
Reviewer 1

This  is  a  well  written  manuscript  addressing  the  topic  of  sea-ice  thickness  distribution
configuration,  which  is  important  for  those  who  use  the  NEMO-LIM  ocean-sea-ice  model.
Therefore the paper is suitable to be published in the Nucleus for European Modelling of the
Ocean - NEMO special issue. The manuscript provides useful results for NEMO-LIM modellers
based on advanced statistical and visualisation methods that appear valid. To my opinion, these
results sufficiently substantially advance in modelling science. In particular, the main result that
no clear benefit is obtained from increasing the number of sea ice thickness categories beyond
the current usual standard of 5 categories in NEMO3.6-LIM3 is useful so that a model user will
not waste time in testing a range of number of sea-ice categories for better results.
We thank the Reviewer for the appreciation and the thoughtful comments. In the following we
answer each specific point (in blue).

In Discussion the authors conclude that changes in the ice thickness distribution configuration
need re-tuning parametrizations and parameter values. Would be useful for future approaches to
list which parameters needed re-tuning. In the current version no specifics has been discussed. 
We referred to the typical parameters of the sea ice models, which  include, among others, snow
thermal  conductivity,  bare  sea-ice  albedo,  and  compressive  ice  strength,  P*.  This  is  now
discussed in the revised manuscript (Lines 383–389).

The other aspects for a reviewer to consider, seem adequately addressed too, but there are a few
things that might be useful for the NEMO community if added or expanded the paper. There are
also  a  small  amount  of  corrections  that  the  text  requires.  Due to  these,  a  minor  revision  is
required with the details following. 

Detailed comments: 
• line 14 ’coherence across’ would be more precise to say ’correlation across’ 
Corrected.

• line 16 Here ’atmospheric variability’ does not point to synoptic one, as one might guess when
reading  the  abstract,  but  longer,  large-scale  atmospheric  modes.  This  could  be  specified  by
rewriting ’long-term atmospheric variability’.



Clarified as suggested

• line 24 You could mention why there is ’overly large simulated sea-ice growth’. Is it due to the
fact that thin ice grows faster?
Massonnet et al. [2019] show that this is because of a net increase in basal ice growth rate, which
is indeed promoted when the relative area of thin ice is large. This is indicated in the revised
manuscript now (Line 23) 

• line 26 ’Antarctica’ comes sudden here as improvements there has not been mentioned before
in  the  abstract.  I  suggest  adding  a  sentence  how Antarctic  sea-ice  was  improved  by  better
resolved thin ice after the sentence ending in line 21. 
Done.

• line 33. ’... Antarctica. These modes drive ...’ 
The sentence has been clarified.

• line 40. ’... variability in modes such as the NAO ...’
Corrected.

• line 45. ’...determines its important physical processes, such as salt and ...’
We think the word properties, as in the original manuscript, is more precise than processes to
describe quantities like heat capacity or resistance to deformation.  The line therefore has not
been modified.

• line 81. To me 167 mm/day is not weak but strong restoring. Drop word ’weak’ in line 80. 
Done.

• line 81. ’concentratio’ -> ’concentration’ 
Corrected.

• line 127. ’... (namely Duda-Hart ...’
Corrected.



• line 142. ’... the optimal number ...’
Corrected.

• line 153. ’... clusters presented later ...’
Corrected.

• line 171. ’... emerging from ..’
Corrected.

• line 244. ’... configuration with single category ...’
Corrected.

• line 247. ’... where the single category ...’
Corrected.

• line 252. ’In the Antarctic summer ...’
Corrected.

• line 257. ’... increases especially with respect ...’
Corrected.

• line 287. ’... repartition of detrended data ...’
Corrected.

• line 289. ’... their third clusters ...'
Corrected.

• line 294. ’... all the clusters in the S3 configurations ...’. In S2 max categories is 15, so it says
nothing can be said about categories beyond 30. 
Corrected.

• line 298. ’... other configuration, the ...’ 
Corrected.



• line 303. ’... suggests only marginal ...’ 
Added.

•  line  308.  Using the  word  ’trend’  in  this  context  is  confusing  because  trend  is  commonly
understood as a change in time. I suggest you replace ’trend’ with e.g. linear fit or something else
more suitable. 
Corrected as suggested.

•  line 315. Is  enhanced bottom grow because thin ice grows faster? You should explain the
physics behind the enhanced bottom grow. 
This has been explained  (Lines 339–342).

• line 319. ’... more thick categories ...’ 
Added.

• line 320. ’... in the Central Arctic that can potentially compensate for this decrease in terms of
SIE ...’ 
Added.

• line 329. Explain what  expression in parenthesis  mean in OSI-SAF and NSIDC. Are they
needed here? Data are already described in section 2. 
This has been removed as that information is already given in Section 2.

• line 330. ’... done by both including and excluding long-term trends.’
Corrected.

• line 336. ’... such as the 2007 SIE minimum’.
Added.

•  line  350.  This  is  a  one-sentence  paragraph.  Merge  it  with  the  earlier  one.
All the Discussion section has been reformulated.



• line 360. ’... are adjusted to reproduce ...’
Modified as suggested.

• line 364. ’... computationally more efficient than configurations with more categories.’
Added.

• line 366. ’... sea ice to changes in model parametrization.
Added.

• Fig 5. caption. ’anomalies in the range of ±15
Corrected.



Reviewer 2

Moreno-Chamarro et al.: Impact of the ice thickness distribution discretization on the sea ice
concentration  variability  in  the  NEMO3.6-LIM3  global  ocean–sea  ice  model.  The  authors
investigate ice thickness distribution (ITD) categories in NEMO-LIM and how they impact sea
ice concentration variability. They use k-means clustering as a technique in tandem with three
observational based SIC datasets. The authors do not find an optimal configuration as results in
the Arctic and Antarctic have opposite responses to ITD changes, so no clear benefit to NEMO-
LIM is determined from changing ITD.

Overall, I believe this will be suitable for publication with a few major/moderate changes. I felt
that the scientific significance and quality were good to fair, but could be improved with some
expansion in the text. The Scientific Reproducibility is also fair, which again could be improved
with further clarification in the text. The Presentation quality was excellent.
We thank the Reviewer for the appreciation and the thoughtful comments. In the following we
answer each specific point (in blue).

Specific Comments:

 One of  the  biggest  concerns  I  have  about  this  paper  is  that  it  doesn’t  generalize  to
modeling in general beyond NEMO-LIM to provide insight about modeling in general. I
realize that this is for the NEMO special issue, however, it currently feels a bit like a
sensitivity  experiment  to  determine  optimal  model  configuration  but  not  otherwise
generally of interest to the community of sea ice modelers who may be setting up their
own models using LIM or other sea ice models. 

This begins in the introduction where there should be a brief discussion of previous work
about  why  5  ITD  categories  have  been  chosen  in  the  past  due  to  volume  studies
(Lipscomb  2001,  Remapping  the  thickness  distribution  in  sea  ice  models,  doi:
10.1029/2000JC000518; Bitz et al. 2001, Simulating the ice-thickness distribution in a
coupled climate model,  doi: 10.1029/1999JC000113). In fact, in Bitz 2001 one of the
conclusions  is  “…the  concentration  of  open  water  and  thin  ice,  which  is  relatively
insensitive to the number of categories beyond M=5,” which is directly relevant for this



paper. Why weren’t these cited? If anything, studies using CICE that agree with these
results should strengthen your results because they become more robust across models. 
We thank the reviewer for the references. We opted for an Introduction briefly reviewing
previous  research  on  the  impact  of  the  ITD in  climate  models  since  a  longer,  more
detailed one is provided in the companion paper Massonnet et al. (2019). This was also
done because nearly all of the previous studies have focused on the mean climatological
state of the sea ice (the focus in Massonnet et al., 2019) and not on its variability (our
focus).  Thus,  whereas  Bitz  et  al.  (2001)  was  indeed  cited  in  the  Introduction  as  an
example, Lipscomb (2001) was not. Both works are now cited in the revised manuscript.
The  Introduction  has  further  been clarified  on this  point  and  extended  following the
Reviewer's suggestion (Lines 48–55).

