
Response to comments on “PMIF v1.0: an inversion system to estimate the potential of 

satellite observations to monitor fossil fuel CO2 emissions” by Y. Wang et al. 

 

We thank the referee for reviewing our manuscript and for his valuable comments and 

suggestions. Please find attached a point-by point reply (in black) to each of the comments 

raised by the referee (in blue) with legible text and figures organized along the text. For your 

convenience, changes in the revised manuscript are highlighted with dark red. All the pages and 

line numbers correspond to the original version of text. 

 

1 Overview: 

Review of “PMIF v1.0: an inversion system to estimate the potential of satellite observations 

to monitor fossil fuel CO2 emissions” by Wang et al. Wang et al. present an OSSE 

framework to estimate error reductions for a proposed satellite. It’s based on a Gaussian 

plume that they run for many emission hotspots. They’ve done this over a large domain 

(globally) at fairly high spatial resolution (2 km). The work is interesting but the description 

of the methods could use quite a bit of work. There are some important steps in the actual 

implementation that are quite convoluted. Fixing this seems like a critical for publication in a 

journal focused on geoscientific model development. I suggest major revisions for the 

manuscript. 

Response: 

We carefully revised our manuscript following the comments and suggestions. We think 

that the revised manuscript explained the steps of the method much clearer.  

 

2 Comments: 

2.1 Solution to their inversion 

I’d prefer the authors not use A as the posterior covariance matrix, I usually think of A as the 

averaging kernel. This is particularly confusing because you are solving for emission 

reductions that are the diagonals of the averaging kernel matrix.  

Response: 

We are aware of that A (or AK) is used for averaging kernel in the community of satellite 

retrievals (Boesch et al., 2011; Cogan et al., 2012; O’Dell et al., 2012; Wu et al., 2018b; Yoshida 

et al., 2011). We also know that in some books on atmospheric inversion, A is used to represent 

“the sensitivity of the optimal estimate to the true state” and is also called averaging kernel 

(such as in Daniel Jacob’s “Lecture on Inverse modelling” 

http://acmg.seas.harvard.edu/education/jacob_lectures_inverse_modeling.pdf), where SA and Ŝ 

are used for prior and posterior uncertainty. The Pf (with f for forecast) and Pa (with a for 

analysis) notations from the weather data assimilation community are also sometimes used in 

the GHG flux inverse modeling community. But flux inversion does not involve forecast steps, 

so A is widely used to represent the posterior covariance matrix in massive studies on 

atmospheric inversion (Broquet et al., 2018; Chevallier et al., 2005; Rayner et al., 2019) and in 

Peylin et al. (2013) which synthetizes the contributions from a wide range of inverse modeling 

groups. In particular, the review on atmospheric inversions by Rayner et al. (2019) tries to build 

consensus in the inverse modeling community regarding the notation and encourages the use 

of A for posterior uncertainty covariance matrices. So in this study, we choose to follow this 

http://acmg.seas.harvard.edu/education/jacob_lectures_inverse_modeling.pdf


suggestion. 

 In addition, we want to clarify here we are not only solving for the diagonals of the 

posterior uncertainty matrix A. When we investigate the posterior uncertainty at daily and 

annual scales (Sect. 3.3 and 3.4), we account for the temporal auto-correlations in the prior 

uncertainty matrix B, which are the off-diagonals. The resulting A matrix is not a diagonal 

matrix, and we aggregate the A matrix at the scales of 3 h and 21 h time windows to daily and 

annual scales accounting for the off-diagonal entries of A. 

 

In any case, Supplemental Section 1 presents what the authors are actually doing, which 

differs from the equations they present in Eq. 1 and 2. In Supplemental Section 1 the authors 

present a derivation that is both important and convoluted. It’s unclear if this is something the 

authors devised themselves or if it follows from other work. Typically when people 

decompose error covariance matrices into spatial and temporal components they use a 

Kronecker product (e.g., Yadav & Michalak, GMD 2013). The Kronecker product greatly 

reduces the computational expense. The assumptions that go into a Kronecker product are 

also easy to follow because it is widely used. It’s also amenable to sparse matrices (I’m 

assuming the authors are using sparse matrices). I think the authors should remove Equation 2 

and bring Supplemental Section 1 into the main text. Supplemental Section 1 is important 

because this is what they are actually doing. This seems like the main contribution to me. 

