
Response to comments on “PMIF v1.0: an inversion system to estimate the potential of satellite 

observations to monitor fossil fuel CO2 emissions” by Y. Wang et al. 

 

We thank the referee for reviewing our manuscript. Please find attached a point-by point reply (in black) 

to each of the comments raised by the referee (in blue). Changes in the revised manuscript are highlighted 

with dark red. All the pages and line numbers correspond to the original version of text. 

 

The authors have addressed some of my comments but there are remaining issues that, in my opinion, 

need to be addressed. 

 

First, as I mentioned in my initial review, the title is misleading. The work does not address fossil fuel 

emissions and claiming otherwise is disingenuous. Much of the work they cited used additional 

measurements to distinguish the sources. Further, this is a synthetic data study and, as the authors mention 

in their response, the package was developed to do OSSEs. It *can* be used for inversions, but that is 

not what was done. There are numerous confounding factors that need to be taken into account when 

doing flux inversions with real satellite data that have not been addressed here. I would strongly prefer a 

title that more accurately represents what was done. Something to the effect of: "PMIF v1.0: assessing 

the potential of satellite observations to constrain high resolution synthetic CO2 emissions over the 

globe". 

Response: 

We change the title to “PMIF v1.0: assessing the potential of satellite observations to constrain CO2 

emissions from large cities and point sources over the globe using synthetic data”. In addition, we also 

revise the text to say we deal with CO2 emissions from cities and power plants, not stressing fossil fuel 

emissions. 

 

The explanation of what the authors are actually doing still needs improvement. In particular, the 

nomenclature of Section 2.7.2 must be improved. This is the section that explains much of what the 

algorithm is actually doing. This seems critical for publication in GMD, as GMD is focused on model 

development and I'm doubtful that readers will be able to follow this. It is currently difficult to even 

follow what the variables represent. Variables seem to arise out of nowhere and then don't seem to be 

used. For example, the definition of "a_{spt,i,j}(k)" and "b_{spt,i,j}(k)" seems to be the diagonal 

elements of "\mathbf{A}_{spt,i,j}(k)" and "\mathbf{B}_{spt,i,j}(k)", respectively, but I'm not actually 

sure from the text. Then "a_{spt,i,j}(k)" and "b_{spt,i,j}(k)" don't seem to be used after they are defined. 

I'd assumed the authors were using boldface capital variables to denote matrices, but Eq 8 suggests that 

"\mathbf{M}^T_{I,J,k}\hat{\mathbf{R}^{-1}_{I,J,k}\mathbf{M}_{I,J,k}" is actually a scalar. 

Otherwise I'm not sure how the matrix on the right is formed. The authors sometimes have "k" as a 

subscript but other times it is in parentheses. All of this makes the work extremely difficult to follow. 

Giving more description to "\mathbf{M}^T_{I,J,k}\hat{\mathbf{R}^{-1}_{I,J,k}\mathbf{M}_{I,J,k}" 

and consistent subscriptng would be useful. 

Response: 

We revise the paragraphs between Ln 391-408 to ensure that the bold capital letters are used for 

matrices and italic lower-case letters are used for scales: 

“In a first step, Eq. (1) is applied to each 10º×10º spatial inversion windows on each day separately 

(corresponding to an 8:30-11:30 time window for clumps within the spatial inversion windows), by using 



the corresponding blocks in B: 

𝐀spt,p,q = (𝐁spt,p,q
−1 + 𝐌spt,p,q

T 𝐑spt,p,q
−1 𝐌spt,p,q)

−1
                                  (6) 

Where p is the pth spatial inversion window and q is the qth day during one year. Here, Bspt,p,q is a 

diagonal matrix that only contains the variances of prior uncertainties in emissions during 8:30-11:30 for 

the clumps within the spatial inversion window. Mspt,i,j accounts for the spatial overlap of plumes 

generated from nearby clumps. Then we derive an “instant” scalar to represent the observational 

constraint for a given clump s in the 8:30-11:30 time window on day q (denoted as rq,s hereafter): 

𝑟q,s=1/𝑎spt,q,s − 1/𝑏spt,q,s                                                       (7) 

Where aspt,q,s is a scalar on the diagonal of Aspt,p,q representing the variance of posterior uncertainty 

of emission from clump s in pth spatial inversion window and in 8:30-11:30 time window on day q 

obtained by Eq. (6), and bspt,q,s is a scalar on the diagonal of Bspt,p,q representing the variance of prior 

uncertainty for the same control variable.  

In the second step, the inversion is conducted for each clump separately, considering the correlation 

in time in the prior uncertainties, using rq,s derived from the first step: 
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Where Btmp,s is the covariance matrix of the prior uncertainty for a given clump s including the 

temporal auto-correlation: 

𝐁tmp,s =

[
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                   (9) 

Where n=366×2, corresponds to the number of time windows 8:30-11:30 and the rest 21 hours over 

the 366 days of one year (2008). t1, t3, etc. represent the 8:30-11:30 time windows and t2, t4, etc. 

represent the rest 21 hours. 

In PMIF-Globe, we first…” 

We also make some minor revisions in other parts of the manuscript, especially in the Method 

section.  

 

Line 389: Authors should change "proven" to "show". Proven implies a mathematical proof, which has 

not been done. 

Response: 

We change the word “proven” to “shown” in this sentence. 
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Abstract. This study assesses the potential of satellite imagery of vertically integrated columns of dry-air mole fractions of 

CO2 (XCO2) to constrain the emissions from cities and power plants (called emission clumps) over the whole globe during 20 

one year. The imagery is simulated for one imager of the Copernicus mission on Anthropogenic Carbon Dioxide Monitoring 

(CO2M) planned by the European Space Agency and the European Commission. The width of the swath of the CO2M 

instruments is about 300 km and the ground horizontal resolution is about 2 km resolution. A Plume Monitoring Inversion 

Framework (PMIF) is developed, relying on a Gaussian plume model to simulate the XCO2 plumes of each emission clump 

and on a combination of overlapping assimilation windows to solve for the inversion problem. The inversion solves for the 3 25 

h mean emissions (during 8:30-11:30 local time) before satellite overpasses and for the mean emissions during other hours of 

the day (over the aggregation between 0:00-8:30 and 11:30-0:00) for each clump and for the 366 days of the year. Our analysis 

focuses on the derivation of the uncertainty in the inversion estimates (the “posterior uncertainty”) of the clump emissions. A 

comparison of the results obtained with PMIF and those from a previous study using a complex 3-D Eulerian transport model 

for a single city (Paris) shows that the PMIF system provides the correct order of magnitude for the uncertainty reduction of 30 

emission estimates (i.e. the relative difference between the prior and posterior uncertainties). Beyond the one or few large cities 

studied by previous studies, our results provide, for the first time, the global statistics of the uncertainty reduction of emissions 

for the full range of global clumps (differing in emission rate and spread, and distance from other major clumps) and 

meteorological conditions. We show that only the clumps with an annual emission budget higher than 2 MtC per year can 

potentially have their emissions between 8:30 and 11:30 constrained with a posterior uncertainty smaller than 20% for more 35 
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than 10 times within one year (ignoring the potential to cross or extrapolate information between 8:30-11:30 time windows on 

different days). The PMIF inversion results are also aggregated in time to investigate the potential of CO2M observations to 

constrain daily and annual emissions, relying on the extrapolation of information obtained for 8:30-11:30 time windows during 

days when clouds and aerosols do not mask the plumes, based on various assumptions regarding the temporal auto-correlations 

of the uncertainties in the emission estimates that are used as a prior knowledge in the Bayesian framework of PMIF. We show 40 

that the posterior uncertainties of daily and annual emissions are highly dependent on these temporal auto-correlations, 

stressing the need of systematic assessment of the sources of uncertainty in the spatiotemporally-resolved emission inventories 

used as prior estimates in the inversions. We highlight the difficulty to constrain total budget of global and national fossil fuel 

CO2 emissions from all the cities and power plants within a country or over the globe with satellite XCO2 measurements only, 

and calls for integrated inversion systems that exploit multiple types of measurements. 45 

1 Introduction 

Cities, thermal power plants and industrial factories cover a very small fraction of the land surface but are emitting a large 

amount of CO2. Many cities and regions are taking actions to reduce their greenhouse gas emissions. However, there are large 

uncertainties in the estimate of emissions from these CO2 hotspots (Gately and Hutyra, 2017; Gurney et al., 2016). In addition, 

emissions at high temporal resolution (e.g. daily and hourly) depend on socio-economic activity and climate fluctuations, and 50 

thus have large variability. The large uncertainties and fluctuations of emissions at local scale have raised a growing political 

and scientific interest for an accurate and continuous monitoring of these local CO2 emissions based on atmospheric 

measurements (Duren and Miller, 2012). 

