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Abstract. Explicit consideration of microbial physiology in soil biogeochemical models that represent coupled carbon-

nitrogen dynamics presents opportunities to deepen understanding of ecosystem responses to environmental change. The 10 

MIcrobial-MIneral Carbon Stabilization (MIMICS) model explicitly represents microbial physiology and physicochemical 

stabilization of soil carbon (C) on regional and global scales. Here we present a new version of MIMICS with coupled C and 

nitrogen (N) cycling through litter, microbial, and soil organic matter (SOM) pools. The model was parameterized and 

validated against C and N data from the Long-Term Inter-site Decomposition Experiment Team (LIDET; 6 litter types, 10 

years of observations, 13 sites across North America). The model simulates C and N losses from litterbags in the LIDET study 15 

with reasonable accuracy (C: R2=0.63, N: R2=0.29), which is comparable with simulations from the DAYCENT model that 

implicitly represents microbial activity (C: R2=0.67, N: R2=0.30). Subsequently, we evaluated equilibrium values of stocks 

(total soil C and N, microbial biomass C and N, inorganic N) and microbial process rates (soil heterotrophic respiration, N 

mineralization) simulated by MIMICS-CN across the 13 simulated LIDET sites against published observations from other 

continent-wide datasets. We found that MIMICS-CN produces equilibrium values in line with measured values, showing that 20 

the model generates plausible estimates of ecosystem soil biogeochemical dynamics across continental-scale gradients. 

MIMICS-CN provides a platform for coupling C and N projections in a microbial-explicit model but experiments still need to 

identify the physiological and stoichiometric characteristics of soil microbes, especially under environmental change scenarios. 

1 Introduction 

Soils contain the largest actively cycling terrestrial carbon (C) stocks on earth and also serve as the dominant source of 25 

nutrients, like nitrogen (N), that are critical for maintaining ecosystem productivity (Gruber and Galloway, 2008; Jobbágy and 

Jackson, 2000). Soil C cycle projections and their response to global change factors remain highly uncertain (Bradford et al., 

2016; Todd-Brown et al., 2013), but recent empirical insights into microbial processing of soil C provide opportunities to 

update models and reduce this uncertainty (Cotrufo et al., 2013; Kallenbach et al., 2016; Lehmann and Kleber, 2015; Schmidt 
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et al., 2011; Six et al., 2006). Several models have been developed recently with explicit representation of nonlinear microbial 30 

C processing dynamics, including the MIcrobial-MIneral Carbon Stabilization (MIMICS) model (Sulman et al., 2018; Wieder 

et al., 2014, 2015b) and others (Abramoff et al., 2017; Allison, 2014; Fatichi et al., 2019; Hararuk et al., 2015; Robertson et 

al., 2018; Sulman et al., 2014; Wang et al., 2013, 2014a, 2017). While these models serve different purposes, some can be as 

good as or better than models without explicit microbial pools at simulating global soil C stocks and the response of soil C to 

environmental perturbations (Wieder et al., 2013, 2015b), and they also predict very different long-term responses of soil C to 35 

global change (Wieder et al., 2013, 2018). Microbial-explicit models have thus furthered our understanding of C cycling in 

the terrestrial system, but they also provide new opportunities to explore couplings between C and nutrient cycles, especially 

N.  

 Terrestrial models that couple C and N cycles reveal important ecosystem feedbacks that are absent from C-only 

models. For example, across ecosystems, experimental manipulations consistently indicate that N availability limits plant 40 

productivity (LeBauer and Treseder, 2008).  C-only model configurations in models typically predict that CO2 fertilization 

will result in a large increase in both plant productivity and the land C sink in coming decades, but nutrient limitation may 

constrain the magnitude of this terrestrial ecosystem C uptake  (Wieder et al., 2015a; Zaehle et al., 2015; Zaehle and 

Dalmonech, 2011). As terrestrial models increasingly represent coupled C-N biogeochemistry, accurate model estimates of N 

release from soil organic matter (SOM) will become important to reducing uncertainty in the CO2 fertilization response of the 45 

terrestrial C cycle.  

