., 2008a). Nonetheless, even when employing such simplified40

schemes, RT remains amongst the most numerically expensive components of climate models, and a variety of strategies have

been developed to reduce this cost (see for example Pincus and Stevens, 2013, and references therein).

In this paper, we explore the potential performance gains achievable by using a neural network (NN) to calculate radiative

transfer. Specifically, we train a variety of alternative NN architectures on a set of radiative heating rate profiles computed

using a state-of-the-art RT code (see Sections 2), and compare the computational performance of the NN with that of the RT45

code itself. Note that this comparison only serves to assess the performance of RT calculation in standalone form. We expect

a suitably-trained neural network to be a drop-in replacement for the RT code in a full climate model, and expect that other

computational costs—such as data transfer within and between computational nodes—will not change, but we do not explicitly

address this issue in this exploratory study. Instead, our focus here is on identifying the most suitable NN architecture in

terms of accuracy and computational performance. We also explore the behaviour of the NN in a time-evolving single-column50

radiative-convective model (Section 4).

Recent advances in NNs have led to rapid progress in the accuracy of pattern and image recognition tasks. In particu-

lar, convolutional neural networks (CNNs) (Krizhevsky et al., 2012a) have achieved impressive results for image classifica-

tion (Krizhevsky et al., 2012b), while recurrent neural networks (RNNs) have made breakthroughs in sequence-to-sequence

learning tasks such as machine-translation (Wu et al., 2016). Efforts to use machine learning techniques to model actual phys-55

ical processes in a climate model have increased recently (Schneider et al., 2017; Gentine et al., 2018; Rasp et al., 2018;

O’Gorman and Dwyer, 2018; Scher, 2018; Brenowitz and Bretherton, 2018; San and Maulik, 2018; Brenowitz and Bretherton,

2019; Yuval and O’Gorman, 2020). In particular, it is now being recognized that physical processes whose representation in cli-

mate models has usually been inexact and parameterised could potentially be improved by using machine learning techniques.

RT, on the other hand, has always been an attractive candidate to optimize in climate models because of the large computational60
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cost, as discussed above. Optimization has been attempted using traditional optimization, porting to new architectures such as

GPUs (Price et al., 2014; Mielikainen et al., 2016; Malik et al., 2017) and using NNs to approximate RT. Initial attempts to

retrieve radiative heating profiles used shallow (one hidden layer) networks (Chevallier et al., 1998), and similar NN archi-

tectures were successfully used to replace RT in decadal simulations using conventional climate models (Krasnopolsky et al.,

2005, 2008, 2009). Recently, a deep NN was used to replace RT in a high resolution GCM, and was successfully used to run65

the GCM for one year (Pal et al., 2019). These studies show the capability of NNs to accurately approximate radiative heating

profiles in a particular climate regime, while raising questions about how generalizable this learning actually is in terms of

handling perturbed climate states. Studying the effect of perturbations (in sea-surface temperature, greenhouse gases, aerosols

or cloud properties) on the climate of a model is a very typical use-case in climate science, and the performance of NNs in such

scenarios has yet to be studied carefully.70

In the context of machine learning for climate modelling applications, the following questions are still not well under-

stood (Dueben and Bauer, 2018):

– What NN architectures are most suitable?

– What is the accuracy-efficiency tradeoff between different NN architectures?

– What accuracy loss can we expect when the NN is provided with “non-typical” input values, i.e. values very different75

from those in the training sample, such as would occur in a perturbed climate experiment?

– What is the speed-up we can expect by replacing a traditional RT scheme with a NN?

Our aim here is to address these four questions. To limit the scope of this exploratory study, we focus on longwave radiative

transfer under clear-sky conditions (henceforth, RT thus refers to clear-sky longwave radiative transfer). We use the RRTMG

library available within the climt modelling toolkit (Monteiro et al., 2018) to generate radiative cooling profiles to train the80

NN models. In particular, we compare the accuracy-computational complexity tradeoff between five kinds of NN architectures

on both CPU and GPU. We also study the loss in accuracy if perturbations are added to the input. The question of accuracy

loss is all the more relevant in RT due to its mathematical structure – since RT is modelled as an integral equation, localised

perturbations have global impacts on the profile of radiative heating or cooling obtained.

The paper is organized as follows. The preparation of data for training and validation of the NNs is presented in Section 2.85

Section 3 presents the NN structures and parameters we have used. Evaluation results are presented in section 4. Finally, we

present a brief discussion along with concluding remarks in Section 5.