Measurements of CO2 mole fractions from in situ surface networks, aircraft campaigns and mobile platforms around cities 

(Bréon et al., 2015; Lauvaux et al., 2016; Staufer et al., 2016) have been used to characterize the CO2 signals downwind large 55 

cities and to quantify the underlying emissions based on an atmospheric inversion approach. However, such urban networks 

are deployed for few cities only. Alternatively, vertically integrated columns of dry-air mole fractions of CO2 (XCO2) from 

satellites offer the opportunity to sample the atmosphere with a global coverage. Kort et al. (2012) and Janardanan (2016) 

found that significant XCO2 enhancements could be detected over some megacities using Greenhouse Gases Observing 

Satellite (GOSAT) XCO2 observations. Schwandner et al. (2017) also found XCO2 enhancements of 4.4 to 6.1 ppm in the Los 60 

Angeles urban CO2 dome using observations from Orbiting Carbon Observatory-2 (OCO-2). Nassar et al. (2017) used the 

XCO2 observations from OCO-2 to quantify CO2 emissions from several middle- to large-sized coal power plants. However, 

the design of GOSAT and OCO-2 observations with sparse sampling was mainly focused on the monitoring of CO2 natural 

fluxes. Recent studies show a limited amount of clear detections of transects of XCO2 plumes from cities or plants in OCO-2 

observations (Zheng et al., 2020) so that GOSAT and OCO-2 data keep on being hardly used to estimate CO2 city emissions. 65 

The potential for reducing uncertainties in fossil fuel CO2 emissions at the scale of point sources (Bovensmann et al., 2010), 
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cities (Broquet et al., 2018; Pillai et al., 2016) and agglomerations of several cities (O’Brien et al., 2016) should dramatically 

change with the planned satellite missions with imaging capabilities. These studies consistently showed that imaging capability 

with a wide swath (typically on the order of 200km – 300 km), a high resolution (< 2–3 km horizontal resolution) and a high 

single sounding precision (< 2 ppm) are required for satellite XCO2 measurements for the monitoring of fossil fuel CO2 70 

emissions from large point sources and cities. Several satellite XCO2 imagery concepts have been proposed: i) the OCO-3 

NASA (National Aeronautics and Space Administration) mission which has been installed on the International Space Station 

(ISS) in May 2019; ii) the CarbonSat mission which was a candidate for ESA’s Earth Explorer 8 opportunity (ESA, 2015), but 

was not selected; iii) the “city-mode” of the MicroCarb mission of the Centre National d’Etudes Spatiales (CNES) which 

should be launched in 2021 (Bertaux et al., 2019); iv) the GeoCARB geostationary mission which was selected as the Earth 75 

Venture Mission-2 by NASA; and v) the Copernicus Anthropogenic Carbon Dioxide Monitoring (CO2M) mission consisting 

of a constellation of CO2 imagers that is currently studied by the European Space Agency (ESA) on behalf of the European 

Commission in the context of the European Union Copernicus programme. This CO2M satellite constellation is a crucial 

element that will contribute to the operational anthropogenic CO2 monitoring & verification support capacity currently under 

development by the European Commission with the support from ESA, European Organisation for the Exploitation of 80 

Meteorological Satellites (EUMETSAT) and the European Centre for Medium-Range Weather Forecasts (ECMWF) (Ciais et 

al., 2015; Pinty et al., 2017, 2019). 

The main approach currently investigated for the estimate of CO2 emissions from satellite XCO2 images consists in 

identifying the XCO2 plumes downwind the main CO2 emission sources. The size of the plumes and the magnitude of XCO2 

enhancements in these plumes are tightly linked to the emissions. Wang et al. (2019) developed an algorithm to extract, from 85 

gridded emission maps, a conservative set of area (cities) and point sources (power plants) with intense emissions around the 

globe which can generate coherent XCO2 plumes that may be observed from space, given the precision of current satellite 

observations. This set was conservative because it is inferred for idealized meteorological condition without wind. These 

emitting sources were called “emission clumps”. Wang et al. (2019) identified 11,314 individual clumps which contribute 72% 

of the global fossil fuel CO2 emissions from the ODIAC (Open-source Data Inventory for Anthropogenic CO2 version 2017, 90 

Oda et al., 2018) 1 km resolution inventory. 

Broquet et al. (2018) showed that the part of the XCO2 plumes exploited by the atmospheric inversion in satellite images 

correspond to few hours of the clump emissions before the satellite overpass. The XCO2 signature of the earlier clump 

emissions is too diluted to be filtered from the measurement errors and the signature of other CO2 sources and sinks. Further, 

emissions from a given clump vary in time during the day, for instance due to the variations of traffic in cities (Yang et al., 95 

2019), from day to day and between seasons, with more emissions associated to heating in winter over cold regions (Bréon et 

al., 2017). Therefore, the estimate of annual budgets of the clump emissions based on satellite observation during daytime 

(generally for a fixed local time since most of the missions use heliosynchronous orbits) and for low cloud coverage is a 

challenge, and cannot rely on the direct information from the satellite imagery. It relies on the extrapolation of information 
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from the time windows for which the emissions are well constrained. Such an extrapolation is based on the correlation of the 100 

uncertainty in emissions in time, and more precisely, in the atmospheric inversion framework, on the temporal auto-correlations 

of the uncertainty in the inventories used as a prior knowledge by the Bayesian framework of the inversion (see Sect. 2.6). 

Previous studies on the potential of the satellite XCO2 imagery to constrain the emissions from clumps were limited to 

single or few large targets, such as power plants in Bovensmann et al. (2010), Berlin in Pillai et al. (2016) and in Kuhlmann et 

al. (2019), and Paris in Broquet et al. (2018). However, much of the global CO2 emissions occur in smaller cities and plants. 105 

The potential and design of satellite missions dedicated to the monitoring of the CO2 emissions like CO2M needs to be assessed 

for a much more representative range of sources over the whole globe. The inversion framework used by Pillai et al. (2016) 

and Broquet et al. (2018) were based on a full 3-D Eulerian atmospheric transport models at high spatial resolution (on the 

order of 2 km). Such inversions are much too expensive in terms of computation cost, to be applied in a systematic way to the 

full set of clumps across the globe.  110 

Therefore, in this study, we develop a Plume Monitoring Inversion Framework (PMIF) and conduct a set of Observing 

System Simulation Experiments (OSSEs) to assess, for the first time, the performance of a satellite instrument to monitor the 

emissions of all the clumps across the globe and over a whole year. The imager studied has the foreseen characteristics of the 

individual satellites of the forthcoming CO2M mission. It would be a high-resolution spectrometer, with 2 km × 2 km resolution 

pixels and a swath of 300 km, and it would be placed on a sun-synchronous orbit ensuring global coverage in 4 days. The 115 

PMIF inversion system relies on the list of clumps extracted by Wang et al. (2019) from the ODIAC inventory, on the Gaussian 

plume model to simulate the XCO2 plumes generated by the emissions from these clumps, on an analytical inverse modeling 

framework, and on a combination of overlapping assimilation windows to solve for the inversion problem over the globe and 

a full year. It also addresses the question of temporal extrapolation that is needed to generate estimates of annual emissions 

from the information of a limited number of time windows for which emissions are well constrained by the direct satellite 120 

images, by accounting for the temporal auto-correlation of the prior uncertainties. The performance is assessed in terms of the 

uncertainties in the emissions (Sect. 2.1) at different scales. The PMIF uses a Gaussian plume model at the local scale to ensure 

that the computation cost is affordable. Such a model can often hardly fit with actual plumes over the distances considered in 

this study (due to variations in the wind field, topography, vertical mixing etc. over such distances) but is shown, when driven 

with suitable parameters, to provide a satisfactory simulation of the plume extent and amplitudes, which appear to be the main 125 

drivers of the targeted computations of uncertainties in the emissions in our OSSE framework (as shown in section 3.1). In 

PMIF, we also ignore the impact of some sources of uncertainties on the inversion of emissions, including systematic errors 

on the XCO2 retrievals, the impact of uncertainties in diffuse anthropogenic emissions outside clumps, in non-fossil CO2 fluxes 

(within and outside clumps), and in the spatial and temporal variations of emissions within the clump and in the short time 

windows that the inversion aims to solve. These impacts are discussed in detail afterwards. 130 

This PMIF system provides indication on the satellite system capabilities for the full range of cities and power plants 

varying in topography, emission budget and spread, proximity to other major sources, and for a large range of meteorological 
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conditions. It complements other systems that focus on specific regions with more complex (but area-limited) models and 

consideration of diffuse sources and natural fluxes, allowing for extrapolating and up-scaling results of those more complex 

systems to get a more systematic understanding of their implications for the monitoring of CO2 emissions from all detectible 135 

clumps over the globe. 

The PMIF system and the OSSEs analyzed in this first study are described in Section 2. The results obtained with the 

PMIF for the city of Paris is compared with that of Broquet et al. (2018) in Sect. 3.1. The uncertainty in the retrieved emissions 

of individual clumps with one imaging satellite for 3 h time windows, for daily emissions and for annual emissions are assessed 

in Sect. 3.2-3.4. Sect. 4 discusses the drivers of the spatial variations of the uncertainty in the retrieved emissions, the 140 

limitations of PMIF, and the implications for a future operational observing system. 

