
Reply to the Reviewer 1 comments for: RadNet:

Exploring deep learning architectures for

longwave radiative transfer

We thank the reviewer for their comments.

1 General Comments

1. Study setup You have chosen to use ERA profiles as input which

of course gives you realistic profiles. However, this comes with

two major limitations: a) You have to manually create out-of-sample

profiles (Dataset 2) which are potentially unrealistic (see comment

below). b) You are limited to single-column model experiments

for coupled verification. While I don’t expect you to do this

for this revision, I feel like you have the chance for a more

insightful experimental setup using CliMT. You could have setup

a global CliMT simulation that is somewhat realistic and used

the RRTMG output from that simulation as training data. Then

you could have also ran the same experiment with increased SSTs

for a more realistic climate change experiment. Lastly, you could

have used your RadNet in directly in the global simulation for

a 3D coupled experiment. I think the results from such an experiment

could be really insightful for the ML parameterization community.

Response: We thank the reviewer for these suggestions. We would like
to clarify that:

a) Our validation dataset was not specifically created with a climate
change scenario in mind. Rather, our aim was to explore the response
of NNs when perturbations are added to the input profiles. Radiative
heating profiles can be fairly noisy since optical parameters can change
quite drastically in the vertical, and these changes need not be highly
correlated. For example, the presence/absence of clouds, hydrometeors,
aerosols, horizontal advection of water vapour can cause localised per-
turbations which are not strongly correlated vertically. That being said,
we agree that our validation dataset represents an extreme example of
this behaviour. We have added a paragraph in Section 2.2 to explain the
reasoning that went into creating the perturbed dataset.
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b) There is nothing in our setup which limits our simulations to a single
column. This is because radiative transfer is assumed to have no contri-
bution from adjacent columns (as we have described in Lines 91–92.). Our
motivation to use a single column model for validation has been described
in the manuscript in line 350: it allows us to study the evolution and
possible errors in greater detail.

We thank the reviewer for their suggestions regarding the proposed ex-
perimental setup, which are natural extension to the work presented here,
and we look forward to following this up in future work.

Lines Changed: 129–133

2. Training data estimation for line-by-line computation As you mentioned

in the paper, ideally one would use line-by-line radiation computations

to train from. Since line-by-line is really expensive you would

be limited in the amount of training data you can generate. Would

it be possible to make an estimate of what a realistic amount

of line-by-line data would be and whether this amount of data

would be enough to train your networks

Response: The dataset used to train the network in this paper is around
12 million training samples and 3.5 million validation samples. Thus,
the total dataset size generated is around 15 million samples. RRTMG
requires 0.37 ms to generate a sample as per our profiling results (Table
1). The total time to generate all samples amounts to around 1.5 hours.
The performance of a line-by-line radiative transfer code is dependent on
the spectral resolution it uses; However, it is typically around 2-3 orders of
magnitude slower than correlated-k codes (see Table 2 in https://doi.

org/10.3390/rs11090994). Using a 10-core machine (for example) to
generate the samples, we would require it to run continuously for around
2 weeks to generate the required samples. This estimate does not take
into consideration any memory-related constraints that may arise.

3. Neural network architectures One of the key goals of this paper

is to compare different NN architectures, particularly fully connected

versus convolutional. You present 5+ different architectures.

I have several questions about these:

3.1 Model E is the same as Model C but with zero-padding but why

do the number of channels also increase in the table from

4 to 6? I assume this is an error since the number of parameters

also stays the same.

Response: The channel number is correct. The increase is caused
by the zero-padding. However, it is good that you have pointed
out the parameter numbers. We made an error in calculating the
numbers. Here are the correct number of parameters with calculation
steps. The number of parameters are also supported by the speedup
presented in the later section.
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Model A: 240 ∗ 512 + 512 ∗ 1024 + 1024 ∗ 512 + 512 ∗ 60 = 1202176

Model B: 240 ∗ 512+ 512 ∗ 1024+ 1024 ∗ 2048+ 2048 ∗ 1024+ 1024 ∗ 512+
512 ∗ 60 = 5396480

Model C: 3∗3∗128+3∗3∗128∗256+56∗1∗256∗512+512∗60 = 7666816

Model D: 3∗3∗128+3∗3∗128∗256+3∗3∗256∗256+54∗1∗256∗512+512∗60 =
7994496

Model E: 3∗3∗128+3∗3∗128∗256+58∗2∗256∗512+512∗60 = 15531136
We have also made the appropriate changes in the manuscript.

Lines Changed: Table 1, Row 5

3.2 You could have tried a fully convolutional network by using

zero-padding on each layer. That way you don’t need the final

fully connected layer, which means a lot fewer parameters.

I would be interested to see how such a network would perform.

Response: We do not think that adding padding to all conv layers
will act the same as fully connected layers. The way to construct
a fully connected layer using conv layer is to use conv filters the
same size as the input layer with stride 1. So that each conv filter
computes the input only once covering all vectors then the number
of conv filters aggregates, e.g. 128. Then, it will act like 128 neuron
fully connected layer.

3.3 However, one problem I see with CNNs in this context is that

they are based on translational invariance i.e. the computations

are the same along the entirety of the vector. But with non-uniform

grids like the one you are using is there any reason to assume

that translation invariance should hold?

Response: We are unsure what the reviewer means here. We
presume they are referring to the fact that the pressure grid is non-
uniform, and therefore translation along the pressure axis is not an
invariant.

Our understanding is that translational invariance is a consequence
of the architecture of CNNs. This is because of the architecture of
convolutional layers which carry out the same computation along
the entire vector. Then, in the later fully connected layers, features
extracted from convolutional layers are aggregated with respect to
their location in the input vector using different weights. Finally, the
prediction of radiation is produced.

Translation invariance is a useful property to have when the aim is
to identify features regardless of their location. However, our focus
was on the ability of CNNs to capture local features well rather than
their ability to produce translation invariant (or equivariant) repre-
sentations of the input. We believe that this is a useful feature to
have given that radiative heating fields can have sharp, local features
due to the presence of clouds and other radiatively active substances.

3.4 Another architecture you could try is a Resnet using skip

connections.
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Response: We would expect that Resnet will give more accuracy
in this use case. However, we expect that such a model will be even
slower than the model E given that Resnet-50 has over 25 million
parameters. Therefore, it is unlikely to speed up radiative transfer
calculations.

3.5 You mention you use PReLUs to avoid vanishing gradients. Did

you observe vanishing gradients for normal ReLUs? That would

surprise me since your networks are not very deep.

Response: The reviewer is correct that we did not observe vanishing
gradients in all models. We only observed an indication of vanishing
gradients in our deepest model. In addition, PReLUs facilitate faster
and more stable convergence. To make the comparison fair, we have
chosen the same activation function in all models.