Response: 

Eq. 1 and 2 explains the primary principle of atmospheric inversion and PMIF. We 

explained in Ln 143 “PMIF is an analytical inversion system that solves for Eq. (1) by building 

the different matrices involved in this equation.” In the revised manuscript, we update this 

sentence with “PMIF is an analytical inversion system that solves for Eq. (1) or for an 

approximation of this equation (when accounting for temporal correlations in B) by building 

the different matrices involved in this equation.”. 

PMIF attempts at solving for Eq. 1 as well as possible. The PMIF-Paris OSSE and the 

experiment Exp-NoCor in PMIF-Globe solve for Eq. 1. Accounting for the temporal correlation 

in prior uncertainties (B) in other experiments in PMIF-Globe prevents from applying Eq. 1, 

and the Supplemental Section 1 (in the revised manuscript, it will be moved to the main text) 

explained how an approximation of the full A is derived in practice. We regularly use the 

Kronecker product for modeling spatio-temporal correlations, or temporal correlations at 

different temporal scales in inversions, e.g. in Wang et al. (2018), or to reduce the size of B 

matrices to be inverted in variational inversions, e.g. Broquet et al. (2011). But the Kronecker 

product cannot help to solve for the inversions of the B-1+MTR-1M matrix whose dimension is 

huge (on the order of of 107×107 since the control vector consist of 365×2×11,314=8.3×106) 

and whose non-diagonal terms can expand far from the diagonal when accounting for temporal 

correlations in PMIF-Globe inversions. In addition, due to the large number of satellite 

observations, MBMT+R is even larger, being 2.7×107 by 2.7×107. In Yadav and Michalak 

(2013), they computed and inverted the full MBMT+R matrix despite using the Kronecker 

product to gain computational efficiency for other diagnostics. But computing and inverting B-

1+MTR-1M or MBMT+R in PMIF would require approximately 6000 TB of RAM, which is too 

much for the super computers in our lab. 

In addition, as explained above, we need to aggregate the posterior uncertainty matrix A 



at daily and annual scales. At these scales, A integrates the constraints from the temporal 

correlations in B and the spatial overlapping of plumes MTR-1M, and the spatial overlapping of 

plumes differs from day to day depending on the wind fields. We do not see that B-1+MTR-1M 

or A is necessarily a sparse matrix that can be computed with the Kronecker product.  

Therefore, we actually devised the algorithm in Supplemental Section 1 by ourselves to 

approximate the diagonal of the full A. We admit that this method does not solve for A exactly, 

but only approximates the A at the scales we are interested in.  

To prove that this approximation is good, we conduct an experiment with the ASS 

configuration of prior uncertainty where the inversion period and domain are limited to 6 

months and to the Benelux, a region with high emission density and in which the 95 emission 

clumps are close to each other (Fig. R1a). It is reasonable to assume that if the approximation 

of the posterior uncertainty of emissions from clumps within this region (because we ignore the 

filtering of information from different spatial overlaps of plumes on different days, see the 

method) is good, clumps outside this inversion domain will have very marginal impact on the 

results for the clumps in Benelux. In this case, the full A can be explicitly derived based on Eq. 

1. We compare this exact computation of the full A (Inv-fullA) to that obtained with the 

approach we proposed (Inv-2step). Figure R1b shows the posterior uncertainties in the emission 

budgets over individual time windows 8:30-11:30 for an exemplary clump (Antwerp) from the 

two computations. The results from the two computations are very close, except for very few 

days, and the aggregated uncertainty in emission budget for the whole period differ by less than 

0.1%. This confirms that our method provides a good approximation of A at daily to annual 

scales for individual clumps with reasonable accuracy. 

 

Figure R1 a) Distribution of emission clumps in the Benelux region that we account for in the Inv-

fullA and Inv-2step inversions. The solid lines depict the boundaries of clumps. b) Posterior 

uncertainty of each single 8:30-11:30 window for Antwerp clump during the first half of the year. 

The green dots are the results from Inv-fullA, and the circles are the results from Inv-2step. 

 

To address the reviewer’s concern, we revised the manuscript by moving Supplemental 

Section 1 to the main text and slightly improving it: 

“In this second set of OSSEs, PMIF-Globe, we conduct inversions for all the clumps over 

one year. However, the large sizes of the control vector, of the observation vector and of the 

associated covariance matrices prevent the derivation of a full A for all the clumps and all the 



time windows using Eq. (1). In PMIF, we thus propose and apply a two-step computation that 

approximates Eq. (1). This computation assumes that the system has a limited capability to 

improve the separation between plumes from distinct clumps on a given day by crossing the 

information obtained from different days. In that sense, the inversion considers the uncertainty 

reduction obtained for individual days when considering all the clumps together (first step, see 

below) before focusing on individual clumps to account for temporal correlations in the prior 

uncertainty (the second step, see below). In other words, we assume that when crossing 

information between different time windows for a given clump, the impact of filtering 

information from different spatial overlaps of plumes on different days is relatively smaller 

than that of temporal auto-correlation in the prior uncertainty. It is proven that this method 

provides a good approximation of A at daily to annual scales for individual clumps 

(Supplementary text S1). 