2. Methodology 

2.1 Plume Monitoring Inversion Framework 

The theoretical framework of the inversion system developed in this study is the same as the traditional atmospheric 

inversions. The inversion derives a statistical estimate for a set of control variables x in a model x→y=Mx that simulates the 145 

satellite XCO2 measurements yo. The model M linking x and y is a combination of flux and atmospheric transport models 

(detailed in Sect. 2.4), and is called observation operator hereafter. As explained below, we do not have a constant term added 

to Mx in the observation operator of the PMIF that would gather the atmospheric CO2 signature of the fluxes not controlled 

by the inversion (like non-fossil fluxes and the background XCO2 field) since the uncertainty in such fluxes is ignored. The 

inversion follows a Bayesian statistical framework, updating the statistical prior estimate of x based on the statistical 150 

information from the assimilation of XCO2 measurements y into the observation operator. The distributions of the prior 

estimate and of the misfits between the actual observations yo and simulated ones due to errors in the observations and in the 

observation operator (called the “observation errors”) are assumed to be unbiased and to have the Gaussian forms N(xb, B) and 

N(0, R), where B and R are the prior and observation error covariance matrices. The statistical distribution of the posterior 

estimate of x, given the observation operator, xb and yo, also follows a Gaussian distribution N(xa, A), with xa being the mean 155 

and A being the error covariance matrix characterizing the posterior uncertainty. The problem is solved by deriving: 

 A = ( B-1 + MTR-1M )-1  (1) 

 xa = xb + AMTR-1 ( yo − Mxb − yfixed )  (2) 

Where T and -1 denote the transpose and inverse of a given matrix. 

 Equation (1) shows that A only depends on prior and observation error covariance matrices, on the matrix part of the 160 

observation operator (hereafter, we simplify the notation by calling M the observation operator), and implicitly on the structure 

of the observation vector (i.e., on the time, location and representation of the observations in M), while Eq. (2) shows that xa 
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also depends on the actual value of xb and yo. PMIF is an analytical inversion system that solves for Eq. (1) or for an 

approximation of this equation (when accounting for temporal correlations in B) by building the different matrices involved 

in this equation.   165 

 We characterize B, R and A by the corresponding standard deviations (σ) of uncertainty in individual or aggregations of 

control parameters and by the temporal auto-correlations of the uncertainties (Sect. 2.6). In the following, the “uncertainty 

reduction” for a given control variable or for an aggregation of control variables (like emission budgets over larger timescales 

than that of the control vector) refers to the relative difference between its prior and posterior uncertainty: 1 – σa/σb.  

We use a Gaussian plume model (Sect. 2.4) to simulate the atmospheric transport at a spatial resolution consistent with 170 

that of the XCO2 measurements from the planned CO2 imager and with the highly heterogeneous distribution of emissions. 

Compared with complex 3-D atmospheric transport models, Gaussian plume models have a very low computational cost, 

making the global assessment of posterior uncertainty and uncertainty reduction at the scale of emissions clumps from the 

assimilation of high resolution data feasible. However, since a Gaussian plume model provides a highly simplified 

approximation of the atmospheric transport from emission clumps, we need to verify that its use in the PMIF yields estimates 175 

of the uncertainties in the inverted emissions that are consistent with those that would be based on more complex models. 

Therefore, we first compare the results for Paris from PMIF against those acquired based on a 3-D Eulerian atmospheric 

transport model by Broquet et al. (2018), the latter also accounting for uncertainties in diffuse CO2 fluxes. On the one hand, 

the signals from these diffuse and natural CO2 fluxes cannot be modelled effectively by a Gaussian plume model. On the other 

hand, the diffuse and natural CO2 fluxes in Paris was shown to have only a weak impact on the inversion of fossil fuel whole-180 

city CO2 emissions (Staufer et al., 2016). For this comparison, we use the same simulation of the XCO2 sampling by CarbonSat 

(Sect. 2.2) and a similar control vector as Broquet et al. (2018). The corresponding inversion with the PMIF is called PMIF-

Paris hereafter. Then we apply the system to all the emission clumps over the globe and over 1 year using a different control 

vector and a simulation of the XCO2 sampling by a single CO2M satellite (Sect. 2.2). The inversions for all emission clumps 

over the globe are called PMIF-Globe. In PMIF-Globe, we first investigate the potential of satellite observations in constraining 185 

emissions from individual days time windows (ExpNoCor in Sect. 2.6). Then we assess the ability of satellite observations to 

constrain emissions at annual scale by accounting for the temporal auto-correlation of the prior uncertainties (other experiments 

in Sect. 2.6). Table 1 and 2 summarize the different options for the configuration of the system and of the OSSEs. One 

distinction between PMIF-Paris and PMIF-Globe is that PMIF-Paris relates XCO2 signals with the mean emissions 6 hours 

before overpasses, while it is assumed that in PMIF-Globe that the XCO2 signals only provide effective constraints on 3 h 190 

mean emissions before individual overpasses. The 6-hour period corresponds to the period of emissions from Paris whose 

signature in the XCO2 field can still be detected by the satellite despite the atmospheric diffusion (Broquet et al., 2018). While 

Broquet et al. (2018) indicated that the period of “detectable” emissions from a large megacity like Paris could last up to 6-

hours, most of the clumps across the globe have smaller emission rates than Paris, or are located in more complex environment 

close to other major emission areas where XCO2 signals can be attributed to multiple sources, making the detection of the 195 



 

7 

 

XCO2 signature of emissions few hours before the satellite overpass even more difficult. For the PMIF-Globe experiments, we 

thus conservatively assume that the XCO2 signals can only provide effective constraints on 3 h mean emissions before 

individual overpasses in general. 

 

Table 1 The configuration of PMIF-Paris inversion 200 

Type of setting Option 

Control vector 6-hour mean fossil fuel CO2 emissions from Paris over 5:00-11:00 (local time is 

used) 

Plume length in the computation of M 6 hour × wind speed averaged over 5:00-11:00  

Observation sampling  

and measurement error 

Simulation of the sampling and random measurement noise for CarbonSat near 

Paris  

Prior uncertainty 22.4% for the 6-hour mean emissions 

The potential correlations between the 6-hour mean emissions of different days 

are ignored for the diagnostics 

 

Table 2 The different options for the configuration of PMIF-Globe inversions 

Type of setting Option 

Control vector For each clump of the globe, 3-hour mean emissions over 8:30-11:30 and the 

mean emissions for the remaining 21 hours (0:00-8:30 plus 11:30-24:00) within 

each day of 1 year 

Plume length in the computation of M 3 hour × wind speed averaged over 8:30-11:30; no computation of plume for the 

emissions over 0:00-8:30 plus 11:30-24:00 

Observation sampling  

and measurement error 

Simulation of the sampling and random measurement noise for a single CO2M 

CO2 imager all over the globe 

Constraint on the prior uncertainty For each clump, the budget of the prior uncertainty in annual emission is 30%. 

The uncertainty in the 3 h mean emissions and in the budget of the emissions for 

the rest of the day are downscaled depending on the assumptions on the 

components of the prior uncertainty and on their temporal auto-correlations (see 

Sect. 2.6) 
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2.2 Observation space 205 

In this study, we consider the samplings from two different virtual CO2 imagers.  

The first sampling used in PMIF-Paris (Table 1 and Sect. 2.7.1) is the simulation of the sampling for CarbonSat by 

Buchwitz et al. (2013) exactly as in Broquet et al. (2018). XCO2 is sampled by a 240 km swath instrument with 2 km spatial 

resolution. Given the presence of cloud and aerosol and their impacts on the precision of XCO2 retrievals, only “good” XCO2 

observations, for which the sum of the retrieved aerosol optical depth (AOD) at NIR wavelength and atmosphere cirrus optical 210 

depth (COD) is less than 0.3, are used in the inversions. The preferable condition, AOD(NIR)+COD<0.3, for a good XCO2 

observation is referred to as “clear sky” hereafter. The CarbonSat sampling was simulated over the whole globe and for a full 

year by Buchwitz et al. (2013), but it is used here for the inversion of the emission of Paris only. Thus, only the passes with at 

least one good XCO2 measurement in the 100km radius circle centered on Paris are used, as in Broquet et al. (2018).  

The second sampling is global and is used for all the other experiments of PMIF-Globe (Table 2 and Sect. 2.7.2). It 215 

corresponds to that of a single CO2M satellite with a 300 km swath and 2 km spatial resolution. CO2M is similar to CarbonSat 

for sampling, but has a larger swath, and a better precision (Sect. 2.5). The simulation is based on the method and model 

described by Buchwitz et al. (2013), but uses different values for the parameters in the model. 

2.3 Control vector 

In the PMIF-Paris inversion, the satellite observations are sampled at 11:00 local time, in line with the experiments from 220 

Broquet et al. (2018). The inversion solves for the mean emissions for the 6 hours before 11:00 local time. Broquet et al. (2018) 

solved for the hourly emissions during this 6-hour period but PMIF can only solve for the mean emissions during the 6-hour 

period due to the fact that the Gaussian plume model cannot be used to compute the signatures in the XCO2 field of individual 

hourly emissions during that period. The control vector parameter in PMIF-Paris is thus consist of a set of scaling factors for 

the mean emission between 05:00 and 11:00 for each all individual overpasses near Paris (Sect. 2.7.1) is thus a scaling factor 225 

λ for the mean emission between 05:00 and 11:00. The prior and posterior scaling factors are used to rescale the 1 h and ~1 

km resolution emission fields from an emission map and its temporal profile which are parts of the observation operator (Sect. 

2.4). 

