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Abstract. This study assesses the impact of different sea ice thickness distribution (ITD) configurations on the sea ice 

concentration (SIC) variability in ocean-standalone NEMO3.6-LIM3 simulations. Three ITD configurations with different 

numbers of sea ice thickness categories and boundaries are evaluated against three different satellite products (hereafter 

referred to as “data”). Typical model and data interannual SIC variability is characterized by k-means clustering both in the 

Arctic and Antarctica between 1979 and 2014 in two seasons, January–March and August–October, when coherence across 

clusters in individual months is largest. Analysis in the Arctic is done before and after detrending the series with a 2nd degree 

polynomial to separate interannual from longer-term variability.

Before detrending, winter clusters capture SIC response to atmospheric variability at both poles and summer cluster a  

positive and negative trend in the Arctic and Antarctic SIC respectively. After detrending, Arctic clusters reflect SIC response 

to  interannual  atmospheric  variability  predominantly.  Model–data  cluster  comparison  suggests  that  no  specific  ITD 

configuration or category number increases realism of the simulated Arctic and Antarctic SIC variability in winter. In the  

Arctic summer, more thin-ice categories decrease model–data agreement without detrending but increase agreement after  

detrending. Overall, a single-category configuration agrees the worst with data.

Direct model–data comparison of SIC anomaly fields shows that more thick-ice categories improve winter SIC variability 

realism in Central Arctic regions with very thick ice. By contrast, more thin-ice categories reduce model–data agreement in 

the Central Arctic in summer, due to an overly large simulated sea ice volume.

In summary, whereas better resolving thin ice in NEMO3.6-LIM3 can hamper model realism in the Arctic but improve it  

in Antarctica, more thick-ice categories increase realism in the Arctic winter. And although the single-category configuration 

performs the worst overall, no optimal configuration is identified. Our results suggest that no clear benefit is obtained from  

increasing the number of sea ice thickness categories beyond the current usual standard of 5 categories in NEMO3.6-LIM3.
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1 Introduction

Analyses of recent observations have allowed identifying different drivers of sea ice variability. For example, interannual  

sea ice variability has primarily been related to changes in atmospheric and oceanic circulation: atmospheric variability,  

which can directly be related to large-scale atmospheric modes such as the North Atlantic Oscillation (NAO) or Siberian  

High in the Northern Hemisphere, and the Southern Annular Mode over Antarctica, can drive changes in the sea ice both  

dynamically and thermodynamically [e.g., Rigor et al., 2002; Rigor and Wallace, 2004; Ogi et al., 2007; Yuan and Li, 2008;  

Wang et al., 2009; Hobbs and Raphael, 2010; Holland and Kwok, 2011; Renwick et al., 2012; Kohyama and Hartmann,  

2016; Lynch et al., 2016; Close et al., 2017; Blackport et al., 2019; Olonscheck et al., 2019]. Similarly, interannual changes 

in ocean heat transport to high latitude can contribute to anomalous episodes of Arctic sea ice melting in both the Atlantic  

and Pacific sectors [e.g., Hibler, 1986; Venegas and Mysak, 2000; Ingvaldsen et al., 2004a; 2004b; Woodgate et al., 2010; 

Schlichtholz, 2011]. On longer time scales, the accelerating thinning in Arctic sea ice [Comiso et al., 2008; Serreze and 

Stroeve, 2015] might be modulated by lower-frequency variability in modes like the NAO [e.g., Delworth et al., 2016] or 

Atlantic Multidecadal Variability [e.g., Day et al., 2012; Drinkwater et al., 2014; Miles et al., 2014]. Accurately capturing 

this complex range of variability in sea ice, together with its potential impacts on lower latitude climate [e.g., Screen, 2013],  

demands for a realistic representation of the sea ice in climate models.

One among the many crucial features of sea ice to ensure its realistic representation is its thickness complexity, which 

determines other important physical properties, such as ice’s salt and heat content, resistance to deformation and fracture,  

and melting and growth rates. State-of-the-art sea ice models typically use an ice thickness distribution (ITD) [Thorndike et  

al.,  1975]  to  account  for  subgrid-scale  variability  of  ice  properties.  In  most  cases,  through  an  ITD  the  different  ice 

thicknesses are sorted into a fixed number of categories in a configuration which usually presents the finest resolution in the  

thinnest ice. Several studies have explored the advantages of including an ITD to simulate the mean state and seasonality in  

sea ice accurately, as well as the number of categories that would render the most realistic ice representation [e.g., Bitz et al.,  

2001; Holland et al., 2006; Massonnet et al., 2011; Uotila et al., 2017; Ungermann et al., 2017; Massonnet et al., 2019]. 

These studies, however, have partly overlooked the impact of the ITD on the simulated sea ice variability. To our knowledge, 

only Massonnet et al. [2011] reported a more realistic interannual variability in the Arctic sea ice extent (SIE) in the LIM3 

sea-ice model than in its previous model version, LIM2 (although this improvement cannot exclusively be attributed to the 

addition of an explicit 5-category ITD in LIM3 but to all the refinements in sea ice parametrizations absent in LIM2). Thus  

the question of whether a particular ITD configuration or number of categories ensures a more realistic sea ice variability  

and long-term trend remains unanswered.

