
Response to comments on “PMIF v1.0: an inversion system to estimate the potential of 

satellite observations to monitor fossil fuel CO2 emissions” by Y. Wang et al. 

 

We thank the referee for reviewing our manuscript. Please find attached a point-by point reply 

(in black) to each of the comments raised by the referee (in blue) with legible text and figures 

organized along the text. For your convenience, changes in the revised manuscript are 

highlighted with dark red. All the pages and line numbers correspond to the original version of 

text. 

 

This study assesses the potential of satellite imagery of a future mission CO2M XCO2 to 

constrain the emissions from cities and power plants over the whole globe for one year. To 

reduce the computational cost of the traditionally used 3-D full transport models, this study 

simplified the observation operator with a few idealized hypotheses: (a) a Gaussian plume 

model, no model errors, (b) no overlapping effects from nearby hotspots, (c) no impact of 

natural carbon cycle fluxes. It is useful to get a global-scale estimate for the potential of 

emission uncertainty reductions for the proposed mission – even though the results are not 

very positive in terms of CO2 measurements’ potential in constraining fossil fuel CO2 

emissions alone given those idealized setups. 

Response: 

We would like to clarify the point (b) listed above by the reviewer. Actually, there can be 

some overlapping between the plumes generated by nearby clumps in the PMIF. In Eulerian 

transport model, the plumes from nearby sources can converge along atmospheric circulation. 

However, here, since using a classical Gaussian plume model, the plumes are straight along the 

wind direction. Therefore, the plumes from two nearby clumps can cross each other, but they’ll 

systematically diverge on long distances, which, in some cases, can lead to a significant 

underestimation of the plume overlapping. To make it clearer, we revised the sentences Ln 506-

508: “…Firstly, the plumes generated by the Gaussian plume model are straight along the wind 

direction at the source pixel. As a result, we allow the plumes from nearby clumps to potentially 

cross each other, but these plumes will systematically diverge on long distances. The Gaussian 

plume model cannot reproduce plumes overlapping along the atmospheric circulation like 

Eulerian transport models. In this sense, the overlapping effect of plumes can be underestimated 

in PMIF. In a realistic situation of atmospheric transport, if plumes from multiple clumps 

overlap very often, the inversion performance for individual clumps will be degraded since it 

will have the difficulties to accurately attribute the XCO2 signals to individual clumps.” 

 

General comments: 

The authors highlight the global scope of this study, but no global distribution is shown. Fig. 

6 shows information about US and China, why only these two regions? The global results are 

aggregated with emission density bins (Fig 2 - 5), which I assume is not the only determining 

factor. With simple statistics of median spread, a lot of information is lost. It does not really 

provide a "global" view. Fig. 1 highlighted the impacts of wind speed, which may create 

spatial patterns that overlay with emission density maps. Such information may reveal a better 

global overview. 

Response: 



We synthesize the global results with the plot of median values and the spread in Figs. 2-

5. Figure 6 is shown to prove that the frequency of clear-sky largely explains the large variations 

within each emission bin. We agree with the reviewer that the inversion results are mainly 

driven by a combination of emission rates, wind speed and frequency of clear-sky days. 

However, plotting clumps’ uncertainty on top of clump emissions or wind speed would make 

the figure too saturated to read. (Figure 6c and d are already close to a saturation of dots). 

Following the reviewer advice, we have produced figures like Figure 6c and d for all the regions 

of the globe. However, since they do not bring much more qualitative insights than Figure 6c 

and d, we have put them in the supplementary material. In the main text, we remind the readers 

to refer to these figures accordingly: 

Ln 410: “At regional scale (Figs. S4, S5), South America, North America, and Africa tend 

to have larger N20 values for same bin of clump annual emission than the other regions, while 

Middle East and Asia have the lowest ones. In addition, there are large variations and spatial 

heterogeneity in the N20 values within each emission bins (Fig. S5), which will be further 

discussed in Sect. 4.” 

