Responses to the referees and changes to the manuscript

We want to thank the two referees for their helpful and constructive reviews, which have greatly
improved the manuscript. Below please find our responses to all of your points. The track-
changes (latexdiff) version of the manuscript follows at the end of this pdf.



Dear Sakina-Dorothée,

We like to thank your for the effort and the time spent for a careful and positive review. Your comments are much
appreciated, as they are constructive and helpful. We listed our responses to all of your points below and hope the
manuscript is now satisfactory.

Remarks on the Methods

Equations 1 and 2: why don’t you also test the sensitivity of the model to the parameters of these two equations? Please
justify it in the text.

Reply: These two temperature configurations are empirical functions, directly simulating expected or observed
temperature dependencies of N fixation. One of the main goals of this study is to compare a more real-
isitic temperature dependency (OPEM-H) to the default function used in the UVic (OPEM). Thus, our study
compares two different model configurations. The structural difference becomes ultimately fixed by the tem-
perature function employed, which includes the values assigned to the respective parameters. In addition,
our focus is on variations in physiological parameters, but the parameters of the two different temperature
equations have no clear physiological meaning. They determine (define) the two model configurations ex-
clusively. We explain this now in the text on p. 4, lines 94-103: “Both of these equations are empirical functions
directly simulating expected or observed temperature dependencies of N; fixation. We consider Eq. (2) more realistic
and hence analyse its effect on model behaviour. However, since the parameters in these two equations have no clearly
identifiable physiological meaning, we consider a sensitivity analysis of the parameters in Egs. (1) and (2) beyond the
scope of the present study. Note that some models do not enforce any temperature limitation on nitrogen fixation (e.g.,
Dunne et al., 2012; Ilyina et al., 2013; Jickells et al., 2017). In the present ocean, waters colder than about 15 °C are
generally replete with fixed inorganic nitrogen. For existing parameterisations of N, fixation, which are functions of
the nitrate deficit with respect to phosphate, there has been little indication of substantial impacts of the formulation of
temperature control at low temperatures on the distribution of nitrogen fixation (Somes and Oschlies, 2015; Landolfi et
al., 2017). Such differences in formulation may, however, gain importance in environmental conditions different from
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today’s.”.

Table 1: More clearly indicate in the legend of Table 1 that the identified “best” values for trade-off simulations were the same
for the two model configurations OPEM and OPEM-H. 1t is indicated in the text later, but it has to be clearly mentioned
here for the reader.

Reply: We have added “Note that the trade-off simulations share the same parameter combination.” to the table caption.

Lines 102-107: I am not entirely convinced by the arguments given here to justify why the parallel setup is better than
systematic calibration approaches. Indeed, one can imagine a systematic calibration where X values are systematically
tested for the 13 parameters. In that case, I do not see how this would lead to individual model simulations that would
depend on other [ previous combinations of parameters, neither how it would prevent re-evaluation with different metrics.
However, the first item would be true for a parameterisation based microgenetic algorithm for instance. The authors may
need to rephrase this sentence to make it accurate (e.g., by replacing the term “systematic” by an other one).

Reply: We agree, by “systematic” we originally thought of a typical path-dependent minimization (or maximiza-
tion) in the parameter-cost function manifold, which is an iterative process. We replaced “systematic” with
“iterative”, now on p. 4, line 113.



Remarks on the Results

Table 2: Could you add a column with observation values, at least for the depth levels where the data are available (and
also add rows of simulated values at these different depth levels), so that the reader can also estimate if the observed
concentrations/fluxes fall into the range of simulated values? Otherwise, I have the feeling that this table could be
removed. As it is, is in unclear, even from lines 170-175, which main result(s) the reader should keep in mind from this
Table.

Reply: We added one column with observational estimates, based on global averages of either available observa-
tions or of data-based (data-driven) model results for those tracers/rates whose measurements are sparse on
the global scale. For better comparison we adjusted the depth ranges accordingly. Now Chl concentration is
the average of the top 50 m, and NCP is calculated from 0 to 100 m. We removed POC export and show only
NCP, since at steady state it is equivalent to POC export flux.

N

Positive comment: Figure 1 nicely shows that the model outputs are highly sensitive to vg and Qg

(and to gmax and
Bpny at the second order)!

Section 3.3.3 is quite long, but it presents a very detailed and interesting description and associated comments of the results
presented in Figure 1. Keep it as it is.

Reply: We appreciate your positive comments.

Figure 3: Justify in the methods the reason(s) of your choice of performing a regional splitting into latitudinal bands. This
is missing in the article. Indeed, you mention later line 259: “sensitivities of dissolved N:P ratio to parameters in |...]
three geographical settings (low, high latitudes and global)”. It has to be mentioned (and justified) earlier.

Reply: We added thejustification in the Methods section, now on p. 5, lines 127-129: “We also evaluate the sensitivities
of surface particulate elemental ratios (C:N, C:P and N:P), as well as nitrate to phosphate ratios for different latitude
bands (40°S to 40°N, 60°S to 70°S, and globally). This is because dissolved and particulate elemental ratios in general
show very different behaviour between lower and higher latitudes (Martiny et al., 2013a).”

Line 250: “where diazotrophs are abundant in high latitudes”: yet, this is not visible from your results. If this comes from
Pahlow et al. 2019 please indicate it.

Reply: We have added “(see Fig. 15 in Pahlow et al., 2020)” on p. 11, lines 271-272.
Figure 2: Add a legend for black (OPEM) and grey (OPEM-H) as you did in Figure 1. Same comment for Figure 3.
Reply: Done

Line 285-288: It seems to me that these sentences should rather be included in the Methods section, not in the Results section.

Reply: We moved this part to the Methods section (now on p. 7, lines 185-189).

Figure 3: It may be nice to highlight the values that differ between OPEM and OPEM- H, for instance with rectangles (around
the bars) and or stars (below or above the bars), so that it would clearly strike the eyes that the differences between the
two configurations are obtained for the 60°S-70°S latitudinal band for C:N, C:P, and N:P. Also indicate in the legend
the choices you made for the “different latitude bands”.

Reply: We follow your suggestion and have added asterisks below or above the bars where sensitivities are very
different between OPEM and OPEM-H. We also indicate our choices of our latitude bands in the legend.



Figure 5 is not easy to read as it is because purple and black symbols look very similar. Smaller symbols may be used to help.
Drawing horizontal and vertical lines to better underline the location of the WOA 2013 values (green square) may also
be a good idea (although the figure is very well described lines 306-313).

Reply: We shrank size of the symbols, and changed the color key, which appears to make it easier to read. In
additional to drawing lines to indicate the location of the WOA 2013, we added its nitrate and oxygen values

in the legend.

Lines 313-314: “Overall, we stress that the minimum-cost and trade-off solutions appear at the margin of the full spread of
the ensembles, which could be interpreted as indicating a model deficiency.”: I do not understand what you mean here.
For me, it seems that they are in a patch of simulations with symbols in black, indicated 10g10 of cost values lower than
8, which seems OK. What are you referring to by the term “model deficiency”?

Reply: Ideally, we would obtain the ensemble solutions evenly spread around the WOA 2013 data-based estimate.
That the cost values close to this point are low is a necessary consequence of the definition of the cost func-
tion. Our results clearly show, however, that the mean of the ensemble solutions does not correspond to the
observational estimate. Given all the non-linearities, this is not really surprising. Referring to this as a “model
deficiency” might be an overly critical statement. We removed the term “model deficiency” and rephrased
our explanation on p. 17, lines 332-333: “The ensemble solutions are unevenly spread around the WOA2013 data-
based estimates. This highlights that our trade-off solutions could not have been identified had we only considered the
ensemble means.”

Line 315: “Figures 6 and 7 show zonally averaged NO3~ and O, in simulations with low and high NO3~ and the trade-off
simulations”: Would it be possible to delineate these simulations in Figure 57 Indeed, it is unclear if the concentrations
presented Figures 6 and 7 come from one simulation only, or from several (how many?) simulations. When describing
these two figures, also underline the fact that the outputs from OPEM and OPEM-H are very similar here. If this is
indeed the trade-off simulation (as indicated in the legend), then the results should be the same and there is no need to

show twice the same figures.

Reply: The panels in Figures 6 and 7 are zonally averaged NO3~ and O, from three simulations that result from
the three parameter sets that generated the lowest and highest NO; ™ inventories, and the trade-off simulation
in the OPEM configuration. We have revised the sentence to read “Figures 6 and 7 show zonally averaged NO3~
and O, in simulations with the lowest and highest NO3~ and the trade-off simulation in the OPEM configuration.”
on p. 17, lines 334-335. We indicate the low and high NO;~ simulations with solid black symbols in Figure
5, while the trade-off simulations are already highlighted. We now underline the fact that the results from
OPEM and OPEM-H are very similar and removed the panels for OPEM-H from these figures. We have also
added zonal averages from the WOA 2013 for comparison.

Line 332: “because of intense denitrification in the ODZ” => the last (and first) time that you used the abbreviation ODZ
was line 193. As it has not been used since, I recommend giving the full name here again and not just the abbreviation
(as you do it later line 402).

Reply: We have added the full name “oxygen deficient zones”, now on p. 17, line 352.

Line 334: “widespread ODZs, occupying much of the deep water in the northern and equatorial Pacific as well as the Indian
Ocean (Figure 6)” => Please indicate these areas clearly on the Figure 6, using arrows for instance.

Reply: We have added in the supplement a global 2D map (Figure S1) showing oxygen concentrations in the deep
water (1240 to 5490 m) for a simulation with very low globally averaged oxygen. This simulation is the same
as the low oxygen OPEM simulation shown in Figure 6.



Figure 8: clearly mention in the legend that the two trade-off simulations for OPEM and OPEM-H are in fact the same, and
use only one symbol for this trade-off simulation for figure clarity.

Reply: The two trade-off do have same parameter combination, but their costs are slightly different, so we need
to keep both symbols. We have added “Note that trade-off simulations share same parameter combination but have
slightly different cost values.” in the caption.

Remarks on the Discussion

The section 4.1.1.: (especially the lines 348-362) provides new and very interesting hypotheses on the link between NO3
inventory at global scale and phytoplankton physiology. I appreciate this section.

Reply: We appreciate this comment.

Line 404: “ODZ volumes in the trade-off simulations are more than twice that in the WOA 2013 (Figure 10)” => I do not
see where it is visible on the Figure 10. I guess it could be inferred from Figure 10C from an expert eye, but I would
rather give the precise value in the legend of Figure 10, with the corresponding vertical lines on Figure 10C, if you decide
to keep the text as it is. Besides, this is the fist mention of Figure 10, that will be mentioned again line 439. I recommend

clearly describing this figure here and later in the discussion, to fully explain and exploit it.

Reply: We have added ODZ volume for the WOA2013 (7.45 x 10 m?) in the caption and also added a description
of this figure earlier in this section on p. 23, lines 437-439: “To evaluate how water-column denitrification affects
the cost value of our simulations, we arrange our simulations in the order of their cost values and plot the volume of
oxygen deficient zones (ODZs) against cost values for both the OPEM and OPEM-H configurations in Figure 10A to
C.”. On line 439 we misplaced an extra (Figurel0) here. This sentence is referring to Figure (51 -S6) (now

Figure (52-S7)) in the previous sentence. We have removed the misplaced (Figure 10) now.

Line 436-437: “A peculiarity of our cost function is that it complements the data-model misfit, i.e. the residuals of spatial
mean log-transformed values, with an additional term that resolves differences in spatial variances” => Yes, indeed! |
have particularly appreciated this.

Reply: We are happy that this is perceived in a positive way.

Line 439: “The cost function’s variance term introduces a strong penalty to approximately 30 % of all ensemble model solu-

”

tions (Figure 10).” => As mentioned above, Figure 10 lacks a clear description. I do not see what in Figure 10 supports

this, but I am sure the authors could give more explanation for helping the reader through this.

Reply: We apologize, because we misplaced an extra (Figurel0) here. This sentence is actually referring to Figure
(51-S6) (now Figure (S2-S7)) in the previous sentence. We have removed the misplaced (Figure 10) now.

Additional remarks

I am wondering why keeping the quarter of the 400 simulations with the highest (worst) cost values in all the analyses, and
not keeping only the 200 to 300 best ones?

Reply: This is a fair and meaningful comment, because it reflects an aspect we also discussed internally. We con-
cluded that our analyses should involve a global (total / full) sensitivity analysis (sensitivities to all variations

in the full parameter-cost function manifold), rather than local sensitivity analyses in the vicinity around the



trade-off solutions. This way we think we reveal information about the full model behaviour. From our in-
ternal discussion we learned that another difficulty would be to justify a threshold limit around the vicinity,
which becomes even more subjective in our situation where the minima (“best”) do not exactly match the
trade-off solutions. There is no justification for why we could use only the best 200, 237, 299, or 300 solu-
tions for our analysis. We have decided instead to add an explanation on p. 5, lines 129-130: “We keep all 400
simulations because we want to obtain the sensitivity information for the full parameter ranges.”.