Sea ice concentration (SIC) and thickness are the main quantities used to characterize its variability. Most of the previous  

studies have focused on the impact of an ITD on the sea ice thickness, especially in the Arctic [e.g., Holland et al., 2006;  

Hunke, 2014; Ungermann et al., 2017]. By contrast, SIC has received less attention, perhaps motivated by the relatively  

minor or only indirect effect that the ITD appears to have on the representation of its mean state [e.g., Massonnet et al., 2011; 

Uotila et al., 2017; Massonnet et al., 2019]. However, while SIC has continuously been measured by satellites since 1978  
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[Cavalieri et al., 1996; EUMETSAT, 2015], equivalent measurements of thickness have only become available in the past 

decade [e.g., Laxon et al., 2013]. Literature exploring the observed SIC variability is therefore much richer than that on sea  

ice thickness and offers a more exhaustive account of its key features and drivers (see most of the references above). This  

study therefore represents a step forward with respect to previous ones, as it presents the, to our knowledge, the first detailed 

assessment of the impact of the ITD discretization on the SIC variability at both poles since 1978, using the state-of-the-art 

coupled ocean–sea ice model NEMO3.6-LIM3. This study is a companion paper to Massonnet et al. [2019], in which the  

response of the modelled sea ice climatology to an ITD discretization is investigated.

The paper is structured as follows: Section 2 describes the model and experimental design,  Section 3 follows with the  

main results of the model–data comparison, and Sections 4 finishes with the discussion of the results and main conclusions.

2 Model and experimental setup

2.1 Model description

We use the dynamic-thermodynamic sea ice model LIM3.6 (Louvain-la-Neuve sea Ice Model) [Rousset et al.,  2015] 

coupled to a finite-difference, hydrostatic, free-surface-primitive-equation ocean model within the version 3.6 of the NEMO 

framework (Nucleus for European Modelling of the Ocean) [Madec, 2008]. Only a short description of the model is provided 

in the following; for more details we refer to Barthélemy et al. [2018] and Massonnet et al. [2019]. Both the ocean and sea 

ice models are run on the global eORCA1 grid with a  1° nominal zonal resolution. The ocean has 75 vertical levels which 

increase non-uniformly from 1 m at the surface to 10 m at 100 m depth and 200 m at the bottom. To avoid spurious model  

drift, a weak restoring toward the World Ocean Atlas 2013 surface salinity climatology [Zweng et al., 2013] is applied with a 

strength of  167 mm/day.  The restoring is damped under the sea ice (multiplied by one minus its  concentratio),  where 

observations are less reliable, to avoid altering ocean–ice interactions.

2.2 Experimental setup: atmospheric forcing

The model is  run over the period 1979–2014. The atmospheric forcing is provided by the DRAKKAR Forcing Set  

version 5.2 (DFS5.2) [Brodeau et al., 2010; Dussin et al., 2016]. This global forcing set is derived from the ERA-Interim 

reanalysis over the period 1979–2015. It has a spatial resolution close to 0.7°, or 80 km, and it is used within the CORE 

forcing formulation of NEMO, which uses bulk formulas developed by Large and Yeager [2004]. Continental freshwater  

inputs include river runoff rates from the climatological dataset  of Dai and Trenberth [2002] north of 60°S, prescribed  

meltwater fluxes from ice shelves along the coastline of Antarctica [Depoorter et al., 2013], and climatological freshwater  

fluxes from iceberg melting at the surface of the Southern Ocean [Merino et al., 2016]. Forcing the NEMO3.6-LIM3 model 

with observation-based atmospheric variability ensures that simulated SIC variability follows observations to a large extent,  

in particular the atmospheric-driven changes; this allows us to compare model and observations (hereafter also referred as to 

data) and evaluate the impact of the different ITD configurations.
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2.3 Experimental setup: ITD configurations

LIM3.6  employs  an  ITD to  represent  the  subgrid-scale  distribution  of  the  sea  ice  thickness,  enthalpy,  and  salinity  

[Thorndike et al.,  1975], discretized into a fixed number of categories.  An ITD is characterized by both the number of  

categories and the position of their boundaries. We run three different sets of sensitivity experiments to evaluate the impact 

of  the  ITD on  the  SIC  variability  (Fig.  1).  In  the  first  set  (hereafter,  S1),  the  categories  are  set  by  the  default  ITD 

discretization of LIM, which varies both the position and the resolution of the thickness categories according to the number 

of categories, setting the finest resolution to the thinnest ice. In the second set (S2), new thickness categories are successively 

appended without changing the existing category boundaries, which allows assessing the impact of the thick ice categories. 

In the third set of experiments, the lower boundary of the thickest category is set as 4 m depth and the ITD resolution is  

increased or reduced by merging or splitting the existing categories. The upper limit of 4 m corresponds to the maximum 

thickness that thermodynamic ice growth can sustain in the Arctic [Maykut and Untersteiner, 1971] and therefore allows the 

thickest category to host the deformed ice produced in the model. For more details of the ITD and these experiments we refer 

to Massonnet et al. [2019].

2.4 Reference observations

Arctic and Antarctic SIC variability in the model simulations is compared with that from three satellite observational  

products for the period 1979–2014: OSI SAF (OSI-409/OSI-409-a) [EUMETSAT, 2015], NSIDC-0051 [Cavalieri et al., 

1996],  and  HadISST v2.2  [Titchner  and  Rayner,  2014].  Both  OSI  SAF and NSIDC provide  monthly mean SIC since  

October, 1978; NSIDC, however, lacks a circular sector centered over the North Pole (“pole hole”), where SIC is set as 1. 