Ln 545: “… These results illustrate the dependence of the potential of satellite observations 

to constrain emissions on the frequency of clear-sky conditions. The relative uncertainty in the 

inversion of the emissions from a clump is primarily driven by the budget of these emissions, 

and by the wind speed (as illustrated by Fig. 1). The frequency of clear-sky days modulates the 

number of direct observation of the plume from a clump and thus the number of days for which 

the inversion can decrease the uncertainty when ignoring temporal auto-correlations in the prior 

uncertainty in Exp-NoCor. The frequency of clear-sky day, together with the emission rate and 

wind speed, are the main drivers of the posterior uncertainty in daily to annual emissions when 

accounting for temporal auto-correlations in the prior uncertainty.”  

 

Also, a posterior uncertainty of 20% has been used as a benchmark throughout the paper 

(given a 30% prior uncertainty). However, only a few cases/days can meet such a 

requirement. Thus, it may be more helpful to show what posterior uncertainty can be achieved 

for a given length of days across typical regions (e.g., using a 2-D matrix?) 

Response: 

 Firstly, we stress that the prior uncertainties are different at different time scale. In all the 

experiments, the prior uncertainty is 30% for annual emissions. When decomposing the 

uncertainty of annual emissions to the scales of 3 h and 21 h time windows, the resulting 

uncertainties largely depend on the assumption about the temporal auto-correlations (Sect. 

2.6). In the ASS scenario, the prior uncertainty for 3 h emissions is √(44%2+26%2)=51%, 

while in NoCor scenario, it is 614%.  

 Eq. (1) shows that the posterior uncertainty and uncertainty reduction depend on the prior 

uncertainty. For example, if the projection of uncertainties in satellite observations on the 

uncertainty in emissions (i.e. MTR-1M) equals to 50% for a single 3 h time window, in ASS 

scenario, the posterior uncertainty equals to √1/(1/(51%)2+1/(50%)2)=36%, while in NoCor, 

the posterior uncertainty equals to 50%. In this situation, if the benchmark is chosen too high 

(e.g. 50%), it is too easy for ASS scenario, while it still requires a lot of constraints from 

satellite observations in NoCor scenario. If we choose 60% as the benchmark for assessing 

the posterior uncertainty, then the prior uncertainty in emissions in ASS will always below the 



benchmark, even without conducting the inversion. Given different values of prior uncertainty 

in different scenarios, it is not easy to find a metric to fairly compare the results from different 

scenarios. We choose 20% as a benchmark because if the posterior uncertainty is below 20%, 

it is mainly determined by the projection of uncertainties in satellite observations on the 

uncertainty of emissions.  

 Furthermore, the posterior uncertainty in the emissions within 3 h time window or in the 

daily emissions, and thus the number of N20 and D20 are among the diagnostics we 

investigated on the potential of satellite observations. We also assessed the posterior 

uncertainty at annual scale, which integrates the uncertainty in all time windows, not only 

those whose uncertainty is smaller than 20%. 

 In the first version of this paper, we did consider to use a 2-D matrix to show the results, 

as shown in Fig. R2. We think such a 2-D matrix plot has its own disadvantages: 1) as stated 

above, the posterior uncertainty also depends on the prior uncertainty, if the threshold is 

chosen high, it does not properly represent the actual constraints from satellite observations; 

2) such a plot cannot show the large variations in the number of cases within each emission 

bin. But this information is easy to read from the whisker plot in Fig. 3-5; and 3) such a 2-D 

matrix plot cannot compare the performance of the inversion in different experiments directly. 

Given the close values of some experiments (e.g. AMS and ASS in Fig. 3), the difference 

between experiments cannot be noticed by eye from separate 2-D matrix plots. Given these 

considerations, we decided to use the plots that have been shown in the paper, which can 

synthesize as the most information as we want to deliver, and also makes it possible to 

compare the performance for different experiments. 

 

Figure R2 Number of 8:30-11:30 time windows (color) within a year for which the 3 h emissions 

are constrained with a posterior uncertainty less than a given threshold (y-axis) in the Exp-NoCor 

experiment. 

 In the revised manuscript, we add in Fig. 2 the 2-D matrix plot to illustrate the number of 

cases under different threshold. But we do not do that for the other diagnostics. And we add 

some discussions about this figure: 

 “At regional scale (Fig. S4), South America, North America, and Africa tend to have 

larger N20 values for same bin of clump annual emission than the other regions, while Middle 

East and Asia have the lowest ones. In addition, there are large variations and spatial 



heterogeneity in the N20 values within each emission bins (Fig. S5), which will be further 

discussed in Sect. 4.  