Currently, most biogeochemical models that couple C and N cycles have an implicit representation of microbial 

activity. These conventional models represent SOM decomposition with the assumption that chemical recalcitrance of organic 

matter dictates the turnover of litter and SOM pools (Luo et al., 2016). Carbon and N fluxes represented in these models are 

directly proportional to donor pool sizes, without any explicit representation of the microbes that mediate these fluxes (Schimel, 50 

2001, 2013). Linear decay constants and transfer coefficients determine the flow of C and N through a decomposition cascade, 

and rates of N immobilization and mineralization emerge from the interaction of fixed respiration fractions and the 

stoichiometry of donor and receiver SOM pools. The lack of plant-microbe-soil feedbacks in these models may limit their 

predictive capacity, especially in the face of environmental change. For example, in these models increased plant inputs to soil 

only build soil C and N stocks, and plants have no way to stimulate the microbial community to mine existing SOM for N 55 

without model modifications (Guenet et al., 2016; Wutzler and Reichstein, 2013). This “N mining” or “priming” effect, where 

increased plant inputs result in increased microbial activity and decomposition rates, has been demonstrated in experimental 

studies (Cheng and Kuzyakov, 2005; Dijkstra et al., 2013; Phillips et al., 2012) and may be a critical pathway for plants to 

obtain more N and support increased plant productivity under elevated CO2 (Thomas et al., 2015; Zaehle et al., 2014).  

Microbes are critical mediators of soil C-N couplings and the release of plant-available N. As such, models that 60 

explicitly consider microbial activity provide an opportunity to explore potential microbial control over soil C-N 

biogeochemical cycling and improve simulations of patterns in ecosystem C and N. Towards this end, multiple models have 

been introduced that explicitly consider the role of microbial activity in ecosystem C-N interactions  (Averill and Waring, 
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2017; Fatichi et al., 2019; Huang et al., 2018; Schimel and Weintraub, 2003; Sistla et al., 2014; Sulman et al., 2014, 2017, 

2018, 2019; Wang et al., 2014a, 2017, 2013). To date, the majority of these microbial-explicit C-N models have been developed 65 

to explore soil biogeochemical interactions and microbial community dynamics, while only one has been validated for N 

dynamics across a continental-scale gradient (Fatichi et al., 2019).  

Although there is great value in exploring diverse approaches to explicitly representing microbes in purely theoretical 

or site-specific applications, implementing these conceptual developments within larger-scale models requires convincing 

evidence that adding them improves model performance against large-scale data. Recent soil model comparisons report 70 

divergent responses to simulated global change experiments among microbial-explicit model formulations, highlighting the 

large uncertainty in their underlying process-level representation and parameterization (Sulman et al., 2018; Wieder et al., 

2018). The addition of explicit microbial pools may improve the predictive ability of landscape-scale models in the long run, 

but microbial models must be validated against landscape-scale datasets of a variety of pools and process rates before they can 

reasonably be expected to improve model performance and reduce uncertainty. 75 

We developed a coupled C-N version of MIMICS (MIMICS-CN) to fill the need at the intersection of microbial-

explicit models, coupled C-N models, models that work well enough to be considered for use in ESMs, and models that can 

be validated against currently available large-scale data. The C-only iteration of MIMICS considers trade-offs involved with 

microbial functional traits as well as both physicochemical (i.e. mineral associations) and chemical (i.e. recalcitrance) 

mechanisms of C stabilization in soil. Wieder et al. (2014, 2015b) and Sulman et al. (2018) evaluated this C only version of 80 

MIMICS across site, continental, and global scales. Here we expand on this work, introducing MIMICS-CN, which 

incorporates stoichiometrically coupled C and N cycling of all microbial, litter and SOM pools and stoichiometric constraints 

on microbial growth. Our core objectives were to: 1) Formulate a framework and parameterization for coupled C and N cycling 

in MIMICS; 2) Validate MIMICS-CN against a continental-scale litter decomposition dataset (LIDET) and compare MIMICS-

