
Geosci. Model Dev. Discuss.,
https://doi.org/10.5194/gmd-2019-327-AC1, 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Interactive comment on “RadNet 1.0: Exploring
deep learning architectures for longwave radiative
transfer” by Ying Liu et al.

Ying Liu et al.

ying.liu.sweden@gmail.com

Received and published: 14 April 2020

article [utf8]inputenc enumitem color url

C1

Reply to the Reviewer 1 comments for: RadNet:
Exploring deep learning architectures for longwave

radiative transfer

We thank the reviewer for their comments.

1 General Comments

1. Study setup You have chosen to use ERA profiles as input
which of course gives you realistic profiles. However,
this comes with two major limitations: a) You have to
manually create out-of-sample profiles (Dataset 2) which
are potentially unrealistic (see comment below). b) You
are limited to single-column model experiments for coupled
verification. While I don’t expect you to do this for
this revision, I feel like you have the chance for a more
insightful experimental setup using CliMT. You could have
setup a global CliMT simulation that is somewhat realistic
and used the RRTMG output from that simulation as training
data. Then you could have also ran the same experiment

C2



with increased SSTs for a more realistic climate change
experiment. Lastly, you could have used your RadNet
in directly in the global simulation for a 3D coupled
experiment. I think the results from such an experiment
could be really insightful for the ML parameterization
community.

Response: We thank the reviewer for these suggestions. We would like to clarify
that:

a) Our validation dataset was not specifically created with a climate change sce-
nario in mind. Rather, our aim was to explore the response of NNs when per-
turbations are added to the input profiles. Radiative heating profiles can be
fairly noisy since optical parameters can change quite drastically in the verti-
cal, and these changes need not be highly correlated. For example, the pres-
ence/absence of clouds, hydrometeors, aerosols, horizontal advection of water
vapour can cause localised perturbations which are not strongly correlated verti-
cally. That being said, we agree that our validation dataset represents an extreme
example of this behaviour. We have added a paragraph in Section 2.2 to explain
the reasoning that went into creating the perturbed dataset.

b) There is nothing in our setup which limits our simulations to a single column.
This is because radiative transfer is assumed to have no contribution from adja-
cent columns (as we have described in Lines 91–92.). Our motivation to use a
single column model for validation has been described in the manuscript in line
350: it allows us to study the evolution and possible errors in greater detail.

We thank the reviewer for their suggestions regarding the proposed experimen-
tal setup, which are natural extension to the work presented here, and we look
forward to following this up in future work.

Lines Changed: 129–133

C3

2. Training data estimation for line-by-line computation
As you mentioned in the paper, ideally one would use
line-by-line radiation computations to train from. Since
line-by-line is really expensive you would be limited in
the amount of training data you can generate. Would it be
possible to make an estimate of what a realistic amount of
line-by-line data would be and whether this amount of data
would be enough to train your networks

Response: The dataset used to train the network in this paper is around 12 mil-
lion training samples and 3.5 million validation samples. Thus, the total dataset
size generated is around 15 million samples. RRTMG requires 0.37 ms to gen-
erate a sample as per our profiling results (Table 1). The total time to generate
all samples amounts to around 1.5 hours. The performance of a line-by-line ra-
diative transfer code is dependent on the spectral resolution it uses; However, it
is typically around 2-3 orders of magnitude slower than correlated-k codes (see
Table 2 in https://doi.org/10.3390/rs11090994). Using a 10-core machine (for
example) to generate the samples, we would require it to run continuously for
around 2 weeks to generate the required samples. This estimate does not take
into consideration any memory-related constraints that may arise.

3. Neural network architectures One of the key goals of
this paper is to compare different NN architectures,
particularly fully connected versus convolutional. You
present 5+ different architectures. I have several
questions about these:

(a) Model E is the same as Model C but with zero-padding
but why do the number of channels also increase in the
table from 4 to 6? I assume this is an error since the
number of parameters also stays the same.

C4



Response: The channel number is correct. The increase is caused by the
zero-padding. However, it is good that you have pointed out the parameter
numbers. We made an error in calculating the numbers. Here are the correct
number of parameters with calculation steps. The number of parameters are
also supported by the speedup presented in the later section.
Model A: 240 ∗ 512 + 512 ∗ 1024 + 1024 ∗ 512 + 512 ∗ 60 = 1202176
Model B: 240∗512+512∗1024+1024∗2048+2048∗1024+1024∗512+512∗60 = 5396480
Model C: 3 ∗ 3 ∗ 128 + 3 ∗ 3 ∗ 128 ∗ 256 + 56 ∗ 1 ∗ 256 ∗ 512 + 512 ∗ 60 = 7666816
Model D: 3∗3∗128+3∗3∗128∗256+3∗3∗256∗256+54∗1∗256∗512+512∗60 = 7994496
Model E: 3 ∗ 3 ∗ 128 + 3 ∗ 3 ∗ 128 ∗ 256 + 58 ∗ 2 ∗ 256 ∗ 512 + 512 ∗ 60 = 15531136 We
have also made the appropriate changes in the manuscript.
Lines Changed: Table 1, Row 5

(b) You could have tried a fully convolutional network by
using zero-padding on each layer. That way you don’t
need the final fully connected layer, which means a
lot fewer parameters. I would be interested to see how
such a network would perform.

Response: We do not think that adding padding to all conv layers will act
the same as fully connected layers. The way to construct a fully connected
layer using conv layer is to use conv filters the same size as the input layer
with stride 1. So that each conv filter computes the input only once covering
all vectors then the number of conv filters aggregates, e.g. 128. Then, it will
act like 128 neuron fully connected layer.

(c) However, one problem I see with CNNs in this context
is that they are based on translational invariance
i.e. the computations are the same along the entirety
of the vector. But with non-uniform grids like the
one you are using is there any reason to assume that
translation invariance should hold?