In the PMIF-Globe inversion, the satellite observations are sampled at a local time of approximately 11:30 over all the 

clumps. The inversion solves for a scaling factor for 3-hour mean emissions between 8:30 and 11:30 and a scaling factor for 230 

the emissions during of the rest of the day (0:00-8:30 plus 11:30-24:00) for each day over one year and for all the clumps over 

the globe: 

x=[λclump1
day1,morning, λclump1

day1,rest, λclump1
day2,morning, λclump1

day2,rest, …, λclump1
day366,morning, λclump1

day366,rest, λclump2
day1,morning, 

λclump2
day1,rest,…λclumpN

day366,morning, λclumpN
day366,rest]                                                         (3) 

While Broquet et al. (2018) indicated that the period of “detectable” emissions from a large megacity like Paris could last 235 
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up to 6-hours, most of the clumps across the globe have smaller emission rates than Paris, or are located in more complex 

environment close to other major emission areas where XCO2 signals can be attributed to multiple sources, making the 

detection of the XCO2 signature of emissions few hours before the satellite overpass more difficult. For the experiments other 

than PMIF-Paris, we thus conservatively assume that the XCO2 signals can only provide effective constraints on 3 h mean 

emissions before individual overpasses in general, and we use the 8:30-11:30 time window for all emission clumps over the 240 

globe. The control vector is defined using this time window for all the days of the year, and not only for the days with satellite 

local overpasses, to facilitate the definition of the prior uncertainties and the combination of results at the annual scale. . 

In both types of experiments, we do not include the diffuse emissions outside the selected clumps and the natural fluxes 

(more generally, any parameter of the “background concentrations”, Kuhlmann et al., 2019) in the control vector. The set-up 

of the R matrix also ignores uncertainties in the background concentrations (Sect. 2.5). This is another divergence with the 245 

inversion configuration of Broquet et al. (2018) who accounted for such uncertainties. 

2.4 Observation operator 

The observation operator in PMIF (which is used in Eq. 1) is composed of two sub-operators. The first operator (Minventory) 

describes the spatial distribution (within the clumps) and temporal variations of the emissions whose budgets are controlled 

by the inversion during 8:30-11:30 and during the remaining 21 hours for each clump: x → E = Minventoryx. The spatial 250 

distribution of the emissions are based on estimates from ODIAC  (Oda et al., 2018) for the year 2016. ODIAC provides the 

monthly mean emissions for 12 months through a year at a 0.0083º×0.0083º (approximately 1 km×1 km) spatial resolution. 

The weekly and diurnal (at hourly resolution) profiles from the Temporal Improvements for Modeling Emissions by Scaling 

(TIMES) product (Nassar et al., 2013) are applied to the monthly emission maps of ODIAC to generate the hourly emission 

fields. The second operator (Mplume) simulates the plumes of XCO2 enhancement above the background at and downwind the 255 

emission clumps at 11:30: E → y = MplumeE. We assume that the plume of XCO2 enhancement related to a given emitting pixel 

within a clump of the ODIAC map has a Gaussian shape and the plume from a clump is a sum of multiple Gaussian plumes 

from all the ODIAC pixels within that clump. For a given emitting pixel, the Gaussian plume model writes: 

 𝒚(𝑖, 𝑗) = 𝛼
𝐸

√2𝜋𝜎𝑗𝑢
𝑒

−
𝑗2

2𝜎𝑗
2

 (4) 

Where y is the XCO2 enhancement (in ppm) downwind of the emitting pixel. The i-direction is parallel to the wind direction 260 

and the j-direction is perpendicular to the wind direction. y depends on the mean emission rate during 8:30-11:30 at local time 

(E, in g/s), the wind speed (u, in m/s), the cross-wind distance (j) and the parameter σj (see below). The wind direction and 

speed is taken from the Cross-Calibrated Multi-Platform (CCMP) gridded surface wind fields for the year 2008 (Atlas et al., 

2011). The CCMP product uses a Variational Analysis Method (VAM) to combine the data from Version-7 RSS radiometer 

wind speeds, QuikSCAT and ASCAT scatterometer wind vectors, moored buoy wind data, and ERA-Interim model wind fields. 265 

The σj is a function of downwind distance i and atmospheric stability parameter: σj=βj/(1+γj)-1/2, where α is a coefficient that 
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converts the computed XCO2 enhancement in the unit of ppm, and β and γ are coefficients depending on the atmospheric 

Pasquill stability category which is a function of the wind speed and solar radiation (Turner, 1970). The values for β and γ can 

be found in Bowers et al. (1980). The original Gaussian plume model generates a stationary plume of an infinite length and 

width downwind the emissions. Because we assume that the XCO2 plumes sampled from a satellite overpass is only related to 270 

the emissions 3 h before, the Gaussian plume corresponding to each emitting pixel is cut off at the downwind distance equaling 

the wind speed multiplied by 3 h. The width of the plume is also cut off beyond 3 times of σj in the cross-wind direction. The 

observation operator is null for emission of the remaining 21 hours (0:00-8:30 plus 11:30-24:00). 

The size of the full theoretical control vector corresponds to 11,314 emission clumps times two time windows for each 

day times 366 days. The size of this full theoretical observation vector over the year is thus more than 30,000,000. Building 275 

matrices and applying Eq. 1 with such spaces is, in practice, not computationally affordable. Therefore, we divide the globe 

into 5,400 spatial inversion windows (from 180 W to 180 E and from 90 N to 60 S), each inversion window covering an area 

of 10 ×10º and being extended on the four boundaries with margins of 500 km to ensure that the plumes from the clumps near 

the boundary of inversion windows are fully simulated and accounted for in the corresponding inversions. Mplume is defined 

asconstructed with a set of block matricesx, each block representing a single spatial inversion window and a single day. When 280 

an emission clump and its plume are comprised within more than one inversion window on a single day, only the results 

obtained in the window that covers the full plume is used in Mplume.  

2.5 Observation error 

We evaluate the projection of the measurement noise of the satellite observation, and ignore uncertainties in the 

observation operator. The measurement noise is derived from the simulations of random measurement errors from Buchwitz 285 

et al. (2013) and the impact of the systematic measurement errors is ignored. The random measurement errors are simulated 

as a function of geographic location (e.g., solar zenith angle, SZA), surface (e.g. albedo) and atmosphere characteristics (e.g. 

aerosol optical depth, AOD). The random measurement error is 1.4 ppm for vegetation albedo and SZA 50  in the CS sampling, 

and it is 0.7 ppm in the CO2M sampling, thus two-fold smaller for the latter. The random measurement errors are uncorrelated 

from one XCO2 data to the other, and the R matrix is thus built as a diagonal matrix as generally done in atmospheric inversion.  290 

2.6 Specification of the prior uncertainties and of their temporal auto-correlations 

 Two configurations for the prior uncertainty are used in the OSSEs (Sect. 2.7). In the PMIF-Paris inversion, the prior 

uncertainty is 22.4% for the each of the scaling factor for 6-hour mean emissions, the choice of this value being consistent 

with the configuration used by Broquet et al. (2018).  

In the PMIF-Globe inversions, the prior uncertainty is downscaled from its estimate for the annual budget of emissions 295 

of each clump. A prior uncertainty in annual emission of 30% is assumed for all clumps. This value is chosen to be of the same 

order of magnitude as the typical difference between emission inventories for a single point source and city. For example, 



 

11 

 

Gurney et al. (2016) found that one-fifth of the power plants had monthly emission differences larger than 13% between the 

estimates by two different US agencies. Gurney et al. (2019) compared the emission maps from ODIAC and Hestia for four 

US cities and found the whole-city differences are between -1.5% and +20.8%. Gately and Hutyra (2017) compared the 300 

inventories reported by local authorities and bottom-up fossil fuel CO2 emission maps for 11 US cities and found the differences 

range from 33% to 78%. Then, the downscaling of the uncertainty in annual emissions into uncertainties at the sub-daily scale 

of the control variables (i.e. 3 h mean emission over 8:30-11:30 and 21 h mean emission during the rest of the day; Sect. 2.3) 

follows a decomposition of the total uncertainty into components with different temporal auto-correlations.  

The hourly emissions in inventories are usually derived from the periodic typical temporal profiles to annual emissions 305 

(Andres et al., 2011; Nassar et al., 2013). There are large variations in actual emissions from hour to hour and from day to day, 

resulting in large differences between the emission estimates derived based on typical temporal profiles and actual emissions. 

These differences are sources of uncertainties in the emission inventories which are used in the inversion as prior information. 

However, there is no consensus regarding the uncertainty in emission inventories and their error structures (Gurney et al., 

2019). We compare the typical temporal profiles of transport emissions and energy sector from the TIMES product respectively 310 

with the TOMTOM traffic index (https://www.tomtom.com/en_gb/, that provides indications on the level of variability in the 

traffic even though not on that of the CO2 emission themselves), and with the actual hourly CO2 emissions from electricity 

production in France (https://www.services-rte.com/en/home.html). Although these comparisons are only made for two sectors, 

the results already show that it is challenging to describe the temporal auto-correlations of the uncertainty in emissions with 

simple exponentially decaying functions (Fig. S1 and S2) like what is usually done in traditional atmospheric inversions 315 

(Chevallier et al., 2010; Kountouris et al., 2015). We thus make several assumptions regarding the decomposition of the prior 

uncertainty into components with different modes of auto-correlation.  