CN to a microbially-implicit, linear model (DAYCENT); and 3) Evaluate equilibrium soil and microbial stocks and fluxes 85 

(and their parameter sensitivities) that are simulated by MIMICS-CN with data synthesized across published landscape-scale 

data. Our overarching goal was to create a microbial-explicit coupled C-N model of soil that balances ecological realism with 

the practical considerations of large-scale simulation, and to demonstrate the abilities of this model through parameterization, 

validation and evaluation exercises using both dynamic and equilibrium data. 

2 Methods 90 

2.1 Model formulation 

MIMICS-CN builds upon the previous C-only version of MIMICS, described in Wieder et al. (2014, 2015b), using the same 

pool structure for N as for C plus an additional pool for dissolved inorganic nitrogen (DIN; Fig. 1). In-depth discussion of the 

reasoning behind the development of the C-only version of the model is available in these previous publications, but the general 

intent behind the development of MIMICS was to incorporate a simplified representation of the important aspects of microbial 95 
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communities (biomass-dependent control of process rates, diversity in life history strategies and physiological parameters) into 

a soil model that stabilizes organic matter through both physical (mineral-associated, protected from microbial decomposition) 

and chemical (recalcitrance-based, vulnerable to microbial decomposition) means.  The C-only version of the model represents 

C flows through seven pools (Fig. 1): two litter pools, two microbial pools, and three SOM pools. Litter inputs to the model 

are partitioned into structural litter (LITs) and metabolic litter (LITm) pools based on estimates of litter quality for different 100 

biomes (Brovkin et al., 2012). 

Temperature-sensitive forward Michaelis-Menten kinetics determine the flux of litter and SOM through microbial 

biomass pools that determine rates of organic matter decomposition, SOM formation, soil respiration and nitrogen 

mineralization fluxes. The microbial functional groups are intended to broadly capture tradeoffs in microbial growth rates and 

growth efficiency, with rapidly-growing microbial decomposers (low efficiency, r-strategist (MICr)) and slower-growing 105 

microbial decomposers (higher efficiency K-strategist (MICK; Wieder et al., 2015b)). In MIMICS-CN we extend these 

microbial physiological traits to include microbial stoichiometry and assume that the higher metabolic capacity of MICr also 

require more nitrogen and, thus a lower microbial biomass C:N ratio. Fluxes of C into microbial pools result in respiration 

losses according to a defined carbon use efficiency (CUE) that varies by microbial functional group and substrate quality (e.g. 

structural or metabolic litter). Microbial pool sizes are moderated by inputs, CUE, and biomass-specific turnover rates. We 110 

implemented density-dependent microbial turnover (sensu Georgiou et al., 2017; see Appendix A) for this iteration of the 

model to make microbial pools behave realistically in response to small changes in C inputs (Wang et al., 2014b, 2016). The 

density-dependent turnover of microbial biomass dampens the oscillatory response of microbial biomass to perturbations. 

Microbial biomass turns over into physicochemically-stabilized (SOMp), chemically-stabilized (SOMc), and a pool 

that is ‘available’ for microbial decomposition (SOMa). We consider the SOMp pool to mostly consist of low C:N organic 115 

matter that is primarily composed of microbial products that are adsorbed onto mineral surfaces (e.g. Mineral associated 

organic matter, MAOM; Grandy and Neff, 2008). By contrast, the low-quality SOMc pool consists of decomposed or partially 

decomposed litter that has more structural C compounds, such as lignin, and a higher C:N ratio (e.g. particulate organic matter, 

POM). Finally, the SOMa is the only SOM pool that is available for microbial decomposition; it contains a mixture of fresh 

microbial residues, products that are desorbed from the SOMp pool (e.g. Jilling et al., 2018), as well as depolymerized organic 120 

matter from the SOMc pool. We do not specifically consider soil aggregates, but we recognize that in some soils they are an 

important component of accruing and maintaining persistent organic matter.   