Technical corrections

Minor comments and typos:

Lines 44-46: “Our new ecosystem model [...] offers new features and it improves the representation of some biogeochemical
tracers on the global scale (see accompanying study, Pahlow et al., 2019)” => Which biogeochemical tracers? Give
examples in brackets.

Reply: We provide examples here, so now the sentence reads “Our new ecosystem model | ...] offers new features and it
improves the representation of some biogeochemical tracers on the global scale (e.g., net community production (NCP)
and particulate C:N:P in the surface water, see Part I, Pahlow et al., 2020).” on p. 2, lines 45-47.

Lines 48-49: “This model approach yields mass flux estimates with spatial and temporal variations in the elemental C:N:P
stoichiometry of both inorganic nutrients and organic matter.” => Add at the end of this sentence: “as observed in
situ” and give some references to justify (e.g. Martiny, A.C., Vrugt, ].A., Primeau, EW., Lomas, M.W., 2013. Regional
variation in the particulate organic carbon to nitrogen ratio in the surface ocean. Global Biogeochem. Cycles 27, 1-9.)

Reply: We have added “as observed in situ” and cite Martiny et al. (2013) and Loh et al. (2000) now on p. 2, line 51.

Line 79: “Our setup comprises ensembles of 400 simulations for each of two model configurations. The two model configu-
rations differ in how temperature affects diazotro- phy.” => This could be replaced by “Our setup comprises ensembles
of 400 simulations for each of the two model configurations that differ in how temperature affects diazotrophy.”

Reply: Done, now the sentence is on p. 3, lines 85-86.

Line 102: “the parallel setup with different parameter combinations has a some advantages” => Remove “a”.
Reply: Done, now the sentence is on p. 4, line 113.

Line 103: Replace “Individual” by “individual”.

Reply: Done, now it is on p. 4, line 114.

Legend of Figure 4: Replace “minmum-cost” by “minimum-cost”.

Reply: Done.

Line 337: a space is missing after the term “quota”.

Reply: Done, now the space is on p. 18, line 358.

Line 360: “our simulations: A more intense...” replace “A” by “a”.

Reply: Done, now it is on p. 22, line 383.



Line 378: You may want to change “do contribute some variations to most of the tracers” by “do contribute to some variations
of most of the tracers”

Reply: Done, now the sentence is on p. 22, lines 405—406.
Line 393: Figure 5 instead of Fig. 5 (for homogeneity).
Reply: Done, now it is on p. 23, line 429.

Line 421: “ The mean global estimates +1 standard deviation in OPEM and OPEM-H are...”=> You may want to replace
//illl by Ili/,'

Reply: Done, now it is on p. 24, line 466.
Line 496: “and” instead of “adn”

Reply: Done, now it is on p. 28, line 542.



We thank the referee for the constructive review. The comments and questions are useful, which helped us to
introduce changes and improve our manuscript. We listed our responses to all of your points below and hope the

manuscript is now satisfactory.

General comments

This paper aims to optimize and calibrate important parameters used in the lower trophic marine ecosystem component of
UVic-ESM and is a companion paper to the model description paper (Pahlow et al., 2019). In this study, authors set up cost
functions to minimize the misfit between model outputs and observations for nitrate, phosphate, dissolved oxygen, and surface
chlorophyll-a. Of the 13 parameters they have chosen to calibrate, the subsistence N quota of phytoplankton and remineralization
rate have the highest sensitivity. Overall, the paper is nicely written and organized. Optimization schemes are well described
and the parameters are calibrated rigorously. However, I do have some important points that need to be clarified before I am
ready to recommend publications of this paper in the GMD.

1. What is the “best” model choice? The authors state in line 7 — “For identifying the “best” model we therefore also consider
... water-column denitrification”. I was not ultimately clear after reading this paper, what the “best” model choice is.
Is it OPEM/OPEM-H with the lowest overall total cost function or “trade-off” model which does not necessarily have
the lowest cost function (7th best) but does best at representing N cycle? I may have missed this but if water-column
denitrification and N2 fixation are indeed very important, why did you not include these in your cost function?
Reply: The “best” model solutions in line 7 refer to the trade-off simulations in each of the OPEM and OPEM-
H configurations. We changed “best model solutions” on p. 1, line 8 to “reference parameter sets” to avoid
this confusion. We also modified p. 1, lines 6-8 to: “The simulations closest to the data with respect to our metric
exhibit very low rates of global N, fixation and denitrification, indicating that in order to achieve rates consistent with
independent estimates, additional contraints have to be applied in the calibration process. For identifying the reference
parameter sets...” During our analysis we had considered the implementation of observed N fixation rates to
our cost function, as suggested by the referee. But we quickly learned that this is not straightforward, mainly
because of the scarcity of observed rates on the global scale, which introduces a large imbalance (between the
many terms for each of NO3 ™, O, and DIC, and the one term for global N fixation) in our cost function. The
spatial and temporal coverage of these data is very different from the monthly resolved tracer concentrations
we consider for our cost function. Such an imbalance requires the introduction of some regularization, which
would make the cost function less objective than it is now. Instead, we interpreted the identified model
solutions in terms of a multi-objective optimisation. In this manner, the consideration of global N fixation
rates is treated as a second objective, in addition to our cost function being the first objective. This is the
reason why we refer to these model results as trade-off solutions. We address the problem now more explicitly
on pp. 24-26, lines 474-478: “Incorporating N, fixation as a single global rate estimate into our Likelihood-based cost
function as a single additional term would, without some difficult-to-define reqularization, become overwhelmed by the
many tracer and variance terms defined in Eqs. (6) and (7). Rather, the additional information is treated as a second
objective, namely that global N2 fixation should be greater than 60 Tg N yr—! (see above), which is similar to applying
a multi-objective approach for model calibration (e.g., Sauerland et al., 2019), where a trade-off between two or more
objectives (cost functions) is resolved.”

2. What is the selling point of this “optimized” flexible C:N:P model? Authors state that most NPZD models do not ade-
quately describe the behavior of plankton physiology such as non-Redfieldian plankton stoichiometry. However, outside
the UVic framework, there are quite a few ESMs in the market already with flexible C:N:P including those in CMIP5 (see
Bopp et al., 2013) and CMIP6 (see Arora et al., 2019). There are also some studies that utilize Pahlow’s phytoplankton
model (Kwiatkowski et al., 2018, 2019). My question then is what is the selling point of this model over other existing



models out there? Is it the computational efficiency and how useful is this model for studying climatic conditions such
as the last glacial maximum or future projections (lines 39)? I think some discussions on model comparisons would be
useful.

Reply: The combination of optimality-based nitrogen fixation (Pahlow et al., 2013) and optimal current feed-
ing for zooplankton (Pahlow, 2010), together with the flexible C:N:P stoichiometry are the novel features in
the OPEM. Kwiatkowski et al. (2018, 2019) adopted a previous optimality-based model for phytoplankton
growth (Pahlow et al., 2009) that does not include optimal resource allocation for nitrogen fixation. It also
lacks the optimal current feeding model of zooplankton. None of the biogeochemical modules of the ocean
models in CMIP5 and CMIP6 resolve dynamics with respect to the optimality conditions applied in OPEM.
PELAGOS (Vichi, Pinardi, and Masina, 2007) is the only model application with variable C:N:P in phyto-
plankton in CMIP5 (Bopp et al., 2013) and CMIP6 (Arora et al., 2019). It does not consider diazotrophy, and
other models resolve either variable N:P (TOPAZ2, Dunne et al., 2013) or variable C:P (MARBL (CESM2),
Danabasoglu et al., 2020). In addition to the variable C:N:P stoichiometry, the optimality-based formulations
of primary producers and zooplankton have a demonstrated ability to describe processes observed in the
laboratory as well as in mesocosm studies and hence provide a strong mechanistic foundation for OPEM. We
have added a comparative description in the introduction in this ms on p. 2, lines 51-55: “PELAGOS (Vichi
et al., 2007), the only ocean model with variable C:N:P in phytoplankton in CMIP5 (Bopp et al., 2013) and CMIP6
(Arora et al., 2019), has no diazotrophs, others either have only variable N:P (TOPAZ2, Dunne et al., 2013), or vari-
able C:P (MARBL, Danabasoglu et al., 2020). While some of the existing models have a variable C:N:P based on the
optimality-based model for phytoplankton growth (Kwiatkowski et al., 2018, 2019), optimality-based N, fixation is not
included.”, as well as extended that in Part I on p. 3, lines 65-68: “We view the implementation of OPEM as one step
towards the ultimate goal of reconciling plankton-organism behaviour as observed in the laboratory with global marine
biogeochemistry. Therefore, the variable stoichiometry of primary producers should be considered but one, albeit central,
aspect of the mechanistic foundation of OPEM.” in Pahlow et al. (2020).

. How sensitive is “sensitive”? Authors discuss the sensitivity of each parameter in Section 3.1 but one thing I find prob-
lematic is that all the graphs in Figure 1 — 3 have different y-scale increments. Since sensitivity is non-dimensional, they
should ideally all have the same axis for a fair comparison since authors frequently say things like “Sensitivity of XXX
is low” (e.g., line 196) or “No single parameter dominates sensitivity” (line 217). Although such rigorous statistical
treatments may not be expected for this kind of modeling work, I want some general clarifications on how authors inter-
preted whether something is very sensitive or not.

Reply: The different scales of the y-axes result from our definition of sensitivity in Eq. (3), in which the
tracer difference is divided by the average. Some tracers, e.g., DIC or dissolved Fe, vary much less relative to
their average concentration, because they are more strongly determined by boundary conditions (air-sea ex-
change, atmospheric deposition) or exhibit a huge background concentration (DIC) that is, on the timescales
considered, not affected by biotic or physical processes. Naturally, we expect that our measure of sensitivity,
although normalised and thus being dimensionless, varies on different scales for different tracers or rates.
We see no reason for why this may appear problematic, since our focus here is on contrasting the effects of
the different parameters and not of the different tracers. In fact, it is important for us to take advantage of
the different y-axis scales. Doing so reflects more clearly how sensitive each individual tracer is to variations
in the different parameters. The information of the differences between the tracers’ general sensitivities to
parameter variations is maintained, but according to our chosen style of presentation the emphasis is on the
sensitivity to variations in the individual parameters.

We agree with the referee that we need to be more careful with statements like “the sensitivity of X is low”,
in particular, if we cannot provide a common reference point. It is more appropriate to refer to relative dif-
ferences in the sensitivities, which we have considered in our corrections. Thus, we now use phrases like



“sensitivity of X is lower than Y”. The text of the description of “No single parameter dominates sensitivity”
for N fixation has been corrected accordingly. The rephrased description on p. 10, lines 238-241, now reads:
“The simulated global N fixation rate is sensitive to many parameters, apart from Ao and Q{'dia. Similar relative
changes of most parameter values introduce changes to the global Ny fixation rate that are of similar magnitude. Inter-
estingly, N, fixation is sensitive also to zooplankton parameters, indicating that zooplankton grazing on diazotrophs is
an important factor controlling not just diazotroph biomass but also N, fixation.”

. The highest sensitivity of C:N over C:P and N:P? Regarding the sensitivity, I was quite surprised looking at Figure 3
that C:N has much larger sensitivity compared to C:P and N:P. The current understanding in the scientific community is
that C:N is more homeostatic compared to C(N):P for autotrophs, heterotrophs, and for detritus (Galbraith and Martiny,
2015; Geider and La Roche, 2002; Martiny et al., 2013; Sterner and Elser, 2002). Looking at the companion paper by
Pahlow et al. (2019), steady-state C:N also seems to overestimate observation (Table 3 and Figure 7). I think this is an
important point to address given that C:N (and therefore QoN)) affects all aspects of the model output and that the whole
point of this model is incorporating flexible C:N:P.

Reply: The finding that C:N is more homeostatic than C:P or N:P for particulate matter applies to the spatio-
temporal variability in the current ocean and thus could be compared to our trade-off (reference) simulations,
which is the topic of Part 1 (Pahlow et al., 2020). The present article, however, describes sensitivities of
globally-averaged elemental ratios to parameter variations among 400 simulations with different parameter
settings. Thus, the sensitivities discussed here have a very different meaning to the spatio-temporal variability
of the elemental ratios in the surface ocean. Particulate C:N and C:P are not only directly affected by Qg phy
and Qg/ phys DUt also by the NO;™ and PO,>" inventories. The marine NO;~ inventory varies strongly owing
to N, fixation and denitrification. In contrast, the PO,>~ inventory is conserved in the UVic model, allowing
only shifts in the spatio-temporal distribution of PO,>~. Hence, the sensitivity of globally averaged particulate
C:N across simulations with different parameter sets is greater than that of C:P. We have added a discussion
to clarify this issue and avoid a possible misunderstanding of the nature of these variations in elemental ratios
in the manuscript on p. 22, lines 385-392: “The strong impact of Qé‘{ py 01t the NO3 ™ inventory and globally averaged
phytoplankton C:N causes a higher sensitivity of globally averaged C:N than C:P (Figure 3). A higher Q) phy Tesults in
a higher NO3 ™~ inventory and a lower phytoplankton C:N, both tending to lower particulate C:N and vice versa. On the
other hand, C:P is not as sensitive because we have a constant PO,>~ inventory in the UVic model. Surface particulate
matter C:N is less variable compared to C:P and N:P in field observations along regional gradients (Galbraith and

Martiny, 2015; Geider and Roche, 2002; Martiny et al., 2013; Sterner and Elser, 2002), which is an apparent contrast

N
0, phy
sensitivities are with respect to parameter variations among many simulations, rather than spatial or temporal gradients

to our results, where the sensitivity of C:N to () is the highest among the particulate elemental ratios. However, our

in the one real ocean.”