In the discussion and conclusions section you should add more information about how
these results might be directly relevant in coupled models. This is brought up briefly but
could be fleshed out and suggestions for how to test this would be useful. Additionally,
you mention that parameterizations and parameter values are tuned for 5 categories (line
359). Can you specify which of these might be directly affected or changed? Are similar
parameterizations present in other sea ice models? How can this be generalized for the
community?
The Discussion section  has been rewritten  in  full  to  accommodate  these suggestions.
Now dedicated parts  discuss the tuning parameters that might need adjustment  in the
model  (Lines  383–389),  the  potential  relevance  for  other  sea  ice  models  beyond
NEMO3.6-LIM3 (Lines 390–406) and for fully-coupled modes (Lines 407–415).

 The methods need clarification,  particularly  for replicability  purposes.  In  particular,  I
found these sections to need to be expanded. 
1) At line 145/Figure 2 the Arctic “winter” cluster was defined but didn’t include April.
What threshold values for these groups were used? Are your results sensitive to including
different months? These things should be tested.
We opted for the standard definition of a season of three months. To define the winter
(summer) season, we search for the largest correlation coefficient between the monthly
clusters  and  the  adjacent  second  largest  value  in  the  winter  (summer)  half  year
(correlations  coefficients  are  plotted  in  Fig.  2).  The  two  seasons  must  be  and  are



consistent across the three observational datasets included in the analysis. This method
renders two seasons in which monthly cluster agreement is consistently high: JFM and
ASO, on which we then base the whole paper analysis. Although monthly clusters in
April and in previous months show good agreement, agreement is smaller than across
JFM. This method hence leaves  April  outside the winter season. We note our winter
season  agrees  with  the  analysis  in  Close  et  al.,  2017,  where  monthly  Principal
Components of the sea ice concentration show that January, February, and March have
similar modes, different from those in November, December, or April. For these reasons,
we have decided to keep our definition of a winter season without April. This point has
nonetheless been clarified in the revised manuscript (Lines 156–160). 
In addition, to show that including April in winter would actually have had little impact
on the analysis, Response Figure 1 (below) shows the test where the clusters are extracted
in the 4-month seasons January–April (as winter) and July–October (as summer) in the
Arctic. The main difference with respect to the clusters in JFM and ASO (Fig. 5) is that
the  second  and  third  clusters  have  switched  positions.  Cluster  patterns  and  years  of
occurrence are however virtually identical as those in JFM and ASO (c.f. Fig. 5). The
Response Figure 1 is not included in the received manuscript, but we do mention in the
text that results are not sensitive to the specific season definitions.



Response Figure 1: As in Fig. 5 in the main text, but in JFMA (left) and JASO (right)

2) The % values in Fig.5/6 refer to occurrence, can you translate these values to number
of months or something to better indicate what this means?
The value is the percent of years in the period 1979–2014 whose anomaly pattern is the
closest to a particular cluster. The number of months is now shown together with the
percent value in Figs. 5 and 6, and Supp. Figs. 2, 3, and 5.

3)  Section  3.3.1  –  are  these  correlation  differences  statistically  significant  from  one
another? Can you clarify what you mean by these are significant? 
In the updated manuscript, statistical significance of the difference between correlation
coefficients is tested using Fisher's z-transform assuming a two-tailed significance level



of 0.05. Given the large number of coefficient pairs for which differences might be tested,
we simplify this by comparing only the median values between an ITD discretization and
the one immediately below within the same discretization type: for example,  S1.50 is
compared with S1.30, the latter with S1.10, and so on; S2.15 is compared with S2.11, and
so  on;  S1.03,  S2.03,  and  S3.05  are  all  compared  with  S1.01.  The  results  of  these
significance tests are now included and discussed in the revised manuscript (see the new
Figs. 7, 8 and 10, and Supp. Fig. 6).

4) Line 263 – how was the polynomial determined? Can you provide information about
this? 
Detrending  is  done  by  removing  a  spatially  varying  2nd  degree  polynomial  fit  with
respect to time using the 'Trend' function in the s2dverification R package [Manubens et
al., 2018]. This is now indicated in the revised manuscript (Lines 145–146).

 If there is not a lot of information gleaned from the de-trended Arctic analysis, then why
is it presented? Can this be condensed somehow since the variability analysis primarily
shows the forced trend without being de-trended?
We would like to keep this section in the main text. The analysis of detrended data is
actually critical to characterizing interannual variability in summer,  a season which is
dominated  by  the  long-term  melting  trend  in  the  Arctic.  Without  detrending,  Arctic
clusters mostly capture this trend (compare Figs. 5 and 9 in the main text). The analysis
of  detrended  data  further  shows  that  ice  thickness  distributions  with  more  than  30
categories can help improve model–data agreement in the Arctic, at a cost of making the
simulations computationally more expensive.

 I think that if possible you should consider including Supplemental Figures 4 and 7 as
regular figures since they are referred to in detail.
We would like to keep them in the Supplement. Both Figures are only briefly discussed in
the  manuscript  and add  little  extra  information  to  the  discussion  of  the  results.  And
although the number of figures is not a constraint for publication in GMD, we think 11
main Figures is already a high enough number.



Technical corrections:

Line 81: misspelled “concentration”
Corrected

Lines 269-275: It looks to me like patterns 2 and 3 are both dipoles but opposite patterns. Can
you clarify where the quadrupole is?
We call quadrupole a cluster that shows four dominant poles in Arctic sea ice concentration,
regardless of the sign. In the winter Arctic this usually means a pole in the Labrador, Barents-
Greenland, Okhotsk, and Bering seas respectively. This follows the definition of the quadrupole
in Close et al., 2017. Both clusters 2 and 3 in Fig. 9 would therefore fall in this definition. We
note,  however,  small  differences  between the two. In cluster  2 the pole in the Labrador  Sea
dominates and dominates in years of strong positive winter NAO. We interpret this as the wind-
driven signature of the NAO on the ice concentration [Bader et al., 2011]. Cluster 3 is instead
closer  to  cluster  1  in  not  detrended data  and dominates  in  similar  years.  They both  further
resemble the quadrupole pattern analyzed in Close et al., 2017. This point has been clarified in
the revised manuscript. 

Lines 296-298: sentence is confusing. “…suggesting that this configuration poorly captures the
forced variability but does capture interannual variability as well as any other configuration.”?
This has been clarified.

The stippling markers are used to indicate significance in Fig. 11 but insignificance in Fig.5. It
would be nice if they were used consistently.
Both Fig. 11 and Supp. Fig. 7 have been modified as suggested.

The first  two paragraphs of  the  discussion  were  clear  and concise.  The next  three  are a  bit
confusing  and all  over  the  place.  I’d  suggest  you rearrange  in  the  following  order:  1.  One
category has worst results necessitating multi-category sea ice models like LIM3 or CICE; 2.
The standard configuration is 5 ITD levels; 3. Adding more thin categories decreases agreement;
4. Having 30+ categories can improve some but is significantly more expensive at double the
cost, which is clearly significant for coupled models
Both the Discussion and Abstract have been rewritten following the Reviewer's recommendation.
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Abstract. This study assesses the impact of different sea ice thickness distribution (ITD) configurationsdiscretizations on the 

sea ice concentration (SIC) variability in ocean-standalone NEMO3.6-LIM3 simulations. Three ITD 10 

configurationsdiscretizations with different numbers of sea ice thickness categories and boundaries are evaluated against 

three different satellite products (hereafter referred to as “data”). Typical model and data interannual SIC variability is 

characterized by kK-means clustering both in the Arctic and Antarctica between 1979 and 2014 in. We focus on two seasons, 

winter (January–March) and summer (August–October), when coherencein which correlation coefficients across clusters in 

individual months isare largest. Analysis inIn the Arctic is done, clusters are computed before and after detrending the series 15 

with a 2nd degree polynomial to separate interannual from longer-term variability. 