In some scenarios, we consider an “annual component” that is fully correlated in time over 1 year. We also consider 

“uncorrelated” components whose temporal auto-correlations are null and “sub-annual” components whose temporal auto-

correlations follow the exponential decaying model with a correlation length smaller than 1 year. Specifically, we assume that 320 

the correlation between two instants of the sub-annual component at the hourly scale is described by:  

 r=exp(-Δh/τ1)×exp(-Δd/τ2)  (5) 

Where Δh is the time lag (in hours) between the two times of the day that are considered and Δd is the time lag (in days) 

between the two dates that are considered. The parameters τ1 and τ2 follow the fit of the misfits between the TIMES profiles 

and the TOMTOM and electricity production indices to the exponential functions respectively at the hourly scale and at the 325 

daily scale (Fig. S1 and S2). The temporal auto-correlations between the emissions during the aggregated time windows (8:30-

11:30 and the remaining 21 hours) are computed by re-aggregating the uncertainties at the hourly scale accounting for temporal 

auto-correlation. 

The detailed configuration of the different scenarios for the decomposition of the prior uncertainty are listed below: 

1) Annual component and Moderately correlated Sub-annual component (AMS): composed of an annual component and 330 

https://www.tomtom.com/en_gb/
https://www.services-rte.com/en/home.html


 

12 

 

a sub-annual component. The temporal auto-correlation of the sub-annual component follows Eq. (5) with τ1=12h and τ2=7d. 

The ratio of the uncertainty in annual component to that in sub-annual component for 3 h emissions is assumed to be 3:5. This 

leads to an annual uncertainty component ~N(0, 29%) and a sub-annual component ~N(0, 49%) for 3 h emissions and ~N(0, 

38%) for 21 h emissions.  

2) Annual component and Strongly correlated Sub-annual component (ASS): composed of an annual component and a 335 

sub-annual component. The temporal auto-correlation of the sub-annual component follows Eq. (5) with τ1=2400h, which 

approximately corresponds to having full correlations between hourly uncertainties within a single day, and τ2=20d. The ratio 

of the uncertainty in annual component to that in sub-annual component for 3 h emissions is assumed to be 3:5. This leads to 

an annual uncertainty component ~N(0, 26%) and a sub-annual component ~N(0, 44%) for 3 h emissions and ~N(0, 44%) for 

21 h emissions. 340 

3) Moderately Correlated Sub-annual component (MCS): composed of a sub-annual component. The temporal auto-

correlation of the sub-annual component follows Eq. (5) with τ1=12h and τ2=7d. This leads to an sub-annual component ~N(0, 

198%) for 3 h emissions and ~N(0, 119%) for 21 h emissions. 

4) Strongly Correlated Sub-annual component (SCS): composed of a sub-annual component. The temporal auto-

correlation of the sub-annual component follows Eq. (5) with τ1=2400h and τ2=20d. This leads to a sub-annual component 345 

~N(0, 93%) for 3 h emissions and ~N(0, 93%) for 21 h emissions. 

5) Sector-dependent Correlated Sub-annual component (SectCS): composed of a sub-annual component for each emission 

sector. It is assumed that the relative uncertainty for different sectors are the same. The temporal auto-correlation of the sub-

annual components for all sectors follow the same formulation Eq. (5), but with different τ1 and τ2. For the emissions in the 

industry sector, τ1=2400h and τ2=180d; for the emissions in the transport sector, τ1=12h and τ2=7d; for the emissions from 350 

energy sector: τ1=24h and τ2=7d; and for the emissions from other sectors: τ1=24h and τ2=14d. For each clump, the share of 

emissions from each sector are estimated according to EDGARv4.3.2 (https://edgar.jrc.ec.europa.eu/). This leads to an 

uncertainty in 3 h emissions ranges between 40% and 198%, and in 21 h emissions ranges between 40% and 154%. 

6) No temporal auto-correlation (NoCor): we assume that the uncertainties in 3 h emissions and 21 h emissions on all 

days are all random and uncorrelated from one time window to the other, or from one day to the other. The resulting sub-annual 355 

component follows the distribution ~N(0, 1623%) for 3 h emissions and ~N(0, 614%) for 21 h emissions. 

 The prior uncertainty in the 3-h mean emissions between 8:30 and 11:30 is close to or larger than 100% in scenarios SCS 

and MCS, and it even reaches an abnormally huge value of 1623% in NoCor. Andres et al. (2016) estimated the uncertainty in 

the widely used emission map CDIAC (Carbon Dioxide Information Analysis Center). They found that the average uncertainty 

in monthly emissions for one 1º×1º grid cell is 120% and further suspected that the uncertainties in hourly and daily emissions 360 

at urban scale could be even larger (from a few percent to 1000%). But these large values challenges the assumption that the 

uncertainty in anthropogenic emissions is normally distributed (Gurney et al., 2019). In this study, we follow the traditional 

assumption used in atmospheric inversions that the prior uncertainty follows a Gaussian distribution, allowing the prior 

https://edgar.jrc.ec.europa.eu/
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uncertainty to exceed 100% in some scenarios. This assumption ensures that the system is analytically solvable using Eq. (1) 

and (2). In addition, we focus our analysis on 8:30-11:30 time windows or days for which the posterior uncertainties of 365 

underlying emissions are smaller than 20% (Sect. 2.7.2), a value that is significantly smaller than the prior uncertainty in any 

scenario. In these cases, Eq. (1) ensures that the posterior uncertainty is almost driven the projection of the observation error 

on the control space and is not sensitive to the level of prior uncertainty. 

2.7 Practical implementation of the OSSEs 

Two sets of OSSEs are conducted under different configurations adapted to different purposes, as described below. Table 370 

1 and 2 summarize the different configurations of the OSSEs.  

2.7.1 Comparison of results between PMIF and a previous study on a single city: Paris 

In the first OSSE PMIF-Paris, the configuration of the control vector, observation sampling and errors, and prior 

uncertainties are made such that they resemble those in the MC-2 experiments from Broquet et al. (2018): 1) the inversion 

controls the 6-h mean emissions from Paris before the satellite overpasses on single days; 2) the observation sampling and 375 

errors are obtained from CarbonSat mission simulation (Buchwitz et al., 2013); 3). We ignore temporal auto-correlation of the 

uncertainty in scaling factors for 6-h mean emissions between different days. We select the same 69 satellite CarbonSat 

overpasses over Paris during one year as Broquet et al. (2018). The 31 days of October 2010 are used to provide a wide sample 

of atmospheric transport conditions, i.e. 31 wind fields. These atmospheric transport conditions are combined with the 69 sets 

of CarbonSat overpasses (with various cloud and aerosol coverage) to form 2139 inversion samples. The results for different 380 

overpasses using the same wind field of on a single day are ranked according to the uncertainty reductions and are compared 

to those obtained in Broquet et al. (2018). 

2.7.2 Applying the PMIF over all emission clumps across the globe 

In this second set of OSSEs, PMIF-Globe, we conduct inversions for all the clumps over one year. However, the large 

sizes of the control vector, of the observation vector and of the associated covariance matrices prevent the derivation of a full 385 

A for all the clumps and all the time windows using Eq. (1). In PMIF, we thus propose and apply a two-step computation that 

approximates Eq. (1). This computation assumes that the system has a limited capability to improve the separation between 

plumes from distinct clumps on a given day by crossing the information obtained from different days. In that sense, the 

inversion considers the uncertainty reduction obtained for individual days when considering all the clumps together (first step, 

see below) before focusing on individual clumps to account for temporal correlations in the prior uncertainty (the second step, 390 

see below). In other words, we assume that when crossing information between different time windows for a given clump, the 

impact of filtering information from different spatial overlaps of plumes on different days is relatively smaller than that of 

temporal auto-correlation in the prior uncertainty. It is proven shown that this method provides a good approximation of A at 
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daily to annual scales for individual clumps (Supplementary text S1). 

In a first step, Eq. (1) is applied to each 10 ×10  spatial inversion windows on each day separately (corresponding to an 395 

8:30-11:30 time window for clumps within the spatial inversion windows), by using the corresponding blocks in B: 

𝐀spt,pi,qj = (𝐁spt,pi,qj
−1 + 𝐌spt,pi,qj

T 𝐑spt,pi,qj
−1 𝐌spt,pi,qj)

−1
                         (6) 

Where i p is the ith pth spatial inversion window and j q is the jth qth day during one year. Here, Bspt,pi,qj is a diagonal 

matrix that only contains the variances of prior uncertainties in emissions during 8:30-11:30 for the clumps within the spatial 

inversion window. Mspt,pi,qj accounts for the spatial overlap of plumes generated from nearby clumps. Then we derive an 400 

“instant” scalar to represent the observational constraint for a given clump s in the 8:30-11:30 time window on day q (denoted 

as rq,s hereafter)a “instant” MTR-1M (denoted as 𝐌i,j,k
T 𝐑i,j,k

−1 𝐌i,j,k
̂ ) for a given clump k at each 8:30-11:30 time window: 

𝐌i,j,k
T 𝐑i,j,k

−1 𝐌i,j,k
̂  =(𝐀spt,i,j(𝑘)−1 − 𝐁spt,i,j(𝑘)−1)

−1
                               (7) 

𝑟q,s = 1/𝑎spt,q,s − 1/𝑏spt,q,s                                             (7) 

 405 

Where aspt,q,saspt,i,j(k) is a scalar on the diagonal offrom Aspt,pi,qj representing the variance of posterior uncertainty of 

emission from clump k s in ith pth spatial inversion window and in 8:30-11:30 time window on day j q obtained by Eq. (6), 

and bspt,q,sbspt,i,j(k) is thea scalar on the diagonal offrom Bspt,pi,qj representing the variance of prior uncertainty for the same 

control variable.  