We also show the numbers of 8:30-11:30 time windows per clump being labeled as 

“well-constrained” when the posterior uncertainty of 3 h mean emission is smaller than other 

thresholds, e.g. 10% and 30% (Fig. 2b). In general, using a posterior uncertainty larger than 

20% as a threshold, we could expect more “well-constrained” cases. But for a given 

threshold, we still find the number of well-constrained cases increases with the emission 

budgets.” 

 

A few technical points: 

-L35: "more than 10 times within one year" is a low number. As stated above, if this is the case, 

is using 20% as the only threshold discussed in the paper a reasonable choice? 

Response: 

 See our discussion above about the choice of N20 as the main diagnostic to characterize 

the frequency of “well constrained” inversions. 

 

-L58-59: other studies worth mentioning, for instance: 

Kort, E. A., Frankenberg, C., Miller, C. E. and Oda, T.: Space-based observations of megacity 

carbon dioxide, Geophys. Res. Lett., 39(17), n/a-n/a, doi:10.1029/2012GL052738, 2012. 

Nassar, R., Hill, T. G., McLinden, C. A., Wunch, D., Jones, D. B. A. and Crisp, D.: Quantifying 

CO2 Emissions From Individual Power Plants From Space, Geophys. Res. Lett., 44(19), 

10,045-10,053, doi:10.1002/2017GL074702, 2017. 

Schwandner, F. M., Gunson, M. R., Miller, C. E., Carn, S. A., Eldering, A., Krings, T., Verhulst, 

K. R., Schimel, D. S., Nguyen, H. M., Crisp, D., O’Dell, C. W., Osterman, G. B., Iraci, L. T. 

and Podolske, J. R.: Spaceborne detection of localized carbon dioxide sources., Science, 

358(6360), eaam5782, doi:10.1126/science.aam5782, 2017. 

Response: 

Thanks for the reviewer to remind some more references. In the revised introduction, we 

rewrite the paragraph:  

Ln 55 “… Alternatively, vertically integrated columns of dry-air mole fractions of CO2 

(XCO2) from satellites offer the opportunity to sample the atmosphere with a global coverage. 

Kort et al. (2012) and Janardanan (2016) found that significant XCO2 enhancements could be 

detected over some megacities using Greenhouse Gases Observing Satellite (GOSAT) XCO2 

observations. Schwandner et al. (2017) also found XCO2 enhancements of 4.4 to 6.1 ppm in 

the Los Angeles urban CO2 dome using observations from Orbiting Carbon Observatory-2 

(OCO-2). Nassar et al. (2017) used the XCO2 observations from OCO-2 to quantify CO2 

emissions from several middle- to large-sized coal power plants. However, the design of 

GOSAT and OCO-2 observations with sparse sampling was focused on the monitoring of CO2 

natural fluxes. Recent studies show a limited amount of clear detections of transects of XCO2 

plumes from cities or plants in OCO-2 observations (Zheng et al., 2020a) so that GOSAT and 

OCO-2 data keep on being hardly used to estimate CO2 city emissions. The potential for 

reducing uncertainties in fossil fuel CO2 emissions at the scale of point sources (Bovensmann 

et al., 2010), cities (Broquet et al., 2018; Pillai et al., 2016) and agglomerations of several cities 

(O’Brien et al., 2016) should dramatically change with the planned satellite missions with 



imaging capabilities. These studies consistently showed that ……” 

 

-L102: "for the first time" - It is important to talk about the bright side, however, it is equally 

important to define the underlying assumptions clearly. The discussion came later, but I believe 

a higher level of clarification here will be helpful. 

Response: 

We revise the sentences Ln 101-105: “Therefore, in this study, we develop a Plume 

Monitoring Inversion Framework (PMIF) and conduct a set of Observing System Simulation 

Experiments (OSSEs) to assess, for the first time, the performance of a satellite instrument to 

monitor the emissions of all the clumps across the globe and over a whole year. The imager 

studied has the foreseen characteristics of the individual satellites of the forthcoming CO2M 

mission. It would be a high-resolution spectrometer, with 2 km × 2 km resolution pixels and a 

swath of 300 km, and it would be placed on a sun-synchronous orbit ensuring global coverage 

in 4 days. The PMIF inversion system relies on the list of clumps extracted by Wang et al. 