Before The analysis shows that, before detrending, winter clusters capturereflect the SIC response to large-scale 

atmospheric variability at both poles and summer cluster a positive and negative trend in the, while summer clusters capture 

the negative and positive trends in Arctic and Antarctic SIC respectively. After detrending, Arctic clusters reflect the SIC 

response to interannual atmospheric variability predominantly. Model–data cluster comparison suggests that no specific ITD 20 

configuration or category number increases realism of the simulated Arctic and Antarctic SIC variability in winter. In the Arctic 

summer, more thin-ice categories decrease model–data agreement without detrending but increase agreement after 

detrending. Overall, a single-category configuration agrees the worst with data. 

Direct model–data comparison of SIC anomaly fields shows that more thick-ice categories improve winter SIC variability 

realism in Central Arctic regions with very thick ice. By contrast, more thin-ice categories reduce model–data agreement in 25 

the Central Arctic in summer, due toThe cluster analysis is complemented with a model–data comparison of the sea ice 

extent and SIC anomaly patterns. 

The single-category discretization shows the worst model–data agreement in the Arctic summer before detrending, 

related to a misrepresentation of the long-term melting trend. Similarly, increasing the number of thin categories reduces 
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model–data agreement in the Arctic, due to a poor representation of the summer melting trend, and an overly large 30 

simulatedwinter sea ice volume. 

In summary, whereas better resolving thin ice in NEMO3.6-LIM3 can hamper model realism in the Arctic but improve it 

associated with a net increase in basal ice growth. In contrast, more thin categories improve model realism in Antarctica, 

and more thick-ice categories increase realism in the Arctic winter. And although the single-category configuration performs 

the worst overall, no optimal configuration is identified ones improve it in Central Arctic regions with very thick ice. In all the 35 

analyses we nonetheless identify no optimal discretization. Our results thus suggest that no clear benefit in the 

representation of SIC variability is obtained from increasing the number of sea ice thickness categories beyond the current 

usual standard ofwith 5 categories in NEMO3.6-LIM3. 

  

1 Introduction 40 

AnalysesAnalysis of recent observations havehas allowed identifying different drivers of sea ice variability. For example, 

interannual sea ice variability has primarily been related toInterannual sea ice variability, for example, has been associated 

primarily with changes in atmospheric and oceanic circulation: atmospheric variability, which can directly be related to large-

scale atmospheric modes, such as the North Atlantic Oscillation (NAO) or Siberian High in the Northern Hemisphere, and the 

Southern Annular Mode over Antarctica, can drive changes in the sea ice both dynamically and thermodynamically [e.g., 45 

Rigor et al., 2002; Rigor and Wallace, 2004; Ogi et al., 2007; Yuan and Li, 2008; Wang et al., 2009; Hobbs and Raphael, 2010;  

Holland and Kwok, 2011; Renwick et al., 2012; Kohyama and Hartmann, 2016; Lynch et al., 2016; Close et al., 2017; Blackport 

et al., 2019; Olonscheck et al., 2019]. Similarly, interannual changes in ocean heat transport to high latitude can contribute 

to anomalous episodes of Arctic sea ice melting in both the Atlantic and Pacific sectors [e.g., Hibler, 1986; Venegas and 

Mysak, 2000; Ingvaldsen et al., 2004a; 2004b; Woodgate et al., 2010; Schlichtholz, 2011]. On longer time scales, the 50 

accelerating thinning in Arctic sea ice [Comiso et al., 2008; Serreze and Stroeve, 2015] might be modulated by lower-

frequency variability in modes likesuch as the NAO [e.g., Delworth et al., 2016] or Atlantic Multidecadal Variability [e.g., Day 

et al., 2012; Drinkwater et al., 2014; Miles et al., 2014]. Accurately capturing thisthe complex range of variability in sea ice, 

together with itsthe potential impacts on the lower latitude climate [e.g., Screen, 2013], demands for a realistic 

representation of the sea ice in climate models. 55 

One among the many crucial features of sea ice to ensure its realistic representation is its thickness 

complexityheterogeneity, which determines other important physical properties, such as ice’s salt and heat content, 

resistance to deformation and fracture, and melting and growth rates. State-of-the-art sea ice models typically use an ice 

thickness distribution (ITD) [Thorndike et al., 1975] to account for subgrid-scale variability of ice properties. In most cases, 

Formatted: Normal, Indent: First line:  0 cm, Line

spacing:  single
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through an ITD the different ice thicknesses are sorted into a fixed number of categories in a configuration whichwith usually 60 

presents the finest resolution in the thinnest ice range. Several studies have explored the advantages of including an ITD to 

simulate the mean state and seasonality inof the sea ice accurately, as well as the number of categories that would render 

theits most realistic ice representation [e.g.representation, albeit with mixed results [among others, Bitz et al., 2001; 

Lipscomb, 2001; Holland et al., 2006; Massonnet et al., 2011; Uotila et al., 2017; Ungermann et al., 2017;, and Massonnet et 

al., 2019]. These studies, however, have partly overlookedAlthough 5 to 7 categories were initially found sufficient to 65 

simulate large-scale sea ice realistically [Bitz et al., 2001; Lipscomb, 2001], the later study by Hunke [2014] concluded that 

such numbers might lead to an inaccurate representation of the observed sea ice thickness and a model misrepresentation 

of mechanical sea ice processes controlling its volume. The optimal number of categories and discretization are therefore 

still debated (a more detailed review is given in the companion paper, Massonnet et al., 2019). Interestingly, we note that 

these previous studies partly overlook the impact of the ITD discretization on the simulated sea ice variability. To our 70 

knowledge, only Massonnet et al. [2011] reported a more realistic interannual variability in the Arctic sea ice extent (SIE) in 

the LIM3 sea-ice model than in itsthe previous model version, LIM2 (although this improvement cannot exclusively be 

attributed to the addition of an explicit 5-category ITD in LIM3 but to all the refinements in sea ice parametrizations absent 

in LIM2). Thus the question of whether a particular ITD configurationdiscretization or number of categories ensures a more 

realistic sea ice variability and long-term trend remains unanswered. 75 

Sea ice concentration (SIC) and thickness are the main quantities used to characterize itsice cover variability. Most of the 

previous studies have focused on the impact of an ITD on the sea ice thickness, especially in the Arctic [e.g., Holland et al., 

2006; Hunke, 2014; Ungermann et al., 2017]. By contrast, SIC has received less attention, perhaps motivated by the relatively 

minor or only indirect effect that the ITD appears to have on the representation of itsthe mean state [e.g., Massonnet et al., 

2011; Uotila et al., 2017; Massonnet et al., 2019]. However, while SIC has continuously been measured by satellites since 80 

1978 [Cavalieri et al., 1996; EUMETSAT, 2015], equivalent measurements of thickness have only become available in the past 

decade [e.g., Laxon et al., 2013]. Literature exploring the observed SIC variability is therefore much richer than that on sea 

ice thickness and offers a more exhaustive account of its key features and drivers (see most of the references above). This 

study therefore represents a step forward with respect to previous ones, as it presents the, to our knowledge, the first 

detailed assessment of the impact of the ITD discretization on the SIC variability at both poles since 1978, using the state-of-85 

the-art coupled ocean–sea ice model NEMO3.6-LIM3. This study is a companion paper to Massonnet et al. [2019], in which 

the response of the modelled sea ice climatologymean state to an ITD discretization is investigated. 