The current representation of N cycling in MIMICS-CN is based on the threshold element ratio idea described in 

Sinsabaugh et al. (2009) and Mooshammer et al. (2014) whereby organisms maintain biomass stoichiometry by spilling excess 

C or N on either side of a threshold ratio. We modified the C-only iteration of MIMICS to include N by adding a parallel set 125 

of pools and fluxes for N, as well as a pool for inorganic N (Fig. 1). The C cycle drives decomposition with fluxes from litter 

and SOM pools to microbes based on biomass-C-based forward Michaelis-Menten kinetics. Parallel N fluxes are determined 

by the C:N ratio of the donor pools, which is a fixed parameter for the metabolic litter pool, varies with litter input chemistry 
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for the structural litter pool, and depends on inputs for SOM pools. We use a fixed C:N of 15 for metabolic litter inputs, while 

the C:N of structural litter was allowed to vary to ensure conservation of total N inputs from litterfall (Table 1).  130 

The coupling between C and N cycles in MIMICS-CN occurs in the microbial biomass: at each hourly time step, the 

total C and N in incoming fluxes available to microbes is summed and adjusted based on the C use efficiency (CUE; varies 

with microbial functional group and substrate) and N use efficiency (NUE; set to 0.85 for all fluxes entering microbial biomass 

pools in this model iteration). If the C:N of substrates being assimilated by microbial functional groups is greater or less than 

the C:N of the microbial biomass (defined as 6 and 10 for r- and K-strategists, respectively; Table 1), the microbes will spill 135 

excess C or N to maintain their biomass stoichiometry through overflow respiration or excess N mineralization. In MIMICS-

CN the C:N ratio of SOM pools is flexible and determined by the inputs from microbial residues and direct inputs from litterfall 

fluxes (fi; Fig. 1). All N fluxes into microbial pools leak a small quantity of N into a dissolved inorganic N pool (DIN) based 

on the model-defined NUE.  At each time step, each microbial functional group can access a fraction of the inorganic N pool 

proportional to their fraction of total microbial biomass. Plant N uptake and ecosystem losses (both hydraulic and gaseous) of 140 

inorganic N are handled implicitly at this stage, with a fixed fraction (20%) of DIN leaving the soil component model every 

time step.  

2.2 Model parameterization and validation: Cross-site litter decomposition 

We parameterized and validated MIMICS-CN using C and N dynamics observed across multiple sites participating in the 10-

year Long-Term Intersite Decomposition Experiment Team (LIDET) experiment (Adair et al., 2008; Harmon et al., 2009; 145 

Parton et al., 2007). The LIDET study selected standardized plant litter types with a range of litter quality (lignin and N 

concentration), placed litterbags containing 100 g of each litter type at sites across a continental scale gradient of climatic 

conditions, and measured changes in the C and N in litterbags on an approximately annual basis for 10 years. Although the 

original dataset included 27 sites across North America, we utilized data from 14 sites ranging from Alaska to Puerto Rico 

based on the data available at those sites to drive MIMICS (see Wieder et al., 2015b for site information). We focus our analysis 150 

on six leaf litters that were simulated across all sites that have been used previously to evaluate litter decomposition dynamics 

in terrestrial models (Bonan et al., 2013; Parton et al., 2007; Wieder et al., 2015b). Root litter types included in the original 

LIDET experiment were not included. The LIDET dataset is a robust appraisal of the impacts of climate and litter chemistry 

on litter decomposition and has been used as a dataset for comparing models of soil and litter decomposition in the past (Bonan 

et al., 2013). MIMICS has been used previously to simulate C losses in the LIDET study (Wieder et al., 2014, 2015b).  155 