In the first step, Eq. (1) is applied to each 10º×10º spatial inversion windows on each day 

separately (corresponding to an 8:30-11:30 time window for clumps within the spatial inversion 

windows), by using the corresponding blocks in B: 

 𝐀spt,i,j = (𝐁spt,i,j
−1 + 𝐌spt,i,j

T 𝐑spt,i,j
−1 𝐌spt,i,j)

−1
                                    (6) 

Where i is the ith spatial inversion window and j is the jth day during one year. Here, Bspt,i,j is 

a diagonal matrix that only contains the variances of prior uncertainties in emissions during 

8:30-11:30 for the clumps within the inversion window. Mspt,i,j accounts for the spatial overlap 

of plumes generated from nearby clumps. Then we derive a “instant” MTR-1M (denoted as 

𝐌i,j,k
T 𝐑i,j,k

−1 𝐌i,j,k
̂ ) for a given clump k at each 8:30-11:30 time window: 

𝐌i,j,k
T 𝐑i,j,k

−1 𝐌i,j,k
̂ =(𝑎spt,i,j(𝑘)−1 − 𝑏spt,i,j(𝑘)−1)

−1
                                 (7) 

Where aspt,i,j(k) is a scalar from Aspt,i,j representing the variance of posterior uncertainty of 

emission from clump k in ith spatial inversion window and in 8:30-11:30 time window on day 

j obtained by Eq. (6), and bspt,i,j(k) is the scalar from Bspt,i,j representing the variance of prior 

uncertainty for the same control variable.  

In the second step, the inversion is conducted for each clump k separately, considering 

the correlation in time in B, using 𝐌i,j,k
T 𝐑i,j,k

−1 𝐌i,j,k
̂  derived from the first step: 

𝐀𝑡𝑚𝑝,k = (𝐁tmp,k
−1 + [

𝐌i,1,k
T 𝐑i,1,k

−1 𝐌i,1,k
̂ 0 0

0 ⋱ 0

0 0 𝐌i,n,k
T 𝐑i,n,k

−1 𝐌i,n,k
̂

])

−1

              (8) 

Where n=366×2, representing the time windows for 8:30-11:30 and for the rest 21 hours on 

the 366 days of one year (2008). Btmp,k is the covariance matrix accounting for the temporal 

auto-correlation in the prior uncertainty for a single clump: 

 𝐁tmp,𝑘 =

[
 
 
 

𝜎𝑡1
2 𝑐𝑜𝑣(𝜀𝑡1, 𝜀𝑡2)

𝑐𝑜𝑣(𝜀𝑡1, 𝜀𝑡2) 𝜎𝑡2
2

… 𝑐𝑜𝑣(𝜀𝑡1, 𝜀𝑡𝑛)
… 𝑐𝑜𝑣(𝜀𝑡2, 𝜀𝑡𝑛)

⋮ ⋮
𝑐𝑜𝑣(𝜀𝑡1, 𝜀𝑡𝑛) 𝑐𝑜𝑣(𝜀𝑡2, 𝜀𝑡𝑛)

⋱ ⋮
…        𝜎𝑡𝑛

2           ]
 
 
 

           (9) 

In PMIF-Globe, we first conduct the inversion in which the prior uncertainty has no 



temporal auto-correlation (Exp-NoCor)…” 

 

Finally, I would strongly suggest not using “pseudo” in Supplemental Section 1 because that 

implies computing a pseudoinverse, which has a very specific mathematical definition. 

Unless, of course, the authors are computing a pseudoinverse in which case that should be 

made clear. 

Response: 

We agree that “pseudo” can be misleading. In the revised manuscript, we bring the 

Supplemental Section 1 in Sect. 2.7.2 and replace “pseudo MTR-1M” with “instant MTR-1M”. 

 

The authors should change the title. It’s not an inversion framework as they are not estimating 

fluxes. 