The paper is structured as follows: Section 2 describes the model and experimental design,   Section 3 follows with the 

main results of the model–data comparison, and Sections 4 finishes with the discussion of the results and main conclusions. 
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2 Model and experimental setup 90 

2.1 Model description 

We use the dynamic-thermodynamic sea ice model LIM3.6 (Louvain-la-Neuve sea Ice Model) [Rousset et al., 2015] 

coupled to a finite-difference, hydrostatic, free-surface-primitive-equation ocean model within the version 3.6 of the NEMO 

framework (Nucleus for European Modelling of the Ocean) [Madec, 2008]. Only a short description of the model is provided 

in the following; for more details we refer to Barthélemy et al. [2018] and Massonnet et al. [2019]. Both the ocean and sea 95 

ice models are run on the global eORCA1 grid with a   1° nominal zonal resolution. The ocean has 75 vertical levels which 

increase non-uniformly from 1 m at the surface to 10 m at 100 m depth and 200 m at the bottom. To avoid spurious model 

drift, a weak restoring toward the World Ocean Atlas 2013 surface salinity climatology [Zweng et al., 2013] is applied with a 

strength of 167 mm/day. The restoring is damped under the sea ice (multiplied by one minus its concentratioconcentration), 

where observations are less reliable, to avoid altering ocean–ice interactions. 100 

2.2 Experimental setup: atmospheric forcing 

The model is run over the period 1979–2014. The atmospheric forcing is provided by the DRAKKAR Forcing Set version 

5.2 (DFS5.2) [Brodeau et al., 2010; Dussin et al., 2016]. This global forcing set is derived from the ERA-Interim reanalysis over 

the period 1979–2015. It has a spatial resolution close to 0.7°, or 80 km, and it is used within the CORE forcing formulation 

of NEMO, which uses bulk formulasformulae developed by Large and Yeager [2004]. Continental freshwater inputs include 105 

river runoff rates from the climatological dataset of Dai and Trenberth [2002] north of 60°S, prescribed meltwater fluxes 

from ice shelves along the coastline of AntarcticaAntarctic coastline [Depoorter et al., 2013], and climatological freshwater 

fluxes from iceberg melting at the surface of the Southern Ocean surface  [Merino et al., 2016]. Forcing the NEMO3.6-LIM3 

model with observation-based atmospheric variability ensures that simulated SIC variability follows observations to a large 

extent, in particular the atmospheric-driven changes; this allows us to compare model and observations (hereafter also 110 

referred as to data) and evaluate the impact of the different ITD configurationsdiscretizations. 

2.3 Experimental setup: ITD configurationsdiscretizations 

LIM3.6 employs an ITD to represent the subgrid-scale distribution of the sea ice thickness, enthalpy, and salinity 

[Thorndike et al., 1975], discretized into a fixed number of categories. An ITD discretization is characterized by both the 

number of categories and the position of their boundaries. We run three different sets of sensitivity experiments to evaluate 115 

the impact of the ITD on the SIC variability (Fig. 1). In the first set (hereafter, S1), the categories are set by the default ITD 

discretization of LIM, which varies both the position and the resolution of the thickness categories according to the number 

of categories, setting following a predefined formula that sets the finest resolution to the thinnest ice (Eq. 2 in Massonnet et 
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al., 2019). In the second set (S2), new thickness categories are successively appended without changing the existing category 

boundaries, which allows assessing the impact of the thick ice categories. In the third set of experiments, the lower boundary 120 

of the thickest category is set as 4 m depththick, and the ITD resolution is increased or reduced by merging or splitting the 

existing categories. The upper limit ofat 4 m thick corresponds to the maximum thickness that thermodynamic ice growth 

can sustain in the Arctic [Maykut and Untersteiner, 1971] and therefore allows the thickest category to host the deformed 

ice produced in the model. For more details of the ITD and these experiments we refer to Massonnet et al. [2019]. 

2.4 Reference observations 125 

Arctic and Antarctic SIC variability in the model simulations is compared with that from three satellite observational 

products for the period 1979–2014: OSI SAF (OSI-409/OSI-409-a) [EUMETSAT, 2015], NSIDC-0051 [Cavalieri et al., 1996], and 

HadISST v2.2 [Titchner and Rayner, 2014]. Both OSI SAF and NSIDC provide monthly mean SIC since October, 1978; NSIDC, 

however, lacks a circular sector centered over the North Pole (“pole hole”), where SIC is set as 1. HadISST blends historical 

sources, such as sea ice charts, with OSI SAF passive microwave data to provide monthly SIC since January 1850, with 130 

concentration values between 0 and 0.15 reset as 0 (open water). 

2.5 K-means clustering 

K-means clustering as included in the s2dverification R package [Manubens et al., 2018] is used to characterize 

interannual SIC variability in model simulations and observations. K-means clustering aims at simultaneously minimizing the 

Euclidean distance between members of a given cluster and maximizing the distance between centroids of the different 135 

clusters [Wilks, 2011]. It is an alternative method of dimension reduction to other, more commonly used, such as principal 

component analysis. With respect to those, K-means clustering is more robust in a physical sense, it can account for potential 

nonlinearities in a climate field [Andeberg, 2014; Hastie et al., 2009], and it does not assume orthogonality or linearity 

between dominant modes. K-means clustering has successfully been employed to extract atmospheric weather regimes over 

the North Pacific and North Atlantic [e.g., Michelangeli et al., 1995, Rossow et al., 2005, Coggins et al., 2014], dynamically 140 

similar regions of the global ocean circulation [Sonnewald et al., 2019], or variability clusters from the pan-Arctic sea ice 

thickness [Fučkar et al., 2015, 2018]. In our casethis study, each cluster is characterized by a pattern of SIC anomalies (cluster 

centroids) and a discrete time series of occurrence. Both the spatial features of the patterns and their occurrence in time 

vary with the computed total number of clusters, K. Cluster validity, characterised by the most robust choice of K, is 

determined using 10 indices (namely,that assess both intra-cluster similarity and inter-cluster dissimilarity. The indices are 145 

Duda–Hart, Ratkowsky–Lance, Ball–Hall, SD, cubic clustering criterion, traceCovW, Rubin, Beale, Scott, and Marriot), which 

formsand they form a selection of the 10 computationally fastest ones out of the 30 included in the NbClust R package. 

[Charrad et al., 2014]; these indices assess both intra-cluster similarity and inter-cluster dissimilarity. We test K values 
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between 2 and 5 and evaluate the results of K-means clustering with those validity indices. Since this is a very computationally 

demanding analysis, we previously reduce the number of degrees of freedom by interpolating the SIC field from satellite  150 

observations onto a 3° horizontal regular grid. For all seasons and observational datasets the optimal K (i.e., the most 

frequent value for the 10 validity indices) thus evaluated is 3. Therefore we hereafter apply K-means clustering with K value 

set as 3 to the SIC fields on a 1° horizontal regular grid from both model and observational data. All the calculations are done 

over the period 1979–2014. Our results are insensitive to the initial seed used to calculate clusters (not shown). All the 

calculations are done over the period 1979–2014. Clusters are computed from the original time series and after detrending 155 

by removing a spatially varying 2nd degree polynomial fit with respect to time using the 'Trend' function in the s2dverification 

R package [Manubens et al., 2018] 