3.6 Did you observe overfitting (train MSE < valid MSE)? Your

validation dataset is from 2015-2016 while your train dataset

is from 1979-1985, which means that the base state is probably

changing. This will make it hard to check for overfitting

since even with a model that does not overfit one would expect

the train loss to be lower. A better test of overfitting

would be to take a random subset of the train dataset. The

reason I am interested in this is that I am surprised a bigger

network (B vs A) did not give you a better score. If you

are not yet overfitting, bigger networks should always result

in better losses, or am I missing something? You mention

overfitting when talking about the generalization experiments

but that still doesn’t explain why the skill for Dataset 1

wouldn’t be better for model B.

Response: We agree with the reviewer that it is harder to explicitly
check for over-fitting using different periods of data using standard
definitions. However, we believe our approach is a more practical
check of the models’ ability to generalize since we would like the
model to perform well in different climate states.

2 Specific Comments

• Line 56: You could also mention this recent paper: https://

arxiv.org/abs/2001.03151. Also this follow up paper highlights

some interesting issues: https://onlinelibrary.wiley.com/doi/

abs/10.1029/2019MS001711

Response: We thank the reviewer for these references. They have been
added to our bibliography.

Lines Changed: 55–57

• Line 90: Typo ‘‘columm’’
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Response: Corrected.

Lines Changed: 91

• Line 102: I think it would be useful at this point to mention

the horizontal and vertical resolution of ERA.

Response: We have added the horizontal and vertical resolution.

Lines Changed: 101–103

• Line 105: So the size of your training dataset is around 12 million?

Please mention this explicitly?

Response: We thank the reviewer for pointing this out. Yes, our training
dataset is 12 million samples. We have added number in the manuscript.

Lines Changed: 109

• Line 110: If I understand correctly there is no vertical correlation

in your perturbation, right? Are the resulting profiles therefore

\unrealistic"? How do you think this affects the network’s generalization?

Do you think that your results are representative of the sorts

of perturbations you would experience in real climate change (increased

T)?

Response: We agree that our perturbed dataset is an extreme case in
that it assumes zero correlation between perturbations at different levels.
However, as mentioned previously, changed in the optical properties of
the atmosphere can be fairly “noisy” with low correlation in the vertical.
In that sense, we believe our perturbed dataset is an extreme case of a
regularly occurring phenomenon. Our choice of zero correlation aims at
providing a conservative estimate: if the neural networks can perform
adequately in these conditions, they will likely perform as well or better
when there perturbations are correlated and have fewer effective degrees
of freedom. Nonetheless, we agree that these perturbed profiles affect the
network’s ability to generalize, and produces issues that we have noted
(Line 328 in the original manuscript). In a climate change scenario, given
that our ability to simulate the vertical and horizontal distribution of
clouds is still poor, a milder version of perturbations we have used might
be relevant.

• Line 150: Actually, convolutions are a form of regularization

by introducing an architectural constraint. In fact, a convolution

layer is simply a subset of a fully connected layer with shared

weights (https://medium.com/impactai/cnns-from-different-viewpoints-fab7f52d159c).

But yeah, in effect you end up focusing on local features.

Response: We thank the reviewer for this insight. It is certainly will
help us going forward to think of CNNs in this manner.
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• Table 1: I think it would be helpful to list all the Models

(including F) in the table.

Response: Model F is now in the table.

Lines Changed: Table 1, row 6

• Data: Great that you included an example file in the repo. But

maybe you could also add instructions on how to download the full

dataset you used.

Response: We have added the URL for the ERA Interim data in the
Code Availability section.

• Code: Kudos for including code. I looked at the implementation

of the networks. Maybe just a recommendation: I think the code

could have been a lot easier and clearer if you used Keras instead

of plain TF. Especially with TF 2 its now very easy to take all

the precoded parts of Keras and implement your own layers, etc.

using TF. All the manually coded layers in your code (matmul,

etc.) make it very hard to follow when a simple Dense() would

suffice. This would make the code easier to read for others.

Response: The skeleton of keras code illustrating the NN structure for
easier reading is added in the repository. It is in the model.py file line
243-255. But it is recommended to use the original implementation since
it is the base for the results presented in this paper.
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Reply to the Reviewer 2 comments for: RadNet:

Exploring deep learning architectures for

longwave radiative transfer

We thank the reviewer for his/her comments.

1. The paper explores the use of neural networks architectures to

model radioactive transfer in global circulation models. The

paper is interesting and well written. Authors carried out thorough

experiments and the conclusions about the use of NN in the field

are interesting. Additionally, the source code for the implementation

is publicly available, which is really useful. I have a few concerns

about the experiments and how the performance is calculate.

Response: We thank the reviewer for their inputs and comments. We
address the concerns below.

2. Speedups of table 2 are obtained by comparing the computational

time of RRTMG and NN. I suppose that the baseline time for RRTMG

is obtained in the Xeon CPU, and all the values are computed using

this baseline. The objective of the paper is to evaluate the

advantage of replace a RRTMG for a NN. To do that, a comparison

in term of execution time is done. But, to be fair, the comparison

of the NN should have been done with a RRTMG implementation for

GPU. In the conclusions, authors say that "a complete rewrite

of RRTMG for GPUs gives very similar performance gains as what

we have achieved in our setup using NNs (Price et al., 2014; Mielikainen

et al., 2016)". You should include evidences to support this

affirmation. For example, in Mielikainen et al. author state

that their implementation provides a speedup of 202x on a Tesla

K40 GPU, compared a single-threaded Fortran counterpart running

on Intel Xeon E5-2603 CPU. A higher speedup (370x) is indicated

in Table 2, for NN model A and a batch size of 4096 running in

GTX 1080. Both GPUs architectures are very different, so result

are not directly comparable. In fact, single precision floating

point (float32) performance is higher in the GTX 1080 that in

the Tesla K40 (it’s the opposite for double precision).

Response: We thank the reviewer for pointing this out. We agree that
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our comparison does not take into consideration differences in GPU ar-
chitecture. We do not have access to a GPU implementation of RRTMG,
which does not allow us to make a precise estimate of the kind pointed
out by the reviewer.

The main point we were trying to make is that GPUs play a significant
role in accelerating RadNet. We have qualified our conclusions to highlight
this fact.

Lines Changed: 347–349

3. Related with the previous question, Intel Xeon CPU E3-1230 v5

is a quad-core pro- cessor (8 virtual cores). Is the execution

of RRTMG single or multi-threaded? This should be indicated.

Response: The execution of RRTMG for the purposes of performance
evaluation were single-threaded. We mentioned this in the text now.

Lines Changed: 244

4. More details should be included about how the time is measured.

cProfile is used for calculate the execution time, but with times

of only 0.31 ms, as indicated in table 2, the accuracy of the

measure is not guaranteed, as a typical time granularity on Unix

is 1 ms. Alternatives, as the time Python module, could provide

more accurate measurements. Additionally, information about how

many measurements have been done and how the final values have

been computed should be included.

Response: We thank the reviewer for pointing out this omission. The
execution time results are averaged from 10 measurements with execution
of 100 000 predictions per measurement. The above text is added to the
paper.