In the second step, the inversion is conducted for each clump k s separately, considering the correlation in time in the 410 

prior uncertaintiesB, using rq,s𝐌i,j,k
T 𝐑i,j,k

−1 𝐌i,j,k
̂  derived from the first step: 

𝐀𝑡𝑚𝑝,k = (𝐁tmp,k
−1 + [

𝐌i,1,k
T 𝐑i,1,k

−1 𝐌i,1,k
̂ 0 0

0 ⋱ 0

0 0 𝐌i,n,k
T 𝐑i,n,k

−1 𝐌i,n,k
̂

])

−1

                       (8) 

1

1,s

2,s

1

tmp,s tmp,s

366,s

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

r

r

r





  
  
  
  
  

   
  
  
  
  

  

A B                         (8) 

 

Where Btmp,s is the covariance matrix of the prior uncertainty for a given clump s including the temporal auto-415 
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correlation:Where n=366×2, representing the time windows for 8:30-11:30 and for the rest 21 hours on the 366 days of one 

year (2008). Btmp,k is the covariance matrix accounting for the temporal auto-correlation in the prior uncertainty for a single 

clump: 

𝐁tmp,𝑠𝑘 =

[
 
 
 

𝜎𝑡1
2 𝑐𝑜𝑣(𝜀𝑡1, 𝜀𝑡2)

𝑐𝑜𝑣(𝜀𝑡1, 𝜀𝑡2) 𝜎𝑡2
2

… 𝑐𝑜𝑣(𝜀𝑡1, 𝜀𝑡𝑛)
… 𝑐𝑜𝑣(𝜀𝑡2, 𝜀𝑡𝑛)

⋮ ⋮
𝑐𝑜𝑣(𝜀𝑡1, 𝜀𝑡𝑛) 𝑐𝑜𝑣(𝜀𝑡2, 𝜀𝑡𝑛)

⋱ ⋮
…        𝜎𝑡𝑛

2           ]
 
 
 
                    (9) 

Where n=366×2, corresponds to the number of time windows 8:30-11:30 and the rest 21 hours over the 366 days of one 420 

year (2008). t1, t3, etc. represent the 8:30-11:30 time windows and t2, t4, etc. represent the rest 21 hours. 

In PMIF-Globe, we first conduct the inversion in which the prior uncertainty has no temporal auto-correlation (Exp-

NoCor). This is made by applying step 1 to all the 10 ×10  spatial inversion windows and all the days separately. This case is 

used to label the “well constrained” 8:30-11:30 time windows for a given clump when the associated plume is sufficiently well 

sampled by the XCO2 observation to yield a posterior uncertainty in the 3 h mean emission that is smaller than 20%. We then 425 

conduct inversions with different assumptions about the decomposition of the prior uncertainty, accounting for the impact of 

temporal auto-correlations of the prior uncertainty by applying step 2 of the inversions. The posterior uncertainties in the 3 h 

mean emissions labeled in Exp-NoCor are compared among different inversions to show the benefit of crossing information 

from different time windows. Apart from the assessment of the posterior uncertainties for the 3 h mean emissions, we also 

evaluate, for all the experiments except Exp-NoCor, the posterior uncertainty in daily emissions and in annual emissions by 430 

aggregating the posterior uncertainty covariance matrix A at the corresponding scales obtained in step 2 of the inversions. 

3. Results 

3.1 Comparison between results from PMIF and a more complex but local system over an isolated megacity: Paris 

The comparison of the results from the PMIF-Paris experiment to that of Broquet et al. (2018) is used to demonstrate 

that the PMIF produce meaningful statistics for other clumps despite its relative simplicity at the local scale (its complexity 435 

being linked to its global and annual coverage). Figure 1 shows the theoretical uncertainty reduction for the 6 h mean 

emissions obtained in PMIF-Paris inversions with the 1st, 5th, 10th, 15th, 19th and 25th best observation sampling from 

CarbonSat over 31 inversion days (Sect. 2.7.1), each day being characterized by the average wind speed over Paris. We 

compare these results with the Fig. 6 from Broquet et al. (2018). Like Broquet et al. (2018), Fig. 1 illustrates the strong 

correlation between the uncertainty reduction and the average wind speed, indicating that lower wind speed results on a 440 

larger signal close to the city that is easier to assimilate than elongated plumes under large wind speeds. For the best 

observation sampling, the uncertainty reduction remains smaller than 40% when the wind speed is larger than 13 m s-1, and 

this value is generally twice as low as the values obtained when the wind speed is smaller than 5 m s-1. 

Some differences are seen in Fig. S3, between the results obtained by PMIF and by Broquet et al. (2018). For example, 
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the PMIF-Paris inversion slightly overestimates the uncertainty reduction under high wind speed (> 15 m s-1) using the best 445 

observation sampling compared to Broquet et al. (2018). These differences reflect the impact of using the Gaussian plume 

model instead of a 3-D atmospheric transport model, and more importantly, the impact of accounting for more sources of 

uncertainties (in diffuse emissions and natural fluxes) in Broquet et al. (2018). Despite these differences, the general 

coherence in the ranges of uncertainty reductions (Fig. S3) under different wind speeds between the PMIF-Paris experiment 

and Broquet et al. (2018) is a strong indication that the PMIF generates the correct order of magnitude for the uncertainty 450 

reduction for a single clump. In addition, Nassar et al. (2017) used the Gaussian plume model to process actual XCO2 plumes 

generated from several power plants, which were sampled by OCO-2, adding the indication that Gaussian plume model can 

simulate the typical spread and amplitude of actual XCO2 plumes and thus supporting the application of PMIF to a large 

range of clumps.  

Figure 1 shows that the uncertainty reduction on 6-hourly emissions from Paris before the satellite overpass can be up 455 

to 74% under calm wind condition (wind speed < 1 m s-1) with the best observation sampling (in clear sky and with the 

satellite swath nearly centered on Paris), while it is systematically smaller than 45% for the 25th best observation sampling, 

over a full year of CS simulation. In addition, the uncertainty reductions have a large variation for narrow range of wind 

speeds, illustrating the strong impacts of the satellite track position with respect to the target and plume, together with the 

fraction of “clear sky” that modulates the sampling. In particular, the number of observations sampling the plume on the days 460 

when the wind direction is perpendicular to the satellite overpass tends to be less than the days when the wind direction is 

parallel to the satellite overpass. This is illustrated in Fig. 1 by the uncertainty reductions on the days when the wind speeds 

are 1.73 m s-1, 7.6 m s-1 and 8.1 m s-1 that are lower than on the days with similar wind speeds. 

 

  465 

Figure 1 Theoretical uncertainty reduction for the 6 h mean emissions in the PMIF-Paris experiments using the 1st (red), 5th (orange), 
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10th (light green), 15th (purple), 19th (blue) and 25th (green) best observation sampling from the CarbonSat simulation. The results from 

the 31 inversion days are given as a function of the average wind speed over the Paris clump. A comparison with the results from Broquet 

et al. (2018) is given in Fig. S3. 

 470 

3.2 Potential of space observations for monitoring fossil fuel CO2 emissions from individual clumps over 3 h time 

windows 

Figure 2a shows the distribution of number of 8:30-11:30 time windows per clump for which the posterior uncertainty of 

3 h mean emissions is smaller than 20% (this number is called N20) in Exp-NoCor. Clumps with small emission budgets tend 

to have lower N20 values than those with large budgets, due to the fact that the atmospheric plume generated by small emission 475 

clumps is difficult to distinguish from the measurement noise. Typically, N20 is smaller than 5 days for clumps emitting less 

than 2 MtC per year (like the city of Aswan, Egypt). Conversely, N20 is larger than 10 days for clumps emitting more than 2 

MtC per year (like the cities of Manchester, UK, Boston, USA, and Chongqing, China). Note that clumps with emissions larger 

than 2 MtC, although representing less than 25% of the total number of clumps, contribute more than 83% of the total clump 

emissions. At regional scale (Figs. S4, S5), South America, North America, and Africa tend to have larger N20 values for same 480 

bin of clump annual emission than the other regions, while Middle East and Asia have the lowest ones. In addition, there are 

large variations and spatial heterogeneity in the N20 values within each emission bins (Fig. S5), which will be further discussed 

in Sect. 4. 

We also show the numbers of 8:30-11:30 time windows per clump being labeled as “well-constrained” when the posterior 

uncertainty of 3 h mean emission is smaller than other thresholds, e.g. 10% and 30% (Fig. 2b). In general, using a posterior 485 

uncertainty larger than 20% as a threshold, we could expect more “well-constrained” cases. But for a given threshold, we still 

find the number of well-constrained cases increases with the emission budgets. 