3 Results 

3.1 Defining the winter and summer seasons 

We intend to focus the comparison between simulated and observed SIC variability in two seasons centered around 160 

winter and summer, when maximum and minimum sea ice areas occur respectively. To avoid any a priori assumption about 

which months define these seasons, we first assess agreement across monthly clusters and aggregate months with similar  

variability. Following the steps described in Section 2.3 for each observational product separately, we first calculate 3 (asthe  

optimal number) clusters in each individual month in the Arctic and Antarctica. At each pole, we then compute the spatial 

correlation coefficients between all the clusters in any two months. We retain the maximum positive value from the resultant 165 

distribution, which sets the uppermost-limit of cluster agreement between those two months. Results in OSI SAF are shown 

in Fig. 2 (results of NSIDC and HadISST are very similar and therefore not shown). Two periods stand out at both poles, 

whenThe winter and summer seasons are then defined by finding the three months which have the largest and the 

immediately second largest correlation coefficients in the winter and summer half year (November–April and May–October 

respectively). The two seasons must be and are consistent across the three observational datasets included in the analysis. 170 

This method renders two seasons in which monthly cluster agreement is largest,consistently high: January through March 

(JFM), and August through October (ASO). The use of JFM as the winter season is consistent with the Principal Component 

analysis in Close et al. (2017), in which monthly modes were best correlated in JFM as well. We find no major differences if 

the clusters are calculated in winter including April (JFMA) and summer including July (JASO). All the subsequent analyses 

focus on thesethe two seasons JFM and ASO, which we refer to as winter and summer (even though they include 175 

climatological spring and fall months). 

Formatted: Font: Not Italic
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3.2 Sea ice extent 

Before comparing SIC clusters, we explore the impact of the ITD configurationdiscretization on the temporal evolution of 

the Arctic and Antarctic sea ice extent (SIE) over the period 1979–2014 (Fig. 3). This analysis will help interpret results from 

the clusters belowpresented later. Note that impacts on the simulated climatological mean state and seasonal cycle over this 180 

period have previously been described by Massonnet et al. [2019]. In the model, seasonal SIE is calculated from monthly SIC 

on the original model grid; in observations, seasonal SIE is calculated from the monthly SIE directly provided by the different 

products. The impact of different ITD configurationsdiscretizations on the Arctic SIE in both seasons and Antarctic SIE in 

winter is marginal, and all the simulations show values that are within observational uncertainty (which we assume to be 

defined by the envelope of the different observational products; Fig. 3). The largest differences across simulations are for 185 

the summer Antarctic SIE. Increasing the number of categories from 1 to 50 in the S1 configurationsdiscretizations reduces 

the Antarctic SIE by about 4∙106 km2, although the largest decrease, of about 2∙106 km2, is from S1.01 

tobetween S1.01 and S1.03. This renders the simulated SIE values in the S1 runscases closer to those in OSI SAF and NSIDC 

but more different to those in HadISST. HadISST SIE values are consistently above those in OSI SAF and NSIDC in the Arctic 

and Antarctica in both seasons, as also noted by Titchner and Rayner [2014]. Increasing the number of categories in the S2 190 

and S3 configurationsdiscretizations has a comparatively smaller impact, reducing and increasing 

the summer Antarctic SIE by about 1∙106 km2 respectively; these results are, yet still within observational 

uncertainty. The simulated SIE trend is slightly underestimated in the winter Arctic, although it is well captured in summer, 

as well as in Antarctica in both seasons. In terms of interannual variability, the simulations disagree the most with the 

observations in Antarctica, especially in summer, when the simulations show large interannual variations that are not found 195 

in observations (for example, around 2000). By contrast, the simulated Arctic SIE variability for all ITD 

configurationsdiscretizations is very close to the observations in both seasons. 

To characterize differences between simulated and observed SIC, we calculate the integrated ice edge error (IIEE) as the 

total area where model and observations disagree on SIC values above 15% [Goessling et al., 2016]. In general terms, the 

largest IIEE is in the Arctic and Antarctica in JFMwinter, with the smallest values emerging for the comparisonwhen compared 200 

with NSIDC (Supp. Fig. 1). For all the simulations, the IIEE remains relatively constant over the period 1979 –2014 at both 

poles and seasons, and the impact of a different ITDsITD discretization on the IIEE is marginal in the Arctic in both seasons 

and in Antarctica in winter. The situation is different in the Antarctic summer (JFM), when differences in IIEE due to the ITD 

are the largest (Fig. 4). IIEE between the simulations and observations is overall larger than across observations for all the 

ITD configurationsdiscretizations. The single-category ITD configurationdiscretization exhibits the largest IIEE with respect to 205 

all the observations. Increasing the number of categories in the S1 and S3 configurationscases tends to reduce the 

IIEE by about 1∙106 km2 between the coarsest and finest resolutionresolutions. Changes in categories in the S2 
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configurationacross S2 discretizations have a smaller impact on the IIEE, with no clear improvement or worsening for a finer 

or coarser ITD. These results suggest that a finer resolution of the thinner ice and not of the thicker sea ice to some degree 

improves the representation of the simulated Antarctic SIC in ASOwinter in our model with respect to observations. This 210 

might be related to an improved response of the thin ice (the easiest to melt, grow, and advect) to the atmospheric forcing. 

3.3 SIC cluster analysis 

In the following, we describe the three clusters of SIC variability in the observations. Clusters in OSI SAF are shown in Figs. 

5 and 6 in the Arctic and Antarctica respectively (since clusters in NSIDC and HadISST are very similar, they are shown in Supp. 

Figs. 2 and 3 respectively). In the Arctic winter, the first cluster shows four poles of dominant variability, with more ice in the 215 

Barents, Greenland, and Okhotsk seas and less ice in the Labrador and Bering seas (Fig. 5); this pattern agrees with the 

quadrupole mode described byin previous literature associated with variations in the strength of the Siberian High [e.g., 

Ukita et al., 2007; Close et al., 2017]. The second cluster presents similar centers of action to the first one, but SIC anomalies 

are negative in the Labrador, Barents and Okhotsk seas and positive in the Bering Sea. The third cluster shows strong 

anomalies of opposite signsigns in the Labrador (strongly positive) and Nordic seas (negative) which, a pattern that resembles 220 

the typical fingerprint of a positive NAO phase on the SIC [Bader et al., 2011]. In fact, this cluster dominates between 1990 

and 1996, when the winter NAO was persistently positive [Hurrell and Deser, 2010]. Overall, the first and third clusters 

alternate until 2004 approximately, after which the second cluster dominates. In the last decade, the root mean square 

distance between the clusters and the anomaly fields (indicated by the symbol size in Fig. 5) increases to its largest values 

over the whole period in OSI SAF, but not in NSIDC and HadISST. These results suggest that the winter SIC variability might 225 

fundamentally have changed after 2004, in agreement with the observed acceleration in the SIC melting trend [e.g., Comiso 

et al., 2008; Serreze and Stroeve, 2015]. 

In the Arctic summer, both the cluster patterns and relative occurrences reflect a long-term melting trend (Fig. 5). The 

first and third clusters are very similar, which respectively: both exhibit widespread positive and negative anomalies in the 

central Arctic and dominate over the initial period (ca. 1979–1988) and last one (ca. 2005–2014) respectively. The second 230 

cluster, by contrast, dominates in the middle decades (ca. 1989–2005) and presents a dipole of positive and negative 

anomalies between the central Arctic and the surroundings. Such partitioning in decades of alternating dominance suggests 

that the long-term melting trend in sea ice (as seen in the SIE; Fig. 3b) controls the clustering; previously detrending the data 

might therefore be necessary for a more robust characterization of the interannual variability (see below). 