HadISST blends historical sources, such as sea ice charts, with OSI SAF passive microwave data to provide monthly SIC 

since January 1850, with concentration values between 0 and 0.15 reset as 0 (open water).

2.5 K-means clustering

K-means  clustering  as  included  in  the  s2dverification  R  package  [Manubens  et  al.,  2018]  is  used  to  characterize 

interannual SIC variability in model simulations and observations. K-means clustering aims at simultaneously minimizing 

the Euclidean distance between members of a given cluster and maximizing the distance between centroids of the different  

clusters [Wilks, 2011]. It is an alternative method of dimension reduction to other, more commonly used, such as principal  

component analysis. With respect to those, K-means clustering is more robust in a physical sense, it can account for potential 

nonlinearities in a climate field [Andeberg, 2014; Hastie et al., 2009], and it does not assume orthogonality or linearity  

between dominant modes. K-means clustering has successfully been employed to extract atmospheric weather regimes over 

the North Pacific and North Atlantic [e.g., Michelangeli et al., 1995, Rossow et al., 2005, Coggins et al., 2014], dynamically 

similar regions of the global ocean circulation [Sonnewald et al., 2019], or variability clusters from the pan-Arctic sea ice  

thickness [Fučkar et  al.,  2015, 2018].  In  our case,  each cluster  is  characterized by a pattern of SIC anomalies (cluster 
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centroids) and a discrete time series of occurrence. Both the spatial features of the patterns and their occurrence in time vary  

with the computed total number of clusters, K. Cluster validity, characterised by the most robust choice of K, is determined 

using 10 indices  (namely,  Duda–Hart,  Ratkowsky–Lance,  Ball–Hall,  SD,  cubic clustering criterion,  traceCovW, Rubin,  

Beale, Scott, and Marriot), which forms a selection of the 10 computationally fastest ones out of the 30 included in the  

NbClust R package [Charrad et al. 2014]; these indices assess both intra-cluster similarity and inter-cluster dissimilarity. We  

test K values between 2 and 5 and evaluate the results of K-means clustering with those validity indices. Since this is a very  

computationally demanding analysis, we previously reduce the number of degrees of freedom by interpolating the SIC field 

from satellite observations onto a 3° horizontal regular grid. For all seasons and observational datasets the optimal K (i.e., 

the most frequent value for the 10 validity indices) thus evaluated is 3. Therefore we hereafter apply K-means clustering with 

K set as 3 to the SIC fields on a 1° horizontal regular grid from both model and observational data. All the calculations are  

done over the period 1979–2014. Our results are insensitive to the initial seed used to calculate clusters (not shown).

3 Results

3.1 Defining the winter and summer seasons

We intend to focus the comparison between simulated and observed SIC variability in two seasons centered around 

winter and summer, when maximum and minimum sea ice areas occur respectively. To avoid any a priori assumption about 

which months define these seasons, we first assess agreement across monthly clusters and aggregate months with similar  

variability. Following the steps described in Section 2.3 for each observational product separately, we first calculate 3 (as  

optimal number) clusters in each individual month in the Arctic and Antarctica. At each pole, we then compute the spatial  

correlation coefficients between all the clusters in any two months. We retain the maximum positive value from the resultant  

distribution, which sets the uppermost-limit of cluster agreement between those two months. Results in OSI SAF are shown  

in Fig. 2 (results of NSIDC and HadISST are very similar and therefore not shown). Two periods stand out at both poles, 

when monthly cluster  agreement is  largest,  January through March (JFM) and August  through October (ASO).  All  the 

subsequent  analyses  focus  on  these  two seasons,  which  we refer  to  as  winter  and  summer  (even  though they  include 

climatological spring and fall months).

3.2 Sea ice extent

Before comparing SIC clusters, we explore the impact of the ITD configuration on the temporal evolution of the Arctic 

and Antarctic sea ice extent (SIE) over the period 1979–2014 (Fig. 3). This analysis will help interpret results from the 

clusters  below. Note that  impacts  on the simulated climatological  mean state  and seasonal cycle over this  period have 

previously been described by Massonnet et al. [2019]. In the model, seasonal SIE is calculated from monthly SIC on the  

original model grid; in observations, seasonal SIE is calculated from the monthly SIE directly provided by the different 

products. The impact of different ITD configurations on the Arctic SIE in both seasons and Antarctic SIE in winter is  
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marginal, and all the simulations show values that are within observational uncertainty (which we assume to be defined by 

the envelope of the different observational products; Fig. 3). The largest differences across simulations are for the summer 

Antarctic SIE. Increasing the number of categories from 1 to 50 in the S1 configurations reduces the Antarctic SIE by about  

4∙106 km2, although the largest decrease of about 2∙106 km2 is from S1.01 to S1.03. This renders the simulated SIE values in 

S1 runs closer to those in OSI SAF and NSIDC but more different to those in HadISST. HadISST SIE values are consistently 

above those in OSI SAF and NSIDC in the Arctic and Antarctica in both seasons, as also noted by Titchner and Rayner  

[2014]. Increasing the number of categories in the S2 and S3 configurations has a comparatively smaller impact, reducing  

and  increasing  the  summer  Antarctic  SIE by  about  1∙106 km2 respectively;  these  results  are  still  within  observational 

uncertainty. The simulated SIE trend is slightly underestimated in the winter Arctic, although it is well captured in summer as 

well  as  in  Antarctica  in  both  seasons.  In  terms  of  interannual  variability,  the  simulations  disagree  the  most  with  the  

observations in Antarctica especially in summer, when simulations show large interannual variations that are not found in 

observations (for example, around 2000). By contrast, the simulated Arctic SIE variability for all ITD configurations is very  

close to observations in both seasons.