Lines Changed: 245–247

5. Introduction: To include a specific section with the related

work, instead of including it in the introduction, could be beneficial

Response:

6. A recent work describing other GPU-based accelerating methods

for the RRTMG LW could be analyzed https://www.mdpi.com/2076-3417/

10/2/649

Response: We thank the reviewer for this reference. While they don’t
seem to achieve the same performance as previous GPU approaches, it is
interesting nevertheless.

Lines Changed: 263, 346

7. Section 2.2. Is it realistic the perturbed dataset as has been

created? Can be these values representative of a real situation?
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Response: It is common to have random perturbations in the optical
depth due to the presence of clouds, aerosols or horizontal transport of
water vapour. In some sense, our perturbed dataset tries to capture this
variability. However, we agree that random perturbations at all levels is
an extreme case, and it can be taken as a very strong test on the ability
of our models to generalize to new situations.

8. Section 4.4. In the single column model simulation, why the NN

model F is used? Why not use model A or model C?

Response: The single column model uses a pressure level grid, which
means that the pressure levels do not change during the course of the
simulation. For this reason we use model F which interpolates the pressure
levels onto a fixed pressure grid.

9. The developed code used TensorFlow, this should be indicated in

the paper along with the version employed. It could be also interesting

to describe the benefits of using this library in comparison with

others, eg PyTorch.

Response: Yes, the implementation can be done in other mainstream
machine learning library such as PyTorch, Keras, etc. They could also
introduce slightly different speedups. We chose TensorFlow because it is
well-supported by Google and it is a mainstream machine learning plat-
forms, especially when we started this project. The purpose of this paper
is to demonstrate that NN is capable of predicting radiative transfers with
significant speedups. I believe this conclusion is still true when implement-
ing the code in other libraries.

We have added the version employed in the manuscript.

Lines Changed: 172–173.
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RadNet 1.0: Exploring deep learning architectures for longwave
radiative transfer
Ying Liu1, Rodrigo Caballero1, and Joy Merwin Monteiro1

1Department of Meteorology, Stockholm University, Stockholm, Sweden

Correspondence: Ying Liu (ying.liu.sweden@gmail.com)

Abstract. Simulating global and regional climate at high resolution is essential to study the effects of climate change and

capture extreme events affecting human populations. To achieve this goal, the scalability of climate models and efficiency of

individual model components are both important. Radiative transfer is among the most computationally expensive components

in a typical climate model. Here we attempt to model this component using a neural network. We aim to study the feasibility

of replacing an explicit, physics-based computation of longwave radiative transfer by a neural network emulator, and assessing5

the resultant performance gains. We compare multiple neural-network architectures, including a convolutional neural network

and our results suggest that the performance loss from the use of convolutional networks is not offset by gains in accuracy.

We train the networks with and without noise added to the input profiles and find that adding noise improves the ability of the

networks to generalise beyond the training set. Prediction of radiative heating rates using our neural network models achieve

up to 370x speedup on a GTX 1080 GPU setup and 11x speedup on a Xeon CPU setup compared to the a state of the art10

radiative transfer library running on the same Xeon CPU. Furthermore, our neural network models yield less than 0.1 Kelvin

per day mean squared error across all pressure levels. Upon introducing this component into a single column model, we find

that the time evolution of the temperature and humidity profiles are physically reasonable, though the model is conservative in

its prediction of heating rates in regions where the optical depth changes quickly. Differences exist in the equilibrium climate

simulated when using the neural network, which are attributed to small systematic errors that accumulate over time. Thus, we15

find that the accuracy of the neural network in the “offline” mode does not reflect its performance when coupled with other

components.

1 Introduction

Computational models of Earth’s climate are essential tools to advance our understanding of the climate system and our ability

to predict its response to perturbations such as increased levels of greenhouse gases. Climate models contain algorithmic20

representations of the various components of the climate system like the atmosphere, ocean, sea ice and land surface. Our ability

to predict future changes in climate depends crucially on the accuracy of these models and the extent to which interactions

between various components of the climate system are represented.

A basic requirement for increased model fidelity, particularly at the regional scale, is increased spatial resolution. However,

the computational burden increases roughly as the fourth power of spatial resolution (since resolution must increase along all25
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three spatial dimensions, and the time step reduced to ensure numerical stability). To address this problem, various approaches

have been used including improved model scalability (Dennis and Loft, 2011) and the use of low-precision floating point

operations (Palmer, 2014).

Long simulations using high resolution climate models are needed to explore key questions in climate research, particu-

larly changes in the statistics weather extremes such as windstorms and precipitation events. Radiative transfer (RT) in the30

atmosphere is among the most computationally burdensome components of such simulations. While the basic equations for

calculating RT are straightforward, the complex nature of the absorption bands of greenhouse gases such as carbon dioxide and

water vapour requires separate calculation over a very large number of small spectral intervals to obtain accurate results. Since

such a line-by-line calculation is extremely computationally intensive and not feasible in a realistic climate model integration, it

is necessary to group individual absorption lines into bands or clusters with similar properties as in the correlated-k method (Fu35

and Liou, 1992). Such methods can dramatically improve the computational performance while retaining adequate accuracy in

the computation. Many state-of-the-art climate models use the Rapid Radiative Transfer Model for General circulation models

(RRTMG). RRTMG is based on the single-column correlated k-distribution reference model RRTM (Iacono et al., 2008b).

RRTMG tries to strike a balance betweeen computational complexity and accuracy by reducing the number of calculations per

band while ensuring fidelity with the RRTM code (Iacono et al., 2008a). Nonetheless, even when employing such simplified40

schemes, RT remains amongst the most numerically expensive components of climate models, and a variety of strategies have

been developed to reduce this cost (see for example Pincus and Stevens, 2013, and references therein).

In this paper, we explore the potential performance gains achievable by using a neural network (NN) to calculate radiative

transfer. Specifically, we train a variety of alternative NN architectures on a set of radiative heating rate profiles computed

using a state-of-the-art RT code (see Sections 2), and compare the computational performance of the NN with that of the RT45

code itself. Note that this comparison only serves to assess the performance of RT calculation in standalone form. We expect

a suitably-trained neural network to be a drop-in replacement for the RT code in a full climate model, and expect that other

computational costs—such as data transfer within and between computational nodes—will not change, but we do not explicitly

address this issue in this exploratory study. Instead, our focus here is on identifying the most suitable NN architecture in

terms of accuracy and computational performance. We also explore the behaviour of the NN in a time-evolving single-column50

radiative-convective model (Section 4).