In Antarcticathe Antarctic summer (JFM), the three clusters exhibit poles of dominant variability close to the continental 235 

coast, especially in the Weddell and Ross seas (Fig. 6). The first and second clusters show similar patterns but of opposite 

sign, with an overall decrease or increase respectively but in the Amundsen and Bellinghausen seas. The third cluster shows 

a dipole ofwith negative anomalies in the Weddell Sea and positive ones in the Amundsen Sea. Summer SIC variability is 
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dominated by the first cluster (58%), especially during the first decades. Although the second and especially the third clusters 

are much less frequent (31% and 11% respectively), the second one tends to dominate in the last decade (ca. 2005–2014). 240 

This might be due to a slight positive trend, as seen in the SIE (Fig. 3d). 

In the Antarctica ASO (winter), the Antarctic first and second clusters show opposite-sign poles in the Weddell, 

Bellinghausen, and Amundsen seas, with smaller contributions from other seasthe others (Fig. 6). These two modes resemble 

SIC variability driven by Rossby wave activity across the Drake Passage described byin previous literature [e.g., Yuan and Li, 

2008; Hobbs and Raphael, 2010; Renwick et al., 2012; Kohyama and Hartmann, 2016]. In fact, the first cluster resembles the 245 

pattern of Antarctic SIC response to an El Niño [e.g., Ding et al., 2011] and dominates in years of strong ones, such as 1984, 

1998, and 2010. The third cluster shows negative SIC anomalies along all the Antarctic perimetercoast but in the 

Bellingshausen and Amundsen seas, where anomalies are positive; this is however the least persistent cluster (11%), and SIC 

variability is clearly dominated by the first two (47% and 42% respectively). Cluster occurrences and patterns in NSIDC are 

slightly different from those in OSI SAF and HadISTT (Supp. Figs. 2 and 3), suggesting that observational uncertainty can 250 

impactimpacts the dominant Antarctic SIC modes of variability. 

3.3.1 Impact of ITD discretization on the SIC clusters 

For each cluster of SIC variability, observations and simulations are compared mainly through their spatial correlation 

(Fig. 7). Statistical significance of the difference between correlation coefficients is tested using the Fisher’s z-transform, 

assuming a two-tailed significance level of 0.05 [Storch and Zwiers, 1999]. Given the large number of coefficient pairs whose 255 

differences can potentially be tested, we simplify the test by comparing only the median values between an ITD discretization 

and the one immediately below within the same discretization type: for example, S1.50 is compared with S1.30, the latter 

with S1.10, and so on; S2.15 is compared with S2.11, and so on; and S1.03, S2.03, and S3.05 are all compared with S1.01. As 

a measure of the observational uncertainty, we also calculate the spatial correlation coefficients between the three 

observational datasets. We further calculate the root mean square error (RMSE) across observed and simulated clusters to 260 

provide an additional assessment. Results of the RMSE analysis are shown in the Arctic only (Supp. Fig. 4) and are commented 

when they complement or disagree with results from the spatial correlation coefficients.  

In the Arctic winter, correlation coefficients between observed and simulated clusters slightly decrease as the number of 

categories increases in all three configurations  the three discretization types, and only very few pairs show coefficients that 

are significantly different (Fig. 7); by. By contrast, including more categories slightly reduces the RMSE (which suggests a 265 

slightly better agreement with the observations) in the third cluster in the S1 and S3 configurationscases and increases it in 

the S2 one (Supp. Fig. 4). Overall, nonetheless, changing the ITD configurations havediscretization has a small impact on the 

model–data agreement, and no configurationdiscretization or number of categories appearappears to be consistently the 

best. 



10 
 

In the Arctic summer, spread in model–data agreement is much larger than in winter (Fig. 7 and Supp. Fig. 4). The RMSE 270 

is barely impacted by the ITD configurationdiscretization (Supp. Fig. 4) and shows similar changes to those in the correlation 

coefficients. The lowest model–data correlation coefficients are for the second cluster across all 

configurationsdiscretizations. This is likely because of its characteristic spatial pattern of small, mostly statistically non-

significant anomalies (Fig. 5). Such noisy features are indeed difficult to be captured by the model accurately, thus resulting 

in comparatively small spatial correlation coefficients. By contrast, anomalies in the first and second clusters take larger 275 

values over a larger area and are successfully reproduced by the simulations. Model–data spatial correlation coefficients are 

little influenced by the ITD configurationdiscretization for the first and third clusters but show a statistically significant 

decrease with a large number of thin ice categories beyond 30 for the second cluster in the S1 and S3 configurationscases. 

Although increasing the number of thick categories in the S2 configurationdiscretization has no major impact on model–data 

correlation coefficients, the S2.07 case shows a statistically significant drop in correlation values in all the clusters. This 280 

suggests that variability is slightly differently distributed across the clusters in this configuration. The configuration with one. 

The discretization with a single category, S1.01, shows the lowest correlation coefficients (Fig. 7; with statistically significant 

differences with the coefficients of the S1.03, S2.03, and S3.05 discretizations) and highest RMSE values (Supp. Fig. 4) overall. 

These results suggest that an ITD with one category or a large number of thin categories can potentially hamper 

representation of SIC variability in the Arctic. This contrasts with and complements results in Massonnet et al. [2019], where 285 

the one-category configurationsingle-category discretization was found performing as good as or even better than multi-

category configurationsones in terms of sea -ice mean climatologystate. Comparison of mass budget across 

configurationsdiscretizations showed that this configurationthe single-category case compensates basal ice growth deficit 

(relative to multi-category cases) through a larger dynamic ice production from fall to winter (and, thus, potentially right for 

the wrong reasons) [Massonnet et al., 2019]. 290 

In the AntarcticaAntarctic summer, model–data agreement is lower than in the Arctic in terms of both the spatial 

correlation (Fig. 8) and RMSE (not shown). Almost all the correlation coefficients are statistically non-significant for the 

second and third cluster (Fig. 8), with only some ITD configurationsdiscretizations with 3 or 5 categories showing significant 

correlations for all clusters. For the first cluster, however, more than 5 categories seem to improveshow a statistically 

significant improvement in the agreement with the observations, in particular for  the S1 configuration. cases. 295 

In the Antarctic winter, model–data agreement increases with respect to summer, especially and correlation coefficients 

tend to be statistically significant for the first and especially the second cluster (Fig. 8). However, the impact of the ITD 

distribution is small and there is no robust response to any configurationdiscretization. 
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3.3.2 Arctic SIC clusters after detrending 

For a sound characterization of the modes of interannual variability over the period 1979–2014, the long-term, 300 

accelerating melting trend in the Arctic SIC is now filtered out. This trend is well captured by both the SIE (Fig. 3) and clusters 

(Fig. 5). Arctic SIC clusters are now calculated after detrending by removing a spatially varying 2nd degree polynomial fit with 

respect to time (Fig. 9see Section 2). Clusters calculated after detrending with a 1st degree polynomial (linear detrend) are 

still affected by the melting trend and are not discussed here further. We do not consider higher order degree polynomials 

either, since they have shown no improvement to characterize clusters of sea ice thickness over the period 1958–2013 305 

[Fučkar et al., 2015]. No similar analysis has been performed for Antarctic SIC as the clusters suggest a rather weak positive 

trend in summer (Fig. 6). 

In OSI SAF, detrended SIC variability in winter is evenly distributed into the three clusters (Fig. 9; 36%, 33%, and 31% of 

occurrence frequency). The first cluster shows a dominant pole of negative anomalies in the Labrador Sea (Fig. 9). The second 

and third clusters show a similar quadrupole pattern with opposite signs. The second cluster shows two poles of variability 310 

of positive and negative anomalies in the Labrador and Nordic seas respectively. This cluster is very similar to the third one 

in not detrended data, and both dominate in similar years, in particular during periods of with a positive NAO phasesphase. 