To characterize differences between simulated and observed SIC, we calculate the integrated ice edge error (IIEE) as the  

total area where model and observations disagree on SIC values above 15% [Goessling et al., 2016]. In general terms, the 

largest IIEE is in the Arctic and Antarctica in JFM, with the smallest values emerging for the comparison with NSIDC (Supp. 

Fig. 1). For all the simulations, the IIEE remains relatively constant over the period 1979 –2014 at both poles and seasons,  

and the impact of a different ITDs on the IIEE is marginal in the Arctic in both seasons and in Antarctica in winter. The  

situation is different in the Antarctic summer (JFM), when differences in IIEE due to the ITD are the largest (Fig. 4). IIEE 

between the simulations and observations is overall larger than across observations for all the ITD configurations. The  

single-category ITD configuration exhibits the largest IIEE with respect to all the observations. Increasing the number of 

categories in the S1 and S3 configurations tends to reduce the IIEE by about 1∙106 km2 between the coarsest and finest 

resolution. Changes in categories in the S2 configuration have a smaller impact on the IIEE, with no clear improvement or  

worsening for a finer or coarser ITD. These results suggest that a finer resolution of the thinner ice and not of the thicker ice  

to some degree improves the representation of the simulated Antarctic SIC in ASO in our model with respect to observations.  

This might be related to an improved response of the thin ice (the easiest to melt, grow, and advect) to the atmospheric  

forcing.

3.3 SIC cluster analysis

In the following, we describe the three clusters of SIC variability in the observations. Clusters in OSI SAF are shown in  

Figs. 5 and 6 in the Arctic and Antarctica respectively (since clusters in NSIDC and HadISST are very similar, they are  

shown in Supp. Figs. 2 and 3 respectively). In the Arctic winter, the first cluster shows four poles of dominant variability, 

with more ice in the Barents, Greenland, and Okhotsk seas and less ice in the Labrador and Bering seas (Fig. 5); this pattern  

agrees with the quadrupole mode described by previous literature associated with variations in the strength of the Siberian  
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High [e.g., Ukita et al., 2007; Close et al., 2017]. The second cluster presents similar centers of action to the first one, but  

SIC anomalies are negative in the Labrador, Barents and Okhotsk seas and positive in the Bering Sea. The third cluster 

shows strong anomalies of opposite sign in the Labrador (strongly positive) and Nordic seas (negative) which resembles the 

typical fingerprint of a positive NAO phase on the SIC [Bader et al., 2011]. In fact, this cluster dominates between 1990 and  

1996, when the winter NAO was persistently positive [Hurrell and Deser, 2010]. Overall, the first and third clusters alternate 

until  2004 approximately,  after  which the second cluster  dominates.  In  the last  decade,  the root  mean square  distance  

between the clusters and the anomaly fields (indicated by the symbol size in Fig. 5) increases to its largest values over the 

whole period in OSI SAF, but not in NSIDC and HadISST. These results suggest that the winter SIC variability might  

fundamentally have changed after 2004, in agreement with the observed acceleration in the SIC melting trend [e.g., Comiso  

et al., 2008; Serreze and Stroeve, 2015].

In the Arctic summer, both the cluster patterns and relative occurrences reflect a long-term melting trend (Fig. 5). The  

first and third clusters are very similar, which respectively exhibit widespread positive and negative anomalies in the central  

Arctic and dominate over the initial period (ca. 1979–1988) and last one (ca. 2005–2014). The second cluster, by contrast,  

dominates in the middle decades (ca. 1989–2005) and presents a dipole of positive and negative anomalies between the 

central  Arctic  and the surroundings.  Such partitioning in  decades of  alternating dominance suggests  that  the long-term 

melting trend in sea ice (as seen in the SIE; Fig. 3b) controls the clustering; previously detrending the data might therefore be 

necessary for a more robust characterization of the interannual variability (see below).

In Antarctica summer (JFM),  the  three clusters  exhibit  poles  of  dominant  variability  close to  the continental  coast,  

especially in the Weddell and Ross seas (Fig. 6). The first and second clusters show similar patterns but of opposite sign,  

with an overall decrease or increase respectively but in the Amundsen and Bellinghausen seas. The third cluster shows a  

dipole of anomalies in the Weddell Sea and positive ones in the Amundsen Sea. Summer SIC variability is dominated by the  

first cluster (58%), especially during the first decades. Although the second and especially the third clusters are much less  

frequent (31% and 11% respectively), the second one tends to dominate in the last decade (ca. 2005–2014). This might be 

due to a slight positive trend, as seen in the SIE (Fig. 3d).