Recent advances in NNs have led to rapid progress in the accuracy of pattern and image recognition tasks. In particu-

lar, convolutional neural networks (CNNs) (Krizhevsky et al., 2012a) have achieved impressive results for image classifica-

tion (Krizhevsky et al., 2012b), while recurrent neural networks (RNNs) have made breakthroughs in sequence-to-sequence

learning tasks such as machine-translation (Wu et al., 2016). Efforts to use machine learning techniques to model actual physical55

processes in a climate model have increased recently (Schneider et al., 2017; Gentine et al., 2018; Rasp et al., 2018; O’Gorman and Dwyer, 2018; Scher, 2018; Brenowitz and Bretherton, 2018; San and Maulik, 2018)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Schneider et al., 2017; Gentine et al., 2018; Rasp et al., 2018; O’Gorman and Dwyer, 2018; Scher, 2018; Brenowitz and Bretherton, 2018; San and Maulik, 2018; Brenowitz and Bretherton, 2019; Yuval and O’Gorman, 2020)

. In particular, it is now being recognized that physical processes whose representation in climate models has usually been inex-

act and parameterised could potentially be improved by using machine learning techniques. RT, on the other hand, has always

been an attractive candidate to optimize in climate models because of the large computational cost, as discussed above. Op-60
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timization has been attempted using traditional optimization, porting to new architectures such as GPUs (Price et al., 2014;

Mielikainen et al., 2016; Malik et al., 2017) and using NNs to approximate RT. Initial attempts to retrieve radiative heating

profiles used shallow (one hidden layer) networks (Chevallier et al., 1998), and similar NN architectures were successfully used

to replace RT in decadal simulations using conventional climate models (Krasnopolsky et al., 2005, 2008, 2009). Recently, a

deep NN was used to replace RT in a high resolution GCM, and was successfully used to run the GCM for one year (Pal et al.,65

2019). These studies show the capability of NNs to accurately approximate radiative heating profiles in a particular climate

regime, while raising questions about how generalizable this learning actually is in terms of handling perturbed climate states.

Studying the effect of perturbations (in sea-surface temperature, greenhouse gases, aerosols or cloud properties) on the climate

of a model is a very typical use-case in climate science, and the performance of NNs in such scenarios has yet to be studied

carefully.70

In the context of machine learning for climate modelling applications, the following questions are still not well under-

stood (Dueben and Bauer, 2018):

– What NN architectures are most suitable?

– What is the accuracy-efficiency tradeoff between different NN architectures?

– What accuracy loss can we expect when the NN is provided with “non-typical” input values, i.e. values very different75

from those in the training sample, such as would occur in a perturbed climate experiment?

– What is the speed-up we can expect by replacing a traditional RT scheme with a NN?

Our aim here is to address these four questions. To limit the scope of this exploratory study, we focus on longwave radiative

transfer under clear-sky conditions (henceforth, RT thus refers to clear-sky longwave radiative transfer). We use the RRTMG

library available within the climt modelling toolkit (Monteiro et al., 2018) to generate radiative cooling profiles to train the80

NN models. In particular, we compare the accuracy-computational complexity tradeoff between five kinds of NN architectures

on both CPU and GPU. We also study the loss in accuracy if perturbations are added to the input. The question of accuracy

loss is all the more relevant in RT due to its mathematical structure – since RT is modelled as an integral equation, localised

perturbations have global impacts on the profile of radiative heating or cooling obtained.

The paper is organized as follows. The preparation of data for training and validation of the NNs is presented in Section 2.85

Section 3 presents the NN structures and parameters we have used. Evaluation results are presented in section 4. Finally, we

present a brief discussion along with concluding remarks in Section 5.

2 Data and Methods

While radiative transfer is inherently three dimensional, increasing its complexity and computationally cost, it is common to

assume horizontal homogeneity (independent column assumption) and retain only a single (vertical) dimension (Meador and90

Weaver, 1980). This independent colummn
::::::
column assumption underlies almost all raditive transfer codes used in weather and
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climate models, and reduces radiative transfer calculation to an "embarassingly parallel" 1-dimensional problem in each vertical

column of the atmosphere. For a given longitude-latitude point, RT can be represented by a vector whose length is the number

of vertical levels into which the column is discretized. The calculation of RT under clear sky (cloud-free) conditions is based

on a number of inputs, including vectors of atmospheric pressure, air temperature and specific humidity at each level, while95

surface temperature and carbon dioxide mixing ratio are represented as scalars. While the clear-sky RT in the atmosphere is

affected by other greenhouse gases like methane and aerosols like sulphates, we restrict ourselves to using the above quantities

in this exploratory study.

2.1 The ERA-Interim Dataset

We use the ERA-Interim dataset (Dee et al., 2011) to provide temperature and humidity profiles for training the neural network.100

:::
The

:::::::::
horizontal

::::::::
resolution

:::
of

:::
the

::::
data

:
is
:::::::::::
0.75◦×0.75◦

::
in
::::

the
:::::::::
horizontal. We use 6 hourly model-level data, which has a higher

resolution in the vertical as compared with the pressure level data.
:::
The

::::::
vertical

::::
grid

::
is

:
a
:::::::::::
non-uniform

:::::::::::
η-coordinate

:::
grid

::::
with

:::
60

::::::::
mid-levels

:::::
from

:::
the

::::::
surface

::
to

:::
0.2

:::
hPa

::::
and

::
61

::::::::
interface

:::::
levels

::::
from

:::
the

::::::
surface

::::
upto

:::
0.1

::::
hPa.

:
This implies that pressure is not a

constant and is therefore an additional input to the neural network.

The ERA-Interim dataset consists of 38 years of data spanning the period 1979 to 2016, which amounts to around 6.5 billion105

sample profiles. We employ the first 7 years of ERA-Interim historical data as the training dataset, i.e., data from 1979 to 1985

and the last 2 years of the ERA-Interim historical data as the validation dataset, i.e., data from 2015 to 2016. Considering the

model training time, we have applied random sampling of 1% with respect to each year in the training and validation datasets.

::::
This

::::
gives

::::::
around

:::
12

::::::
million

::::::
training

:::::::
samples

::::
and

:::
3.5

::::::
million

::::::::
validation

::::::::
samples. After sampling, we name the training dataset

as Dataset1 and the validation dataset as Dataset1.val. The reason for using this data separation schema is because that we110

would like to examine whether our radiation prediction model is able to generalize to unseen/future data inputs while being

trained on the oldest data.

2.2 Perturbed Dataset

Figure 1 shows the mean and variance of ERA-Interim air temperature, humidity and radiative heating rates calculated using

RRTMG from 1979 to 2016. Using the above statistics, we have augmented our training data by created a perturbed dataset as115

follows:

1. Pick an original profile from the historical samples.

2. Generate a random air temperature profile assuming Gaussian distribution at each vertical level using the statistics from

Figure 1.

3. Generate a random weight (between -0.2 to 0.2) for the generated air temperature profile.120

4. Generate an augmented air temperature profile by adding together the original profile with the weighted random profile

vertical level wise.
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Figure 1. (a,b) ERA-Interim air temperature (K) and humidity (g kg−1) statistics. (c) Longwave radiative rates (K day−1) calculated using

RRTMG. Vertical axis is pressure in Pa.