We parameterized MIMICS-CN using observations from Harvard Forest in Petersham, MA, USA. Observations 

included both litterbag C loss and N data from the LIDET study as well as measurements of soil C and N stocks and microbial 

C and N from other studies at Harvard Forest (Colman and Schimel, 2013). Multiple combinations of parameters produced 

equally good fits to litter decomposition data; thus ancillary data on soil and microbial C stocks were used to inform the 

parameter values presented here (Table 1). These ancillary data were not reported in LIDET and were not measured on identical 160 

plots to those used for the LIDET study (Harvard Forest encompasses multiple experiments and ecotypes), but these general 
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targets were useful in distinguishing among model parameterizations. Our general targets for stocks at Harvard Forest included 

soil C and N (0-5 cm mineral soils, coniferous stand): 61 mg C cm-3 and 2.9 mg N cm-3; soil C:N: 21; and microbial biomass: 

0.61 mg C cm-3 (estimated as 1% of soil C based on Xu et al. 2013).  

After parameterizing the model to match observations at Harvard Forest, the model was validated using data from the 165 

remaining LIDET sites. To represent litterbags in MIMICS-CN, we first spun up the underlying model to simulate steady-state 

soil C and N pools and fluxes across sites in the LIDET study using site-level measurements of mean annual temperature, clay 

content, and litter input quantity, and litter chemistry (Wieder et al., 2015b). Then, we added a pulse of metabolic and structural 

litter based on the type of litter in the simulated litterbag. We tracked the C and N across all model pools for 10 years and 

calculated the C and N in litterbags as the difference between total model C and N in the simulations and total model C and N 170 

at steady state. In both the simulated and real litterbags, microbes immobilized N from the soil DIN pool, resulting in litterbag 

N contents for some time points in excess of the initial values. For each site, the model was sampled at time points equivalent 

to the real data collection dates in LIDET (approximately annually). Observed and modeled values of C and N in litterbags 

were compared by calculating R2, root mean square error (RMSE) and bias. 

To contextualize our results and better understand how our model functions compared to a widely used microbial-175 

implicit model, we compared MIMICS-CN simulations of LIDET data against DAYCENT (Bonan et al., 2013) simulations 

of the same data. Bonan et al. (2013) used the full complement of 27 LIDET sites in their analysis, but here we subset those 

results for the 13 sites used in the MIMICS-CN validation. We calculated R2, RMSE and bias in the same way for each model 

and compared results across models, grouping results by biome.  

2.3 Model evaluation: Equilibrium C and N cycling 180 

Building on the LIDET simulations, we independently synthesized observations to evaluate the patterns of C and N pools and 

fluxes across a variety of sites. Although direct, site-specific comparisons of modeled and observed values like microbial 

biomass would have been ideal, MIMICS-CN represents many variables that were not measured in the LIDET study and have 

not been synthesized across these Long-Term Ecological Research sites. Instead, we compared the range and distribution of 

pools (soil organic C and N, microbial biomass C and N, and total inorganic N) and fluxes (heterotrophic respiration and N 185 

mineralization) using the modeled LIDET simulations and published syntheses of observations from other sites (Cleveland 

and Liptzin, 2007; Colman and Schimel, 2013; Xu et al., 2013; Zak et al., 1994). To more directly compare measurements 

with model results, stock measurements were converted to units of % of soil mass and fluxes (heterotrophic respiration and 

net N mineralization rates) were converted to units of g cm-3 hr-1. MIMICS reports pool values in units of g cm-2 (0-30 cm); 

to compare MIMICS against observations we converted MIMICS values to % by mass assuming a bulk density of 1.5 g cm-2. 190 

Soil depth simulated by MIMICS (30 cm) is deeper than most of the observations in the compiled dataset, but the purpose of 

this exercise was to evaluate whether MIMICS produces realistic values for soil biogeochemical stocks and fluxes across 

continental-scale ecoclimatological and edaphic gradients, rather than making a direct site-specific comparison. The 
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distribution of values produced by MIMICS across the LIDET sites was superimposed on the distributions of observed values 

to illustrate data-model agreement and to visualize the median and range of measurements across studies. 195 