This suggests that they capture the fingerprint of a positive winter NAO on the Arctic SIC. The third cluster shows a clear 

quadrupole structure, like is instead similar to  the first cluster in not detrendedthe raw data, and dominatesboth dominate  

in similar years. They both further resemble the quadrupole pattern analyzed in Close et al. [2017].  Clusters in HadISST and 315 

NSIDC are very similar and shown in Supp. Figs. 4 and 5 respectively. 

In summer, detrending the data leads to clusters with more marked regional contrasts (compare Figs. 5 and 9). The first 

cluster in OSI SAF, which dominates in two thirds of the years, shows a dipole of positive SIC anomalies in the Kara, Barents, 

and Greenland seas and negative ones in the East Siberian and Laptev seas (Fig. 9). The second cluster mirrors the first one 

but with opposite-sign and larger anomalies (Fig. 9). These two clusters respectively resemble the fingerprint of a positive 320 

(in 1995, 1999, 2002, and 2005) and negative (in 1996, and 2004) Arctic dipole on the summer SIC [Wang et al., 2009]. 

Occurrence of these two clusters, however, does not systematically coincide with strong Arctic dipole anomalies (for 

example, in 1998 or 2003; Wang et al., 2009). The Arctic oscillation has also been proposed as a driver of similar SIC anomaly 

patterns [Rigor et al., 2002; Rigor and Wallace, 2004; Wang et al., 2009]. Lastly, the third cluster shows a monopole of strong 

negative anomalies confined to the Beaufort gyre. This pattern dominates only in 4 years such as, including 2007, when the 325 

Arctic sea ice extent was the lowest over the period 1979–2014. Such extremeExtreme melting events such that have been 

associated with an exceptional episodeepisodes of atmospheric [Graversen et al., 2010] and oceanic [Woodgate et al., 2010] 

warm flow into polar latitudes and summer storm activity [Screen et al., 2011]. Note that cluster repartition of detrended 

data is not exactly the same as in HadISST and NSIDC in summer (Supp. Fig. 5): their first onesclusters are similar to the first 
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one in OSI SAF but with a different local expressions; their thirds clusters  resemble the second one in OSI SAF but with 330 

weaker anomalies near the Alaskan coast. 

Regarding their sensitivity to the ITD configuration after detrending, the winter clusters show a rather consistent model–

data agreementWith respect to the sensitivity of the model clusters to the ITD discretization, we find that the winter clusters 

rather consistently agree with the observed ones both in terms of the spatial correlation coefficients (Fig. 10) and RMSE (not 

shown) and are little impacted by the discretization. In summer, increasing the number of categories beyond 30 improves 335 

theleads to a statistically significant improvement in model–data correlation coefficients (Fig. 10) and reduces, while reducing 

the RMSE (not shown) for all the clusters in the S1 and S3 configurations (while no robust response is found in the S2 

configuration)discretizations. This implies that, overall, a large number of   thin categories can help improve the 

representation of SIC interannual variability in summer. In contrast to what happens within not detrended data, the one-

category configurationsingle-category discretization agrees with the observations as well as any other configurations, 340 

suggesting that this configuration poorly captures the forced variability. This suggests that one category poorly captures the 

forced variability (this is, the long-term melting trend) but is as wellgood as any other one the discretization at capturing  

interannual variability. 

3.4 Anomaly-based analyses 

Two extra analyses are discussed in the following to complement previous ones and explore their robustness. In the first 345 

analysis, spatial correlation coefficients are computed directly, in each year, between the simulated and observed SIC 

anomalies in both seasons and hemispheres. In each case, a distribution of correlation coefficients is generated by combining 

the values in all the years and in the three observational products. This analysis suggests only marginal sensitivity to the 

number of sea ice categories or its configurationdiscretization in the Arctic before (Supp. Fig. 6) and after detrending (not 

shown) and in Antarctica (not shown). 350 

The second analysis is to provideprovides a spatial perspective to the impacts of the ITD configurationsdiscretizations on 

SIC. For this, temporal correlation coefficients at the grid point level are first computed between simulated and observed SIC 

anomalies in both seasons. The trendA linear fit in such correlation coefficients with respect to the number of categories is 

then calculated across simulations of a given configurationdiscretization. The result is a map which provides a measure of 

the regions where changing the number of categories most impacts agreement with observations. Since results are similar  355 

across the observational products, an average between the three cases is computed for the Arctic (Fig. 11) and Antarctica 

(Supp. Fig. 7).  

Increasing the number of categories tends to decrease model–data agreement (blue colors in Fig. 11) in the S1 and S3 

configurationsdiscretizations in both seasons (but most clearly in the S3 one in summer) in the Central Arctic, near the region 

where the largest increase in sea ice thickness is simulated for an increase in the number of categories [Massonnet et al., 360 
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2019]. In thatthis region, a higher sea ice volume due to enhanced bottom growth rate results in a less realisticlarger bottom 

growth rate increases the sea ice volume for finer ITD resolutions. This is because conductive heat flux through ice, which is 

inversely proportional to ice thickness, increases (facilitates ice growth) on average on a grid cell when the thickest ice 

accumulates on a few categories and thereby leaves more grid space for faster-growing thin ice [Massonnet et al., 2019]. In 

the Central Arctic, therefore, higher sea ice volume makes the simulated sea ice less realistic. In the S2 365 

configurationdiscretizations, model–data agreement particularly improves with the number of categories in winter north off 

Greenland and the Queen Elizabeth Islands, regions where the thickest ice is simulated (Fig. 11, contours). Although the 

overall Arctic sea ice volume increases with the number of categories [Massonnet et al., 2019], the improvement in that 

particular region suggests that morea discretization including more thick categories helphelps capture variability in thick ice. 

In summer, a decrease in model–data agreement occurs in the same region, although there are improvements elsewhere in 370 

the central Arctic that can potentiallymight compensate for this decrease (Fig. 11). In Antarctica, only the S2 

configurationdiscretization in summer (JFM) shows some clear trends in model–data agreement near the Ross Sea (Supp. 

Fig. 7). However, these results appear spurious as sea ice is very thin and presents a concentration below 15% in the area 

(contours in Supp. Fig. 7). 

4 Discussion and conclusions 375 

This article explores the impact of different ITD configurationsdiscretizations on the simulated SIC variability in the Arctic 

and Antarctica. Using ocean–sea ice stand-alone simulations with the NEMO3.6–LIM3 model, we assess three different ITD 

configurationsdiscretizations in which both the number and boundaries of the sea ice thickness categories are changed. SIC 

variability is characterized via K-means clustering analysis over the period 1979–2014; the simulated clusters are compared 

with those from three satellite observational products, OSI SAF (OSI-409/OSI-409-a), NSIDC (0051), NSIDC, and HadISST v2.2. 380 

We focus on two seasons, JFM (winter) and ASO (summer), across which monthly clusters are found most spatially coherent. 

In the Arctic, cluster comparison is done bothby including and excluding the long-term trends, thistrend, the latter by 

detrending with a spatially varying 2nd degree polynomial. We complement the cluster analysis by comparing sea ice extent 

and anomaly fields between model and observations. 

Overall, winter clusters reflect the imprint of atmospheric variability such as NAO and Siberian High on the Arctic SIC, and 385 

of ENSO on the Antarctic SIC. Summer clusters reflect the dominant trends in SIC, slightly positive in Antarctica and 

prominently negative in the Arctic. After detrending, Arctic summer clusters allow isolating the SIC response to atmospheric  

variability associated with the Arctic Dipole and Arctic Oscillation, as well as identifying outstanding events such as the 2007 

minimum. 