Response: 

As it stands, this tool can be used to process individual samples of pseudo prior fluxes and 

pseudo observations and compute pseudo posterior fluxes to assess error reductions to a pseudo 

truth. All the numerical objects needed to apply Eq.2 are built in this system as reflected by its 

description. However, if the errors injected in such OSSEs with explicit pseudo data are 

consistent with the statistics of uncertainties know by the inversion system, the statistics of 

errors in the flux estimates are fully characterized by A (since the observation operator is linear), 

whose direct computation is thus the best index of the potential of the inversion and of a given 

observation network (Wang et al., 2018). This is why we focus on such a computation here. 

This computation of A is actually a standard atmospheric inversion computation. Technically 

speaking, the PMIF can also be used to assimilate real data to produce estimate of the fluxes. 

Based on such considerations, the PMIF is an atmospheric inversion system like others so we 

wish to keep this label for clarity. 

Of note is that this tool is mainly designed for OSSEs and would require some adaptations 

and extensions to process real satellite images over the period of data availability, to remove 

the XCO2 background concentrations underlying the detected plumes, and maybe to more 

properly cope with errors in the modeling of the plumes (see our answer to the next comment) 

than just inflating the R matrix. However, such a limited account for model error in real 

experimental conditions is a traditional weakness of atmospheric inversion systems and other 

systems mainly designed for OSSEs that have always been named atmospheric inversion 

systems (Rayner et al., 2014; Wu et al., 2016).  

 

2.2 Justification on the use of a Gaussian plume 

Real plumes are only Gaussian in the time-averaged sense. The satellite observations provide 

a snapshot in time that likely would not be Gaussian. I think the authors need to provide some 

justification as to why a Gaussian plume is appropriate for data that is not time-averaged. A 

Gaussian plume may give a reasonable upper bound on the uncertainty reduction, but will 

likely induce systematic biases if implemented operationally. These potential biases should be 

discussed.  

Response: 

We agree with the reviewer that instant image of real plumes do not always follow a 

Gaussian shape: because of the turbulence close to the source, of the 3D variations in the wind 



field, especially over the long distances, and of multiple other parameters (like variations in the 

topography, the complexity of vertical mixing etc.). However:  

1) we stress, again, that the PMIF was not designed to process real data, but for OSSEs. 

The primary driver of the scores of posterior uncertainties and of uncertainty reduction in the 

PMIF which are the target of the OSSEs and of this system is the spatial extent and amplitude 

of the plumes, and the parameters of the Gaussian model in the PMIF are such that they fairly 

reproduce those from more complex models. This had been checked based on our comparisons 

between the results from the PMIF-Paris and from Broquet et al. (2018) as explained in the 

Section 3.1 and in the supplementary material.  

2) the complex variations in real plumes that make them hardly Gaussian also hamper their 

modeling with complex mesoscale atmospheric transport models; this explains why many of 

the recent inversions of CO2/CH4 plant and city emissions that have been conducted based on 

OCO-2/TROPOMI data use Gaussian models or a Gaussian approximation of the shape of the 

plume to apply direct flux computations in the data (Nassar et al., 2017; Reuter et al., 2019; 

Zheng et al., 2020). 

3) The study by Prunet et al. (2020) (the talk available at https://cdn.eventsforce.net/files/ef-

xnn67yq56ylu/website/9/5_734__pascal_prunet-

_plume_detection_and_characterization_from_xco__imagery-

evaluation_of_gaussian_methods_for_quantifying_plant_and_city_fluxes.pptx) even indicates 

that Gaussian models fit the plumes from “true” mesoscale models well enough (so that the 

inversions using the Gaussian model can provide a good estimate of the emissions) for a good 

part of the typical atmospheric conditions encountered around the set of European cities and 

plants they investigated.  

The choice of the Gaussian plume model in the PMIF was definitely linked to its light 

computation cost while using 2 km resolution observations and solving for emissions at a high 

resolution across the globe and a year. We think this choice does not bias the results given the 

different considerations listed above. 

To better address this discussion about the Gaussian plume model in the manuscript, we 

revised it by: 

1) revising Ln 101: “Therefore, in this study, we develop a Plume Monitoring Inversion 