5. Calculate the maximum humidity given the air temperature and pressure at each vertical level.

6. Calculate the original relative humidity ratio using humidity divided by the maximum humidity at each vertical level.

7. Calculate the new maximum humidity given the generated air temperature and pressure at each vertical level.125

8. Generate the corresponding humidity by multiplying the new maximum humidity and the original relative humidity ratio

at each vertical level.

9. We keep the surface temperature and the carbon dioxide mixing ratio the same as the original profile.
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:::
The

:::::::::
motivation

:::
for

:::::::
adding

:::::::
random,

::::::::
vertically

:::::::::::
uncorrelated

:::::::::::
perturbations

::
is
::::

that
:::
the

::::::
optical

:::::::::
properties

:::
of

:::
the

::::::::::
atmosphere

::::::
(which

::::::::
determine

:::
the

::::::::
radiative

:::::::
heating

:::::::
profiles)

:::
can

:::
be

:::::
quite

:::::
noisy

::
in

:::
the

:::::::
vertical.

:::::
This

::::::::
noisiness

::
is

:::
due

:::
to

:::
the

:::::::
presence

:::
of130

::::::
clouds,

::::::::::::
hydrometeors,

:::::::
aerosols

::::
and

:::::::::
horizontal

::::::::
advection

:::
of

:::::
water

::::::
vapour

::
at

::::::::
different

:::::
levels

::
in

:::
the

:::::::::::
atmosphere.

:::::::
Changes

:::
in

:::::
optical

::::::
depth

:::
due

::
to

:::
the

::::::
above

::::::
factors

::::
need

::::
not

::::
have

::
a

:::::
strong

:::::::
vertical

:::::::::
correlation

::::::
either.

::::
The

::::
kind

::
of

:::::::::::
perturbations

:::
we

:::::
have

:::::
added

::::::::
represent

::
an

:::::::
extreme

::::
case

::
of

:::
this

::::::::::::::::::
physically-motivated

::::::::
reasoning.

:

Augmented datasets are generated using Dataset1 and Dataset1.val. Then, the augmented dataset are 50-50 mixed with

Dataset1 and Dataset1.val respectively to create Dataset2 and Dataset2.val. The purpose of generating Dataset2 and135

Dataset2.val is that we would like to use it to investigate the generality of our RT prediction model. The specific evaluation

procedures are described in the evaluation section.

2.3 The RT dataset

The calculation of the radiative fields for the historical and perturbed datasets are calculated using the RRTMG component

available in the climt modelling toolkit (Monteiro and Caballero, 2016; Monteiro et al., 2018). This component is a python140

wrapper over the RRTMG fortran library, and provides convenient access to the radiation fields. The statistics of the generated

radiative heating profiles are also shown in Figure 1.

3 Neural Network Models

3.1 Neural Network Basics

A neural network is composed of multiple neurons, or even multiple layers of neurons in order to model complex scenarios. A145

simple neural network is a feed-forward network where information flows only in one direction from input to output. Multilayer

perceptron (Gardner and Dorling, 1998) is the most common feed-forward NN. It consists of an input layer that passes the input

vector to the network, one or more hidden layers and an output layer. There are usually activation functions applied in each

layer. An activation function usually introduces non-linearity in order to allow a NN to tackle with complicated problems and

learn complex representations.150

Convolutional NN is another type of NN designed for image-focused tasks. It is widely used in many fields such as image

classification, object detection and image segmentation (Krizhevsky et al., 2017). CNNs usually consist of three types of

layers, convolutional layers, pooling layers and fully-connected layers. A convolutional layer is composed of learnable kernels

or filters. The kernel usually considers a small region of input at one time, but covers the entirety of the input. Specifically, it

slides over the input spatially and computes dot products between the kernel and the area of input covered by the kernel. With155

each kernel, a convolutional layer produces an activation map, whose size depends on whether there is a stride or padding.

All the activation maps will be stacked together along the depth dimension and passed on to the next layer (O’Shea and Nash,

2015). Neurons in a layer are connected to only a small region of the previous layer instead of everything, which is different
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Model Name Model Structure Number of Parameters

Model A input-60x4 fc-512 fc-1024 fc-512 output-60 1079808
:::::::
1202176

Model B input-60x4 fc-512 fc-1024 fc-2048 fc-1024 fc-512 output-60 5274112
:::::::
5396480

Model C input-60x4 conv-3x3-128 conv-3x3-256 fc-512 output-60 457856
::::::
7666816

Model D input-60x4 conv-3x3-128 conv-3x3-256 conv-3x3-256 fc-512 output-60 1047680
:::::::
7994496

Model E input-62x6 conv-3x3-128 conv-3x3-256 fc-512 output-60 457856
::::::::
15531136

::::
Model

::
F

::::::::
input-62x5

: ::::::::::
conv-3x3-128

: ::::::::::
conv-3x3-256

: ::::
fc-512

: :::::::
output-60

: ::::::
7928960

Table 1. Neural network models used for predicting RTs. "fc-X" represents a fully connected layer with X number of neurons. "conv-YxY-X"

represents a convolutional layer with X number of YxY filters.

from feedforward neural networks. In this way, convolutional layers are better at extracting locality-dependent features, such

as shapes and patterns in images.160

In the context of RT, we use CNNs to evaluate whether the sensitivity to localised features improves the prediction per-

formance of deep neural networks. In particular, strong local changes in the optical properties of the atmosphere are fairly

common due to the presence of clouds or horizontal advection of water vapour. While this work focuses on clear-sky radiation,

we study the ability of CNNs to recognise and respond to such local features in the single column simulations.

Table 1 illustrates the structures and parameters of our neural networks. Specifically, we have designed five neural networks,165

including two feedforward neural networks and three convolutional neural networks (CNN). Model A and Model B are im-

plementations of feedforward neural networks with different numbers of layers and of neurons in each layer. Model C is a

simplified CNN implementation based on previous work (Simonyan and Zisserman, 2014). The stride of convolutional filters

is set to 1 so that the convolutional filters go through the input array with 1 element each step. We have not applied any padding

to the input. The convolutional filters are the classic 3x3 filters. Model D is a variant of Model C with one more convolutional170

layer. Model E has the same neural network structure as Model C. The only difference is that model E has padded the in-

put with an edge of zeros to emphasize on edges of the input.
::
We

:::::
have

::::
used

:::::::::
Tensorflow

:::::
1.8.0

::::::
library

:::
for

:::
the

::::::
neural

:::::::
network

:::::::::::::
implementation.