(2019) from the ODIAC inventory, on the Gaussian plume model to simulate the XCO2 plumes 

generated by the emissions from these clumps, on an analytical inverse modeling framework, 

and on a combination of overlapping assimilation windows to solve for the inversion problem 

over the globe and a full year. It also addresses the question of temporal extrapolation that is 

needed to generate estimates of annual emissions from the information of a limited number of 

time windows for which emissions are well constrained by the direct satellite images, by 

accounting for the temporal auto-correlation of the prior uncertainties. The performance is 

assessed in terms of the uncertainties in the emissions (Sect. 2.1) at different scales. The PMIF 

uses a Gaussian plume model at the local scale to ensure that the computation cost is affordable. 

Such a model can often hardly fit with actual plumes over the distances considered in this study 

(due to variations in the wind field, topography, vertical mixing etc. over such distances) but is 

shown, when driven with suitable parameters, to provide a satisfactory simulation of the plume 

extent and amplitudes, which appear to be the main drivers of the targeted computations of 

uncertainties in the emissions in our OSSE framework (as shown in section 3.1). In PMIF, we 

also ignore the impact of some sources of uncertainties on the inversion of emissions, including 

systematic errors on the XCO2 retrievals, the impact of uncertainties in diffuse anthropogenic 

emissions outside clumps, in natural CO2 fluxes (within and outside clumps), and in the spatial 

and temporal variations of emissions within the clump and the short time windows that the 

inversion aims to solve. These impacts are discussed in detail afterwards.” 

 

-L105: How about observations near the edge of the swath? The resolution would change 

accordingly. 

Response: 

 The observations are simulated using the method and model described by Buchwitz et al. 

(2013) in the frame of different ESA projects studying XCO2 imagers with inputs from ESA. 

Different values for the parameters in the model are used to account for the differences between 

the original configuration for CarbonSat and the configuration for CO2M. 

 The edge effect is small because the swath width we discussed is only 300 km. For a 

satellite at 700 km altitude and with a ground pixel at nadir at the resolution of 2 km, the 

resolution of a pixel at the edge of the swath is about 2.09 km, which is still very close to 2 km. 



In fact, the edge effect is very small and very well within the overall uncertainty of the method 

which is based on various input data sets. 

 

-L137: yfixed is not explained. 

Response: 

We revised the sentence: 

“… The inversion derives a statistical estimate for a set of control variables x in a model 

x→y=Mx that simulates the satellite XCO2 measurements yo. The model M linking x and y is 

a combination of flux and atmospheric transport models (detailed in Sect. 2.4), and is called 

observation operator hereafter. As explained below, we do not have a constant term added to 

Mx in the observation operator of the PMIF that would gather the atmospheric CO2 signature 

of the fluxes not controlled by the inversion (like non-fossil fluxes and the background XCO2 

field) since the uncertainty in such fluxes is ignored. The inversion follows a Bayesian 

statistical framework,…” 

 

-L144, 148: "In this study" is used quite a lot. Not all necessary. 

Response: 

 We have gone through the manuscript carefully, and removed some of them. 

 

-L152: not accounting for diffuse CO2 fluxes is an important distinction. It is an important 

assumption that needs to be emphasized as the natural carbon cycle will have a strong imprint 

in many areas. 

Response: 

We revise the sentence: 

“…Therefore, we first compare the results for Paris from PMIF against those acquired 

based on a 3-D Eulerian atmospheric transport model by Broquet et al. (2018), the latter also 

accounting for uncertainties in diffuse and natural CO2 fluxes. On the one hand, the signals 

from these diffuse and natural CO2 fluxes cannot be modelled effectively by a Gaussian plume 

model. On the other hand, the diffuse and natural CO2 fluxes in Paris was shown to have only 

a weak impact on the inversion of fossil fuel CO2 emissions (Staufer et al., 2016). For this 

comparison, …” 

In addition, we add more discussions on the impact of biogenic fluxes in more detail: 