Framework (PMIF) and conduct a set of Observing System Simulation Experiments (OSSEs) 

to assess, for the first time, the performance of a satellite instrument to monitor the emissions 

of all the clumps across the globe and over a whole year. The imager studied has the foreseen 

characteristics of the individual satellites of the forthcoming CO2M mission. It would be a high-

resolution spectrometer, with 2 km × 2 km resolution pixels and a swath of 300 km, and it 

would be placed on a sun-synchronous orbit ensuring global coverage in 4 days. The PMIF 

inversion system relies on the list of clumps extracted by Wang et al. (2019) from the ODIAC 

inventory, on a Gaussian plume model to simulate the XCO2 plumes generated by the emissions 

from these clumps, on an analytical inverse modeling framework, and on a combination of 

overlapping assimilation windows to solve for the inversion problem over the globe and a full 

year. It also addresses the question of temporal extrapolation that is needed to generate 

estimates of annual emissions from the information of a limited number of time windows for 

which emissions are well constrained by the direct satellite images, by accounting for the 

temporal auto-correlation of the prior uncertainties. The performance is assessed in terms of the 

https://cdn.eventsforce.net/files/ef-xnn67yq56ylu/website/9/5_734__pascal_prunet-_plume_detection_and_characterization_from_xco__imagery-evaluation_of_gaussian_methods_for_quantifying_plant_and_city_fluxes.pptx
https://cdn.eventsforce.net/files/ef-xnn67yq56ylu/website/9/5_734__pascal_prunet-_plume_detection_and_characterization_from_xco__imagery-evaluation_of_gaussian_methods_for_quantifying_plant_and_city_fluxes.pptx
https://cdn.eventsforce.net/files/ef-xnn67yq56ylu/website/9/5_734__pascal_prunet-_plume_detection_and_characterization_from_xco__imagery-evaluation_of_gaussian_methods_for_quantifying_plant_and_city_fluxes.pptx
https://cdn.eventsforce.net/files/ef-xnn67yq56ylu/website/9/5_734__pascal_prunet-_plume_detection_and_characterization_from_xco__imagery-evaluation_of_gaussian_methods_for_quantifying_plant_and_city_fluxes.pptx


uncertainties in the emissions (Sect. 2.1) at different scales. The PMIF uses a Gaussian plume 

model at the local scale to ensure that the computation cost is affordable. Such a model can 

often hardly fit with actual plumes over the distances considered in this study (due to variations 

in the wind field, topography, vertical mixing etc. over such distances) but is shown, when 

driven with suitable parameters, to provide a satisfactory simulation of the plume extent and 

amplitudes, which appear to be the main drivers of the targeted computations of uncertainties 

in the emissions in our OSSE framework (as shown in section 3.1). In PMIF, we also ignore the 

impact of some sources of uncertainties on the inversion of emissions, including systematic 

errors on the XCO2 retrievals, the impact of uncertainties in diffuse anthropogenic emissions 

outside clumps, in non-fossil CO2 fluxes (within and outside clumps), and in the spatial and 

temporal variations of emissions within the clump and the short time windows that the inversion 

aims to solve. These impacts are discussed in detail afterwards.” 

2) revising Ln 148-157: “We use a Gaussian plume model (Sect. 2.4) to simulate the 

atmospheric transport at a spatial resolution consistent with that of the XCO2 measurements 

from the planned CO2 imager and with the highly heterogeneous distribution of emissions. 

Compared with complex 3-D atmospheric transport models, Gaussian plume models have a 

very low computational cost, making the global assessment of posterior uncertainty and 

uncertainty reduction at the scale of emissions clumps from the assimilation of high resolution 

data feasible. However, since a Gaussian plume model provides a highly simplified 

approximation of the atmospheric transport from emission clumps, we need to verify that its 

use in the PMIF yields estimates of the uncertainties in the inverted emissions that are consistent 

with those that would be based on more complex models. Therefore, we first compare the 

results for Paris from PMIF against those acquired based on a 3-D Eulerian mesoscale 

atmospheric transport model by Broquet et al. (2018)… ” 

 

The authors should give more explanation of σj . There are two parameters in a Gaussian 

plume model and they spend one line talking about σj : “The σj is a function of downwind 

distance i and atmospheric stability parameter. We take the form for σj from Ars et al. 

(2017).”. 

Response: 

To clarify our set-up of the parameters in the Gaussian plume model used here, we revise 

the sentence in Ln 225: “The σj is a function of downwind distance i and atmospheric stability 

parameter: σj=βj/(1+γj)-1/2, where α is a coefficient that converts the computed XCO2 

enhancement in the unit of ppm, and β and γ are coefficients depending on the atmospheric 

Pasquill stability category which is a function of the wind speed and solar radiation (Turner, 

1970). The values for β and γ can be found in Bowers et al. (1980). The original Gaussian plume 

model generates a stationary plume… ” 

 

2.3 Clumps 

I don’t like the terminology “emission clumps”. It doesn’t fit with the actual definition of a 

clump:  

noun: “a compacted mass or lump of something”  

verb: “form into a clump or mass” 

Emissions don’t clump. The various sources have just been grouped together. The abstract of 



their 2019 paper seemed to use “hotspot” and “clusters” which I would prefer to “clump”. A 

cluster would be a much more intuitive name for this. 