2 Data and Methods

While radiative transfer is inherently three dimensional, increasing its complexity and computationally cost, it is common to

assume horizontal homogeneity (independent column assumption) and retain only a single (vertical) dimension (Meador and90

Weaver, 1980). This independent column assumption underlies almost all raditive transfer codes used in weather and climate

3



models, and reduces radiative transfer calculation to an "embarassingly parallel" 1-dimensional problem in each vertical column

of the atmosphere. For a given longitude-latitude point, RT can be represented by a vector whose length is the number of

vertical levels into which the column is discretized. The calculation of RT under clear sky (cloud-free) conditions is based on a

number of inputs, including vectors of atmospheric pressure, air temperature and specific humidity at each level, while surface95

temperature and carbon dioxide mixing ratio are represented as scalars. While the clear-sky RT in the atmosphere is affected

by other greenhouse gases like methane and aerosols like sulphates, we restrict ourselves to using the above quantities in this

exploratory study.

2.1 The ERA-Interim Dataset

We use the ERA-Interim dataset (Dee et al., 2011) to provide temperature and humidity profiles for training the neural network.100

The horizontal resolution of the data is 0.75�⇥0.75� in the horizontal. We use 6 hourly model-level data, which has a higher

resolution in the vertical as compared with the pressure level data. The vertical grid is a non-uniform ⌘-coordinate grid with 60

mid-levels from the surface to 0.2 hPa and 61 interface levels from the surface upto 0.1 hPa. This implies that pressure is not a

constant and is therefore an additional input to the neural network.

The ERA-Interim dataset consists of 38 years of data spanning the period 1979 to 2016, which amounts to around 6.5 billion105

sample profiles. We employ the first 7 years of ERA-Interim historical data as the training dataset, i.e., data from 1979 to 1985

and the last 2 years of the ERA-Interim historical data as the validation dataset, i.e., data from 2015 to 2016. Considering the

model training time, we have applied random sampling of 1% with respect to each year in the training and validation datasets.

This gives around 12 million training samples and 3.5 million validation samples. After sampling, we name the training dataset

as Dataset1 and the validation dataset as Dataset1.val. The reason for using this data separation schema is because that we110

would like to examine whether our radiation prediction model is able to generalize to unseen/future data inputs while being

trained on the oldest data.

2.2 Perturbed Dataset

Figure 1 shows the mean and variance of ERA-Interim air temperature, humidity and radiative heating rates calculated using

RRTMG from 1979 to 2016. Using the above statistics, we have augmented our training data by created a perturbed dataset as115

follows:

1. Pick an original profile from the historical samples.

2. Generate a random air temperature profile assuming Gaussian distribution at each vertical level using the statistics from

Figure 1.

3. Generate a random weight (between -0.2 to 0.2) for the generated air temperature profile.120

4. Generate an augmented air temperature profile by adding together the original profile with the weighted random profile

vertical level wise.
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Figure 1. (a,b) ERA-Interim air temperature (K) and humidity (g kg�1) statistics. (c) Longwave radiative rates (K day�1) calculated using

RRTMG. Vertical axis is pressure in Pa.

5. Calculate the maximum humidity given the air temperature and pressure at each vertical level.

6. Calculate the original relative humidity ratio using humidity divided by the maximum humidity at each vertical level.

7. Calculate the new maximum humidity given the generated air temperature and pressure at each vertical level.125

8. Generate the corresponding humidity by multiplying the new maximum humidity and the original relative humidity ratio

at each vertical level.

9. We keep the surface temperature and the carbon dioxide mixing ratio the same as the original profile.
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The motivation for adding random, vertically uncorrelated perturbations is that the optical properties of the atmosphere

(which determine the radiative heating profiles) can be quite noisy in the vertical. This noisiness is due to the presence of130

clouds, hydrometeors, aerosols and horizontal advection of water vapour at different levels in the atmosphere. Changes in

optical depth due to the above factors need not have a strong vertical correlation either. The kind of perturbations we have

added represent an extreme case of this physically-motivated reasoning.

Augmented datasets are generated using Dataset1 and Dataset1.val. Then, the augmented dataset are 50-50 mixed with

Dataset1 and Dataset1.val respectively to create Dataset2 and Dataset2.val. The purpose of generating Dataset2 and135

Dataset2.val is that we would like to use it to investigate the generality of our RT prediction model. The specific evaluation

procedures are described in the evaluation section.

2.3 The RT dataset

The calculation of the radiative fields for the historical and perturbed datasets are calculated using the RRTMG component

available in the climt modelling toolkit (Monteiro and Caballero, 2016; Monteiro et al., 2018). This component is a python140

wrapper over the RRTMG fortran library, and provides convenient access to the radiation fields. The statistics of the generated

radiative heating profiles are also shown in Figure 1.