Finally, we documented relationships between model input variables (mean annual temperature, productivity, clay 

content, and litter quality) and the distribution of SOM pools that were simulated at the LIDET sites. Our aim with these 

analyses was to illustrate the underlying assumptions in the model and how they influence the size and distribution of C across 

SOM pools. Specifically, we wanted to explore how assumptions made in the model structure and parameterization of MIMICS 

determine the quantity and distribution of SOM pools, and how they change among sites with variation in climatic, biological, 200 

and edaphic properties. To do this we looked at the absolute and relative contributions of each SOM pool simulated by MIMICS 

across the LIDET sites and conducted linear regressions to determine how environmental factors control their distributions. 

We also conducted linear regressions between soil C:N and both litter chemistry and environmental factors to assess the drivers 

of soil C:N in the model.  

3 Results 205 

3.1 Model parameterization and validation: Cross-site litter decomposition 

We parameterized MIMICS-CN to replicate litter C decay rates and N dynamics of six litter types observed in the LIDET 

study at the Harvard Forest LTER site (Fig. 2). In its current parameterization, MIMICS slightly overestimates litter C loss at 

later stages of decay, but most time points are within uncertainty estimates of the observations (Fig. 2a). Similarly, for N, 

MIMICS-CN overestimates N accumulation in early stages of decay and underestimates N remaining at later stages, but most 210 

time points follow a reasonable trajectory given observations. MIMICS-CN also captures the effects of litter quality on both 

rates of litter decay (Fig. 2a) and litterbag N accumulation (Fig. 2b). The parameters we used to fit MIMICS-CN to Harvard 

Forest data also produce reasonable estimates of soil N stocks (2.0 vs. 2.9 mg N cm-3 for model and observations, respectively) 

and microbial biomass (0.65 vs 0.61 mg C cm-3), although estimates of soil C (21 vs 61 mg C cm-3) and soil C:N (11 vs. 21) 

are both lower than observations.  215 

Parameter values used for this and subsequent simulations across all LIDET sites are shown in Table 1. Relative to 

the previous C-only version of the model (Wieder et al., 2014, 2015b), kinetic parameters and microbial turnover values were 

adjusted to account for density-dependent turnover (Georgiou et al. 2017). In addition, the fraction of structural litter that 

bypasses microbial biomass to enter the chemically-protected pool (fi) was increased from 5% to 30% as a means to produce 

reasonable values for total soil C:N. Finally, we adjusted the partitioning of microbial turnover to stable soil pools in order to 220 

more closely match distributions at Harvard Forest.  

Applying this parameterization across all six litter types at 13 LIDET sites, MIMICS-CN simulates C losses and N 

dynamics from litterbags with an R2 of 0.63 and 0.29, respectively (Fig. 3). MIMICS-CN captures effects of litter quality on 

decay rates, with faster rates of C loss and more rapid N mineralization simulated with more N rich Drypetes glauca litter, and 

slower rates of C loss and greater N immobilization simulated by low quality Triticum aestivum litter (Fig 3a, c). MIMICS-225 
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CN is best at capturing C loss rates in high- and intermediate-quality litters (Drypetes glauca, Pinus elliottii, Thuja plicata, 

and Acer saccharinum) but tends to underestimate litter C loss rates from the lowest-quality litter (T. aestivum). For N 

immobilization and loss, the model performs well especially for high-quality litters but underestimates N accumulation slightly 

in the lowest-quality litter. The model also captures broad climate effects on litter C loss, with slower decay rates in tundra 

and boreal forests sites and faster decay in tropical and deciduous forests (Fig 3b).  230 

MIMICS-CN and DAYCENT simulations of LIDET decomposition data are compared in Table 2. Across a broad 

range of biomes, MIMICS-CN and DAYCENT both show good agreement with LIDET observations. Across sites MIMICS-