:

In addition to the above models, we also evaluate a variant of model E denoted as model F. Model F is based on Model E

but with a fixed pressure grid. This means that Model F does not take pressure values as input, and interpolates air temperature175

and humidity from model levels onto a fixed, time-invariant pressure grid. While this configuration reduces the dimensionality

of the input, it requires extrapolation of the ERA-Interim data or the calculated/predicted RT to the fixed grid. Specifically,

the inputs of a sample profile are B-spline extrapolated according to a fixed pressure grid. We extrapolate the air temperature

and humidity values onto the fixed pressure grid based on the profile’s pressure range. The inputs corresponding to the rest of

the pressure levels are set to 0. After running through model F, the RTs on the static pressure grid are B-spline interpolated180

back to the original pressure levels, which are the final results. It is important to mention that we constructed the static grid

using 15 equally spaced pressure levels from 1 to 500 Pa, another 15 equally spaced pressure levels from 550 to 50000 Pa,

and 30 equally spaced pressure levels from 50300 to 103000 Pa. We made this design choice by observing the distribution of
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the ERA-Interim data to ensure that our fixed grid encompasses most common pressure profiles in order to achieve a better

accuracy on the extrapolation and interpolation. We used model F to run the single-column model simulation presented below,185

which employs a fixed pressure grid.

3.2 Model training

We trained our five NNs with two datasets, resulting 10 different models. The first dataset is the aforementioned ERA-Interim

dataset, namely, Dataset1. The second dataset is the augmented dataset, i.e., Dataset2, in order to generalize the model to

a wider operational region beyond Dataset1. Each neural network is trained using the training dataset of either Dataset1 or190

Dataset2 and validated against either Dataset1.val or Dataset2.val.

Each model was trained with 30 epochs under a batch size of 128 starting with a learning rate of 0.001, which then ex-

ponentially decays every 10 epochs with base 0.96. This setup was empirically obtained while we observe that all models

have converged after the training. Mean squared error is used as the loss function in all models. Parametric Rectified Linear

Units (pReLUs) (He et al., 2015) are used as activation functions in all models since PReLUs is able to resolve the problem of195

vanishing gradient during model training. Adam optimizer (Kingma and Ba, 2014) is employed to compute the gradients.

We present the evaluation results regarding the performance of these models in the next section.

4 Evaluation

4.1 Evaluation Setup

We prepared two datasets, i.e., Dataset1.val and Dataset2.val, to evaluate our neural network models. Dataset1.val is used200

to evaluate the accuracy of the trained models with realistic future data. Dataset2.val is used to evaluate the generality of the

trained models as it contains profiles that are perturbed versions of the ERA Interim data.

4.2 Prediction Accuracy

We use vertical level-wise root-mean-squared errors (RMSE) to compare our NN generated radiative cooling rates with those

generated by the RRTMG algorithm. Figures 2-5 present results for the different NN models. The RMSE is calculated by205

taking the difference between NN- and RRTMG-calculated radiative cooling profiles.

Figure 2 presents the RMSE when the NN models are trained using Dataset1 and validated against Dataset1.val. These

experiments are performed to evaluate the capability of different NN models to predict RT when the atmospheric profiles are

sampled from the ERA-Interim dataset itself. We see that a simple 3 layer feedforward neural network (Model A) is able to

predict heating rates with a median RMSE of lesser than 0.01 K/day across all pressure ranges. The performance does not210

improve when more layers of directly connected neurons are added, as shown by Model B. We observe significant RMSE

improvement while using CNNs (Model C,D,E). However, the performance differences among these three CNN models are

not substantial except the RMSEs near the surface, which tend to have higher variability as shown in the statistics in Figure 1.
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Since surface radiation is particularly important to the climate, efforts have been made to minimize its prediction error. The

input matrix of Model C are padded with zeros in order to allow convolutional filters to put equal emphasis on the edges values215

as the middle ones (Innamorati et al., 2018). This creates Model E, which shows much better prediction accuracy on the bottom

and top pressure levels.

Figure 3 presents the RMSE when the NN models are trained using Dataset2 and validated against Dataset1.val. In this

experiment, we examine whether it is possible to expand the operational region of the NN models without compromising on

their performance on the ERA-Interim dataset. Comparing to Figure 2, we see that the increased generality comes at the cost220

of roughly doubled RMSE across all models.

The improvement on generality is suggested by the results shown in Figure 4 and Figure 5 when the NN models are trained

using Dataset1 or Dataset2 and validated against Dataset2.val. The RMSE increases by almost 100 times across all models

trained with Dataset1 and validated against Dataset2.val (Figure 4) when compared to their validation against Dataset1.val

(Figure 2). This suggests that that models trained with Dataset1 cannot really generalize to predict heating profiles from225

Dataset2.val. On the other hand, the RMSE increases 10 times when the models are trained using a wider range of data, i.e.,

Dataset2, as shown in Figure 5. This is mainly because that the model needs to cover a larger operational region.

When trained on Dataset1 and validated against Dataset2.val (Figure 4), the RMSE in Model B is significantly higher. We

believe that this is because of over-fitting. With more parameters in Model B and the nature of feedforward NN (Goodfellow

et al., 2016), it is more likely that parameters are deeply coupled with patterns observed in Dataset1 and have larger errors230

while evaluating against Dataset2.val.

Model F displays significant errors on both edges of the pressure levels. This is due to extrapolation errors. Specifically, if

the lowest pressure level in an atmospheric profile is lower than the lowest pressure level of the fixed grid, the profiles need to

be extrapolated. The same issue arises with the highest pressure levels as well. Thus, the errors in model F are mainly due to

these extrapolation based artifacts rather than an issue with the training itself. In fact, this model provides the most stable time235

integration of the single column model.

In the above evaluations, we have shown that CNN-based models achieve much lower prediction RMSE than feedforward

NN models. However, in the next section, we show that CNN-based models tend to have much slower prediction speed, i.e.,

less speedup as compared with the feedforward models.

4.3 Prediction speed240

In this section
:::
we compare the computation time of RRTMG and NN models using GPUs and CPUs. These performance

evaluations have been performed using Intel Xeon CPU E3-1230 v5 @ 3.40GHz, Nvidia GTX 1060 GPU with 6GB of onboard

memory and Nvidia GTX 1080 GPU with 8GB of onboard memory. Both GPUs we use are commodity hardware, and are easily

available in the market.
:::::::
RRTMG

::::
was

:::
run

::
in

:
a
:::::::::::::
single-threaded

:::::
mode

:::
for

:::
the

::::::::
purposes

::
of

:::
this

:::::::::
evaluation.

:

Table 2 summarizes the speedups using NN models to predict RT as compared to RRTMG. The calculation time of NN code245

and RRTMG code are profiled using the python line_profiler based on cProfile.
:::
The

:::::::::
execution

::::
time

::::::
results

:::
are

:::::::
averaged

:::::
from

::
10

::::::::::::
measurements

::::
with

::::::::
execution

:::
of

:::
100

::::
000

:::::::::
predictions

:::
per

::::::::::::
measurement. Since RT calculations are embarrassingly parallel,
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Figure 2. Models are trained with Dataset1 and evaluated against Dataset1.val. The models
:::
plots

:
have 30 linearly spaced levels between

0 and 101300 pascals. The
::::
errors

::::
from

::::
each

:::::
model

:::
are

::::::
binned

::
to

::::
these

::::::
equally

:::::
spaced

:::::::
intervals

:::
for

::::
easier

:::::::
reading.