In ASO (winter), the Antarctic first and second clusters show opposite-sign poles in the Weddell, Bellinghausen, and 

Amundsen seas, with smaller contributions from other seas (Fig. 6). These two modes resemble SIC variability driven by 

Rossby wave activity  across  the  Drake  Passage  described  by  previous  literature  [e.g.,  Yuan and  Li,  2008;  Hobbs  and 

Raphael, 2010; Renwick et al.,  2012; Kohyama and Hartmann, 2016]. In fact,  the first cluster resembles the pattern of  

Antarctic SIC response to an El Niño [e.g., Ding et al., 2011] and dominates in years of strong ones, such as 1984, 1998, and  

2010.  The third cluster  shows negative SIC anomalies  along all  the Antarctic  perimeter  but  in the Bellingshausen and 

Amundsen seas,  where anomalies are positive;  this is however the least  persistent cluster (11%), and SIC variability is 

clearly dominated by the first two (47% and 42% respectively). Cluster occurrences and patterns in NSIDC are slightly  

different from those in OSI SAF and HadISTT (Supp. Figs. 2 and 3), suggesting that observational uncertainty can impact 

the dominant Antarctic SIC modes of variability.

7

190

195

200

205

210

215

220

https://doi.org/10.5194/gmd-2019-325
Preprint. Discussion started: 12 December 2019
c© Author(s) 2019. CC BY 4.0 License.



3.3.1 Impact of ITD discretization on the SIC clusters

For each cluster of SIC variability, observations and simulations are compared mainly through their spatial correlation 

(Fig. 7). As a measure of the observational uncertainty, we also calculate spatial correlation coefficients between the three  

observational datasets. We further calculate the root mean square error (RMSE) across observed and simulated clusters to  

provide  an  additional  assessment.  Results  of  the  RMSE analysis  are  shown in the  Arctic  only  (Supp.  Fig.  4)  and  are 

commented when they complement or disagree with results from the spatial correlation coefficients.

In the Arctic winter, correlation coefficients between observed and simulated clusters slightly decrease as the number of  

categories increases in all three configurations  (Fig. 7); by contrast, including more categories slightly reduces the RMSE 

(which suggests a slightly better agreement with the observations) in the third cluster in the S1 and S3 configurations and  

increases it in the S2 one (Supp. Fig. 4). Overall, nonetheless, the ITD configurations have a small impact on the model–data 

agreement and no configuration or number of categories appear to be consistently the best.

In the Arctic summer, spread in model–data agreement is much larger than in winter (Fig. 7 and Supp. Fig. 4). The RMSE 

is barely impacted by the ITD configuration (Supp. Fig. 4) and shows similar changes to those in the correlation coefficients. 

The lowest model–data correlation coefficients are for the second cluster across all configurations. This is likely because of  

its characteristic spatial pattern of small,  mostly statistically non-significant anomalies (Fig.  5).  Such noisy features are 

indeed difficult to be captured by the model accurately, thus resulting in comparatively small spatial correlation coefficients.  

By contrast, anomalies in the first and second clusters take larger values over a larger area and are successfully reproduced  

by the simulations. Model–data spatial correlation coefficients are little influenced by the ITD configuration for the first and  

third clusters but decrease with a large number of thin ice categories for the second cluster in the S1 and S3 configurations.  

Although increasing the number of thick categories in the S2 configuration has no major impact on model–data correlation 

coefficients, the S2.07 case shows a drop in correlation values in all the clusters. This suggests that variability is slightly 

differently distributed across the clusters in this configuration. The configuration with one single category, S1.01, shows the  

lowest correlation coefficients (Fig. 7) and highest RMSE values (Supp. Fig. 4) overall. These results suggest that an ITD 

with one category or a large number of thin categories can potentially hamper representation of SIC variability in the Arctic. 

This contrasts with and complements results in Massonnet et al. [2019], where the one-category configuration was found 

performing as good as or even better than multi-category configurations in terms of sea ice mean climatology. Comparison  

of mass budget across configurations showed that this configuration compensates basal ice growth deficit (relative to multi-

category cases) through a larger  dynamic ice production from fall  to winter (and,  thus,  potentially right for  the wrong  

reasons) [Massonnet et al., 2019].

In the Antarctica summer, model–data agreement is lower than in the Arctic in terms of both the spatial correlation (Fig. 

8) and RMSE (not shown). Almost all the correlation coefficients are statistically non-significant for the second and third 

cluster (Fig. 8), with only some ITD configurations with 3 or 5 categories showing significant correlations for all clusters.  

For the first cluster, however, more than 5 categories seem to improve the agreement with the observations, in particular for  

the S1 configuration. 
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In the Antarctic winter, model–data agreement increases with respect to summer, especially and correlation coefficients  

tend to be statistically significant for the first and especially the second cluster (Fig. 8). However, the impact of the ITD 

distribution is small and there is no robust response to any configuration.

3.3.2 Arctic SIC clusters after detrending

For  a  sound  characterization  of  the  modes  of  interannual  variability  over  the  period  1979–2014,  the  long-term,  

accelerating melting trend in the Arctic SIC is now filtered out. This trend is well captured by both the SIE (Fig. 3) and  

clusters  (Fig.  5).  Arctic  SIC clusters  are  now calculated  after  detrending  by  removing  a  spatially  varying  2nd degree 

polynomial fit with respect to time (Fig. 9). Clusters calculated after detrending with a 1st degree polynomial (linear detrend)  

are still affected by the melting trend and are not discussed here further. We do not consider higher order degree polynomials  

either,  since they have shown no improvement to characterize clusters of sea ice thickness over the period 1958–2013 

[Fučkar et al., 2015]. No similar analysis has been performed for Antarctic SIC as the clusters suggest a rather weak positive  

trend in summer (Fig. 6).