Ln 519-523: “…Broquet et al. (2018) showed that systematic error could hamper the 

ability of the inversion system to reduce the errors in the emissions estimates. Thirdly, we 

neglect the impact of uncertainties in diffuse fossil fuel CO2 emissions (outside clumps) and 

non-fossil CO2 fluxes (within and outside clumps), the latter including net ecosystem exchange 

(NEE) from the terrestrial biosphere, the CO2 emitted by the burning of biofuel, the respiration 

from human and animals (Ciais et al., 2020) and the net CO2 fluxes between the atmosphere 

and ocean. For example, the signals from terrestrial NEE can be strong during the growing 

season, and the signals from ocean CO2 fluxes may have a critical impact on the overall XCO2 

patterns in the proximity of coastlines. In principle, the signals of diffuse fossil fuel CO2 

emissions and non-fossil CO2 fluxes outside the clumps can be potentially filtered by removing 

the local background XCO2 field to extract plumes generated only by emissions from clumps 

(Kuhlmann et al., 2019; Reuter et al., 2019; Ye et al., 2020; Zheng et al., 2020a). The non-fossil 



CO2 fluxes within clumps vary from clump to clump, and could contribute a non-negligible 

fraction of the total CO2 fluxes in many clumps (Bréon et al., 2015; Ciais et al., 2020; Wu et 

al., 2018). The satellite observations alone cannot effectively differentiate the fossil fuel CO2 

emissions and the non-fossil CO2 fluxes within clumps. In the clumps with non-negligible non-

fossil CO2 fluxes, the inversion of fossil fuel CO2 emissions could be influenced (Ye et al., 2020; 

Yin et al., 2019). Fourthly, …” 

 

-L225: a simple description of the sigma parameter (e.g., what determines it) will help the 

reader without having to refer to Ars et al. (2017). 

Response: 

To clarify our set-up of the parameters in the Gaussian plume model used here, we revise 

the sentence in Ln 225: “The σj is a function of downwind distance i and atmospheric stability 

parameter: σj=βj/(1+γj)-1/2, where α is a coefficient that converts the computed XCO2 

enhancement in the unit of ppm, and β and γ are coefficients depending on the atmospheric 

Pasquill stability category which is a function of the wind speed and solar radiation (Turner, 

1970). The values for β and γ can be found in Bowers et al. (1980). The original Gaussian plume 

model generates a stationary plume… ” 

 

-L369: why not just use Fig. S3 for side by side comparison? 

Response: 

 Fig. S3b is adapted from from Fig. 6 in Broquet et al. (2018), Copernicus Publications. We 

assume it is not allowed to put it in the main text. If the editor can confirm it can be put it in the 

main text without any copyright issue, we agree to replace Fig. 1 with Fig. S3. 

 

-L404: "N20". There are quite some acronyms already that need checking back and forth. Will 

improve the reading removing some that do not have intuitive meanings. 

Response: 

 We have acronyms of “N20”, “D20” for the assessment of the posterior uncertainties. We 

also have acronyms of “AMS”, “ASS”, “MCS”, “SCS”, “SectCS”, “NoCor” for the 

configuration of prior uncertainty. Each acronym has a long explanation, and we found it is not 

easy to adapt the manuscript without using these acronyms. However, we summarize all the 

acronyms in an Appendix to help the readers.  

 

-L501: How about the optimized state? Curious how well will the Gaussian Plum model do if 

it assimilates the psuedo observations generated using the full 3-D models in this case. It will 

be a strong demonstration if it can get the emission order general variations right! 

Response: 

 As it stands, PMIF can be used to process individual samples of pseudo prior fluxes and 

pseudo observations and compute pseudo posterior fluxes to assess error reductions to a pseudo 

truth. All the numerical objects needed to apply Eq.2 are built in this system as reflected by its 

description. However, if the errors injected in such OSSEs with explicit pseudo data are 

consistent with the statistics of uncertainties know by the inversion system, the statistics of 

errors in the flux estimates are fully characterized by A (since the observation operator is linear), 

whose direct computation is thus the best index of the potential of the inversion and of a given 



observation network (Wang et al., 2018). This is why we only focus on such a computation here. 