C5

Response: We are unsure what the reviewer means here. We presume
they are referring to the fact that the pressure grid is non-uniform, and there-
fore translation along the pressure axis is not an invariant.
Our understanding is that translational invariance is a consequence of the
architecture of CNNs. This is because of the architecture of convolutional
layers which carry out the same computation along the entire vector. Then,
in the later fully connected layers, features extracted from convolutional lay-
ers are aggregated with respect to their location in the input vector using
different weights. Finally, the prediction of radiation is produced.
Translation invariance is a useful property to have when the aim is to identify
features regardless of their location. However, our focus was on the ability
of CNNs to capture local features well rather than their ability to produce
translation invariant (or equivariant) representations of the input. We believe
that this is a useful feature to have given that radiative heating fields can
have sharp, local features due to the presence of clouds and other radiatively
active substances.

(d) Another architecture you could try is a Resnet using
skip connections.

Response: We would expect that Resnet will give more accuracy in this use
case. However, we expect that such a model will be even slower than the
model E given that Resnet-50 has over 25 million parameters. Therefore, it
is unlikely to speed up radiative transfer calculations.

(e) You mention you use PReLUs to avoid vanishing
gradients. Did you observe vanishing gradients for
normal ReLUs? That would surprise me since your
networks are not very deep.

Response: The reviewer is correct that we did not observe vanishing gra-
dients in all models. We only observed an indication of vanishing gradients

C6



in our deepest model. In addition, PReLUs facilitate faster and more sta-
ble convergence. To make the comparison fair, we have chosen the same
activation function in all models.

(f) Did you observe overfitting (train MSE < valid MSE)?
Your validation dataset is from 2015-2016 while your
train dataset is from 1979-1985, which means that the
base state is probably changing. This will make it
hard to check for overfitting since even with a model
that does not overfit one would expect the train loss
to be lower. A better test of overfitting would be
to take a random subset of the train dataset. The
reason I am interested in this is that I am surprised
a bigger network (B vs A) did not give you a better
score. If you are not yet overfitting, bigger networks
should always result in better losses, or am I missing
something? You mention overfitting when talking about
the generalization experiments but that still doesn’t
explain why the skill for Dataset 1 wouldn’t be better
for model B.

Response: We agree with the reviewer that it is harder to explicitly check for
over-fitting using different periods of data using standard definitions. How-
ever, we believe our approach is a more practical check of the models’ ability
to generalize since we would like the model to perform well in different cli-
mate states.

C7

2 Specific Comments

• Line 56: You could also mention this recent paper:
https://arxiv.org/abs/2001.03151. Also this follow
up paper highlights some interesting issues: https:
//onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001711

Response: We thank the reviewer for these references. They have been added
to our bibliography.

Lines Changed: 55–57

• Line 90: Typo “columm”

Response: Corrected.

Lines Changed: 91

• Line 102: I think it would be useful at this point to
mention the horizontal and vertical resolution of ERA.

Response: We have added the horizontal and vertical resolution.

Lines Changed: 101–103

• Line 105: So the size of your training dataset is around
12 million? Please mention this explicitly?

Response: We thank the reviewer for pointing this out. Yes, our training dataset
is 12 million samples. We have added number in the manuscript.

Lines Changed: 109

• Line 110: If I understand correctly there is no vertical
correlation in your perturbation, right? Are the resulting
profiles therefore “unrealistic”? How do you think this

C8



affects the network’s generalization? Do you think
that your results are representative of the sorts of
perturbations you would experience in real climate change
(increased T)?

Response: We agree that our perturbed dataset is an extreme case in that it
assumes zero correlation between perturbations at different levels. However, as
mentioned previously, changed in the optical properties of the atmosphere can
be fairly “noisy” with low correlation in the vertical. In that sense, we believe our
perturbed dataset is an extreme case of a regularly occurring phenomenon. Our
choice of zero correlation aims at providing a conservative estimate: if the neural
networks can perform adequately in these conditions, they will likely perform as
well or better when there perturbations are correlated and have fewer effective
degrees of freedom. Nonetheless, we agree that these perturbed profiles affect
the network’s ability to generalize, and produces issues that we have noted (Line
328 in the original manuscript). In a climate change scenario, given that our
ability to simulate the vertical and horizontal distribution of clouds is still poor, a
milder version of perturbations we have used might be relevant.

• Line 150: Actually, convolutions are a form of
regularization by introducing an architectural constraint.
In fact, a convolution layer is simply a subset of a fully
connected layer with shared weights (https://medium.com/
impactai/cnns-from-different-viewpoints-fab7f52d159c).
But yeah, in effect you end up focusing on local features.

Response: We thank the reviewer for this insight. It is certainly will help us going
forward to think of CNNs in this manner.

• Table 1: I think it would be helpful to list all the
Models

C9

(including F) in the table.

Response: Model F is now in the table.

Lines Changed: Table 1, row 6

• Data: Great that you included an example file in the
repo. But maybe you could also add instructions on how
to download the full dataset you used.

Response: We have added the URL for the ERA Interim data in the Code Avail-
ability section.

• Code: Kudos for including code. I looked at the
implementation of the networks. Maybe just a
recommendation: I think the code could have been a lot
easier and clearer if you used Keras instead of plain TF.
Especially with TF 2 its now very easy to take all the
precoded parts of Keras and implement your own layers,
etc. using TF. All the manually coded layers in your code
(matmul, etc.) make it very hard to follow when a simple
Dense() would suffice. This would make the code easier to
read for others.

Response: The skeleton of keras code illustrating the NN structure for easier
reading is added in the repository. It is in the model.py file line 243-255. But it
is recommended to use the original implementation since it is the base for the
results presented in this paper.

C10