The overestimated steady-state C:N in Part I (Pahlow et al., 2020) results from N, fixation in the trade-off
simulations being much lower than in the current ocean due to the lack of benthic denitrification. Lower
N, fixation results in a lower supply of nitrogen and consequently an overall higher particulate C:N at low
latitudes. We have added a discussion on p. 23, lines 432-436: “Also, this means that global N, fixation (same
as global denitrification in our spun-up steady-state simulations) is underestimated, and since it occurs mostly at 40°S
to 40°N (see Fig. 13 in Part I, Pahlow et al., 2020), particulate carbon to nitrogen (C:N) ratios could be overestimated
due to a missing input of nitrogen to the surface ocean. This could explain the overestimated surface particulate C:N at
low latitudes (see Table 3 and Figure 16 in Part I, Pahlow et al., 2020).” We have also added a statement about
this topic in Part I (Pahlow et al., 2020) on lines 415-418: “Both the high surface C:N and low P:C in mid-latitude
regions might result from the underestimation of N, fixation, owing to the lack of benthic denitrification. Enhanced N,
fixation would add fixed N to the surface ocean, partly releasing phytoplankton from N limitation and intensifying P
limitation, and could thus bring C:N and C:P ratios closer to the observations.”



We disagree with the statement that “the whole point of this model is incorporating flexible C:N:P.” Flexible
C:N:P can be (and has been) implemented in several ways. Although we consider the representation of
variable C:N:P in the OPEM very important, our main goal here is, nevertheless, improving the mechanistic

foundation of biotic process descriptions in Earth system models.

Specific comments

Equations: Diazotrophy rate increases indefinitely with temperature with this formulation. But the growth rate of diazotrophs
should hit the limit at some optimal value (e,g., 28 degrees Celsius for Trichodesmium; Breitbarth, E., A. Oschlies,
and J. LaRoche (2007), Physiological constraints on the global distribution of Trichodesmium-effect of temperature on
diazotrophy, Biogeosciences (BG), 4(1), 53-61). What is the justification of this temperature formulation? I feel like
Eppley (1972) is not quite up to date.

Reply: Because there is no equation number indicated, the question is not clear to us. In Equation 1 the rate of N,
fixation indeed increases indefinitely with temperature. While we agree in principle that Eppley (1972) is not
quite up to date, this is exactly the reason for introducing Equation 2, which is based on observations, where
maximum diazotrophy rate occurs around 25 °C. However, Eppley (1972) is the temperature function in the
original UVic, and we wanted to be clear about which changes in model behaviour are due to the optimality-
based, variable-stoichiometry formulations, and which are due to the new temperature function. Thus, we
set up two model configurations to identify the influence of the temperature dependence of diazotrophy on
model behaviour.

Line 85: The temperature dependence of nitrogenase activity in the terrestrial system was used. Are there not any data from
marine ecosystem literature?

Reply: No, at least we are not aware of any.
Table 1: How are the “Range” chosen for these parameters?

Reply: The parameter ranges are based on literature values. We have revised the description on p. 4, lines 106-108:
“We vary 15 parameters in total, within the variational ranges shown in Table 1, which are based on reference ranges

according to literature values.” and added references for the parameters in Table 1.
Table 2: Maybe it would be nice to have some “target” values for comparison from WOA 2013 or other datasets.
Reply: We have added the values for the WOA 2013 and other datasets for reference.
Line 202: What are the sinks for DFe?

Reply: We have a sink for DFe to the sediment, we added this to the text, now on p. 10, line 223: ...iron has a fixed
source from atmospheric deposition and a sink in the sediment,...

Figure 2: Phytoplankton (1st column) and diazotrophs (2nd column) have different y-axis range. For a fair comparison, they
should have the same y range (at least for the same given row).

Reply: As explained above in our reply to the third general comment, we have decided to keep the y-axis ranges as
they were. To avoid confusion, we added “Note the different y-axis ranges in the different panels.” to the caption.

Line 246: “their biomass is higher”. What is “biomass”? Is it C quota or C+N+P or Chi? I do not see “biomass” in Figure
2.



Reply: We use the term biomass to refer to C, so higher biomass means higher POC content. The higher diazotroph
biomass (Carbon, vertically-integrated and temporally-averaged biomass, mmol C m~2) can be seen in Fig. 15
in Pahlow et al. (2019) (now Pahlow et al., 2020). We revised the sentence to “is generally larger because of the
growth of diazotrophs at high latitudes (see Fig. 15 in Part 1, Pahlow et al., 2020)” on p. 11, lines 264265 to indicate
this. Note that we changed Pahlow et al. (2019) to Pahlow et al. (2020) in the manuscript.

Line 254-257: The logical behind explaining C:P pattern is not clear. Why does NO3:PO4 supply stoichiometry only affect

low latitudes? Why that fact P-limitation is not present in S. Ocean explain the negative correlation between C:P and

N
0, phy ?

Reply: To clarify the explanation, we revised this part as: “At low latitudes, the effects of Qf phy are suppressed by

N
0, phy
and phosphate are not limiting in the high-latitude Southern Ocean where, under N- and P-replete conditions, cellular
3 phy
the global C:P of total particulate matter, which is dominated by ordinary phytoplankton, is negatively correlated with

Qb iy on p. 11, lines 277-281.

variations in phytoplankton C, which is affected by Q and the consequent change in nitrate concentration. Nitrate

C:P is mainly determined by Qf phy @nd a higher Q would result in a higher cellular P:C (lower C:P). Therefore,

L.282: The description of “trade-off solutions”. I went to Pahlow et al. (2019) but I could not easily locate where the discussion
is. Could you direct me specifically to where it is?

Reply: The two calibrated reference simulations in Pahlow et al., (2020) are the “trade-off solutions” in this manuscript.
We changed “in the companion paper Pahlow et al. (2019)” to “in Part I (reference simulations in Pahlow et al.,
2020)” on p. 16, line 306 to avoid such confusion.

Figures 6 and 7: What does “low nitrate” and “high nitrate” mean? I may have missed it but are they different model
configurations or are they taken from different oceanographic regions?

Reply: The “low nitrate” and “high nitrate” are the simulations with the lowest and highest globally averaged
nitrate concentrations in the OPEM configuration. We revised the description in the caption of Figure 6 as:
“Zonally averaged NO3~ in the World Ocean Atlas 2013 (A), the simulations with the lowest and highest NO3 ™~ inven-
tory (B, D), and the trade-off simulation (C) in the OPEM configuration. Globally averaged NO3~ concentrations are
shown in each panel. Simulations shown here are marked with solid black and open red triangles in Figure 5. Note that
the outputs from OPEM and OPEM-H are very similar and only OPEM results are shown here.” and in the text on
p- 17, lines 334-335: “Figures 6 and 7 show zonally averaged NO3~ and O, in simulations with the lowest and highest
NO;~ and the trade-off simulation in the OPEM configuration.” . We now show the corresponding simulations
in Figure 5. We only show simulations from the OPEM now, because distributions in the OPEM-H are very
similar to the OPEM.

Also Figures 6 and 7: It would be nice to have a zonal average from WOA 2013 for comparison.

Reply: We added zonal averages from the WOA 2013 and removed simulations of the OPEM-H configuration since
the distributions are very similar to those of OPEM.

Line 381: N:P of diazotrophs is critically important for determining the outcome of competition between diazotrophs and
non-diazotrophs so it should be discussed in more depths here (e.g., Weber and Deutsch, 2012).

Reply: While N:P of diazotrophs was proposed to be very important for determining the outcome of competition
between diazotrophs and non-diazotrophs, results of our sensitivty analysis of the OPEM do not support this.
In Figure 2 we can see while N:P of diazotrophs is most sensitive to diazotroph subsistence P quota (Qf 4.,),
dizotrophs biomass (carbon) itself is much less sensitive to Qg, 4ia than to QON/ phy and to QON/ dia- In our view,



the competitive abilities for N and P are more important than the N:P ratio for determining the outcome
of such competition. We have added a discussion about how N:P affects competition and N, fixation of
diazotrophs on p. 23, lines 409-417, which now reads: “Diazotroph subsistence N and P quotas (Qp) 4, and Qf 4,)
in general have much less influence on particulate stoichiometry than QON/ phy and Qb oy because diazotrophs are much
less abundant than ordinary phytoplankton. However, diazotroph biomass (carbon) itself is more sensitive to QS{ 4ig than
QS{ phyr Which shows that the diazotroph subsistence quotas are still important for both their elemental stoichiometry and
ability to compete with ordinary phytoplankton. While elemental stoichiometry has been suggested to be an important
factor for determining the outcome of the competition between diazotrophs and non-diazotrophs, and consequently N,
fixation (Deutsch and Weber, 2012; Weber and Deutsch, 2012), we find that N, fixation is no more sensitive to Qg{ Jin
than to the remineralisation rate (Vg ), Qg{ phy OF zooplankton grazing parameters (Gmax, Gphy, and ¢gia). Nevertheless,
our analysis agrees with the arqument that global N, fixation is mainly determined by rates of fixed-N loss (Weber and
Deutsch, 2014), which in our model is largely affected by vye and Q) iy

Line 407: I think authors should also mention the fact that physical component /ocean circulation is very important for the
global distribution of oxygen and nitrate.

Reply: We have added a statement that the physical component/ocean circulation is very important for the global
distribution of oxygen and nitrate. Now on p. 24, lines 450-451: “While the physical component (ocean circulation)
of the UVic model is also very important for the global distribution of oxygen and nitrate, our results suggest that...”

References

Arora, V. K. et al. (2019). “Carbon-concentration and carbon-climate feedbacks in CMIP6 models, and their com-
parison to CMIP5 models”. In: Biogeosciences Discussions, pp. 1-124. por: 10.5194/bg-2019-473.

Bopp, L. etal. (2013). “Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models”.
In: 10.10, pp. 6225-6245. 1ssN: 1726-4170. por: 10.5194/bg-10-6225-2013.

Danabasoglu, G. et al. (2020). “The Community Earth System Model Version 2 (CESM2)”. In: Journal of Advances
in Modeling Earth Systems 12.2. por: 10.1029/2019MS001916.

Deutsch, Curtis and Thomas Weber (2012). “Nutrient Ratios as a Tracer and Driver of Ocean Biogeochemistry”. In:
Annual Review of Marine Science 4.1, pp. 113-141. por: 10.1146/annurev-marine-120709-142821.

Dunne, John P. et al. (2013). “GFDL's ESM2 Global Coupled Climate-Carbon Earth System Models. Part II: Carbon
System Formulation and Baseline Simulation Characteristics”. In: Journal of Climate 26.7, pp. 2247-2267. por:
10.1175/JCLI-D-12-00150.1.

Galbraith, Eric D. and Adam C. Martiny (2015). “A simple nutrient-dependence mechanism for predicting the
stoichiometry of marine ecosystems”. In: Proceedings of the National Academy of Sciences 112.27, pp. 8199-8204.
por: 10.1073/pnas . 1423917112, eprint: http : //www . pnas . org/content/112/27 /8199 . full . pdf. URL:
http://www.pnas.org/content/112/27/8199.abstract.

Geider, Richard and Julie La Roche (2002). “Redfield revisited: variability of C:N:P in marine microalgae and its
biochemical basis”. In: European Journal of Phycology 37.1, pp. 1-17. por: 10.1017/50967026201003456.

Martiny, Adam C. et al. (Apr. 2013). “Strong latitudinal patterns in the elemental ratios of marine plankton and
organic matter”. In: Nature Geosci 6.4, pp. 279-283. URL: http://dx.doi.org/10.1038/ngeo1757.

Pahlow, M. et al. (2020). “Optimality-Based Non-Redfield Plankton-Ecosystem Model (OPEMv1.0) in the UVic-
ESCM 2.9. Part I: Implementation and ModelBehaviour”. In: Geoscientific Model Development Discussions, pp. 1-
34. por: 10.5194/gmd-2019-323.

Sterner, R. W. and J. J. Elser (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere.