:::
The

:
boxes in the plots

present the boxplot of the RT MSEs at every level. Specifically, the boxes describe the 25 (Q1), 50 (Q2) and 75 (Q3) percentile of the MSEs

while the two whiskers extend from the edges of box to 1.5 times the interquartile range (Q3-Q1).

we are able to use batch predictions in our NN models
::::
while

:::::
using

:
a
::::::
single

::::
GPU. The overall results show that the larger the

batch size, the larger the speedup observed as long as the CPU or GPU memory is sufficient. In other words, the calculation of

M radiative heating profiles is faster than M times the time taken to predict one such profile. This is because of the efficiency250

of matrix multiplications in NNs while conducting NN forward pass in batches. We note that such a speedup is not possible

in a physics-based RT scheme since the calculation of RT for an arbitrary atmospheric profile cannot be expressed as a simple

matrix multiplication.

The results show that using only the Xeon CPU, NN model A and B are able to achieve speedups up to 10.88x and 2.82x

respectively using a batch size of 1024. When using GTX 1060, we are able to achieve speedups of 123x in model A, 61x255

in model B and 2.8x to 4.5x in CNN-based models (C,D,E). With GTX 1080, which has a larger memory and a faster clock

speed, we observe speedups up to 370x in model A, 123x in model B and 4.4x to 7.7x in CNN-based models (C,D,E).
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Figure 3. Models are trained with Dataset2 and evaluated against Dataset1.val

The results indicate that if the prediction accuracy of Model A is sufficient for a climate simulation, it will provide the

greatest calculation speedup either using CPU or GPU. Since NNs with comparable or worse accuracy have been used for

simulations ranging from months to years (Krasnopolsky et al., 2008; Pal et al., 2019), Model A is a promising candidate260

for modelling applications since similar performance gains using a full RT code seems to require a complete rewrite for

GPUs (Price et al., 2014; Mielikainen et al., 2016)
::::::::::::::::::::::::::::::::::::::::::::::::::
(Price et al., 2014; Mielikainen et al., 2016; Wang et al., 2020). For simula-

tions requiring a higher accuracy, Model C provides significant speedups even if a normal GPU is available on the platform.

4.4 Single column model simulation

To explore the ability of the NN model to generalise to new situations, we compare the climate of a single column model when265

RRTMG is replaced by the NN model F (see previous section for a description of model F). The single column model uses a

diffusive boundary layer (Reed and Jablonowski, 2012), a slab surface of 50 meters thickness which behaves like an oceanic

mixed layer, the RRTMG shortwave component, and the Emanuel convection scheme (Emanuel and Zivkovic-Rothman, 1999).

The model has no seasonal or diurnal cycle. Carbon dioxide concentration is fixed at 300 ppm, and a fixed ozone concentration
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Figure 4. Models are trained with Dataset1 and evaluated against Dataset2.val

Baseline RRTMG 0.37 ms

NN Model Name / Hardware Xeon CPU E3-1230 GTX 1060 GTX 1080

NN Batch size 64 256 1024 64 256 1024 64 256 1024 4096

Model A 5.87 10.28 10.88 18.50 61.67 123.33 16.08 61.67 123.33 370.00

Model B 1.87 2.74 2.82 13.70 37.00 61.67 14.80 46.25 74.00 123.33

Model C 0.14 0.14 0.14 3.19 4.11 4.57 4.25 5.52 7.40 7.71

Model D 0.11 0.11 0.11 2.52 3.03 3.33 3.52 4.25 5.44 5.52

Model E 0.09 0.09 0.09 2.16 2.59 2.82 2.98 3.67 4.63 4.40
Table 2. Speedups when using NN models to predict RTs comparing to calculating RTs using RRTMG. Result for RRTMG is shown for

the calculation of a sample in units of milliseconds. Results for NN models are shown as speedups in
::

for different batch sizes comparing
::
as

:::::::
compared

:
to the RRTMG calculation speed on the Xeon CPU.

is prescribed using an observed tropical profile. The model uses pressure as the vertical coordinate and has 60 equally spaced270
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Figure 5. Models are trained with Dataset2 and evaluated against Dataset2.val

vertical levels between 1013.2 hPa and the model top value at 0 hPa. The model time step is 10 minutes. The tendencies from

the various components are stepped forward in time using a third order explicit Adams-Bashforth scheme.

The model is initialised with a dry, isothermal state. We use RRTMG’s longwave component to drive the model until the

RMS error between the RRTMG calculated longwave heating rates and those predicted by model F falls below a threshold of

0.5 K/day. Once the errors falls below this value, model F takes over and RRTMG’s longwave component is never used again275

for the rest of the simulation (shortwave radiation is computed using RRTMG throughout). The switch from RRTMG to model

F happens after around 14 days of simulation. This simulation is denoted as “RadNet” in Fig. 6. Another simulation continues

to use RRTMG longwave radiation until the end of the simulation and is denoted as “RRTMG” in Fig. 6. As discussed subse-

quently, the RadNet simulation has a bias in the stratosphere and the temperature profile of the top three levels is constrained

to the RRTMG simulation to prevent the simulation from blowing up. Both simulations are run for 2100 days and equilibrium280

is reached around 1600 days, with constant temperature and humidity profiles afterwards.

Within the troposphere, both simulations show a realistic moist-adiabatic temperature profile and are in reasonable quanti-

tative agreement. However, there are substantial differences in the stratosphere, and the equilibrium position of the tropopause
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Figure 6. Comparison of the vertical profiles of temperature (first row), longwave heating rates (second row) and specific humidity (third

row) for the RadNet and RRTMG simulations at three different times.
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seen in Fig. 6c in the RadNet simulation is higher by around 50 hPa as compared to the RRTMG simulation. This is because

Model F has a cooling bias in the upper atmosphere as seen in Fig. 6d, which makes it convectively unstable and therefore the285

tropopause shifts upward. The tropospheric temperature profiles are identical since they are set by the convective parameteri-

zation in such convectively unstable situations.

As the boundary layer fluxes water vapour into the column from the surface, the atmosphere becomes opaque to longwave

radiation in the lower levels and therefore the longwave cooling is strongest in the level just above the moist, opaque part of

the atmosphere. Figure 6d shows that the cooling peak predicted by model F has a smaller magnitude and is located lower290

in the atmosphere. The lower cooling rate peak predicted by the NN results in the slower evolution of the RadNet simulation

as compared to the RRTMG simulation, resulting in the difference in height between the two simulations (the cooling peak

rises over time as the convection tries to eliminate the instability produced by radiative cooling). The cooling peak in the

RadNet simulation is situated close to the location of the strongest gradient in water vapour (where the atmosphere transitions

from being opaque to transparent to longwave radiation), which is physically accurate. The differences in magnitude are larger295

slightly earlier in the simulation, where the atmospheric profiles are quite unlike the profiles in the training dataset. It seems

unlikely that neural nets can predict such “spiky” profiles correctly since the predicted results tend to be smooth in general.