Figure 3 shows the posterior uncertainty in the clump emissions for the “well constrained” 8:30-11:30 time windows 

(identified in Exp-NoCor) from different OSSEs. It confirms that in all OSSEs, the posterior uncertainties for clumps with 

larger emissions are smaller than those with lower emissions. Within a given bin of clump annual emission, the posterior 490 

uncertainties from the various OSSEs are very similar, even though they are obtained with different hypothesis regarding the 

temporal auto-correlation in the prior uncertainty. The interpretation is that, for the inversion of the 3 h emissions before a 

given satellite overpass, most of the constraint is imposed by the direct satellite observations during this overpass. These 

observations are independent on different days, and the constraints on different days are not strongly crossed even when errors 

in the prior estimate are highly correlated in time. However, although small, the impact of temporal auto-correlations in the 495 

prior uncertainties can be seen. For example, the posterior uncertainties in ASS (SCS) are systematically smaller than those in 

AMS (MCS), which confirms that the capability of the inversion system to use the information from observations from 

previous/subsequent days to reduce the posterior uncertainties increases with the temporal auto-correlations. In SectCS, the 

posterior uncertainties are smaller than those in MCS and SCS in most regions (Fig. S5), due to the fact that the uncertainty in 

industrial emissions has a long temporal auto-correlation (τ2=180d). 500 
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Figure 2 a) Number of 8:30-11:30 time windows within a year for which the 3 h emissions are constrained with a posterior 

uncertainty less than 20% (N20) in the Exp-NoCor experiment. The results are binned according to clump annual emission 505 
with bin limits given on the x-axis of the figure. Dots and error bars are the median and interquartile range of N20 for all 

clumps within the emission bin. Numbers at the figure top indicate the number of clumps and the percentage of clump 

emission within each bin. b) Number of 8:30-11:30 time windows (color) within a year for which the 3 h emissions are 

constrained with a posterior uncertainty less than a given threshold (y-axis) in the Exp-NoCor experiment.  

 510 
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vvv 515 

Figure 3 Distribution of the posterior uncertainty in the 3 h mean emissions during the 8:30-11:30 time windows (for which 

the posterior uncertainty in 3 h mean emissions are smaller than 20% in Exp-NoCor) obtained with different OSSEs. Dots 

and error bars are the median and interquartile range. The results are binned according to the clump annual emission with bin 

limits given on the x-axis of the figure. Numbers at the figure top indicate the number of clumps and the percentage of clump 

emission within each bin.  520 
 

3.3 Potential of space observations for monitoring daily fossil fuel CO2 emissions 

In previous sections, we analyzed the uncertainty reduction and the posterior uncertainty for the 3 h emissions that 

generate the atmospheric plume observed from space at 11:30. We now analyze the potential to monitor the daily emission, 

relying on the extrapolation of constraints on emissions between 8:30-11:30 using temporal auto-correlation of the prior 525 

uncertainties in the step 2 of the inversion (Sect. 2.7.2). Fig. 4 shows the distribution of the number of days when the posterior 

uncertainties in daily emissions are smaller than 20% (D20) for the same bins of emission clumps as in the previous section. 

Similar to the distribution of N20, clumps with small emission budgets tend to have lower D20 values than those with large 

budgets, due to having smaller signal-to-noise ratios for clumps with smaller emissions. The D20 values also strongly depend 

on the temporal auto-correlation in the prior uncertainty. When no correlation (Exp-NoCor) or short correlation (MCS) are 530 

assumed, D20 remains zero even for the largest clumps, since most of the daily emission are disconnected from the 3-hour 

emissions that are constrained by the satellite observation and keep on bearing the large prior uncertainties associated with the 

Exp-NoCor and MCS scenarios. When significant temporal auto-correlations (e.g. in the case of AMS, ASS and SCS) are 
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assumed, the results get better and the posterior uncertainties for the daily emissions become less than 20% for more than 100 

days for clumps emitting more than 5 MtC per year. At regional scale (Fig. S6), the distribution of D20 values shows a similar 535 

pattern as N20: North America, South America and Africa have larger D20 values than Middle East and Asia for same bin of 

clump annual emission. But the distribution D20 values in SectCS have large regional variations, reflecting the regional 

differences in the share of emissions from different sectors. 

 

Figure 4 Number of days within the year when the posterior uncertainty of daily emissions is smaller than 20% (D20). The 540 
results are binned according to the clump annual emission with bin limits given on the x-axis of the figure. Note that the 

median values of D20 for all clumps in Exp-NoCor and in MCS, for clumps whose annual emissions are between 0.5 MtC 

and 1 MtC in AMS, ASS and SCS, and for clumps whose emissions are below 10 MtC in SectCS, are all zero, so that the 

dots in these cases are not visible on y-axis with log scale. The dots and error bars are the median and interquartile range of 

D10 for all clumps within the emission bin. Numbers at the figure top indicate the number of clumps and the percentage of 545 
clump emission within each bin.  

 

3.4 Potential of space observations for monitoring annual fossil fuel CO2 emissions 

We now analyze the results for the annual emissions, allowed again by the derivation of the posterior uncertainty 

covariance matrix A for individual clumps in step 2 of the inversion, and thus the aggregation of the posterior uncertainties in 550 

time. Figure 5 shows the posterior uncertainties in annual emissions from the OSSEs. When we assume that there is no temporal 

auto-correlations in the prior uncertainties, the uncertainties obtained from the inversions remain very close to the prior 

uncertainties (30%) for all emission bins since the information from the few well-constrained 8:30-11:30 time windows within 
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the year is not extrapolated to the huge unobserved fraction of the total annual emission over the year. The benefit of satellite 

observations becomes apparent when assuming that the prior uncertainties have temporal auto-correlations. Similar to the 555 

posterior uncertainties for 3 h emissions during 8:30-11:30, the posterior uncertainties in annual emissions are smaller in the 

OSSEs where the prior uncertainties have stronger temporal auto-correlation. This indicates that temporal auto-correlations 

help to extrapolate the information on the emissions from the satellite passes over a given clump to emissions during other 

hours and days when there is no direct observations. Small clumps tend to have a larger relative posterior uncertainty in annual 

emissions than large clumps even when temporal error correlations are accounted for. The posterior uncertainties in the annual 560 

emissions of large cities with annual emission > 5 MtC per year can be constrained to better than 20% in AMS, SCS and 

SectCS, and to better than 10% in ASS. On the other hand, the posterior uncertainties for small emission clumps with annual 

emissions < 0.5 MtC per year are always larger than 15%, regardless of the temporal auto-correlations in prior uncertainties.

 

Figure 5 Distribution of the posterior uncertainties in annual CO2 emissions for different OSSEs. The results are binned 565 
according to the clump annual emission with bin limits given on the x-axis of the figure. Dots and error bars are the median 

and interquartile range of posterior uncertainty. Numbers at the figure top indicate the number of clumps and the percentage 

of clump emission within that bin.  

 

4. Discussion and conclusions 570 

PMIF provides information on the potential of space-borne imagery to constrain fossil fuel CO2 emissions from emission 
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clumps over the globe at the few-hour scale to the annual scale. It uses a simple Gaussian plume model to relate the emissions 

and the XCO2 plumes. This is a strong simplification of the physics which impacts the range of uncertainties that can be 

accounted for in the inversion problem, but a preliminary evaluation against a more complex set-up (that of Broquet et al., 

2018) indicates that it provides the correct order of magnitude for the uncertainties in the inverted emissions for an individual 575 

city: Paris.  

In this study, we focused on the projection of uncertainties in satellite observations on the uncertainty of inverted 

emissions. Some sources of uncertainties that could have some impacts on the inversions when dealing with real data are 

ignored. Firstly, the plumes generated by the Gaussian plume model are straight along the wind direction at the source pixel. 

As a result, we allow the plumes from nearby clumps to potentially cross each other, but these plumes will systematically 580 

diverge on long distances. The Gaussian plume model cannot reproduce plumes overlapping along the atmospheric circulation 

like Eulerian transport models. In this sense, the overlapping effect of plumes can be underestimated in PMIF. In a realistic 

situation of atmospheric transport, if plumes from multiple clumps overlap very often, the inversion performance for individual 

clumps will be degraded since it will have the difficulties to accurately attribute the XCO2 signals to individual clumps. 

Furthermore, we assume that the Gaussian plume model can perfectly link the emissions and XCO2 and ignore the transport 585 

model error. If forced with erroneous wind fields, the simulation of XCO2 plumes can have wrong shape and location, and thus 

generate large uncertainties in the inversions. In the inversion with actual XCO2 observations from OCO-2, Nassar et al. (2017) 

allowed the wind direction to change from the wind re-analysis used to force the Gaussian plume model, if it improved the fit 

between simulated plumes and the observed signals. Reuter et al. (2019) and Kuhlmann et al. (2019) showed that the co-

located NO2 satellite observations could help to detect and constrain the location and shape of XCO2 plumes. The transport 590 

model error may be partly reduced by incorporating additional information from other tracers when fitting the model to real 

data, but it is unknown to which extent these additional constraints is useful to improve the inversion of fossil fuel CO2 

emissions from cities and point sources. With the current design of PMIF, the impact of transport error is hard to evaluate. 

Secondly, we ignore systematic measurement errors from the XCO2 imagery. Broquet et al. (2018) showed that systematic 

error could hamper the ability of the inversion system to reduce the errors in the emissions estimates. Thirdly, we neglect the 595 

impact of uncertainties in diffuse fossil fuel CO2
 emissions (outside clumps) and non-fossil CO2 fluxes (within and outside 

clumps), the latter including net ecosystem exchange (NEE) from the terrestrial biosphere, the CO2 emitted by the burning of 

biofuel, the respiration from human and animals (Ciais et al., 2020) and the net CO2 fluxes between the atmosphere and ocean. 