Vichi, M., N. Pinardi, and S. Masina (2007). “A generalized model of pelagic biogeochemistry for the global ocean
ecosystem. Part I: Theory”. In: Journal of Marine Systems 64.1, pp. 89-109. por: https://doi.org/10.1016/j.
jmarsys.2006.03.006.

Weber, Thomas and Curtis Deutsch (2012). “Oceanic nitrogen reservoir regulated by plankton diversity and ocean
circulation”. In: Nature 489. UrL: http://dx.doi.org/10.1038/naturel11357.

— (2014). “Local versus basin-scale limitation of marine nitrogen fixation”. In: Proceedings of the National Academy
of Sciences 111.24, pp. 8741-8746. por: 10.1073/pnas.1317193111.



10

15

20

Optimality-Based Non-Redfield Plankton-Ecosystem Model (OPEM
v1.0) in the UVic-ESCM 2.9. Part II: Sensitivity Analysis and Model
Calibration

Chia-Te Chien, Markus Pahlow, Markus Schartau, and Andreas Oschlies
GEOMAR Helmholtz Centre for Ocean Research Kiel

Correspondence: Chia-Te Chien (cchien@ geomar.de)

Abstract.

We analyse 400 perturbed-parameter simulations for two configurations of an optimality-based plankton-ecosystem model
(OPEM), implemented in the University of Victoria Earth-System Climate Model (UVic-ESCM), using a Latin-Hypercube
sampling method for setting up the parameter ensemble. A likelihood-based metric is introduced for model assessment and

selection of the model solutions closest to observed distributions of NO5; ™, PO,3~, O,, and surface chlorophyll a concentrations.

g < < ise-The simulations closest to the data with respect to our metric
exhibit very low rates of global N, fixation and denitrification—These-two-rate-estimatesturned-out-to-be-poorly-constrained-by

the-data, indicating that in order to achieve rates consistent with independent estimates, additional contraints have to be applied
in the calibration process. For identifying the “best™medel-solutionsreference parameter sets we therefore also consider the

model’s ability to represent current estimates of water-column denitrification. We employ our ensemble of model solutions in a
sensitivity analysis to gain insights into the importance and role of individual model parameters as well as correlations between
various biogeochemical processes and tracers, such as POC export and the NO3; ™~ inventory. Global O, varies by a factor of
two and NO3;~ by more than a factor of six among all simulations. Remineralisation rate is the most important parameter
for O,, which is also affected by the subsistence N quota of ordinary phytoplankton (Qg{ phy) and zooplankton maximum
specific ingestion rate. QON’ phy is revealed as a major determinant of the oceanic NO3 ™ pool. This indicates that unraveling the
driving forces of variations in phytoplankton physiology and elemental stoichiometry, which are tightly linked via Qg{ phy» 18 @

prerequisite for understanding the marine nitrogen inventory.

1 Introduction

Earth system climate models (ESCMs) are powerful tools for analysing variations in climate, while resolving interdependencies
between changes in the atmosphere, on land, and in the ocean (Flato, 2011; Prinn, 2013). In this regard, the dynamics of marine
ecosystems is a critical link. On long timescales it regulates atmospheric CO, on the basis of biotic uptake of carbon dioxide
(CO,) over vast oceanic regions and due to the export of photosynthetically fixed carbon into the deep ocean, which affects
the Earth’s climate (Reid et al., 2009; Sigman and Boyle, 2000). Plankton ecosystem models are widely applied to understand

marine biogeochemical cycles, by estimating fluxes of major elements, e.g., nitrogen, phosphorus, and carbon, as well as the
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sources and sinks of marine oxygen (Maie

Maier-Reimer et al., 1995; Six and Maier-Reimer, 1996; Schmittner et al., 2005; Bo

The basic structure of most marine ecosystem models has been designed for resolving mass fluxes between nutrients, phy-
toplankton, zooplankton and detritus, typically referred to as NPZD models. Mathematical formulations that describe growth
and fate of marine phytoplankton and zooplankton biomass have been successfully applied over a range of scales, from local
0D-ecosystem models (e.g., Fasham et al., 1990; Edwards, 2001) to global 3D models (Sarmiento et al., 1993; Keller et al.,
2012; Nickelsen et al., 2015). However, most of these NPZD models lack a sound mechanistic foundation, preventing them
from explicitly accounting for the organisms’ regulation of their internal physiological state. For example, N, fixation by algae
is often diagnosed from the availability of dissolved nutrients, so that it only occurs when the ratio of nitrate-to-phosphate
concentrations falls below the Redfield ratio of 16:1 (Deutsch et al., 2007; Ilyina et al., 2013). As these assumptions neglect
a number of environmental and ecological controls (e.g., grazing, often also temperature), they do not adequately describe
the behaviour of plankton organisms and their sensitivity to changes in their environment. With the introduction of refined
mechanistic (physiological) descriptions we here aim at alleviating this deficiency. In this study we introduce a new marine
ecosystem model coupled to the University of Victoria Earth System Climate Model (UVic-ESCM, based on the configurations
of Keller et al., 2012; Getzlaff and Dietze, 2013; Nickelsen et al., 2015). Doing so we anticipate the model not only to provide
improved mass flux estimates, but also to exhibit more realistic sensitivities of these fluxes to varying climate conditions, e.g.,
in simulations of the last glacial maximum or in future projections.

In order to better represent plankton physiology, the new ecosystem model relies on optimality-based considerations for phy-
toplankton growth, including N, fixation (Pahlow et al., 2013; Pahlow and Oschlies, 2013), as well as zooplankton behaviour
(Pahlow and Prowe, 2010). These two optimality-based models have been shown to be superior to traditional model approaches
in reproducing phytoplankton and zooplankton growth and grazing under various environmental conditions (e.g., Ferndndez-
Castro et al., 2016). Our new ecosystem model, the optimality-based plankton ecosystem model (OPEM v1.0) coupled to the
UVic-ESCM, offers new features and it improves the representation of some biogeochemical tracers-properties on the global
scale {see-accompanying-stady;2)(e.g. ity production (NCP) and particulate C:N:P in the surface water, see Part I,

. One of the novel features is the representation of variable quotas of carbon (C), nitrogen (N), and phosphorus (P) in ordinary

phytoplankton, diazotrophs, and particulate organic matter (detritus) exported to the deep ocean. This model approach yields

mass flux estimates with spatial and temporal variations in the elemental C:N:P stoichiometry of both inorganic nutrients and

organic matter as observed in situ (Loh and Bauer, 2000; Martiny et al., 2013b). PELAGOS (Vichi et al., 2007), the only ocean
model with variable C:N:P in phytoplankton in CMIPS (Bopp et al., 2013) and CMIP6 (Arora et al., 2019), has no diazotrophs,
others either have only variable N:P (TOPAZ2, Dunne et al. (2013)), or variable C:P (MARBL, Danabasoglu et al., 2020).
While some of the existing models have a variable C:N:P based on the optimality-based model for phytoplankton growth
(Kwiatkowski et al., 2018, 2019), optimality-based N, fixation or zooplankton behaviour are not included.

Here we analyse the new model’s performance and evaluate model-ensemble results against observations. Since the model

is based on plankton-plankton-organism physiology, it includes new parameters whose values have not been estimated for

et al., 2013; Vallina et al., 2017; Everett et al., 201



60

65

70

75

80

85

global model applications. Also, we set up two configurations, OPEM and OPEM-H, with different temperature dependences
dependencies for diazotrophs to investigate the effects of different empirical temperature functions on distributions of dia-
zotrophs and N fixation. Our analysis relies on ensembles of solutions of the two different model configurations, where every
single simulation within each ensemble is subject to a different combination of parameter values. The ensembles allow assess-
ing the sensitivity of biogeochemical tracer distributions and budgets to variations of the model’s parameters. We introduce a
likelihood-based metric that quantifies the global misfit between model results and observations. Amongst the ensemble simu-
lations we regard those model solutions as the best that yield low misfits according to the metric and are also close to current
estimates of water-column denitrification. The specific objectives of the present paper are (1) to identify and compare those
model solutions that correspond to the best representation of observed tracer concentrations and (2) to specify the sensitivity of
simulations to variations of the model’s parameter values. We make inferences about the model’s overall behavior, especially
focusing on data constraints, limitations and advantages of resolving variable C:N:P stoichiometry for estimations of global

net primary production (NPP), net community production (NCP), biogenic C export, and the global O;, N, and C inventories.

2 Materials and Methods
2.1 The non-Redfield, optimality-based plankton ecosystem model in the UVic-ESCM

The optimality-based plankton ecosystem model (OPEM) has been implemented into the UVic-ESCM (Weaver et al., 2001;
Eby et al., 2013), version 2.9, in the configuration of Nickelsen et al. (2015) with the isopycnal diffusivity modifications by
Getzlaff and Dietze (2013), vertically increasing sinking velocity of detritus (Kriest, 2017), and several bug-fixes (some of
which were already introduced by Kvale et al., 2017). The UVic-ESCM comprises three components including a simple one-
layer atmospheric energy-moisture balance model (Weaver et al., 2001), a terrestrial model and a three-dimensional general
ocean circulation model. The horizontal resolution of the land and ocean model components is 1.8° latitude x 3.6° longitude,
and the ocean has 19 vertical levels with a thickness ranging from 50 m in the surface layer to 590 m in the deep ocean.

The OPEM and its implementation into the UVic-ESCM s-are described in the-companion-paper(2)Part I (Pahlow et al., 2020)
. Briefly, the major new features of the new model include (1) an optimality-based model of phytoplankton growth and diazotro-
phy with variable C:N:P stoichiometry (Pahlow et al., 2013), (2) the optimal current-feeding model for zooplankton (Pahlow
and Prowe, 2010), and (3) variable stoichiometry in detritus. The focus on physiology in the construction of the OPEM enables

us to study how biogeochemical tracer distributions and fluxes respond to different assumptions about plankton physiology.
2.1.1 Simulation setup

Our setup comprises ensembles of 400 simulations for each of two model configurations —The-two-medel-configurations-that
differ in how temperature affects diazotrophy. The original temperature dependence of diazotrophs (fui.(7)) in the UVic-

ESCM (and other models, e.g., Aumont et al., 2015), which we also employ for the OPEM configuration, limits both growth
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and N fixation of diazotrophs to above 15 °C,
faia(T)_OPEM = max(1.066” — 2.6,0)/2 (1)

where T is seawater temperature. In the OPEM-H configuration, the temperature dependence of nitrogenase activity in terres-

trial systems by Houlton et al. (2008) is implemented as affecting only N, fixation,

f4ia(T)_OPEM-H = 0.0266 (1.066T)(44227l.3166*171(1.()G6T)) [4.22-1.3166+In(1.066"")] )

while growth and nutrient uptake of diazotrophs follow the same temperature dependence as ordinary phytoplankton {see-?

y—(see Part I, Pahlow et al., 2020). Both of these equations are empirical functions directly simulating expected or observed

temperature dependencies of N, fixation. We consider Eq. (2) more realistic and hence analyse its effect on model behaviour.
However, since the parameters in these two equations have no clearly identifiable physiological meaning, we consider a
sensitivity analysis of the parameters in Egs. (1) and (2) beyond the scope of the present study. Note that some models do

not enforce any temperature limitation on nitrogen fixation

., Dunne et al., 2013; Ilyina et al., 2013; Jickells et al., 2017). In the present ocean, waters colder than about 15 °C are gen-

erally replete with fixed inorganic nitrogen. For existing parameterisations of N, fixation, which are functions of the nitrate

deficit with respect to phosphate, there has been little indication of substantial impacts of the formulation of temperature control
at low temperatures on the distribution of nitrogen fixation (Somes and Oschlies, 2015; Landolfi et al., 2017). Such differences
in formulation may, however, gain importance in environmental conditions different from today’s.

For all simulations we impose preindustrial (A.D. 1850) boundary conditions with a CO, concentration of 284 ppm. The
models have been integrated over a period of at least 10,000 years, until they reached steady-state.

The 400 parameter combinations are obtained via Latin Hypercube Sampling (LHS) (McKay et al., 1979). We vary 15 pa-
rameters in total, within the variational ranges shown in Table 1, which are based on reference ranges according to literature
values. In order to reduce the number of possible parameter combinations, we vary nutrient affinities for macronutrient up-
take and half-saturation concentration for iron uptake for ordinary phytoplankton and diazotrophs in constant proportions
(Ag: Ao.p=4:3, Kpe : Kpe,.p = 1: 2), so that diazotrophs have a lower nutrient affinity (Pahlow et al., 2013) and higher Fe
half-saturation concentration (Dutkiewicz et al., 2012; McGillicuddy Jr., 2014; Ward et al., 2013) than ordinary phytoplankton.
Since our parameter sets are independent of each other, the simulations can be carried out in parallel. Apart from the compu-
tational time, the parallel setup with different parameter combinations has a—seme-advantagescompared-to-systematic(often
iterative)-some advantages compared to iterative model calibration approaches, e.g., parameter-optimisation: (i) Individual

individual model simulations do not depend on any other (i.e. previous) combinations of parameter values, (ii) the ensemble
results can always be re-evaluated with different metrics, perhaps with substantial differences between selected “best” solu-
tions, depending on the error model applied, and (iii) the ensembles provide insight to the sensitivities and thus to uncertainties

of particular model results with respect to parameter variations.