In OSI SAF, detrended SIC variability in winter is evenly distributed into the three clusters (Fig. 9; 36%, 33%, and 31%  

of occurrence frequency). The first cluster shows a dominant pole of negative anomalies in the Labrador Sea (Fig. 9). The 

second  cluster  shows  two  poles  of  variability  of  positive  and  negative  anomalies  in  the  Labrador  and  Nordic  seas  

respectively.  This cluster is  very similar  to the third one in not detrended data,  and both dominate in similar  years,  in  

particular during periods of positive NAO phases. This suggests that they capture the fingerprint of a positive winter NAO 

on the Arctic SIC. The third cluster shows a clear quadrupole structure, like the first cluster in not detrended data, and 

dominates in similar years. Clusters in HadISST and NSIDC are very similar and shown in Supp. Figs. 4 and 5 respectively.

In summer, detrending the data leads to clusters with more marked regional contrasts (compare Figs. 5 and 9). The first  

cluster in OSI SAF, which dominates in two thirds of the years, shows a dipole of positive SIC anomalies in the Kara,  

Barents, and Greenland seas and negative ones in the East Siberian and Laptev seas (Fig. 9). The second cluster mirrors the  

first one but with opposite-sign and larger anomalies (Fig. 9). These two clusters respectively resemble the fingerprint of a  

positive (in 1995, 1999, 2002, and 2005) and negative (in 1996, and 2004) Arctic dipole on the summer SIC [Wang et al.,  

2009]. Occurrence of these two clusters, however, does not systematically coincide with strong Arctic dipole anomalies (for 

example, in 1998 or 2003; Wang et al., 2009). The Arctic oscillation has also been proposed as a driver of similar SIC  

anomaly patterns [Rigor et al., 2002; Rigor and Wallace, 2004; Wang et al., 2009]. Lastly, the third cluster shows a monopole  

of strong negative anomalies confined to the Beaufort gyre. This pattern dominates only in 4 years such as 2007, when the  

Arctic sea ice extent was the lowest over the period 1979–2014. Such extreme melting events have been associated with an  

exceptional episode of atmospheric [Graversen et  al.,  2010] and oceanic [Woodgate et  al.,  2010] warm flow into polar  

latitudes and summer storm activity [Screen et al., 2011]. Note that cluster repartition detrended data is not exactly the same  

as in HadISST and NSIDC in summer (Supp. Fig. 5): their first ones are similar to the first one in OSI SAF but with a  
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different local expressions; their thirds clusters  resemble the second one in OSI SAF but with weaker anomalies near the 

Alaskan coast.

Regarding their sensitivity to the ITD configuration after detrending, the winter clusters show a rather consistent model–

data agreement both in terms of the spatial correlation coefficients (Fig. 10) and RMSE (not shown). In summer, increasing 

the number of categories beyond 30 improves the model–data correlation coefficients (Fig. 10) and reduces the RMSE (not  

shown) for all the clusters in the S1 and S3 configurations (while no robust response is found in the S2 configuration). This 

implies that, overall, a large number of  thin categories can help improve representation of SIC interannual variability in  

summer. In contrast to what happens with not detrended data, the one-category configuration agrees with the observations as  

well as any other configurations, suggesting that this configuration poorly captures the forced variability but as well as any  

other one the interannual variability.

3.4 Anomaly-based analyses

Two extra analyses are discussed in the following to complement previous ones and explore their robustness. In the first 

analysis,  spatial  correlation  coefficients  are  computed  directly,  in  each  year,  between the  simulated  and  observed  SIC  

anomalies in both seasons and hemispheres. In each case, a distribution of correlation coefficients is generated by combining 

the values in all the years and in the three observational products. This analysis suggests marginal sensitivity to the number  

of  sea  ice  categories  or  its  configuration in  the  Arctic  before  (Supp.  Fig.  6)  and  after  detrending  (not  shown)  and  in  

Antarctica (not shown).

The second analysis is to provide a spatial perspective to the impacts of the ITD configurations on SIC. For this, temporal 

correlation coefficients at the grid point level are first computed between simulated and observed SIC anomalies in both  

seasons.  The  trend  in  such  correlation  coefficients  with  respect  to  the  number  of  categories  is  then  calculated  across 

simulations of a given configuration. The result is a map which provides a measure of the regions where changing the  

number of categories most impacts agreement with observations. Since results are similar across the observational products, 

an average between the three cases is computed for the Arctic (Fig. 11) and Antarctica (Supp. Fig. 7). 