However, the Radnet predicted profiles provide sufficient cooling to make the atmosphere convectively unstable and eventually

mix the entire troposphere of the model.

The NN has a systematic warm bias in the lowest layer of the model, which may be linked to the interpolation errors300

discussed previously for model F. This warm bias results in a slightly warmer surface temperature (∼ 0.5K) in the RadNet

simulation as seen in Fig. 6c. The warmer profile supports a larger amount of water vapour, and the RadNet simulation has a

moist bias in the lower troposphere as well.

We see that small systematic errors in the predicted heating rates can have a non-trivial effect on the simulated climate

in a single column model, especially in the upper layers of the atmosphere. In particular, errors in radiative heating near the305

tropopause can dramatically change the structure of this part of the atmosphere. The neural network tends to cool the upper

atmosphere a little more, making it more convectively unstable and pushing the convection and tropopause higher.

To verify the accuracy of the predicted heating profiles, we use the atmospheric profiles from the RadNet simulation to drive

the RRTMG longwave component. The NN and RRTMG heating profiles generated are presented in Fig. 7. The heating profiles

predicted by the NN are fairly accurate, especially in the later parts of the simulation when the atmospheric profiles are similar310

to those in the training sample space. The NN predicts the location of the cooling peak accurately even when the atmospheric

profiles are unlike those in the training sample space, though it underestimates the magnitude. RRTMG produces fairly noisy

heating profiles in the stratosphere, reflecting the noisy temperature profile simulated by the NN. The noisy stratospheric

temperature profile appears to be a result of the fact that the training data for model F was generated using atmospheric profiles

that had additional noise added to them, which results in noisy heating profiles used for training.315
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Figure 7. Comparison of the vertical profiles of longwave heating rates predicted by the NN and RRTMG for atmospheric profiles from the

RadNet simulation.

5 Discussion and Conclusions

Radiative transfer was probably among the first climate model components that neural network models aimed to replace in

climate simulations. The evolution of NN models has paralleled the evolution of NN architectures themselves, with initial

attempts using shallow networks while recent attempts (including our own) using deep networks. Since both shallow and deep

networks seem to perform reasonably well in model simulations (Krasnopolsky et al., 2008; Pal et al., 2019), the question of320

which type of architecture is more suitable inevitably arises.

Recent work in NN theory suggests that the mathematical structure of deep neural networks (a series of linear and non-

linear operators applied sequentially) is especially suited to capture functions which can be expressed as the composition of

other functions (Mhaskar and Poggio, 2016; Lin et al., 2017). Radiative transfer conforms to this structure very well: the total

radiative heating rate is the sum of heating rates in each spectral band, and the heating rate in each spectral band requires325

the calculation of absorption coefficients at each model level, each independent of the other. The two-stream approximation

and the independent column assumptions introduce additional locality and symmetry requirements, constraining the problem

further. This mathematical structure suggests that deep neural networks are a natural choice to approximate RT. Furthermore,

the presence of highly localised scattering and absorbing substances such as clouds and water vapour suggest that RT might
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benefit from a NN structure which is sensitive to localised patterns. This suggests that convolutional NNs might be a better330

model for RT, and our results confirm this. However, our results also show that using convolutional NNs reduces performance

by 50-100 times as compared to feedforward NNs with only a marginal increase in accuracy. Thus, within our evaluation setup,

deep feedforward NNs present the best compromise between accuracy and performance.

The ability of NNs to generalise to unfamiliar atmospheric profiles seems to be limited as suggested by the cases where the

NNs were validated on the perturbed dataset and the single column model comparisons. These results bring to question the335

applicability of NN based radiative transfer in research configurations where perturbations to the model state or evolution to

a wholly new climate state is routinely performed. Thus, NNs seem to work best in an “operational mode” where the state of

the climate or weather prediction model is not expected to change dramatically as compared to the training set. The approach

of adding of noise to improve NNs’ ability to generalise beyond the training sample has a long history (Sietsma and Dow,

1991). However, our results show that adding noise to the training dataset results in noisy temperature profiles in simulations,340

especially in the stratosphere where the temperature profile is closer to pure radiative equilibrium.

The dramatic performance gains when using commodity GPUs makes the use of NNs all the more attractive given that

most future high-performance computing configurations will include both GPUs and CPUs. NNs allow batching of multiple

atmospheric profiles during matrix multiplications, which allows large performance gains. Such batching is not feasible for an

actual RT calculation, and each atmospheric profile has to be handled individually. This may be the reason why a complete345

rewrite
:::::::
rewrites of RRTMG for GPUs gives very

::::::::::::::::::::::::::::::::::::::::::::::::::
(Price et al., 2014; Mielikainen et al., 2016; Wang et al., 2020)

::::
give similar

performance gains as
::
to what we have achieved in our setup using NNs (Price et al., 2014; Mielikainen et al., 2016).

:
.
:::
We

::::
note

:::
that

:::
the

::::::::::
comparison

:::::::
between

:::::::
RadNet

:::
and

:::::::
rewrites

:::
of

:::::::
RRTMG

:::
for

:::::
GPUs

:::::
does

:::
not

::::
take

:::
into

::::::::::::
consideration

:::::::::
differences

::
in

:::::
GPU

::::::::::
architectures

::::
and

:::::
batch

:::::
sizes,

:::::
which

:::::
could

::::::
change

::::
the

::::
exact

::::::::
numbers

::::::::
obtained.

::::::::
However,

:::
our

::::::
results

::::::::
highlight

:::
the

:::::::::
difference

:::
that

:::::
GPUs

:::::
make

::
in

::::::::::
accelerating

:::::::
RadNet.

:
350

Another method to assess the ability of NNs to generalise is to actually build a climate model which includes the NN as

a component. Since single column models have no diffusion built-in and cannot transport energy horizontally, we believe

that they constitute a tougher test case for NNs as compared to GCMs. The lack of dynamics also makes the results easier

to interpret. In our test case, we see that the errors in prediction by the NN has a larger impact in the stratosphere than the

troposphere due to the tight control of the tropospheric lapse rate by moist convection. The initial atmospheric profile – dry355

and isothermal – is quite different from the profiles in the training sample space. While the errors in the initial part of the

simulation are larger, the NN predicts physically realistic heating profiles with slight differences in location and magnitude.

Such physically plausible behaviour in situations quite different from those the NN was trained on gives us confidence that NNs

can indeed be used as climate model components in the future. However, it is clear that better strategies for data preparation,

selection of NN architecture and testing trained NNs are required to improve NN performance and enable scientists to interpret360

their impact on climate model simulations.
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Code availability. The code used for training RadNet and the Jupyter notebook which simulates the single column model are available at

http://doi. org/10.5281/zenodo.3609222http://doi.org/10.5281/zenodo.3748494.
:

:::
The

::::::::::
ERA-Interim

:::
data

:::
can

::
be

:::::::::
downloaded

::::
from

:
https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
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