2.2 Sensitivity Analysis and Model Calibration

2.2.1 Sensitivity analysis

The sensitivity (Sensitivity.) of a tracer 1" to a parameter P is defined here as
AT y P

AP T

125 where the A indicates the change and the overbar the ensemble mean of P or T'. If Sensitivity - < 0, the tracer and the parameter

Sensitivity, =

3)

vary in opposite directions. We evaluate the sensitivities of globally and annually averaged net primary production (NPP), net
community production (NCP), particulate-organie-earbonPOC)exportnitrogen fixation by diazotrophs (N, fixation), and
the concentrations of oxygen (O;), nitrate (NO3; ™), DIC, POC;-dissolved and particulate iron (DFe and PFe), Chl, ordinary

phytoplankton, diazotrophs, particles (ordinary phytoplankton + diazotrophs + zooplankton + detritus) and their elemental

130 stoichiometry to the parameters listed in Table 1. We also evaluate the sensitivities of surface particulate elemental ratios (C:N,
This is because dissolved and particulate elemental ratios in general show very different behaviour between lower and higher
parameter ranges.

135 2.2.2 Likelihood-based metric assessing global biogeochemical model results

We consider four different types of observations for quantitatively assessing the model simulations. The first three are the
objectively analysed monthly (upper 550 m) and annual (below 550 m) concentrations of nitrate, phosphate, and oxygen of
the World Ocean Atlas 2013 (WOA 2013, Garcia et al., 2013a, b). The fourth is the monthly mean chlorophyll concentration
derived from remote sensing data (MODIS/Aqua level 3), based on monthly climatologies for 10 years from 2008 to 2017,

140 provided by the ocean biology processing group (Ocean Biology Processing Group, 2014). The satellite-derived chlorophyll
(Chl) concentrations are used for data-model comparison only for the UVic model’s top layer, i.e. the upper 50 m.

We define our metric in terms of spatial averages of 17 distinct biogeochemical biomes, as derived and described by Fay
and McKinley (2014). The individual biomes are regarded as regions of common biogeochemistry and thus account for spatial
differences between ocean regions on the largest possible (global) scale. Using 56 biogeochemical provinces, as defined by

145 Longhurst (2007), might have hampered our data-model comparison, because a higher resolution of individual regions can
accentuate spatial pattern errors in tracer concentrations, resulting from differenees-model errors in advection and mixing. In
our view the biomes of Fay and McKinley (2014) are coarse enough for avoiding this problem, but still sufficiently informative
for identifying representative parameter values.

The underlying error model of the likellihood based metric assumes a Gaussian (normal) distribution, which is well represented

150 by using the first two moments of log-transformed tracer concentrations, in particular for the upper ocean layers (Schartau et al., 2017
. For every depth-level of the UVic model (k € {1, 2, 3, ..., 19}), average log-transfermed-log; \-transformed tracer concen-
trations (fnXlog;, X) of type X are determined as spatial arithmetic means for our 17 biomes (indexed as j in Eq. 4) for the
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Table 1. Parameter names, reference and variational ranges, identified “best” values for the trade-off simulations i#n-(OPEM and OPEM-H),

units and descriptions. Note that the trade-off simulations share the same parameter combination.

Symbol Range Reference  Variational OPEM/ OPEM-H- Units Definition
range. range OPEM-H

Ao, phy 70-1000* 120-280 229 m?® (molC)"'d™!  phytoplankton potential nutrient affinity
Q0. phy 0.038-0.086" 0.04-0.06 0.04128 mol (mol C) ™! phytoplankton subsistence N quota
Qb dia 0.13" 0.06-0.12 0.067 mol (mol C) ™! diazotroph subsistence N quota

0. ph X -0.002° : -0. . mol (molC)~ phytoplankton subsistence P quota
Qb oy 0.0008-0.002°  0.0013-0.0023 0.0022 1(molC)~'  phytoplankton subsi P

0. dia . : -0. X mol (molC)~ iazotroph subsistence P quota
Q5. 0.0027* 0.0025-0.0035 0.00271 1(molC)~" i ph subsi Pq
Kre, phy 0.035-0.12¢ 0.04-0.08 0.066 pmolm 3 phytoplankton half-saturation constant for Fe
Jmax 0.49-5" 1-2 1.75 d-! zooplankton maximum specific ingestion rate
Bphy 174-765" 100-200 118 m?® (mol C) " capture coefficient of phytoplankton
Pdia 1.05 - By’ 150-250 232 m? (molC)™* capture coefficient of diazotrophs
Pdet Gy 20-100 94 m? (molC) ™! capture coefficient of detritus
P00 0-3230" 100-200 118 m? (mol C) ™! capture coefficient of zooplankton
Ao, phy = Mo, dia W 0.01-0.03 0.018 d-! specific mortality rate
Vet 0.05-0.077% 0.04-0.09 0.087 d! remineralization rate

(Pahlow, 2005; Pahlow et al., 2013), b(Pahlow and Prowe, 2010), ‘(Keller et al., 2012), d(Somes and Oschlies, 2015), *(Somes et al., 2017)
f(Landolfi et al., 2017), &(Landolfi et al., 2015), "(Su et al., 2018), }(Wang et al., 2019)

observations and model results:

S 1
(logyoX) ,, = No

Njk

n=1

maX(X(n),X(O))

X(0)

D X € {Chl, 05, NO;~, PO’}

“)

where N, is the number of available data points within biome j in depth level &. Prior to log-transformationthe log (-transformation,

all tracer concentrations have been normalised to lower detection (uncertainty) thresholds (X)) respectively. Measured or de-

rived concentrations below these thresholds are treated as noise and therefore remain unresolved. Thus, the leg-transfermed

log, o-transformed normalised concentrations are non-negative. The threshold-values are: Chlg) = 0.1mgm™3, O3 (g) = 1mmolm ™2,
NO3™ (9 =0.05 mmolm ™3, and PO43_(0) = 0.0l mmolm 3.

Our metric is derived from a likelihood, assuming a Gaussian error distribution for the residuals, which describe the discrep-

ancy between mean values derived from observations (Jrﬁéé("—bsllwo\gwgg(fi

)) and model simulations (MMM.



Hereafter we refer to this metric as our cost function (.J). Our cost function is split up into two major parts:

5 19
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165 J,gl) _ Z [dT R! d] i + (v(obs) _ V(mod))jk V];l (V(obS) — v(mOd))jk @
Jj=1

where d is the residual vector (see Eq. (8) below), R the covariance matrix (Eq. 9), v(°) and v(mod) the spatial variance

estimates of the log, ,-transformed observed and modelled tracers, and V ~! are diagonal matrices with the variances (uncer-

tainties) of v(°P). The first part (J ku)) of the cost function resolves seasonal changes between the surface and 550 m depth,

corresponding to the upper five depth-levels of the model. The second part (.J, ,gl)) represents the lower depth range below 550 m
170 and does not account for seasonal changes, as only annual mean data are available.

The residual vector (d) (whose components represent the tracer types X) used for J describes the differences between the

log-transformed-log,  -transformed observations and their model counterparts:

dij = (logy X5 ~logyo X[ ®)

where ¢ and j are the month and biome indices, respectively. We recall that d has four components only for the UVic model’s
175 top layer (k = 1) where chlorophyll data are regarded as well. For k > 1 the residual vector contains three components: O,

NO;~, and PO4>~. Both parts of the cost function (J ,5“) and J, ,il)) in turn contain two terms, one with respect to the residuals,

as defined in Eq. (8), and another that accounts for the differences between the spatial variances (vectors ngs) and vl(;‘,f d))
within each biome (and month for .J ,iu)) at each depth-level. The covariance matrices I;;;; account for temporal correlations

(Cjr) between different variables (X (©s)), that are specified for every biome and depth level separately:
180  Rijr = Sijk - Cjk - Sijk )

where the elements of the diagonal matrices ;. are the standard errors of the mean log-transformed-log, o -transformed tracer

concentrations (%ﬁ%%lggl&&éﬁsj) calculated in Eq. (4) for every month ¢, biome j, and depth level k. For J, ,El) the Rji,

contain only the squared standard errors of the annual data as diagonal elements (123, = szk).
With the consideration of standard errors instead of standard deviations, we implicitly impose weights to differences in the
185 spatial expansion (i.e. number of data points of the gridded product used) of individual biomes. Overall, the final cost function
J resolves spatial differences between regions (biomes) as well as temporal differences for those depth levels where monthly
data are available. It is thus a trade-eff-in-combining-combination of time-varying and spatial information for the assessment

of our biogeochemical model results on a global scale.

In order to estimate uncertainty ranges for selected model results (globally-averaged N, fixation, NO; ~, O,, DIC concentrations,
190 NPP, NCP), we apply a bootstrap method to obtain an uncertainty quantification for our simulated values based on the 400
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available ensemble model simulations. We collect the best solutions (lowest cost function value) of 1000 randomly selected
subsets of 100 out of our 400 ensemble members. The mean and 95% confidence interval of these subsets provide an uncertaint
range in the vicinity of the value of the full ensemble.

3 Results

Table 2 lists the ranges of selected simulated tracers and processes for the full ensemble of parameter values generated by
the Latin Hypercube Sampling for the OPEM and OPEM-H configurations. Our results exhibit wide ranges of tracer con-
centrations and fluxes in these two configurations. In particular, globally-averaged NO3;™ concentrations range from 10.2 to
66.2mmolm ™3 and integrated N, fixation from 0 to 518 TgNyr~—!. Tracers in OPEM and OPEM-H show similar ranges,
except for globally averaged NO3~, which ranges from 10.2 to 66.2 mmolm 3 in OPEM and 13.0 to 55.0 mmolm 2 in
OPEM-H.

Table 2. Ranges of global averages of major tracer concentrations or fluxes in the OPEM and OPEM-H configurations. Chl eeneentrations

concentration is for the upper 50 m (surface layer of the UVic grid) and NCP is for the upper 100 m. Observations and reference model
simulations are depth-integratedlisted in the Reference column.

Tracer OPEM OPEM-H Reference Units
Oxygen 99.6-219 103214 176" mmolm >
Nitrate 10.2-66.2 13.0-55.0 31" mmolm ~?
DIC 2.239-2.439 2.248-2.430 2317 molm 3
DFe 0.47-0.71 0.47-0.69 0.57¢ pmolm 3
PFe 0.44-0.75 0.44-0.70 117¢ nmolm~?
Chl 37.6-40+:2-0.123-0.332  386-103:50.128-0.336  0.309°_ mgm;213
NPP 27.8-88.0 27.2-88.0 52 PgCyr~!
NCP 0:86-3.0+8.0-16.4 0:79-3:20-7.8-16.2 13.58 PgCyr~!
N, Fixation 0-480 0-518 140" TgNyr—!

*WOA 2013 (Garcia et al., 2013a)

"WOA 2013 (Garcia et al., 2013b)

°‘GLODAPv2 (Olsen et al., 2016)

¢(Nickelsen et al., 2015),

*MODIS/Aqua level 3, 2008-2017 (Ocean Biology Processing Group, 2014)
f(Westberry et al., 2008)

¢(Li and Cassar, 2016)

(Luo et al., 2012)
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3.1 Sensitivity to Model Parameters
3.1.1 Biogeochemical tracer inventories and governing processes

The sensitivities of globally averaged biogeochemical properties to the variations of each of the 13 parameters in Table 2 are
comparable for OPEM and OPEM-H (Figure 1). Global mean oxygen concentration is most sensitive to /4, (remineralization
rate). Higher v, increases oxygen consumption in shallow water, where oxygen resupply from the atmosphere is stronger. Less
oxygen is consumed below the surface ocean, hence the total oxygen inventory increases. Maximum ingestion rate (gmax) and
grazing rate on ordinary phytoplankton (¢phy) also correlate positively with oxygen. Higher gp,ax or ¢phy, means more ordinary
phytoplankton is grazed and less particles are formed, which then decreases oxygen consumption through remineralization.
Oxygen is less sensitive to ¢gi,, because the biomass of diazotrophs is much smaller than that of ordinary phytoplankton.