Response: 

In our 2019 paper (Wang et al., 2019), we used the word “emission clump”, which was 

defined as “clusters of emitting pixels (called emission clumps hereafter) that will generate 

individual XCO2 plumes that are detectable from space”. Since we strongly link our paper to 

Wang et al. (2019), we believe, for clarity and consistency, that keeping the term “clump” is 

critical. 

We can also mention that in Merriam-Webster’s Collegiate Dictionary, one of the 

definition given for “clump” is “a group of things clustered together” (https://www.merriam-

webster.com/dictionary/clump). So we think “clump” is still appropriate, in the context of 

American English.  

 

2.4 References 

The authors show a very strong bias towards European studies. They don’t seem to mention 

any of Ray Nasser’s work in the intro even though his 2017 GRL paper used a Gaussian 

plume model with satellite observations to study individual sources. They also seem to have 

missed Eric Kort’s work using GOSAT to study megacities (Kort et al., GRL 2012; among 

others). 

Response: 

We thank the reviewer to remind these references. In the revised introduction, we rewrite 

the paragraph setting the context for XCO2 plume inversions:  

Ln 55 “… Alternatively, vertically integrated columns of dry-air mole fractions of CO2 

(XCO2) from satellites offer the opportunity to sample the atmosphere with a global coverage. 

Kort et al. (2012) and Janardanan (2016) found that significant XCO2 enhancements could be 

detected over some megacities using Greenhouse Gases Observing Satellite (GOSAT) XCO2 

observations. Schwandner et al. (2017) also found XCO2 enhancements of 4.4 to 6.1 ppm in 

the Los Angeles urban CO2 dome using observations from Orbiting Carbon Observatory-2 

(OCO-2). Nassar et al. (2017) used the XCO2 observations from OCO-2 to quantify CO2 

emissions from several middle- to large-sized coal power plants. However, the design of 

GOSAT and OCO-2 observations with sparse sampling was mainly focused on the monitoring 

of CO2 natural fluxes. Recent studies show a limited amount of clear detections of transects of 

XCO2 plumes from cities or plants in OCO-2 observations (Zheng et al., 2020) so that GOSAT 

and OCO-2 data keep on being hardly used to estimate CO2 city emissions. The potential for 

reducing uncertainties in fossil fuel CO2 emissions at the scale of point sources (Bovensmann 

et al., 2010), cities (Broquet et al., 2018; Pillai et al., 2016) and agglomerations of several cities 

(O’Brien et al., 2016) should dramatically change with the planned satellite missions with 

imaging capabilities. These studies consistently showed that …” 

 

2.5 3 hours vs 6 hours 

Why is there a 6-hour window for Paris and a 3-hour window globally? I see, it’s defined 

afterward. This should be moved forward to explain why Broquet chose 6 hours and why they 

choose 3 hours. How is 3 hours chosen? It seems to just be picked randomly. 

Response: 

https://www.merriam-webster.com/dictionary/clump
https://www.merriam-webster.com/dictionary/clump


Broquet et al. (2018) showed that the XCO2 signature of the emissions from Paris is hardly 

detectable after 6 hours due to atmospheric diffusion, and they thus only inverted emissions 

during the 6 h before satellite overpasses. In PMIF-Paris experiments, we aim to compare the 

performance of inversion system using a Gaussian plume model with the one using a 3-D 

Eulerian atmospheric transport model, so we choose the same time length as Broquet et al. 

(2018) for PMIF-Paris. For PMIF-Globe, we already explained in the manuscript (in the revised 

version, we bring the explanation to Sect. 2.1, see below). On the other hand, three hours is the 

typical time scale that Nassar et al. (2017) used to interpret the results from their inversion of 

emissions from coal power plants using OCO-2 observations with a Gaussian plume model. 