3 Neural Network Models

3.1 Neural Network Basics

A neural network is composed of multiple neurons, or even multiple layers of neurons in order to model complex scenarios. A145

simple neural network is a feed-forward network where information flows only in one direction from input to output. Multilayer

perceptron (Gardner and Dorling, 1998) is the most common feed-forward NN. It consists of an input layer that passes the input

vector to the network, one or more hidden layers and an output layer. There are usually activation functions applied in each

layer. An activation function usually introduces non-linearity in order to allow a NN to tackle with complicated problems and

learn complex representations.150

Convolutional NN is another type of NN designed for image-focused tasks. It is widely used in many fields such as image

classification, object detection and image segmentation (Krizhevsky et al., 2017). CNNs usually consist of three types of

layers, convolutional layers, pooling layers and fully-connected layers. A convolutional layer is composed of learnable kernels

or filters. The kernel usually considers a small region of input at one time, but covers the entirety of the input. Specifically, it

slides over the input spatially and computes dot products between the kernel and the area of input covered by the kernel. With155

each kernel, a convolutional layer produces an activation map, whose size depends on whether there is a stride or padding.

All the activation maps will be stacked together along the depth dimension and passed on to the next layer (O’Shea and Nash,

2015). Neurons in a layer are connected to only a small region of the previous layer instead of everything, which is different
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Model Name Model Structure Number of Parameters

Model A input-60x4 fc-512 fc-1024 fc-512 output-60 1202176

Model B input-60x4 fc-512 fc-1024 fc-2048 fc-1024 fc-512 output-60 5396480

Model C input-60x4 conv-3x3-128 conv-3x3-256 fc-512 output-60 7666816

Model D input-60x4 conv-3x3-128 conv-3x3-256 conv-3x3-256 fc-512 output-60 7994496

Model E input-62x6 conv-3x3-128 conv-3x3-256 fc-512 output-60 15531136

Model F input-62x5 conv-3x3-128 conv-3x3-256 fc-512 output-60 7928960
Table 1. Neural network models used for predicting RTs. "fc-X" represents a fully connected layer with X number of neurons. "conv-YxY-X"

represents a convolutional layer with X number of YxY filters.

from feedforward neural networks. In this way, convolutional layers are better at extracting locality-dependent features, such

as shapes and patterns in images.160

In the context of RT, we use CNNs to evaluate whether the sensitivity to localised features improves the prediction per-

formance of deep neural networks. In particular, strong local changes in the optical properties of the atmosphere are fairly

common due to the presence of clouds or horizontal advection of water vapour. While this work focuses on clear-sky radiation,

we study the ability of CNNs to recognise and respond to such local features in the single column simulations.

Table 1 illustrates the structures and parameters of our neural networks. Specifically, we have designed five neural networks,165

including two feedforward neural networks and three convolutional neural networks (CNN).
:::
The

:::::
input

::::
data

::
to

:::
the

::::::
CNNs

::
is

:::::::
prepared

:::
by

:::::::::::
concatenating

::::::::
different

::::::::
variables

:::::
along

:::
the

::::::
second

:::::::::
dimension

::::::
instead

::
of

:::::
using

::::::::
different

::::::::
variables

::
as

::::::::::
“channels”.

::::::::
Therefore,

:::
the

::::::
CNNs

:::
use

:::
2D

::::::::::::
convolutional

:::::
filters

::::::
instead

:::
of

:::
1D

:::::
filters.

:
Model A and Model B are implementations of feed-

forward neural networks with different numbers of layers and of neurons in each layer. Model C is a simplified CNN imple-

mentation based on previous work (Simonyan and Zisserman, 2014). The stride of convolutional filters is set to 1 so that the170

convolutional filters go through the input array with 1 element each step. We have not applied any padding to the input. We

have not used pooling layers in between convolutional layers and the convolutional filters are the classic 3x3 filters. Model D

is a variant of Model C with one more convolutional layer. Model E has the same neural network structure as Model C. The

only difference is that model E has padded the input with an edge of zeros to emphasize on edges of the input. We have used