A surprising finding is that oxygen is sensitive to, and positively correlated with, the subsistence nitrogen quota of ordinary
phytoplankton (QOI‘{ phy)- From a classic point of view, oxygen levels in the ocean are dominated by physical supply processes as
well as biogeochemical consumption processes such as remineralization (Feely et al., 2004). Nevertheless, in our simulations
the sensitivity to Qg{ phy is more than half (58%) of that to v4e in OPEM and 48% in OPEM-H (Figure 1). In our model, Qg phy
has no effect on the spatial distribution of cellular C:N ratios in phytoplankton, which is determined by ambient light and nutri-
ent conditions. However, QOI‘{ phy affects the average phytoplankton C:N ratio. The average phytoplankton C:N ratio decreases
when Qg phy increases, with less carbon being fixed for the same NO3 ™~ supply. Oxygen consumption (due to remineralization)
per mole of nitrogen thus decreases in consequence. Qg’ phy in turn affects NO3; ™ : A higher QON’ phy Yields a higher oxygen level
and hence less denitrification in oxygen deficient zones (ODZs) and therefore leads to more NO;3 ™. In fact, we identify this as a
major process that controls the NO3; ™ inventory in our simulations (Figure 1). While NO3 ™ is also sensitive to other parameters,
its sensitivity to Qg phy is more than twice that to any other parameter (Figure 1).

The sensitivity of dissolved inorganic carbon (DIC) is generally low, because of the relatively large DIC pool compared to
the variations in fluxes among the different parameter sets. Similar to oxygen, DIC is most sensitive to Vg, Qg phy> Jmax and
®phy- Faster carbon recycling in the surface layer due to higher v4 generates a higher surface DIC concentration and hence
more outgassing, which decreases the DIC inventory. A somewhat lower DIC inventory is also induced by a larger QH phy» 35
less carbon is fixed and exported per unit nitrogen in phytoplankton, and by enhanced zooplankton grazing with larger g, ax.

Dissolved iron (DFe) is most sensitive to the remineralisation rate (vget). Unlike NO3~, which has dynamic source (N;
fixation) and sink (denitrification) processes, iron has a fixed source from atmospheric deposition and the-a sink in the sediment,
and the size of the DFe pool is mainly determined by its internal cycle. A higher remineralisation rate prolongs the residence
time and thus increases the DFe pool. The parameter vg4e also indirectly affects the internal DFe cycle via its effect on O,.
While the detritus remineralisation rate drops when O, falls below 5 mmolm~2 (Nickelsen et al., 2015), scavenging of DFe
stops below the same oxygen threshold. Detritus remineralisation rate dominates variations in DFe when globally averaged
0, is above 135 mmolm 3, in which case DFe is positively correlated with 4 and O,. When globally averaged O, is below
135 mmolm 3, the wide-spread ODZs (below 5 mmolm~?) inhibit the scavenging of DFe and this effect dominates. As

a result, DFe becomes anti-correlated with O,. Particulate iron (PFe) is also positively correlated with v4; when globally
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Figure 1. Sensitivities of globally averaged O,, NO3~, dissolved inorganic carbon, dissolved iron, particulate iron, N> fixation, net primary
production (NPP), Chlorophyll, and net community production (NCP) integrated from 0 to 980 m to individual model parameters, computed

according to Eq. (3). Note the different vertical-seales-y-axis ranges in the different panels.

averaged O, is above 135 mmolm 3, but below that PFe shows no correlation with v4e;. When globally averaged O, is below
135 mmolm 3, inhibition of scavenging of DFe in ODZs decreases PFe there but a higher DFe increases PFe elsewhere,
because PFe is coupled to DFe through scavenging and remineralisation. As mentioned above, Qg phy controls the average

nitrogen quota in phytoplankton and thus in particles. Since PFe is proportional to the amount of nitrogen in particles, Qg{ phy

10



also affects PFe. This (positive) sensitivity is much stronger than the indirect (negative) effect via DFe leading to opposite
240 sensitivities of DFe and PFe to Qg{ phy Other than vy and Qg phy> PFe is also sensitive to ¢gi, because dead diazotrophs enter

the particulate pool (detritus) and diazotrophs are very sensitive to ¢gi, (Figure 2).

Tang-etal(2019)-that ne-single-environmental-propertyprediets-The simulated global N fixation rate is sensitive to man

arameters, apart from A and QF . . Similar relative changes in most parameters introduce changes to the global N,
245 fixation ﬁeveﬂwehﬁrdafa-ba%ed—maelﬂﬁe-}eafmﬂgmefhed rate that are of similar magnitude. Interestingly, other-than+qrand
QWNz fixation is alse-sensitive-sensitive also to zooplankton parameters, indicating that zooplankton grazing on diazotrophs

is an 1mportant factor controlhng not ]ust dlazotroph biomass but also N, ﬁxatlon%mwﬁ&Qng@W

250 Of particular interest are the sensitivities of global net primary production (NPP) and net community production (NCP).

Particle fluxes in marine biogeochemical models tend to agree most closely with sediment trap data for depths of about 1000 m

or below (Kriest et al., 2012). Therefore, different from Table 2, showing NCP for the upper 100m for comparison with
observations and other (reference) model simulations, here we integrate NCP from 0 to 980m (7" layer of the ocean in the

UVic-ESCM), which in steady state is equivalent to POC export flux at 980 m. NPP is sensitive to vge and Qg{ phy* A higher v
255 causes faster nutrient recycling in surface waters, which increases NPP and reduces particle export and hence NCP. Increasing
Qg{ phy lowers both NPP and NCP and hence also the fixed-carbon inventory. A higher ingestion rate of zooplankton (gmax)
removes more particles and thus is negatively correlated with NCP. Chl is the principal agent of C fixation in the OPEM and

hence Chl has a similar sensitivity pattern as NPP except for grax and ¢phy.
3.1.2 Ordinary phytoplankton, diazotrophs, particles, export and their elemental stoichiometry

260 First we discuss the proportions of carbon, nitrogen and phosphorus in ordinary phytoplankton and diazotrophs, since variations

in elemental stoichiometry in autotrophs originate in differential uptake of nutrients under different environmental conditions.

Globally averaged C, N, P concentrations and ratios of globally averaged N and P of ordinary phytoplankton and diazotrophs

are sensitive to Ve, QON’ phy> ®phy and ¢g;a (Figure 2). As expected, C, N and P of ordinary phytoplankton and diazotrophs in-

crease for higher v4.¢, which generates higher nutrient concentrations in the surface ocean. They are also sensitive to zooplank-

265 ton grazing, especially to ¢phy and @ia. Qg{ phy and Qg, phy are negatively correlated with ordinary phytoplankton C, indicating

that the negative effect of higher subsistence quotas on competitive ability dominates their effect on biomass. A similar behav-

ior is found in diazotrophs except that QON, dia 18 also negatively correlated with diazotroph N and hence also nitrogen fixation

(Figure 1). Although an increase in Qg phy Makes ordinary phytoplankton less competitive, it also raises the oceanic NO3~
inventory, which eventually leads to more phytoplankton N (Figure 2) and less nitrogen fixation (Figure 1).

270 Diazotroph C, N and P are generally more sensitive to parameter variations than phytoplankton, due to the much smaller

total biomass of diazotrophs, which is also the reason why diazotrophs are less sensitive in OPEM-H, the model configuration in

which their biomass is generally larger (Figure-2)because of the growth of diazotrophs at high latitudes (see Fig. 15 in Part I, Pahlow et al., ~

11
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Figure 2. Parameter sensitivities of globally averaged concentrations of ordinary phytoplankton and diazotrophs carbon, nitrogen, phospho-

rus, and ratios of globally averaged N and P. Black and grey shading denote OPEM and OPEM-H configurations, respectively. Note the
different y-axis ranges in the different panels.

. Since ordinary phytoplankton dominates autotrophic biomass, it tends to control nutrient distributions. This explains why or-
dinary phytoplankton parameters such as Q};” phy @nd @phy have strong effects on diazotrophs but not vice versa. The zooplankton
275 grazing preferences ¢pny and ¢, drive the competition between ordinary phytoplankton and diazotrophs and hence have strong
and opposing effects on their biomass. Owing to the relatively small total biomass, diazotroph C is more sensitive to changes
in ¢phy and ¢gi, than ordinary phytoplankton C.
Particulate C:N and N:P ratios are most sensitive to QON, phy (Figure 3). This sensitivity is related to biomass, as we see from the
OPEM-H configuration, where (non-N, fixing) diazotrophs are abundant in-high-tatitades-at high latitudes (see Fig. 15 in Part I, Pahlow et a
280 and consequently the sensitivity of high-latitude C:N to Qg dia 18 high, even higher than to Qg{ phy (Figure 3). We do not find

this behavior for high-latitude regions in the OPEM configuration, as well as low-latitude regions, where diazotrophs are not

12
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as abundant. The parameter Qg, phy Was expected to be the most important parameter for particulate C:P ratios, just like QE phy
is for the C:N ratio. However, this is only true for the OPEM at high latitudes.

At low latitudes, and-for-the-global-oeean;particulate C:P ratios are most sensitive to Qg{ phy (Figure 3). The supply of nitrate
and phosphate at different latitudes is the major reason for this pattern. Phosphate-is-notatimitingnutrient-At low latitudes, the

effects of QP are suppressed by variations in phytoplankton C, which is affected by QY . and the consequent change in

nitrate concentration. Nitrate and phosphate are not limiting in the high-latitude Southern Ocean where, under N- and P-replete

The sensitivities of dissolved N:P ratio to parameters in the three geographical settings (low, high latitudes and global)

follow similar patterns. However, we find sensitivities to be generally higher in the low-latitudes, especially to variations of
the phytoplankton parameters. Again this is because NO3~ is often limiting in lower latitudes, particularly in the oligotrophic
gyres, where the dissolved nitrogen pool is more sensitive to changes in phytoplankton as well as N, fixation. This is also why

grazing pressure on diazotrophs (¢gi,) has a much stronger effect at low than at high latitudes.
3.2 Cost function values of the ensemble simulations
3.2.1 Constraining global rate estimates and inventories

The cost function (introduced in Section 2.2.2) was devised for identifying the best solutions among the ensemble runs. For the
model’s upper layers (0 — 550 m) observational monthly mean concentrations of nitrate and phosphate enter the cost function,
thereby reflecting regional and seasonal variations in the N:P uptake ratio of ordinary phytoplankton and diazotrophs. Variations
in nitrate and phosphate availability affect the growth of diazotrophs and thus determine global N fixation in both OPEM and
OPEM-H. In our UVic configurations, water column denitrification is the only fixed-N loss term. Therefore, the simulated N,
fixation is expected to match water column denitrification under a steady-state nitrogen cycle. Nevertheless, the simulation with
the lowest cost yields a global N,-fixation rate estimate of 38.8 TgNyear—! (Figure 4A), much lower than recent estimates of
water column denitrification (55.8 - 72.9 TgNyearfl; Somes et al., 2017; Wang et al., 2019).

The cost function penalises solutions that yield N, fixation rates greater than 90 Tg Nyear—!, but shows no clear rela-
tion to Nj fixation at lower rates (Figure 4A). For example, among the simulations with the 5 lowest cost function values
in the OPEM configuration, the global ocean N, fixation rate varies between 8 and 40 Tg N year~—'. These model solutions
also differ with respect to their O, inventories. The tendency of the cost function to favor very low global N, fixation is
caused by a compensatory effect, whereby improving NO;~ deteriorates O, and vice versa {see-alse—2-and-the Discussion
seetion-below)(see also Part I, Pahlow et al., 2020, and the Discussion section below). Thus, instead of selecting the reference
parameter sets based only on the cost function, we also take the ability to yield reasonable N, fixation rates into account,

whereby we deem rates-of about-asreasonableignore simulations with rates below 60 TgNyear™!, since this matches-eurrent
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Figure 3. Parameter sensitivities of averaged surface (0—130 m) particulate elemental C:N, C:P, and N:P ratios for different latitude bands

(40°S to 40°N, 60°S to 70°S, and the global ocean). Asterisks indicate sensitivities that are very different between OPEM and OPEM-H.
Note the different y-axis ranges in the different panels.
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is the lower boundary of current data-based estimates of water-column denitrification (Semes-et-al;2047;-Wang-et-al;2019)
DeVries et al., 2012). As these solutions represent a somewhat subjective trade-off between low cost and reasonable N, fixa-

tion, we refer to them as trade-off solutions and details of their behaviour are shown and discussed in-the-companion-paper2in
Part I (reference simulations in Pahlow et al., 2020). For OPEM the trade-off solution corresponds to the seventh-lowest cost

function value, and the fourth-lowest for OPEM-H.

{Figure-4A)-In the following we will describe the lowest-cost solutions together with the trade-off solutions, as well as respec-

tive uncertainty ranges obtained from the bootstrap method described in the Materials and Methods section. The width of the
uncertainty ranges (95% confidence intervals) in Figure 4 indicates the metric’s ability to constrain the inventory or rate under

consideration.

Globally averaged N, fixation rates of our trade-off solutions of OPEM and OPEM-H are just outside and within this

uncertainty range, respectively (Figure 4A). The global NO3; ™~ inventory turns out to be remarkably well constrained (Fig-
ure 4B). The mean global estimates are 30.6 mmolNm~ and 31.4mmolNm~3 for OPEM and OPEM-H, respectively.