CN has similar R2 and RMSE values but lower bias compared to DAYCENT for mass loss (MIMICS-CN: R2=0.63, 

RMSE=16.0, bias=-0.12; DAYCENT: R2 = 0.67, RMSE=14.4, bias=4.73), and percent N remaining (MIMICS-CN: R2=0.29, 

RMSE=0.34, bias=0.03; DAYCENT: R2=0.30, RMSE=0.40, bias=0.08). Broadly, MIMICS-CN outperformed DAYCENT in 235 

the warmest biomes while DAYCENT excelled for colder sites for both C and N (Table 2), but the differences in model fit to 

data were slight and would be difficult to attribute to any particular differences in model structure. DAYCENT simulates 

decomposition based on initial litter chemistry and showed no site-specific effects on the maximum N immobilized or the 

relationship between C and N during decomposition for a given litter type (Fig. S1 and S2). By contrast, the amount of N that 

can be immobilized by a litterbag in MIMICS-CN is driven by the availability of N and the stocks and flows of N in the 240 

simulated steady-state soil, and MIMICS-CN showed site-specific variability in the shape of N immobilization and loss curves 

(Fig. 3 and 4). 

Litter quality determines the timing of N immobilization vs. mineralization in observations. This produces a 

functional relationship between initial litter chemistry, C loss, and N immobilization / mineralization that is fairly consistent 

across sites (colored dots; Fig. 4). MIMICS-CN broadly captured litter quality effects on the timing and magnitude of N 245 

immobilization and mineralization dynamics across all biomes (red triangles; Fig 4).  For example, litter with high initial 

chemical quality consistently mineralize N throughout all stages of litter decay, and MIMIC-CN adequately captures this 

functional C-N relationship (Fig 4a,b). By contrast, litters with lower initial chemical quality immobilize N during early stages 

of litter decay, but subsequently mineralize N as decomposition proceeds. MIMICS-CN broadly captures these patterns, but 

without as much variation as the observations (Fig 4c-f). The lowest-quality litter (Triticum aestivum) immobilizes N until 250 

only 40% of C remains in litterbags. Although MIMICS-CN potentially underestimates total N immobilization Triticum 

aestivum litter, it does capture the point at which net N mineralization begins (Fig. 4f).   

3.2 Model evaluation: Equilibrium C and N cycling 

Across all sites and litter types in the LIDET simulations, the ranges of underlying pool sizes and process rates in MIMICS-

CN were compared against published ranges from similarly diverse sets of sites (Cleveland and Liptzin, 2007; Colman and 255 

Schimel, 2013; Xu et al., 2013; Zak et al., 1994). MIMICS-CN simulations produced reasonable equilibrium values for most 

pools and fluxes (Table 3 and Fig. 5). In general, the range of values across the 13 sites simulated by MIMICS was smaller 

than the ranges across the thousands of sites included in the compiled dataset of observations. For example, total soil C ranged 
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from 7.0-50 mg C cm-3 in MIMICS simulations but ranged from 2.7-610 mg C cm-3 in observations. Despite this discrepancy, 

the median values of the simulations and observations were generally within reason (Fig. 5). The distributions of measured 260 

and modeled values for microbial biomass C and N as a percent of total soil C and N overlapped, providing evidence that the 

model reasonably represents microbial stoichiometry, microbial activity as a function of biomass, and microbial biomass as a 

function of SOM. For soil C:N, the model tended to produce low values with a relatively narrow range, relative observed 

values. 