In the revised manuscript, we bring the explanation about the 6-hour time window for 

PMIF-Paris and 3-hour time window for PMIF-Globe to Sect. 2.1: 

Ln 157: “Table 1 and 2 summarize the different options for the configuration of the system 

and of the OSSEs. One distinction between PMIF-Paris and PMIF-Globe is that PMIF-Paris 

relates XCO2 signals with the mean emissions 6 hours before overpasses, while it is assumed 

that in PMIF-Globe that the XCO2 signals only provide effective constraints on 3 h mean 

emissions before individual overpasses. The 6-hour period corresponds to the period of 

emissions from Paris whose signature in the XCO2 field can still be detected by the satellite 

despite the atmospheric diffusion (Broquet et al., 2018). While Broquet et al. (2018) indicated 

that the period of “detectable” emissions from a large megacity like Paris could last up to 6-

hours, most of the clumps across the globe have smaller emission rates than Paris, or are located 

in more complex environment close to other major emission areas where XCO2 signals can be 

attributed to multiple sources, making the detection of the XCO2 signature of emissions few 

hours before the satellite overpass even more difficult. For the PMIF-Globe experiments, we 

thus conservatively assume that the XCO2 signals can only provide effective constraints on 3 h 

mean emissions before individual overpasses in general.” 

We also rewrote the paragraph in Sect. 2.3: 

Ln 179-Ln186: “In the PMIF-Paris inversion, the satellite observations are sampled at 

11:00 local time, in line with the experiments from Broquet et al. (2018). The inversion solves 

for the mean emissions for the 6 hours before 11:00 local time. Broquet et al. (2018) solved for 

the hourly emissions during this 6-hour period but PMIF can only solve for the mean emissions 

during the 6-hour period due to the fact that the Gaussian plume model cannot be used to 

compute the signatures in the XCO2 field of individual hourly emissions during that period. 

The control parameter in PMIF-Paris for each overpass (Sect. 2.7.1) is thus a scaling factor λ 

for the mean emission between 05:00 and 11:00 …” 

 

3 Specific comments: 

Title: Remove fossil fuel from the title. I don’t see how they could differentiate fossil from 

non-fossil sources in their analysis. 

Response: 

In this study, all the inversions and discussions focus on fossil fuel CO2 emissions since 

this should be the main target of CO2 emission monitoring systems, and since the PMIF is based 

on an inventory of these emissions and assumes that uncertainties in other fluxes weakly impact 

the inversion of these emissions in clumps. However, we agree that the separation between 

fossil fuel emissions and non-fossil CO2 fluxes is a critical topic for the space-borne (and more 



generally atmospheric) monitoring of the fossil fuel emissions. Firstly, background 

concentrations around the plumes from fossil fuel emission clumps might be sometimes 

difficult to properly separate (Kuhlmann et al., 2019). This background consists in a mix of the 

signature of all kind of CO2 fluxes outside or within the clump boundaries. However, in a 

general way, uncertainties in this background can be seen as a source of uncertainty in the 

estimate of the fossil fuel emissions that does not prevent us from computing the fossil fuel 

emissions separately. Secondly, if focusing on sources and sinks collocated with the fossil fuel 

emissions for cities, the separation of fossil fuel emissions from biofuel emissions, human 

respiration and potentially natural fluxes specific to urban areas (i.e. highly different from 

natural fluxes at larger scale) can definitely be difficult. We investigated some estimates of the 

contribution of non-fossil CO2 fluxes to the total CO2 fluxes from cities. The contribution of 

non-fossil CO2 fluxes to the total CO2 fluxes varies a lot from city to city and from day to day. 

For example, in Île-de-France, the biogenic fluxes are usually considered to have small impact 

on the signals of fossil fuel CO2 emissions in autumn and winter, while they could become non-

negligible in summer (Bréon et al., 2015; Lian et al., 2019; Staufer et al., 2016); The biogenic 

CO2 fluxes could represent 5% of the total signals in Indianapolis, Indiana, U.S.A. (Turnbull et 

al., 2015) during winter time; Miller et al. (2018) estimated that biogenic CO2 fluxes could 

contribute to 25% of the total CO2 enhancement in the Los Angeles Basin based on atmospheric 

radiocarbon measurements; Ye et al. (2020) estimated the contribution of total XCO2 

enhancement due to biogenic fluxes can be as large as 32 ± 27% (1σ) and 24 ± 18% (1σ) in 

winter and summer. All these estimates include the urban and rural areas, while the emission 

clumps defined in Wang et al. (2019) only include the areas with fossil fuel CO2 emissions 

being high enough to form detectible XCO2 plumes through atmospheric transport. Most of 

these areas are built-up areas, so the contribution of non-fossil CO2 fluxes to the total fluxes 

should be much smaller than the whole-city estimates as mentioned above. This can be 

illustrated by Fig. 4a in Lian et al. (2019) of the small biogenic fluxes in the city center of Paris 

and by Fig. 1 in Ye et al. (2020) of the green vegetation fraction. We thus assume that in these 

clump areas, the fossil fuel CO2 emissions dominate the total CO2 fluxes.  