Ensemble solutions that deviate from these estimates have high costs and therefore the uncertainty ranges remain narrow.
The trade-off and minimum-cost solutions are hardly distinguishable. The uncertainty of the simulated global O, is com-
parable to that of the NO;~ inventory. Global mean O, concentrations of OPEM and OPEM-H are 186 mmol O, m~3 and
187 mmol O, m 3. Our metric effectively constrains global DIC estimates, 2.290 mol Cm 2 for OPEM and 2.287 mol Cm 3
for OPEM-H (Figure 4D), although DIC data have not been explicitly considered in the cost function.

While the trade-off solutions exhibit NO;~, O, and DIC inventories well within their respective uncertainty ranges, we find
somewhat larger deviations for the predicted global mean net primary production (NPP, Figure 4E). For OPEM and OPEM-H
the trade-off solutions produce a, respectively, 30 % and 14 % higher NPP than the minimum-cost solutions. The net community
production (NCP, here integrated over the depth range 0 to 980 m) estimates in Figure 4F are better constrained than NPP for
both configurations. The trade-off solution of OPEM corresponds to a global NCP of 1.043 Tg Cyear~*, which is close to the
trade-off estimate of OPEM-H, where NCP = 1.039 Tg Cyear—!.

Figure 5 shows globally averaged concentrations of O, versus NO3 ™~ of all ensemble members. The spread of the ensembles
differs between the two tracers (by a factor of two for O, and by a factor of six for NO3; ™). Most solutions overestimate the
global average NO;~ concentration obtained from the WOA 2013 (Garcia et al., 2013a, b) and underestimate O,. Solutions
where both tracers strongly underestimate the WOA 2013 data are penalised by the cost function (Figure 5). The minimum-cost
and trade-off solutions of OPEM and OPEM-H are close to the WOA 2013 estimates. The respective optimal solutions have
slightly higher global mean O, concentrations than the WOA 2013 and are in good agreement with respect to NO3 ™. In spite of
larger costs, the trade-off solutions of both OPEM and OPEM-H are closer to the WOA 2013 estimate than the minimum-cost
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Figure 6. Zonally averaged NO;~ in tew—the World Ocean Atlas 2013 (A), the simulations with the lowest and high-highest NO3 ™ inventory
(B, D), and the trade-off simulations—for-OPEM-simulation (#pperrowC) and-OPEM-H-towerrow)in the OPEM configuration. Globally

averaged NOs3;~ concentrations are shown in each panel. Simulations shown here are marked with solid black and open red triangles in
Figure 5. Note that the outputs from OPEM and OPEM-H are very similar and only OPEM results are shown here.

vThe ensemble solutions are unevenly spread around
the WOA 2013 data-based estimates. This highlights that our trade-off solutions could not have been identified had we onl

considered the ensemble means.

Figures 6 and 7 show zonally averaged NO3; ™~ and O, in simulations with tew-and-high-the lowest and highest NO3~ and the
trade-off simulatienssimulation in the OPEM configuration. The high-NO; ™ simulations-have-simulation has similar NO; ™ and
O, patterns to the trade-off simulationssimulation, despite the very different mean NO3; ™~ and O, concentrations. The patterns
are different in the low-NO;3~ simulations—simulation because of stronger deoxygenation and denitrification, which occur
mostly in North Pacific deep water. The greater similarity of global mean O, than NO3 ™ reflects the influence of atmospheric

O, but also indicates that NO3 ™ is more sensitive to changes in the physiology of the diazotrophs.
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Figure 7. Same simulations as in Figure 6 but showing the results for O,.

3.2.2 How well can model parameters be constrained?

Cost is conspicuously correlated only with vy, Qg{ phy> and ¢g;, (Figure 8). O, and NO3 ™~ are sensitive to g and Qg{ phy but
not to @gi, (Figure 1), which indicates that ¢g;, becomes more important at lower-cost simulations. The minimum-cost and
trade-off simulations in OPEM and OPEM-H are usually closer to each other when parameters show strong correlations with
costs (Figure 8).

Figure 9 shows how different biomes contribute to the misfit and variance parts of the total cost. For simulations with
high cost function values (J > 10'%), we find the variance term to be dominant in the deep ocean (below 550 m). Among
the 17 biomes this is well expressed in NP.SPSS (North Pacific subpolar seasonally stratified), NP.STSS (North Pacific sub-
tropical seasonally stratified), NP.STPS (North Pacific subtropical permanently stratified), Pac.EQU.E (Eastern Pacific equa-
torial), Pac. EQU.W (Western Pacific equatorial), and IND.STPS (Indian Ocean subtropical permanently stratified) biomes,
overwhelming contributions from all other parts of the cost function and all other biomes for the 100 simulations with the
highest total costs. These high-cost simulations tend to have low NO3;~ and O, concentrations (Figure 5). Low NO3;~ con-

centrations are coupled to low O, because of intense denitrification in the ©DZsoxygen deficient zones (ODZs). Accordingly,
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20



12 A
104 NP.ICE NP.SPSS S NA.SPSS NA.ICE
NA.STSS
—~
o gk P 5&‘@&4«#{’1"""{‘@;‘
MMw*‘m LA iy e | Eampmr A S
E ' HENE ?a:’a’ ”‘E‘i’!@%‘ | g ~:'~ B I..,:-..,,. : :
g Pac.EQU.E At.EQU 0 100 200 300 400
e
(7))
S
N
o SA.STPS
—
O s- o
o ) >
I o ; ; MO i3 upper - layer_misfit
P A A S R e i
14 G P i m,.a.:émm&» S R | o upper - layer_variance
10 4 SO.STSS SO.SPSS SO.ICE deep - layer_misfit
o deep - layer_variance
mmm RO
T T T T T T T T @BI T
0 100 200 300 4000 100 200 300 4000 100 200 300 400
Simulations
90°N
N _*l;
30N NP-STSS
NP-STPS
o
-30°S
-60°S
90°S T T T T T T

0° 60°E 120°E 180° 120°W 60°W 0°

Figure 9. Top panels: Cost-value distributions in the 17 biomes in OPEM. The order of the simulations is based on the total cost from low
to high in OPEM. Upper-layer and deep-layer in the legend represent upper (0 — 550 m) and lower (below 550 m) components of the cost
function (Eq. 5). Misfit and variance are calculated by the first and second parts of the cost function components (Eqgs. 6 and 7), respectively.

Bottom: Map of biome locations.

21



375

380

385

390

395

400

simulations with very low NO;3 ™~ inventories suffer from widespread ODZs, occupying much of the deep water in the northern
and equatorial Pacific as well as the Indian Ocean (Figure -6S1). This is the main reason for the high variance in the deep water

of these biomes (Figure 9).

4 Discussion
4.1 Parameter sensitivities
4.1.1 Remineralisation rate v4, and phytoplankton subsistence nitrogen quota QON, phy

Remineralisation rate (v4) and phytoplankton subsistence nitrogen quota (Qa phy) are the two parameters with the strongest
correlations for most tracers as well as particulate elemental stoichiometry. The importance of v4 Was expected, because it
is an important driver of nutrient recycling in the surface ocean (Thomas, 2002; Anderson and Sarmiento, 1994; Eppley and
Peterson, 1979), which strongly affects NPP, NCP, Chl, DIC, DFe and N, fixation (Kriest et al., 2012). 4 also determines the
rate of O, consumption, hence also the NO3 ™ level, due to denitrification in ODZs (Cavan et al., 2017). The strong influence
of Qg{ phy> Nowever, was unexpected. The subsistence quota was first introduced by Droop (1968) in phytoplankton growth
models. While it has been applied in Earth System Models (Kwiatkowski et al., 2018; Wang et al., 2019), a sensitivity analysis
similar to the present study has not been done before. A higher Qg phy implies that more nitrogen is required for phytoplankton
growth, but it also can be interpreted as a lessening of carbon fixation for a given nitrogen supply. Our results demonstrate
a strong effect of Qf) phy 0 NPP, Chl, POC export (NCP, here integrated over the depth range 0 to 980 m) and consequently
oxygen consumption and denitrification.

These results also put forward a new point of view on the relation between NO; ™ inventory and carbon export. In classic bio-
geochemistry, a larger NO3 ™ inventory in the ocean stimulates primary production and POC export. This feedback is intuitive
and easy to understand, as for a given C:N in phytoplankton, carbon is proportional to the nitrogen pool. This feedback is well
recognized and has been widely applied in marine sciences, especially since it forms the foundation of one of the hypotheses
explaining the lower atmospheric pCO; during the last glacial maximum (LGM) (McElroy, 1983; Falkowski, 1997). However,
our analysis of the model ensemble with different parameter combinations suggests another, very different point of view. NO3~
concentration is positively correlated with Qg phy> but negatively with NPP and POC export (NCP, Figure 1), which means that
an increased NO3 ™~ inventory can be related to a lower POC export if caused by a change in Qg{ phy- The dynamic C:N ratio in
our model explains part of this negative correlation. When the NO3; ™~ inventory increases due to an increase in Qg phy» the ni-
trogen demand in phytoplankton also increases, which yields a lower C:N ratio in phytoplankton, and hence changes in carbon
fixation due to increases in NO3 ™~ inventory remain relatively small. The increase in Qg phy iNCreases nitrogen in phytoplankton
structure and decreases the C:N ratio in phytoplankton as well as detritus. The two effects together both lower POC production
and raise the NO3 ™ inventory. Changes in 14 also contribute to the negative correlation between NO; ~ and POC export (NCP)
in our simulations: A-a more intense remineralisation in the surface ocean reduces POC export, and thus decreases oxygen

consumption and denitrification, resulting in a larger nitrate inventory.
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405 The strong impact of N on the NOz ~ inventory and globally averaged phytoplankton C:N causes a higher sensitivit
of globally averaged C:N than C:P (Figure 3). A higher QY . results in a higher NO;~ inventory and a lower phytoplankton

C:N, both tending to lower particulate C:N and vice versa. On the other hand, C:P is not as sensitive because we have a

2

constant PO,>~ inventory in the UVic model. Surface particulate matter C:N is less variable compared to C:P and N:P in field
Galbraith and Martiny, 2015; Geider and Roche, 2002; Martiny et al., 2013a; Sterner and Elser, 20(

410 which is an apparent contrast to our results, where the sensitivity of C:N to QN is the highest among the particulate
elemental ratios. However, our sensitivities are with respect to parameter variations among many simulations, rather than
spatial or temporal gradients in the one real ocean.

observations along regional gradients

4.1.2 Zooplankton parameters

While in many global biogeochemical models zooplankton is described by non-mechanistic formulations, such as Holling-type
415 functions (Holling and Buckingham, 1976), in this study we apply a more realistic zooplankton model (Pahlow and Prowe,
2010). Among the five zooplankton parameters, the maximum specific ingestion rate (gyax) and the capture coefficients of
phytoplankton (¢pny) and diazotrophs (¢g;,) are the most important, whereas the preference for detritus (¢ge) is generally less
important. Grazing on zooplankton itself (¢,0,) counters the effect of g« because it lowers zooplankton biomass and thus
total ingestion. These parameters together dominate controls on N, fixation and Chl (Figure 1), and C, N and P of ordinary
420 phytoplankton and diazotrophs (Figure 2). It is interesting that zooplankton parameters also exert some control on particulate
N:P as well as the dissolved nutrient pools (Figure 3). This can be understood via their controls on N fixation and the ensuing

changes in N:P in the dissolved and particulate pools.
4.1.3 Other parameters and the OPEM-H configuration

Other parameters in the sensitivity analysis appear less important for the tracer distributions, but this does not necessarily
425 mean that they are negligible. Specific mortality rate (Ao, phy) and the phytoplankton half-saturation constant for Fe (kge, phy) €0
contribute-some-variations-to-do contribute to some variations of most of the tracers (Figure 1), and particulate C:P is somewhat
sensitive to potential nutrient affinity (Ap). Phytoplankton subsistence P quota (Qg, phy) affects major tracers much less than
phytoplankton subsistence N quota (QON, phy)» but it is still important for particulate C:P and particulate N:P ratios, particularly

at high latitudes and globally (Figure 3). Diazotroph subsistence N guota-(and P quotas (Qf g, )-and-diazetroph-subsistence P
430 quotafand Qf ,) in general have much less influence on particulate stoichiometry than Qf phy and Q0. phy because diazotrophs

are much less abundant than ordinary phytoplankton. Nevertheless;they-However, diazotroph biomass (carbon) itself is more
sensitive to QN .. than QY which shows that the diazotroph subsistence quotas are still important for No—fixation-and-the

elemental stoichiometry-of diazotrophsboth their elemental stoichiometry and ability to compete with ordinary phytoplankton.
While elemental stoichiometry has been suggested to be an important factor for determining the outcome of the competition
435  between diazotrophs and non-diazotrophs, and consequently N, fixation (Deutsch and Weber, 2012; Weber and Deutsch, 2012)
. we find that N; fixation is no more sensitive to @ ;, than to the remineralisation rate (Vgey), Qf puy- O ZoOplankton grazing
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arameters and ¢g;,). Nevertheless, our analysis agrees with the areument that global N, fixation is mainl
In general, tracer sensitivities to parameters in OPEM-H configuration are similar to those in OPEM. O, and NO3 ™ levels are
440 slightly less sensitive to the remineralisation rate, QB{ phy> and gp,.x in OPEM-H because this configuration allows (facultative)

diazotroph to grow in high-latitude cold waters, hence the overall biomass of diazotrophs is greater (2)(Part I, Pahlow et al., 2020)