Increasing the number of categories tends to decrease model–data agreement (blue colors in Fig. 11) in the S1 and S3  

configurations in both seasons (but most clearly in the S3 one in summer) in the Central Arctic, near the region where the  

largest increase in sea ice thickness is simulated for an increase in the number of categories [Massonnet et al., 2019]. In that 

region, a higher sea ice volume due to enhanced bottom growth rate results in a less realistic simulated sea ice. In the S2  

configuration, model–data agreement particularly improves with the number of categories in winter north off Greenland and 

the Queen Elizabeth Islands, regions where the thickest ice is simulated (Fig. 11, contours). Although the overall Arctic sea  

ice volume increases with the number of categories [Massonnet et al.,  2019], the improvement in that particular region 

suggests that more categories help capture variability in thick ice. In summer, a decrease in model–data agreement occurs in 

the same region, although there are improvements elsewhere in the Arctic that can potentially compensate for this decrease 

(Fig. 11). In Antarctica, only the S2 configuration in summer (JFM) shows some clear trends in model–data agreement near 
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the Ross Sea (Supp. Fig. 7). However, these results appear spurious as sea ice is very thin and presents a concentration below 

15% in the area (contours in Supp. Fig. 7).

4 Discussion and conclusions

This  article  explores  the  impact  of  different  ITD configurations on the  simulated  SIC variability  in  the Arctic  and 

Antarctica.  Using  ocean  stand-alone  simulations  with  the  NEMO3.6–LIM3  model,  we  assess  three  different  ITD 

configurations in which both the number and boundaries of the sea ice thickness categories are changed. SIC variability is 

characterized via K-means clustering analysis over the period 1979–2014; the simulated clusters are compared with those  

from three satellite observational products, OSI SAF (OSI-409/OSI-409-a), NSIDC (0051), and HadISST v2.2. We focus on 

two seasons, JFM (winter) and ASO (summer), across which monthly clusters are most spatially coherent. In the Arctic,  

cluster comparison is done both including and excluding long-term trends, this latter by detrending with a spatially varying 

2nd degree polynomial.

Overall, winter clusters reflect the imprint of atmospheric variability such as NAO and Siberian High on the Arctic SIC 

and of ENSO on the Antarctic SIC. Summer clusters reflect the dominant trends in SIC, slightly positive in Antarctica and  

prominently negative in the Arctic. After detrending, Arctic summer clusters allow isolating the SIC response to atmospheric  

variability associated with the Arctic Dipole and Arctic Oscillation as well as identifying outstanding events such as the 2007 

minimum.

Comparison  between simulated  and observed clusters  indicates  that  no particular  ITD configuration and number of 

categories systematically helps to improve the representation of model SIC variability at both poles in winter, both before 

and after detrending. In summer, more thin-ice categories decrease model–data agreement at both poles before detrending, 

due to a poorer representation of the long-term trends; more categories, however, do improve model–data agreement in the  

Arctic after detrending. Nonetheless, such an improvement is found for more than 30 categories, for which computational  

costs substantially increases (from 30 to 60 minutes per simulated year from the standard 5-category case to 30-category one; 

Massonnet et al., 2019). The one-category configuration tends to show the worst results overall, particularly in the Arctic 

summer before detrending. This reinforces the recommendation of using multi-category sea-ice models, such as LIM3.

Direct comparison of the SIC anomaly fields between observations and simulations suggests that increasing the number 

of thick categories can improve the representation of the very thick ice variability north of Greenland in winter. By contrast,  

including more thin categories can reduce model–data agreement in summer in the central Arctic, related to an overly large  

sea ice volume in the area [Massonnet et al., 2019]. 

Finally, comparison of SIE in simulations and observations suggests that a finer resolution of the thin ice and not of the  

thick ice increases realism of the simulated Antarctic summer SIE in our model.

Although the results of all these comparisons present mixed conclusions, depending on the analysis used, we can extract a 

few take-home messages.  First,  better resolving the thin ice in the Arctic can hamper SIC representation in the model,  

potentially related to an unrealistic sea ice volume increase, although it can improve its representation in Antarctica. Second, 
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more thick categories can improve the very thick ice variability in winter in the Arctic, without noticeably compromising the  

performance in other regions or seasons. Thus, although no clear conclusion is drawn about an optimal number of sea ice 

categories, our analysis does establish that configurations with more than 10 sea ice categories can degrade the realism of the 

simulated  Arctic  SIC  variability.  This  appears  counter-intuitive,  as  a  finer  resolution  will  allow the  sea  ice  model  to  

reproduce actual sea ice conditions better. Note, however, that NEMO3.6–LIM3 uses parametrizations and parameter values 

that are developed to reproduce actual sea ice conditions for a 5-category configuration. Changes in the ITD configuration 

may  therefore  need  re-tuning  those  parametrizations  and  parameter  values.  This  is  however  beyond  our  scope,  as  

improvements  in model  SIC variability would hence reflect  the new model configurations and not  solely the use of a 

different ITD configuration. In light of our results, we recommend using the standard (S1.05) or similar configuration in  

NEMO3.6–LIM3, which is, in addition, computationally more efficient.

Our study and its companion, Massonnet et al. [2019], present an advance with respect to previous efforts, since they 

jointly address the response of the mean climatological state and variability of the sea ice to a model parametrization. The  

two studies use ocean stand-alone simulations in their analysis, as to to reduce potential  sources of uncertainty in SIC  

variability  given  by stochastic  atmospheric noise,  which might  mask comparison with observations and  the search for  

improvements in model realism. An open question for future studies is therefore whether our conclusions would hold in 

coupled model configurations, where ice-atmosphere feedbacks may play a role in modulating the impact of the different  

ITD configurations. Despite the potential caveats, our joint approach can set an example for future assessments of the impact 

of model parametrizations on the representation of the sea ice or other climatic variables. Unfortunately, observational data 

are still too short for many climate components, and this sort of analysis is therefore challenging at most.
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Fig. 1: Boundaries of the ice thickness category in the three sets of sensitivity experiments. The last 
category’s upper boundary is always set to 99 m. The thickness scale is different in the three panels. 
Because the third ITD configuration, S3, branches from the experiment S2.09, we repeat the latter on the 
bottom panel but renamed as S3.09. Figure is adapted from Massonnet et al. [2019].

https://doi.org/10.5194/gmd-2019-325
Preprint. Discussion started: 12 December 2019
c© Author(s) 2019. CC BY 4.0 License.