Comparison between simulated and observed clusters indicates that no particular ITD configuration and number of 390 

categories systematically helps to improve the representation of model SIC variability at both poles in winter, both before 
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and after detrending. In summer, more thin-ice categories decrease model–data agreement at both poles before detrending, 

due to a poorer representation of the long-term trends; more categories, however, do improve model–data agreement in 

the Arctic after detrending. Nonetheless, such an improvement is foundsea ice extent minimum. 

Although the results of all the model–data comparison present mixed conclusions, depending on the analysis, we extract 395 

a few take-home messages:  

i) The single-category discretization shows the worst results overall, particularly in the Arctic summer without detrending 

due to a misrepresentation of the long-term melting trend. This result reinforces the recommendation of using multi-

category sea ice models. In the companion study, Massonnet et al. [2019], the single-category discretization is found 

producing realistic mean states of sea ice extent; it was however hypothesized that this might be for the wrong reasons, 400 

thanks to error compensation in the simulated mass balance terms. The finding of the present study, focusing on variability, 

supports that the single-category framework is in fact not appropriate for investigating the cause of large-scale sea ice 

changes. 

ii) Discretizations with more than 10 sea ice thickness categories can degrade model ability to simulate realistic Arctic SIC 

variability. In particular, better resolving thin ice in the Arctic hampers SIC representation, likely related to an unrealistic sea 405 

ice volume increase in the central Arctic [Massonnet et al., 2019] and a poorer representation of the long-term melting trend 

in summer (this study). In contrast, a finer resolution in thin sea ice increases realism of the simulated SIC in Antarctica; this 

improvement, nonetheless, most clearly arises for more than 30 thin categories, for which computational costs substantially 

increasesincrease substantially (from 30 to 60 minutes per simulated year fromfor the standard 5-category casediscretization 

to 60 minutes for the 30-category one; Massonnet et al., 2019). The one-category configuration tends to show the worst 410 

results overall, particularly in the Arctic summer before detrending. This reinforces the recommendation of using multi-

category sea-ice models, such as LIM3. 

Direct comparison of the SIC anomaly fields between observations and simulations suggests that increasing the number 

of thick categories can improve the representation of the very thick ice variability north of Greenland in winter. By contrast, 

including more thin categories can reduce model–data agreement in summer in the central Arctic, related to an overly large 415 

sea ice volume in the area [Massonnet et al., 2019].  

Finally, comparison of SIE in simulations and observations suggests that a finer resolution of the thin ice and not of the 

thick ice increases realism of the simulated Antarctic summer SIE in our model. 

Although the results of all these comparisons present mixed conclusions, depending on the analysis used, we can extract 

a few take-home messages. First, better resolving the thin ice in the Arctic can hamper SIC representation in the model, 420 

potentially related to an unrealistic sea ice volume increase, although it can improve its representation in Antarctica. Second, 

more thick categories can improve the very thick ice variability in winter in the Arctic, without noticeably compromising the  

performance in other regions or seasons. Thus, although no clear conclusion is drawn about an optimal number of sea ice 



15 
 

categories, our analysis does establish that configurations with more than 10 sea ice categories can degrade the realism of 

the simulated Arctic SIC variability. This appears counter-intuitive, as a finer resolution will allow the sea ice model to 425 

reproduce actual sea ice conditions better. Note, however, that NEMO3.6–LIM3 uses parametrizations and parameter values 

that are developed to reproduce actual sea ice conditions for a 5-category configuration. Changes in the ITD configuration 

may therefore need re-tuning those parametrizations and parameter values. This is however beyond our scope, as 

improvements in model SIC variability would hence reflect the new model configurations and not solely the use of a different 

ITD configuration. In light of our results, we recommend using the standard (S1.05) or similar configuration in NEMO3.6–430 

LIM3, which is, in addition, computationally more efficient. 

Our study and its companion, Massonnet et al. [2019], present an advance with respect to previous efforts, since they 

jointly address the response of the mean climatological state and variability of the sea ice to a model parametrization. The 

two studies use ocean stand-alone simulations in their analysis, as toWith respect to including more thick categories, our 

analysis shows that it improves variability in very thick sea ice north of Greenland in winter without noticeably compromising 435 

the performance in other regions or in summer. 

That multiple-category discretizations can degrade model realism appears counter-intuitive, since a finer resolution 

should allow the sea ice model to reproduce actual sub-grid scale variability in sea ice better. We note, however, that 

NEMO3.6–LIM3 uses parametrizations and parameter values which are adjusted for the 5-category discretization. 

Adjustments in the ITD may therefore need retuning those parametrizations and parameter values, which in LIM3 include, 440 

among others, the snow thermal conductivity, the bare sea-ice albedo, and the compressive ice strength, P*. Such model 

retuning is however beyond our scope, as improvements in SIC variability would hence result from the new model setup and 

not from each different ITD discretization. 

Since no robust conclusion about the optimal number of sea ice categories can be drawn based on our analyses, we 

recommend using the standard (S1.05) or a similar discretization in NEMO3.6–LIM3, which is, in addition, computationally 445 

more efficient than others with more categories. This is in line with previous studies finding that discretizations with 5–7 

categories represent sea ice characteristics realistically enough [Bitz et al., 2001; Lipscomb, 2001; Massonnet et al., 2019]. 

As noted by Hunke [2014], however, in the Los Alamos Sea Ice Model CICE "5 ice thickness categories are not enough to 

accurately represent observed thickness data nor to properly model mechanical sea ice processes that control ice volume." 

A growing number of climate model now include a sea ice model with an ITD, such as LIM3, the Los Alamos Sea Ice Model 450 

CICE [Hunke et al., 2013], and the GFDL's SIS2.0 [Adcroft et al., 2019], and the prospect is that more will do so in the future. 

Although including an ITD has been proven to be beneficial for simulating more realistic sea ice characteristics [e.g., Bitz et 

al., 2001; Holland et al., 2006; Massonnet et al., 2011; Ungermann et al., 2017; Uotila et al., 2017], it introduces potential 

new tuning options, such as the number of categories, their boundaries, and the assumed shape function, which might need 

further validation against observations. A very fine ITD also makes simulation computationally very expensive, a factor that 455 



16 
 

is particularly limiting in fully coupled models. Similar analyses to the one presented here would therefore be necessary to 

assess the impact of using a specific ITD discretization in a particular climate model. The extent to which our particular 

recommendation for NEMO3.6–LIM3 can be extended to other sea ice models is difficult to assess, however, considering 

that new tuning might be necessary for each ITD discretization, and that different sea ice models might have different tuning 

parameters and sensitivity to their values.  460 

A potential caveat of our study is the use of ocean stand-alone simulations. These are aimed to reduce potential sources 

of uncertaintyuncertainty sources in SIC variability given byassociated with stochastic atmospheric noise, which might mask 

comparison with observations and the search for improvements in model realism. An open question for future studies is 

thereforethen whether our conclusions would hold in coupled model configurations, where ice-atmosphere feedbacks may 

play a role in modulating the impact of the different ITD configurations. Despite the potential caveats, our joint approach 465 

can setmight modulate the influence of ITD discretization. We propose an analysis focused on the impacts on sea ice and 

surface energy flux seasonal cycles, variability modes, and long-term trends, similar to this study and its companion paper, 

Massonnet et al. [2019]. The cost and benefits of such an analysis in coupled setups should however be weighted carefully 

beforehand, considering the limited impacts we find in ocean stand-alone simulations and the increase in computational 

costs for ITD discretizations with large numbers of categories. 470 

This study and its companion, Massonnet et al. [2019], present an advance with respect to previous efforts since they 

jointly address the response of the mean climatological state and variability of sea ice to changes in a model parametrization. 

This approach sets an example for future assessments of the impact of model parametrizations on the representation of the 

sea ice or other climatic variables. Unfortunately, observational data are still too short for many climate components, 

andmaking this sort of analysis is thereforeparticularly challenging at most. 475 
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