Tensorflow 1.8.0 library for the neural network implementation.175

In addition to the above models, we also evaluate a variant of model E denoted as model F. Model F is based on Model E

but with a fixed pressure grid. This means that Model F does not take pressure values as input, and interpolates air temperature

and humidity from model levels onto a fixed, time-invariant pressure grid. While this configuration reduces the dimensionality

of the input, it requires extrapolation of the ERA-Interim data or the calculated/predicted RT to the fixed grid. Specifically,

the inputs of a sample profile are B-spline extrapolated according to a fixed pressure grid. We extrapolate the air temperature180

and humidity values onto the fixed pressure grid based on the profile’s pressure range. The inputs corresponding to the rest of

the pressure levels are set to 0. After running through model F, the RTs on the static pressure grid are B-spline interpolated

back to the original pressure levels, which are the final results. It is important to mention that we constructed the static grid
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using 15 equally spaced pressure levels from 1 to 500 Pa, another 15 equally spaced pressure levels from 550 to 50000 Pa,

and 30 equally spaced pressure levels from 50300 to 103000 Pa. We made this design choice by observing the distribution of185

the ERA-Interim data to ensure that our fixed grid encompasses most common pressure profiles in order to achieve a better

accuracy on the extrapolation and interpolation. We used model F to run the single-column model simulation presented below,

which employs a fixed pressure grid.

3.2 Model training

We trained our five NNs with two datasets, resulting 10 different models. The first dataset is the aforementioned ERA-Interim190

dataset, namely, Dataset1. The second dataset is the augmented dataset, i.e., Dataset2, in order to generalize the model to

a wider operational region beyond Dataset1. Each neural network is trained using the training dataset of either Dataset1 or

Dataset2 and validated against either Dataset1.val or Dataset2.val.

Each model was trained with 30 epochs under a batch size of 128 starting with a learning rate of 0.001, which then expo-

nentially decays every 10 epochs with base 0.96. This setup was empirically obtained while we observe that all models have195

converged after the training. Mean squared error is used as the loss function in all models. Parametric Rectified Linear Units

(pReLUs) (He et al., 2015a) are used as activation functions in all models since PReLUs is able to resolve the problem of

vanishing gradient during model training. Adam optimizer (Kingma and Ba, 2014) is employed to compute the gradients.

We present the evaluation results regarding the performance of these models in the next section.

4 Evaluation200

4.1 Evaluation Setup

We prepared two datasets, i.e., Dataset1.val and Dataset2.val, to evaluate our neural network models. Dataset1.val is used

to evaluate the accuracy of the trained models with realistic future data. Dataset2.val is used to evaluate the generality of the

trained models as it contains profiles that are perturbed versions of the ERA Interim data.

4.2 Prediction Accuracy205

We use vertical level-wise root-mean-squared errors (RMSE) to compare our NN generated radiative cooling rates with those

generated by the RRTMG algorithm. Figures 2-5 present results for the different NN models. The RMSE is calculated by

taking the difference between NN- and RRTMG-calculated radiative cooling profiles.

Figure 2 presents the RMSE when the NN models are trained using Dataset1 and validated against Dataset1.val. These

experiments are performed to evaluate the capability of different NN models to predict RT when the atmospheric profiles are210

sampled from the ERA-Interim dataset itself. We see that a simple 3 layer feedforward neural network (Model A) is able to

predict heating rates with a median RMSE of lesser than 0.01 K/day across all pressure ranges. The performance does not

improve when more layers of directly connected neurons are added, as shown by Model B. We observe significant RMSE
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improvement while using CNNs (Model C,D,E). However, the performance differences among these three CNN models are

not substantial except the RMSEs near the surface, which tend to have higher variability as shown in the statistics in Figure 1.215

Since surface radiation is particularly important to the climate, efforts have been made to minimize its prediction error. The

input matrix of Model C are padded with zeros in order to allow convolutional filters to put equal emphasis on the edges values

as the middle ones (Innamorati et al., 2018). This creates Model E, which shows much better prediction accuracy on the bottom

and top pressure levels.

Figure 3 presents the RMSE when the NN models are trained using Dataset2 and validated against Dataset1.val. In this220

experiment, we examine whether it is possible to expand the operational region of the NN models without compromising on

their performance on the ERA-Interim dataset. Comparing to Figure 2, we see that the increased generality comes at the cost

of roughly doubled RMSE across all models.

The improvement on generality is suggested by the results shown in Figure 4 and Figure 5 when the NN models are trained

using Dataset1 or Dataset2 and validated against Dataset2.val. The RMSE increases by almost 100 times across all models225

trained with Dataset1 and validated against Dataset2.val (Figure 4) when compared to their validation against Dataset1.val

(Figure 2). This suggests that that models trained with Dataset1 cannot really generalize to predict heating profiles from

Dataset2.val. On the other hand, the RMSE increases 10 times when the models are trained using a wider range of data, i.e.,

Dataset2, as shown in Figure 5. This is mainly because that the model needs to cover a larger operational region.