Fig. 2: Maximum correlation coefficient across all the monthly clusters in (a) the Arctic and (b) 
Antarctica in OSISAF. Two 3-month periods (seasons) stand out with the largest coefficients: January 
through March (JFM) and August through October (ASO). Values smaller than 1/e (~0.37) are considered 
statistically non-significant and plotted in gray. Similar results are obtained using NSIDC and HadISST 
SIC (and therefore not shown).
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Fig. 3: (a,b) Arctic and (c,d) Antarctic sea ice extent (SIE; in km²) in (a,d) JFM and (b,c) ASO in the S1, 
S2, and S3 configurations (in light red, green, and blue respectively, with the configuration with one single 
category, S1.01, in gray) and in HadISST, NSIDC, and OSI SAF (in black, blue, and red respectively). 
SIE is calculated as the total area of grid cells with concentration larger than 15 %.
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Fig. 4: Integrated ice edge error (IIEE; in km²) between the Antarctic sea ice in JFM in the S1 (top; with 
the case with one single category, S1.01, in gray), S2 (middle), and S3 ITD configurations (bottom) and in 
HadISST (dotted lines), NSIDC (dashed lines), and OSISAF (solid lines). Also, IIEE is shown between 
OSI SAF and NSDIC SIC (gray crosses), NSIDC and HadISST SIC (gray pluses), and HadISST and OSI 
SAF SIC (gray asterisks). The IIEE is calculated as the integrated area where simulations and 
observations disagree on SIC above 15% [Goessling et al., 2016]. The darker the color of the line is, the 
more categories that ITD configuration has. The color scheme matches that in Fig. 1
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Fig. 5: Caption next page.
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Fig. 5: (Previous page). First three rows: cluster patterns of Arctic SIC anomalies (shading; in % of area) in 
OSI SAF in JFM (left) and ASO (right). Stippling masks statistically non-significant anomalies at the 5% 
level; p-values at each grid point are computed through a t-test that accounts for serial autocorrelation 
[Manubens et al., 2018]. Each cluster’s percentage occurrence over the period 1979–2014 is indicated in 
each case. The shading color scale is adapted for a better view of the anomalies in the range ±15%. The 
area is zoomed in in ASO (right) for a better view of the central Arctic. Fourth row: time series of cluster 
occurrence in HadISST (black crosses), NSIDC (red diamonds), and OSISAF (blue pluses). The larger the 
symbol size, the larger the Euclidean distance (root mean square difference) between a pattern of anomalies 
and the associated cluster in a particular year (the maximum symbol size is shown in the legend). Clusters 
are calculated from the full SIC field without detrending (in contrast to detrended data shown in Fig. 9)
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Fig. 6: As in Fig. 5 but in Antarctica.
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Fig. 7: Spatial correlation coefficients between the simulated and observed clusters and across the three 
satellite observational products (marked as Obs) of Arctic SIC in JFM (top) and ASO (bottom). For each 
case, the vertical line spans the maximum and minimum correlation coefficients, and the horizontal line 
marks the middle one; green, blue, and orange lines are for the first, second, and third clusters. Gray 
shading masks statistically non-significant coefficients below 0.39 value, which corresponds with the 
minimum value across all the computations that is statistically significant at the 5% level, accounting for 
effective degrees of freedom and spatial autocorrelation. Dashed vertical lines separate between results in 
the simulation with one single category (S1.01), the different ITD configurations (S1, S2, and S3), and the 
observations. Note the configuration S2.09 and S3.09 are the same (Fig. 1).
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Fig. 8: As in Fig. 7 but for clusters in Antarctica.
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Fig. 9: As in Fig. 5 but after detrending with a 2nd degree polynomial. 
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Fig. 10: As in Fig. 7 but after detrending with a 2nd degree polynomial. 
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Fig. 11: Caption next page.
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Fig. 11: (Previous page) Trend relative to the number of sea ice categories in pointwise temporal 
correlation coefficients between simulated and observed Arctic SIC anomalies (in [number of 
categories]-1) in the S1 (top), S2 (middle), and S3 (bottom) configurations in JFM (left) and ASO 
(right). An average between results in OSI SAF, NSIDC, and HadISST is shown. Values are multiplied 
by 100 to ease the interpretation and the color shading is adapted for a better view of the values 
between  –1 and 1. A value of 0.5, for example, indicates that the model–data correlation coefficient 
increases 0.5 when the number of categories increases by 100 (or 0.25 for an increase of 50 categories). 
Stippling masks trend values that statistically significant at the 5 % level based on a two-tailed 
Student’s t test. Contours are the simulated climatological ice thickness (every 1.5 m) in the standard 
LIM3 configuration of 5 categories (S1.05 configuration) for the period 1979–2014.  
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