 PMIF is mainly designed for OSSEs and would require some adaptations and extensions 

to process real satellite images or the pseudo observations generated by a 3-D model. For 

example, it requires to remove the XCO2 background concentrations underlying the detected 

plumes in the observations that could be assimilated by the system. More importantly, the 

Gaussian model may have difficulties to fit the plumes generated by a 3-D model in some cases: 

because of the turbulence close to the source, of the 3D variations in the wind field, and of 

multiple other parameters (like variations in the topography, the complexity of vertical mixing 

etc.). As done by Nassar et al. (2017), the wind direction might need some adjustment in some 

cases.  

However, the difficulty of fitting the model simulation to the actual plumes sampled by 

the observation is also a traditional weakness in atmospheric inversion when the complex 

mesoscale atmospheric transport models are used; this explains why many of the recent 

inversions of CO2/CH4 plant and city emissions that have been conducted based on OCO-

2/TROPOMI data use Gaussian models or a Gaussian approximation of the shape of the plume 

to apply direct flux computations in the data (e.g. Nassar et al., 2017; Reuter et al., 2019; Zheng 

et al., 2020). 

In addition, the study by Prunet et al. (2020) (the talk available at 

https://cdn.eventsforce.net/files/ef-xnn67yq56ylu/website/9/5_734__pascal_prunet-

_plume_detection_and_characterization_from_xco__imagery-

evaluation_of_gaussian_methods_for_quantifying_plant_and_city_fluxes.pptx) indicates that 

Gaussian models fit the plumes from true mesoscale models well enough (so that the inversions 

using the Gaussian model can provide a good estimate of the emissions) for a good part of the 

typical atmospheric conditions encountered around the set of European cities and plants they 

investigated. 

So we think the use of a Gaussian plume model does not bias the results discussed in the 

paper given the considerations listed above. 

 

 

-L519: Quite a few studies explore the interfering effect of natural CO2 fluxes. 

Wu, K., Lauvaux, T., Davis, K. J., Deng, A., Lopez Coto, I., Gurney, K. R. and Patarasuk, R.: 

Joint inverse estimation of fossil fuel and biogenic CO2 fluxes in an urban environment: An 

observing system simulation experiment to assess the impact of mul-tiple uncertainties, Elem 

Sci Anth, 6(1), 17, doi:10.1525/elementa.138, 2018. 

Yin, Y., Bowman, K., Bloom, A., Worden, J.: Detection of fossil fuel emission trends in the 

presence of natural carbon cycle variability, Environmental Research Letter, 14(8):084050, 

doi:10.1088/1748- 9326/ab2dd7, 2019. 

Response: 

 See the response before about non-fossil CO2 fluxes. 

 

-L538: Again, I understand that 20% posterior uncertainty is a desirable goal, but it did not 

provide a full picture if the values for the high emission densities are only at the order of 10 

days for a year. Other references will help define the landscape. 

Response: 

https://cdn.eventsforce.net/files/ef-xnn67yq56ylu/website/9/5_734__pascal_prunet-_plume_detection_and_characterization_from_xco__imagery-evaluation_of_gaussian_methods_for_quantifying_plant_and_city_fluxes.pptx
https://cdn.eventsforce.net/files/ef-xnn67yq56ylu/website/9/5_734__pascal_prunet-_plume_detection_and_characterization_from_xco__imagery-evaluation_of_gaussian_methods_for_quantifying_plant_and_city_fluxes.pptx
https://cdn.eventsforce.net/files/ef-xnn67yq56ylu/website/9/5_734__pascal_prunet-_plume_detection_and_characterization_from_xco__imagery-evaluation_of_gaussian_methods_for_quantifying_plant_and_city_fluxes.pptx


 As discussed above, this 20% threshold is used to quantify only the cases when the 

emissions are “well constrained”.  

 In this paragraph, what we want to discuss is the large variation of N20 within each 

emission bin. If we choose other threshold, it does not change the fact that the clumps within 

each bin are not be equally constrained: the frequency of clear-sky days still largely impacted 

the performance of the inversion. 

 

-Figure 3: the number of clamps is repeated in every plot from Fig. 3-5. Reductant to repeat so 

many times. Maybe indicate clearly that (a) and (b) are the same just for different experiments. 

Response: 

 We remove the number of clumps in Figs. 3-5. 
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