When trained on Dataset1 and validated against Dataset2.val (Figure 4), the RMSE in Model B is significantly higher.230

This observation leads us to believe that Model B is more likely to over-fit the training dataset. Given that Dataset2 is more

perturbed than Dataset1 and more parameters and layers in Model B, the nature of feedforward NN (Goodfellow et al., 2016)

makes Model B more deeply coupled with patterns observed in the training data (Dataset1), which leads to larger errors while

evaluating against Dataset2.val.

Model F displays significant errors on both edges of the pressure levels. This is due to extrapolation errors. Specifically, if235

the lowest pressure level in an atmospheric profile is lower than the lowest pressure level of the fixed grid, the profiles need to

be extrapolated. The same issue arises with the highest pressure levels as well. Thus, the errors in model F are mainly due to

these extrapolation based artifacts rather than an issue with the training itself. In fact, this model provides the most stable time

integration of the single column model.

In the above evaluations, we have shown that CNN-based models achieve much lower prediction RMSE than feedforward240

NN models. However, in the next section, we show that CNN-based models tend to have much slower prediction speed, i.e.,

less speedup as compared with the feedforward models.

4.3 Prediction speed

In this section we compare the computation time of RRTMG and NN models using GPUs and CPUs. These performance

evaluations have been performed using Intel Xeon CPU E3-1230 v5 @ 3.40GHz, Nvidia GTX 1060 GPU with 6GB of onboard245

memory and Nvidia GTX 1080 GPU with 8GB of onboard memory. Both GPUs we use are commodity hardware, and are easily

available in the market. RRTMG was run in a single-threaded mode for the purposes of this evaluation.
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Figure 2. Models are trained with Dataset1 and evaluated against Dataset1.val. The plots have 30 linearly spaced levels between 0 and

101300 pascals. The errors from each model are binned to these equally spaced intervals for easier reading. The boxes in the plots present

the boxplot of the RT MSEs at every level. Specifically, the boxes describe the 25 (Q1), 50 (Q2) and 75 (Q3) percentile of the MSEs while

the two whiskers extend from the edges of box to 1.5 times the interquartile range (Q3-Q1).

Table 2 summarizes the speedups using NN models to predict RT as compared to RRTMG. The calculation time of NN code

and RRTMG code are profiled using the python line_profiler based on cProfile. The execution time results are averaged from

10 measurements with execution of 100 000 predictions per measurement. Since RT calculations are embarrassingly parallel,250

we are able to use batch predictions in our NN models while using a single GPU. The overall results show that the larger the

batch size, the larger the speedup observed as long as the CPU or GPU memory is sufficient. In other words, the calculation of

M radiative heating profiles is faster than M times the time taken to predict one such profile. This is because of the efficiency

of matrix multiplications in NNs while conducting NN forward pass in batches. We note that such a speedup is not possible

in a physics-based RT scheme since the calculation of RT for an arbitrary atmospheric profile cannot be expressed as a simple255

matrix multiplication.

The results show that using only the Xeon CPU, NN model A and B are able to achieve speedups up to 10.88x and 2.82x

respectively using a batch size of 1024. When using GTX 1060, we are able to achieve speedups of 123x in model A, 61x
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Figure 3. Models are trained with Dataset2 and evaluated against Dataset1.val

in model B and 2.8x to 4.5x in CNN-based models (C,D,E). With GTX 1080, which has a larger memory and a faster clock

speed, we observe speedups up to 370x in model A, 123x in model B and 4.4x to 7.7x in CNN-based models (C,D,E).260

The results indicate that if the prediction accuracy of Model A is sufficient for a climate simulation, it will provide the greatest

calculation speedup either using CPU or GPU. Since NNs with comparable or worse accuracy have been used for simulations

ranging from months to years (Krasnopolsky et al., 2008; Pal et al., 2019), Model A is a promising candidate for modelling

applications since similar performance gains using a full RT code seems to require a complete rewrite for GPUs (Price et al.,

2014; Mielikainen et al., 2016; Wang et al., 2020). For simulations requiring a higher accuracy, Model C provides significant265

speedups even if a normal GPU is available on the platform.