. This is also the reason why Qf 4, and Qf ;, exert a stronger effect on surface-particle elemental stoichiometry at high lati-

tudes in OPEM-H (Figure 3).
Several studies have revealed that N, fixation occurs at high latitude regions (Sipler et al., 2017; Harding et al., 2018;
445 Shiozaki et al., 2018; Mulholland et al., 2019), which supports a wider temperature range of N, fixation, similar to what
we have in OPEM-H. In the trade-off simulation for OPEM-H we do find some N, fixation in the eastern North Pacific and
the Arctic Ocean 2)(Part I, Pahlow et al., 2020). The different temperature function for diazotrophy is also the reason for the

differences in the sensitivities of particulate C:N:P to diazotroph subsistence quotas in high-latitude regions (Figure 3).
4.2 Model limitations

450 The strong correlation between O, and NO3; ™~ (Fig:Figure 5) indicates that O, and denitrification are tightly coupled. Lack of
benthic denitrification leaves water column denitrification as the only loss of NO3 ™~ and O, becomes the primary factor control-
ling the NO3 ™~ inventory. This alse-implies that sensitivities of NO3; ™~ to the model-parameters could be different when benthic

denitrification is incorporated in our model. Also, this means that global N, fixation (same as global denitrification in our

spun-up steady-state simulations) is underestimated, and since it occurs mostly at 40°S to 40°N (see Fig. 13 in Part I, Pahlow et al., 2020)

455 articulate carbon to nitrogen (C:N) ratios could be overestimated due to a missing input of nitrogen to the surface ocean. This

could explain the overestimated surface particulate C:N at low latitudes (see Table 3 and Figure 16 in Part I, Pahlow et al., 2020
To evaluate how water-column denitrification affects our cost function, we arrange our simulations in the order of their cost
values and plot the volume of oxygen deficient zones (ODZs) against cost for both the OPEM and OPEM-H configurations

460 in Figure 10A to C. Several of our simulationshave-, mostly among those with the 200 lowest cost values (Figure 10A)
have a relatively small misfit in O, and NO3;~ compared to the WOA 2013, and have-high N, fixation rates, compara-

ble to those estimated in previous model simulati

e.g., Somes et al., 2017; Wang et al., 2019). For these simulations, low O, is connected with h

trification in the eastern equatorial Pacific Ocean (Pac.EQU.E), causing a depression of NO3 ™~ concentration and a rather high

019)—On-the-one-hand-studies

igh rates of water-column deni-

465 variance in NO3~ concentration, both of which conflict with the observations. Hence cost in this biome is very high, especially
in the upper 550 m (Figure 9), where denitrification is strongest. On the other hand, although the volume of exygen-defictent
zones(ODPZs)-0ODZs in the minium-cost simulations in OPEM and OPEM-H is greater than in the WOA 2013 (Figure 10C),
they yield rather low N, fixation rates (38.8 and 35.1 TgNyear~! for OPEM and OPEM-H, respectively). ODZ volumes in
the trade-off simulations are more than twice that in the WOA 2013 (Figure 10) and yield global N, fixation rates close to

470 current estimates of water-column denitrification (about 70 Tg N year—!, Somes et al., 2017; Wang et al., 2019). The mismatch
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between ODZ volume and N, fixation rate indicates that a refined description of water-column denitrification setting may be

needed (Sauerland et al., 2019). Elearly;-While the physical component (ocean circulation) of the UVic model is also ver
important for the global distribution of oxygen and nitrate, our results suggest that, clearly, only by considering all major ni-

trogen sources and sinks, such as atmospheric deposition and benthic denitrification, a better representation of N2-N, fixation

475 and the global marine nitrogen cycle can be achieved.
4.3 Likelihood-based metric
4.3.1 Applicability of the cost function and usefulness of introducing variance information

The cost function introduced above is a metric that quantifies the discrepancy between objectively analyzed observational data
and simulation results. Our cost function proves useful for exploring the 400 ensemble model solutions and identifies model

480 solutions that reproduce deep ocean gradients in the NO3;~:PO4>~ ratio better than a classic fixed-stoichiometry model 2)
(Part I, Pahlow et al., 2020). In addition, the optimal model solutions yield improved NCP rate estimates integrated over the top
100m (Part I, Pahlow et al., 2020). In particular, the trade-off solutions of OPEM and OPEM-H can resolve observed latitudinal
patterns in dissolved and particulate C:N:P within the upper productive ocean layers {6—-23(0-130 m, see Part I, Pahlow et al., 2020)
. The consideration of monthly mean O,, NO3~, PO,>~ data for the upper 550 m and surface Chl remote sensing data intro-

485 duces important constraints on the representation of the relation between light and nutrient limitation, thereby also specifying
the degrees of N and P limitation.

Even within the 5% of the simulations with the lowest costs, the estimates of global N, fixation rate vary considerably. The
mean global estimates 4+ standard deviation in OPEM and OPEM-H are (37 +£26) TgNyr~! and (51 4-29) TgNyr—1,
respectively. We initially expected that the NO3;~ and PO,>~ data in the cost function would effectually constrain N, fixation.

490 This is clearly not the case and additional information has to be considered. One explanation may be that considerable N;
fixation can occur during short periods and may also be confined to regions smaller than the biomes. Regional differences with
respect to N fixation remain unresolved if only biome-specific monthly mean NO3;~ and PO4>~ data are considered for the
upper layers in the cost function.

Also, the minimum-cost solution yields very low global N, fixation rates. Thus, for the identification of the trade-off solutions

495 we had to consider prior information about global water column denitrification, whose rate is balanced by N, fixation according
to our models. Incorporating N, fixation as a single global rate estimate into our Likelihood-based cost function as a single
additional term would, without some difficult-to-define regulatization, become overwhelmed by the many tracer and variance
terms defined in Egs. (6) and (7). Rather, the additional information is treated as a second objective, namely that global N,

fixation should be greater than 60 TgNyr—!
500 calibration (e.g., Sauerland et al., 2019), where a trade-off between two or more objectives (cost functions) is resolved. A

(see above), which is similar to applying a multi-objective approach for model
refined cost function may incorporate monthly mean N:P ratios or N* values based on WOA 2013 data (e.g., for the upper

130m) for clustered sub-regions of some biomes. Such addition to the cost function would require some careful preprocessing,

e.g., cluster analysis of the spatial N:P or N* patterns, but may suffice to constrain simulated N fixation rates.
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A peculiarity of our cost function is that it complements the data-model misfit, i.e. the residuals of spatial mean leg-transformed

log,,-transformed values, with an additional term that resolves differences in spatial variances. How the neglect of this term

affects the global mean tracer concentrations and flux estimates is depicted in Figures ($+-S2 — $6S7) in the supplemental
material. The cost function’s variance term introduces a strong penalty to approximately 30 % of all ensemble model solu-
tions(Figure-+0). The highest cost-function values (.J > 10°) are associated with discrepancies in spatial variances that exceed
the misfits in the leg-transformed-log,,-transformed tracer concentrations. For large parts of the ensemble solutions the vari-
ance term contributes between 15 and 20 % to the total costs. Interestingly, for those model solutions that yield low cost
function values (J < 4 x 107) the relative contribution rises again when the misfit in the leg-transformed-log, ,-transformed

tracer concentrations gradually decreases (Figure 10B).
4.3.2 Ceontributien-Contributions of biomes

The 17 biomes derived by Fay and McKinley (2014) represent a scale similar to that addressed in global efforts to establish
surface-ocean air-sea carbon-flux estimates (Wanninkhof et al., 2013; Rodenbeck et al., 2015). Accordingly, our cost function
can be easily extended by incorporating air-sea CO, flux estimates in the future. Further improvements may be possible by
introducing sub-regions in some biomes, e.g., for constraining N, fixation rate estimates, as discussed above.

For low cost function values the contribution of the variance term is generally small in most biomes for the deep layers
(Figure 9), where variances of the lteg-transformed-log, (-transformed tracer concentrations compare very well between the
simulations and the WOA 2013. For high costs this term can become dominant, e.g., for some biomes in the North Pacific as
well as the Indian Ocean. A remarkable exception is the North Pacific Arctic biome (NP-ICE), where the deep layer’s variance
term remains dominant for most of the ensemble solutions. This is somewhat different in the Arctic biome of the North Atlantic
(NA-ICE) and the Southern Ocean (SO-ICE), where the variance term remains low throughout almost the entire ensemble. For
SO-ICE the cost function is mainly affected by the misfit in log-transformed-log,,-transformed tracer concentrations. The
misfit is associated mainly with discrepancies between observed and simulated NO3~ within the SO-ICE biome. Interestingly,

these misfits in both upper and deeper layers drop again after around the 280" simulation. Simulations with high NO3;~ do not

result in total cost values as high as in simulations with very low NO3~ (Figure 5), but they have larger misfits for NO3~ in

SO-ICE. A similar behaviour can be seen in the other Southern Ocean biome (SO-SPSS) as well as in NA-ICE.

The upper layer’s variance term contributes strongly for low costs in North Atlantic biomes. This is particularly striking
for the Equatorial Atlantic biome (Atl-EQU). The main reason is water column denitrification that results in a high variance
in NO; ™. Likewise the Eastern Equatorial Pacific biome (Pac-EQU-E) reveals major model limitations in the upper layers.
Overall, the unfolding of biome-specific contributions to the cost function clearly points to those regions where improving
model performance appears most worthwhile. Our present cost function may then be reapplied to quantify and highlight

specific model improvements.
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5 Conclusions

We demonstrate sensitivities of various tracers and processes to parameters in two configurations of a new optimality-based
plankton-ecosystem model (OPEM) in the UVic-ESCM. While OPEM-H predicts a wider geographical range for N, fixation
-(Part I, Pahlow et al., 2020) and shows some differences in the sensitivities of diazotroph C, N and P to parameters when
compared to OPEM, the tracer sensitivity to model parameters is very similar in both configurations. The trade-off simulations
in the OPEM and OPEM-H happen to have the same parameter set. Among our model simulations, varying model parameters
within reasonable ranges results in variations in O, by a factor of two and in NO3;~ concentration by a factor of six. The
sensitivity analysis provides important information regarding the new models’ behaviour. The O, inventory is mainly influenced
by the remineralisation rate (vget) as well as phytoplankton subsistence nitrogen quota (Qg{ phy) and zooplankton maximum
specific ingestion rate (gmax). Changes in Qg{ phy Strongly impact the NO3 ™ inventory, as well as the elemental stoichiometry
of ordinary phytoplankton, diazotrophs and detritus. Qg{ phy also affects N, fixation, Chl, DIC and iron levels. Furthermore,
our sensitivity analysis resolves correlations between various biogeochemical tracers. For example, POC export is negatively
correlated with the NO3; ™~ inventory. We would like to point out that these changes in model behaviour are solely caused by
variations in parameters. Thus, the correlations between tracers and rates might not stand when tracer variations are caused
by other factors. For example, an increase in the NO3 ™ inventory due to anthropogenic emissions may be accompanied by an
increase in POC export (Ferndndez-Castro et al., 2016). Also, although we did evaluate sensitivities of particulate elemental
stoichiometry at different latitudes, most tracer sensitivities and correlations should be considered valid only for global but not
regional scales.

We introduce a new likelihood-based metric for model calibration. The metric appears capable of constraining globally
averaged O, NO3;~ and DIC concentrations as well as NCP. In particular, the minimum-cost and trade-off model solutions
resolve observed latitudinal patterns in particulate C:N:P within the surface layers (0 — 130 m). However, the metric does not

effectually constrain the models’ global N, fixation rate estimates.

contributions of the biomes to the cost function provide details of how tracer distributions in each biome respond differently

under different ecosystem settings. The consideration of spatio-temporal variations in the stoichiometry of NO3 ~, P@fg(v)éi:,
and O, in our metric favours model solutions with low N, fixation rates that are solely balanced by low rates of water col-
umn denitrification. From our findings we conclude that an explicit consideration of benthic denitrification and atmospheric

deposition seem critical for improving the representation of the complete global nitrogen cycle in our model.

Code availability. The University of Victoria Earth System Climate Model version 2.9 (Original Model) is available at http://www.climate.
uvic.ca/model/. The OPEM v1.0 code is available at http://dx.doi.org/10.3289/SW_1_2020. The instructions needed to reproduce the model

results described in this article are in the supplemental material.
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