In summary, we do agree with the reviewer that the satellite observations alone do not 

separate the fossil fuel emissions and non-fossil fuel fluxes within or around emission clumps 

and that these non-fossil fuel fluxes can be non-negligible. However, as shown by previous 

studies, the impact of non-fossil sources is within the overall uncertainty of the estimates of 

emissions from real data (Reuter et al., 2019; Zheng et al., 2020).  

In the revised manuscript, we discussed the impact of non-fossil fluxes in more detail: 

Ln 519-523: “…Broquet et al. (2018) showed that systematic error could hamper the 

ability of the inversion system to reduce the errors in the emissions estimates. Thirdly, we 

neglect the impact of uncertainties in diffuse fossil fuel CO2 emissions (outside clumps) and 

non-fossil CO2 fluxes (within and outside clumps), the latter including net ecosystem exchange 

(NEE) from the terrestrial biosphere, the CO2 emitted by the burning of biofuel, the respiration 

from human and animals (Ciais et al., 2020) and the net CO2 fluxes between the atmosphere 

and ocean. For example, the signals from terrestrial NEE can be strong during the growing 

season, and the signals from ocean CO2 fluxes may have a critical impact on the overall XCO2 

patterns in the proximity of coastlines. In principle, the signals of diffuse fossil fuel CO2 

emissions and non-fossil CO2 fluxes outside the clumps can be potentially filtered by removing 



the local background XCO2 field to extract plumes generated only by emissions from clumps 

(Kuhlmann et al., 2019; Reuter et al., 2019; Ye et al., 2020; Zheng et al., 2020). The non-fossil 

CO2 fluxes within clumps vary from clump to clump, and could contribute a non-negligible 

fraction of the total CO2 fluxes in many clumps (Bréon et al., 2015; Ciais et al., 2020; Wu et 

al., 2018a). The satellite observations alone cannot effectively differentiate the fossil fuel CO2 

emissions and the non-fossil CO2 fluxes within clumps. In the clumps with non-negligible non-

fossil CO2 fluxes, the inversion of fossil fuel CO2 emissions could be influenced (Ye et al., 2020; 

Yin et al., 2019). Fourthly, …” 

 

Section 2.1: Should reference the sections that define the error covariance parameters. 

Response: 

We revised the manuscript: 

― Ln 145: “We characterize B, R and A by the corresponding standard deviations (σ) 

of uncertainty in individual or aggregations of control parameters and by the temporal 

auto-correlations of the uncertainties (Sect. 2.6). In the following, …”;  

― Ln 154-157: “… Then we apply the system to all the emission clumps over the globe 

and over 1 year using a different control vector and a simulation of the XCO2 sampling 

by a single CO2M satellite (Sect. 2.2). The inversions for all emission clumps over 

the globe are called PMIF-Globe. In PMIF-Globe, we first investigate the potential of 

satellite observations in constraining emissions from individual days (ExpNoCor in 

Sect. 2.6). Then we assess the ability of satellite observations to constrain emissions 

at annual scale by accounting for the temporal auto-correlation of the prior 

uncertainties (other experiments in Sect. 2.6). Table 1 and 2 summarize the different 

options for the configuration of the system and of the OSSEs.” 

 

Line 126: what is yfixed? 

Response: 

We revised the sentence: 

“… The inversion derives a statistical estimate for a set of control variables x in a model 

x→y=Mx that simulates the satellite XCO2 measurements yo. The model M linking x and y is 

a combination of flux and atmospheric transport models (detailed in Sect. 2.4), and is called 

observation operator hereafter. As explained below, we do not have a constant term added to 

Mx in the observation operator of the PMIF that would gather the atmospheric CO2 signature 

of the fluxes not controlled by the inversion (like non-fossil fluxes and the background XCO2 

field) since the uncertainty in such fluxes is ignored. The inversion follows a Bayesian 

statistical framework,…” 

 

Line 181: rephrase, too colloquial: “but the PMIF can hardly handle hourly emissions when 

covering a whole year”. 

Response: 

We revised the sentence: 

“…Broquet et al. (2018) solved for the hourly emissions during this 6-hour period but 

PMIF can only solve for the mean emissions during the 6-hour period due to the fact that the 

Gaussian plume model cannot be used to compute the signatures in the XCO2 field of individual 



hourly emissions during that period. The control parameter for each overpass …” 
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