4.4 Single column model simulation

To explore the ability of the NN model to generalise to new situations, we compare the climate of a single column model when

RRTMG is replaced by the NN model F (see previous section for a description of model F). The single column model uses a

diffusive boundary layer (Reed and Jablonowski, 2012), a slab surface of 50 meters thickness which behaves like an oceanic270
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Figure 4. Models are trained with Dataset1 and evaluated against Dataset2.val

Baseline RRTMG 0.37 ms

NN Model Name / Hardware Xeon CPU E3-1230 GTX 1060 GTX 1080

NN Batch size 64 256 1024 64 256 1024 64 256 1024 4096

Model A 5.87 10.28 10.88 18.50 61.67 123.33 16.08 61.67 123.33 370.00

Model B 1.87 2.74 2.82 13.70 37.00 61.67 14.80 46.25 74.00 123.33

Model C 0.14 0.14 0.14 3.19 4.11 4.57 4.25 5.52 7.40 7.71

Model D 0.11 0.11 0.11 2.52 3.03 3.33 3.52 4.25 5.44 5.52

Model E 0.09 0.09 0.09 2.16 2.59 2.82 2.98 3.67 4.63 4.40
Table 2. Speedups when using NN models to predict RTs comparing to calculating RTs using RRTMG. Result for RRTMG is shown for the

calculation of a sample in units of milliseconds. Results for NN models are shown as speedups for different batch sizes as compared to the

RRTMG calculation on the Xeon CPU.

mixed layer, the RRTMG shortwave component, and the Emanuel convection scheme (Emanuel and Zivkovic-Rothman, 1999).

The model has no seasonal or diurnal cycle. Carbon dioxide concentration is fixed at 300 ppm, and a fixed ozone concentration

12



Figure 5. Models are trained with Dataset2 and evaluated against Dataset2.val

is prescribed using an observed tropical profile. The model uses pressure as the vertical coordinate and has 60 equally spaced

vertical levels between 1013.2 hPa and the model top value at 0 hPa. The model time step is 10 minutes. The tendencies from

the various components are stepped forward in time using a third order explicit Adams-Bashforth scheme.275

The model is initialised with a dry, isothermal state. We use RRTMG’s longwave component to drive the model until the

RMS error between the RRTMG calculated longwave heating rates and those predicted by model F falls below a threshold of

0.5 K/day. Once the errors falls below this value, model F takes over and RRTMG’s longwave component is never used again

for the rest of the simulation (shortwave radiation is computed using RRTMG throughout). The switch from RRTMG to model

F happens after around 14 days of simulation. This simulation is denoted as “RadNet” in Fig. 6. Another simulation continues280

to use RRTMG longwave radiation until the end of the simulation and is denoted as “RRTMG” in Fig. 6. As discussed subse-

quently, the RadNet simulation has a bias in the stratosphere and the temperature profile of the top three levels is constrained

to the RRTMG simulation to prevent the simulation from blowing up. Both simulations are run for 2100 days and equilibrium

is reached around 1600 days, with constant temperature and humidity profiles afterwards.
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Figure 6. Comparison of the vertical profiles of temperature (first row), longwave heating rates (second row) and specific humidity (third

row) for the RadNet and RRTMG simulations at three different times.
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Within the troposphere, both simulations show a realistic moist-adiabatic temperature profile and are in reasonable quanti-285

tative agreement. However, there are substantial differences in the stratosphere, and the equilibrium position of the tropopause

seen in Fig. 6c in the RadNet simulation is higher by around 50 hPa as compared to the RRTMG simulation. This is because

Model F has a cooling bias in the upper atmosphere as seen in Fig. 6d, which makes it convectively unstable and therefore the

tropopause shifts upward. The tropospheric temperature profiles are identical since they are set by the convective parameteri-

zation in such convectively unstable situations.290

As the boundary layer fluxes water vapour into the column from the surface, the atmosphere becomes opaque to longwave

radiation in the lower levels and therefore the longwave cooling is strongest in the level just above the moist, opaque part of

the atmosphere. Figure 6d shows that the cooling peak predicted by model F has a smaller magnitude and is located lower

in the atmosphere. The lower cooling rate peak predicted by the NN results in the slower evolution of the RadNet simulation

as compared to the RRTMG simulation, resulting in the difference in height between the two simulations (the cooling peak295

rises over time as the convection tries to eliminate the instability produced by radiative cooling). The cooling peak in the

RadNet simulation is situated close to the location of the strongest gradient in water vapour (where the atmosphere transitions

from being opaque to transparent to longwave radiation), which is physically accurate. The differences in magnitude are larger

slightly earlier in the simulation, where the atmospheric profiles are quite unlike the profiles in the training dataset. It seems

unlikely that neural nets can predict such “spiky” profiles correctly since the predicted results tend to be smooth in general.300

However, the Radnet predicted profiles provide sufficient cooling to make the atmosphere convectively unstable and eventually

mix the entire troposphere of the model.