For example, the signals from terrestrial NEE can be strong during the growing season, and the signals from ocean CO2 fluxes 

may have a critical impact on the overall XCO2 patterns in the proximity of coastlines. In principle, the signals of diffuse fossil 600 

fuel CO2 emissions and non-fossil CO2 fluxes outside the clumps can be potentially filtered by removing the local background 

XCO2 field to extract plumes generated only by emissions from clumps (Kuhlmann et al., 2019; Reuter et al., 2019; Ye et al., 

2020; Zheng et al., 2020). The non-fossil CO2 fluxes within clumps vary from clump to clump, and could contribute a non-

negligible fraction of the total CO2 fluxes in many clumps (Bréon et al., 2015; Ciais et al., 2020; Wu et al., 2018a). The satellite 
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observations alone cannot effectively differentiate the fossil fuel CO2 emissions and the non-fossil CO2 fluxes within clumps. 605 

In the clumps with non-negligible non-fossil CO2 fluxes, the inversion of fossil fuel CO2 emissions could be influenced (Ye et 

al., 2020; Yin et al., 2019). Fourthly, the PMIF system controls the scaling factors for the mean emissions of daily 3-h and 21-

h windows and for each clump, ignoring uncertainties in the spatial distribution and temporal profile of the emissions 

(described by the operator Minventory) within the clumps and over the time windows. Such uncertainties are called aggregation 

errors (Wang et al., 2017; Wu et al., 2011). However, Broquet et al. (2018) compared the results of inversions using the realistic 610 

spatial distribution of emissions and using a homogenous one over two discs with different radius for Minventory, and found that 

having imperfect spatial distribution of emissions to model Minventory (thus the aggregation error) only has a small impact on 

the uncertainties and errors in the inverted emissions. Future developments in PMIF should attempt at quantifying the impacts 

of such sources of uncertainties, while keeping its power of constraining the emissions from a large range of sources with 

global coverage. 615 

Although it ignores the sources of uncertainties listed above, the current PMIF can still be used to investigate the impacts 

of some key parameters of inversion problem and to allow, for the first time, to make a first-order extrapolation of the results 

from single-city studies to all significant emission clumps over the globe and under a full range of meteorological conditions 

during a year.  

The key result summarized in Figure 2 is that using a single CO2M satellite, only the clumps with annual budget higher 620 

than 2 MtC per year (e.g. Manchester, UK, Boston, USA and Chongqing, China) can potentially be well constrained with N20 

being larger than 10 within a year. However, there are large variations in the N20 values for clumps with such levels of emission. 

Figures 6a and 6b show the maps of the number of observations within each 2º×2º grid cell during one year in the USA and 

China, which is an indicator for the frequency of clear-sky days: the larger the number of observations, the higher frequency 

of clear-sky days. It is clearly seen in Fig. 6c and 6d that the clumps in Southern China have low N20 values when they are 625 

located in areas with a low frequency of clear-sky days. For clumps that have emissions between 2 and 5 MtC per year, N20 

values are below 10 days in a cloudy/hazy region like Southeastern China, and are close to 30 days in a clear-sky region like 

the Western Coast of the USA. These results illustrate the dependence of the potential of satellite observations to constrain 

emissions on the frequency of clear-sky conditions. The relative uncertainty in the inversion of the emissions from a clump is 

primarily driven by the budget of these emissions, and by the wind speed (as illustrated by Fig. 1). The frequency of clear-sky 630 

days modulates the number of direct observation of the plume from a clump and thus the number of days for which the 

inversion can decrease the uncertainty when ignoring temporal auto-correlations in the prior uncertainty in Exp-NoCor. The 

frequency of clear-sky day, together with the emission rate and wind speed, are the main drivers of the posterior uncertainty in 

daily to annual emissions when accounting for temporal auto-correlations in the prior uncertainty. 

 635 
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Figure 6 Number of observations in 2º×2º grid cells during one year (a and b) and N20 values (c and d). 

 

We showed that one CO2M imager can provide a direct constraint for the estimate of emissions from clumps with 

emissions larger than 2 MtC per year, but over limited periods only. N20 is smaller than 25 for most clumps, indicating that 640 

even for emissions during 8:30-11:30, one cannot expect more than 25 days when the CO2M observations sample the plumes 

from clumps with sufficient number of observations (Fig. 2) during one year. The use of a constellation of CO2M satellites in 

the current plan could potentially improve the frequency of good samplings. Imaging from geostationary orbit (GEO) imagers 

like NASA’s GeoCarb mission (O’Brien et al., 2016; Polonsky et al., 2014) could offer sampling during different periods 

within a day to constrain the diurnal profile of emissions. Highly elliptical orbit (HEO) imagers could also provide observations 645 

at northern high latitudes with a similar high frequency as GEO (Nassar et al., 2014). However, even though multiple space-



 

25 

 

borne platforms can sample the plumes more frequently, the satellites using passive sensors like that planed for CO2M can 

never sample the plumes on cloudy/hazy conditions.  

We also investigated the possibility of extrapolating the information obtained from the time windows for which the 

emissions are constrained by satellite observations to estimate emissions on other hours, days and through a year. Such an 650 

extrapolation relies on the model of the emission inventories used as a prior of PMIF, that is, in the framework of PMIF, the 

temporal auto-correlation of the uncertainty of prior emissions. The analysis of posterior uncertainties in the 3 h mean 

emissions, in daily emissions and in annual emissions all show that the configuration of this temporal auto-correlation has a 

large impact on the inversion results. For example, posterior uncertainties in annual emissions range from less than 10% with 

strong auto-correlation (ASS) to 25% with medium auto-correlation (MCS) for clumps with emissions higher than 2 MtC per 655 

year. The orders of magnitude in the posterior uncertainty will be critical to the objective assessment of annual emissions. 

However, since state-of-the-art emission products rarely report their uncertainties and temporal auto-correlations (Andres et 

al., 2016; Gurney et al., 2019), it is difficult to exclude any configuration of OSSEs in this study. The strong impact of the prior 

uncertainty on the inversion results thus highlights the priority of future researches to systematically assess the uncertainty, 

especially the temporal error co-variances, in the emission products. 660 

Even if emissions can be effectively constrained by CO2M for clumps whose emissions are larger than 2 MtC per year, 

the sum of annual emission budgets from these large clumps account only for 54% of the total CO2 clump emissions and for 

36% of the total global fossil fuel CO2 emissions (accounting for diffuse emissions outside the clumps), according to the clump 

definition of Wang et al. (2019) and the ODIAC emission map. For a specific country, clumps with emissions larger than 2 

MtC per year typically represent less than 50% of the total national emissions (accounting for diffuse emissions outside the 665 

clumps). It thus shows the difficulty to use a single CO2M imager as the only source of information to constrain national 

emissions. This limitation of a single CO2M imager calls for innovations to integrate other types of observations in inversion 

systems to improve the ability to estimate emissions at both city scale (Lauvaux et al., 2016; Sargent et al., 2018; Staufer et 

al., 2016) and larger spatial scales (Palmer et al., 2018; Wang et al., 2018).  

5. Code availability 670 

The source code for PMIFv1.0 is included in the Supplement. To run PMIF, some input files are needed. The ODIAC 

inventory is available at http://db.cger.nies.go.jp/dataset/ODIAC/DL_odiac2018.html. The clump dataset is available at 

https://doi.org/10.6084/m9.figshare.7217726.v1. The list of clump information (e.g. index, latitude and longitude of the center), 

which is also needed as an input, is included in the Supplement. The wind fields from CCMP are available at 

http://www.remss.com/measurements/ccmp/. EDGAR v4.3.2 emission maps are needed to run the SectCS inversion, and are 675 

available at https://edgar.jrc.ec.europa.eu/overview.php?v=432_GHG. 
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Appendix: Acronyms 

AMS: Annual component and Moderately correlated Sub-annual component 

ASS: Annual component and Strongly correlated Sub-annual component 

CDIAC: Carbon Dioxide Information Analysis Center 

CNES: Centre National d’Etudes Spatiales 695 

CO2M: Copernicus Anthropogenic Carbon Dioxide Monitoring 

D20: Number of days within the year when the posterior uncertainty of daily emissions is smaller than 20% 

ECMWF: European Centre for Medium-Range Weather Forecasts 

ESA: European Space Agency 

EUMETSAT: European Organisation for the Exploitation of Meteorological Satellites 700 

GOSAT: Greenhouse Gases Observing Satellite 

MCS: Moderately Correlated Sub-annual component 

N20: number of 8:30-11:30 time windows per clump for which the posterior uncertainty of 3 h mean emissions is smaller 

than 20% 

NoCor: No temporal auto-correlation 705 

OCO: Orbiting Carbon Observatory 

ODIAC: Open-source Data Inventory for Anthropogenic CO2 

OSSE: Observing System Simulation Experiment 

PMIF: Plume Monitoring Inversion Framework 

SCS: Strongly Correlated Sub-annual component 710 
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SectCS: Sector-dependent Correlated Sub-annual component 

SZA: solar zenith angle 

TIMES: Temporal Improvements for Modeling Emissions by Scaling 

XCO2: vertically integrated columns of dry-air mole fractions of CO2 
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