The NN has a systematic warm bias in the lowest layer of the model, which may be linked to the interpolation errors

discussed previously for model F. This warm bias results in a slightly warmer surface temperature (⇠ 0.5K) in the RadNet

simulation as seen in Fig. 6c. The warmer profile supports a larger amount of water vapour, and the RadNet simulation has a305

moist bias in the lower troposphere as well.

We see that small systematic errors in the predicted heating rates can have a non-trivial effect on the simulated climate

in a single column model, especially in the upper layers of the atmosphere. In particular, errors in radiative heating near the

tropopause can dramatically change the structure of this part of the atmosphere. The neural network tends to cool the upper

atmosphere a little more, making it more convectively unstable and pushing the convection and tropopause higher.310

To verify the accuracy of the predicted heating profiles, we use the atmospheric profiles from the RadNet simulation to drive

the RRTMG longwave component. The NN and RRTMG heating profiles generated are presented in Fig. 7. The heating profiles

predicted by the NN are fairly accurate, especially in the later parts of the simulation when the atmospheric profiles are similar

to those in the training sample space. The NN predicts the location of the cooling peak accurately even when the atmospheric

profiles are unlike those in the training sample space, though it underestimates the magnitude. RRTMG produces fairly noisy315

heating profiles in the stratosphere, reflecting the noisy temperature profile simulated by the NN. The noisy stratospheric

temperature profile appears to be a result of the fact that the training data for model F was generated using atmospheric profiles

that had additional noise added to them, which results in noisy heating profiles used for training.
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Figure 7. Comparison of the vertical profiles of longwave heating rates predicted by the NN and RRTMG for atmospheric profiles from the

RadNet simulation.

5 Discussion and Conclusions

Radiative transfer was probably among the first climate model components that neural network models aimed to replace in320

climate simulations. The evolution of NN models has paralleled the evolution of NN architectures themselves, with initial

attempts using shallow networks while recent attempts (including our own) using deep networks. Since both shallow and deep

networks seem to perform reasonably well in model simulations (Krasnopolsky et al., 2008; Pal et al., 2019), the question of

which type of architecture is more suitable inevitably arises.

In this paper, we have employed two elementary but widely used classes of neural networks, namely feedforward and con-325

volutional neural networks. We believe that the range of model architectures we have presented in this paper are representative

within these classes of networks. Our experiments not only explore differences between these two network architectures, but

they also propose a validation workflow:

– Traditional validation using metrics such a mean-squared error.

– Validation against a perturbed dataset, which helps evaluate generalizability of the networks directly330

16



– Validation using a hierarchical climate modelling framework such as climt. Simple climate models such as the single-

column model helps climate scientists not familiar with neural networks evaluate the physical consequences of network

architecture choices. The neural network could then be deployed in a more complicated setup such as a general circulation

model and evaluated again.

We believe that different methods of validating a neural network is essential to compare different network architectures in a335

scientifically relevant manner.

Our experiments show that:

– A larger number of parameters in a neural network lead to slower prediction, as could be expected intuitively

– More parameters do not always lead to a better prediction accuracy

Classic convolutional networks provide high accuracy at the cost of
:
a
:
higher computational cost. The number of parameters340

in CNNs can be reduced in multiple ways: for example.
::::
For

:::::::
instance, using a

::::
1-D

:::::::::::
convolutional

::::
filter

:::::
could

::::::
provide

:::::::::::
performance

::::
gains

::
at

:::
the

:::::::
expense

::
of

:::::
losing

:::
the

:::::::::
correlation

::::::::::
information

::::::::
between

:::::::
different

::::
input

:::::
fields

::::
like

::::::::::
temperature

:::
and

:::::::
specific

::::::::
humidity.

::::::::
Similarly,

:::::
using

:
a larger stride in convolutional layers, using pooling layers in between convolutional layers or reducing model

layers
:::
are

::
all

:::::
ways

::
in

:::::
which

:::
the

:::::::::::
performance

::
of

:::
the

:::::::
classical

:::::
CNN

:::::
could

:::
be

::::::::
improved. Going beyond the classic architectures

we have explored, a variety of architectures have been recently proposed which might increase both accuracy and/or speedup.345

These architectures include the residual blocks proposed in Resnet (He et al., 2015b), the depth-wise separable convolution

used in MobileNets (Howard et al., 2017) and Xception (Chollet, 2016), among others. Furthermore, EfficientNet (Tan and Le,

2019) has shown that an efficient balancing of network depth, width, and resolution can lead to better performance in terms of

prediction accuracy and speed. However, any such reduction of model parameters in CNNs or exploring newer architectures

must be accompanied with a rigorous validation procedure, which could be similar to the workflow proposed above.350

Recent work in NN theory suggests that the mathematical structure of deep neural networks (a series of linear and non-

linear operators applied sequentially) is especially suited to capture functions which can be expressed as the composition of

other functions (Mhaskar and Poggio, 2016; Lin et al., 2017). Radiative transfer conforms to this structure very well: the total

radiative heating rate is the sum of heating rates in each spectral band, and the heating rate in each spectral band requires

the calculation of absorption coefficients at each model level, each independent of the other. The two-stream approximation355

and the independent column assumptions introduce additional locality and symmetry requirements, constraining the problem

further. This mathematical structure suggests that deep neural networks are a natural choice to approximate RT. Furthermore,

the presence of highly localised scattering and absorbing substances such as clouds and water vapour suggest that RT might

benefit from a NN structure which is sensitive to localised patterns. This suggests that convolutional NNs might be a better

model for RT, and our results confirm this. However, our results also show that using convolutional NNs reduces performance360

by 50-100 times as compared to feedforward NNs with only a marginal increase in accuracy. Thus, within our evaluation

setup, deep feedforward NNs present the best compromise between accuracy and performance.
::::
We

::::
note

:::
that

:::
the

:::::::::::
performance

:::::
losses

:::
we

::::
have

::::::::
observed

:::
for

::::::
CNNs

:::::
could

:::
be

:::::::
reduced

:::::
using

::
a
::::::
variety

:::
of

:::::::::
techniques

:::::
noted

:::
in

:::
the

::::::::
previous

:::::::::
paragraph.

::::
The
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::::::::::::::::::
performance-accuracy

::::
trade

:::
off

:::
for

::::
each

::
of

:::::
these

:::::::::
techniques

:::::
needs

::
to

::
be

::::::::
evaluated

:::::::::
rigorously

:::
and

::::::::
provides

:
a
:::::::::
promising

::::::
avenue

::
for

::::::
future

:::::::
research.365

The ability of NNs to generalise to unfamiliar atmospheric profiles seems to be limited as suggested by the cases where the

NNs were validated on the perturbed dataset and the single column model comparisons. These results bring to question the

applicability of NN based radiative transfer in research configurations where perturbations to the model state or evolution to

a wholly new climate state is routinely performed. Thus, NNs seem to work best in an “operational mode” where the state of

the climate or weather prediction model is not expected to change dramatically as compared to the training set. The approach370

of adding of noise to improve NNs’ ability to generalise beyond the training sample has a long history (Sietsma and Dow,

1991). However, our results show that adding noise to the training dataset results in noisy temperature profiles in simulations,

especially in the stratosphere where the temperature profile is closer to pure radiative equilibrium.

The dramatic performance gains when using commodity GPUs makes the use of NNs all the more attractive given that

most future high-performance computing configurations will include both GPUs and CPUs. NNs allow batching of multiple375

atmospheric profiles during matrix multiplications, which allows large performance gains. Such batching is not feasible for an

actual RT calculation, and each atmospheric profile has to be handled individually. This may be the reason why rewrites of

RRTMG for GPUs (Price et al., 2014; Mielikainen et al., 2016; Wang et al., 2020) give similar performance gains to what we

have achieved in our setup using NNs. We note that the comparison between RadNet and rewrites of RRTMG for GPUs does

not take into consideration differences in GPU architectures and batch sizes, which could change the exact numbers obtained.380

However, our results highlight the difference that GPUs make in accelerating RadNet.

Another method to assess the ability of NNs to generalise is to actually build a climate model which includes the NN as

a component. Since single column models have no diffusion built-in and cannot transport energy horizontally, we believe

that they constitute a tougher test case for NNs as compared to GCMs. The lack of dynamics also makes the results easier

to interpret. In our test case, we see that the errors in prediction by the NN has a larger impact in the stratosphere than the385

troposphere due to the tight control of the tropospheric lapse rate by moist convection. The initial atmospheric profile – dry

and isothermal – is quite different from the profiles in the training sample space. While the errors in the initial part of the

simulation are larger, the NN predicts physically realistic heating profiles with slight differences in location and magnitude.

Such physically plausible behaviour in situations quite different from those the NN was trained on gives us confidence that NNs

can indeed be used as climate model components in the future. However, it is clear that better strategies for data preparation,390

selection of NN architecture and testing trained NNs are required to improve NN performance and enable scientists to interpret

their impact on climate model simulations.

Code availability. The code used for training RadNet and the Jupyter notebook which simulates the single column model are available at

http://doi.org/10.5281/zenodo.3884964.

The ERA-Interim data can be downloaded from https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/395
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