 Finally, we explored the environmental controls on the distribution of SOM across physicochemically-protected, 265 

chemically-protected, and available pools in MIMICS-CN by examining the correlations between pool sizes and salient input 

variables (mean annual temperature, productivity, clay content, and litter lignin content). The results are shown in Fig. 6. The 

absolute concentration of SOM simulated across the LIDET sites was most strongly correlated with ANPP (R2=0.52), but also 

tended to increase with MAT, albeit inconsistently (Fig. 6a; R2=0.15). The distribution of SOM across stabilized pools strongly 

favored chemically-protected SOM at sites with lower temperatures, while the relative proportion of physicochemically-270 

protected SOM increased with increasing temperature (Fig. 6b). The relative proportion of SOM in the available pool remained 

fairly consistent across simulated sites. Physicochemically-protected SOM was tightly positively correlated with the product 

of ANPP and clay content (R2=0.96, Fig. 6c), while chemically-protected and available SOM were negatively correlated with 

MAT (Fig. 6d, R2=0.40 and 0.47, respectively) and positively correlated with litter lignin content (Fig. 6e; R2=0.68 and 0.32, 

respectively). The C:N of individual pools was fairly consistent across sites and tended to be higher for chemically-protected 275 

SOM (~15) than available (~8) or physicochemically-protected SOM (~10). As a result, soil C:N was largely driven across 

sites by the distribution of SOM across pools, especially the absolute size of the SOMp pool (Fig. 6f, R2=0.79). Given that 

clay content was an important driver of physicochemically-protected SOM in the model, clay content was tightly correlated 

with soil C:N (R2=0.88). Other litter characteristics and environmental factors were not strong drivers of soil C:N (R2 for MAT: 

0.42; litter lignin: 0.03; litter C:N: 0.005). 280 

4 Discussion 

Terrestrial models are increasingly representing coupled C-N biogeochemistry, and MIMICS-CN is among the first attempts 

to do so with a microbial explicit soil biogeochemical model that can be used to project C and N dynamics across continental-

scale gradients. Our formulation and parameterization of MIMICS-CN captures site level observations of litter C loss and N 

immobilization at the Harvard Forest LTER site (Fig. 2). Cross-site validation of the model demonstrates that it broadly 285 

captures climate and litter quality effects on rates of C and N transformations from the LIDET observations (Figs. 3-4).  

Notably, the results simulated by MIMICS-CN represent N dynamics during litter decomposition about as well as a first-order 

model that implicitly represents microbial activity (Table 2). It also generates steady state pools and fluxes of C and N that 

seem reasonable compared to published syntheses (Table 3; Fig. 5). Below we discuss these dynamic and equilibrium model 

simulations in greater detail, as well as some of the limitations of MIMICS-CN that will be addressed in future work. 290 



10 

 

4.1 Model parameterization and validation: Cross-site litter decomposition 

We first parameterized and validated MIMICS-CN using the cross-site litter decomposition study, LIDET. Previous LIDET 

simulations using MIMICS have successfully replicated observed C loss patterns, and adding coupled N cycling to MIMICS 

neither improved nor degraded simulations of LIDET litter C losses relative to the C-only model (Figs. 2-3; Wieder et al. 

(2015b) report global RMSE for the C-only model = 14.6 vs. 16.0 in this study). Our results show higher than observed rates 295 

of litter C mass loss in deciduous and coniferous forest (Figs 2a, 3b; Table 2). This suggests that the partitioning of plant 

detrital inputs into litter pools that are chemically defined works well for initial stages of litter decay, but may not consider the 

changes in substrate chemistry or microbial community succession that occur in later stages of decomposition that slow rates 

of mass loss (Berg, 2000; Melillo et al., 1989). Models that implicitly represent microbial activity capture this phenomena by 

using a three pool structure (Adair et al., 2008), and future studies can consider how to more mechanistically understand 300 

interactions between initial litter quality, decomposer communities, climate, nutrient availability and late-stage litter decay 

rates (e.g. Craine et al., 2007; Hobbie et al., 2012; Wickings et al., 2012) in models like MIMICS-CN. In MIMICS-CN, carbon 

and nitrogen move together through model pools, but model dynamics are primarily driven by C, with N dynamics following 

suit based on pool stoichiometry. The N dynamics do, however, constrain C cycling in the model if microbes are N-limited, in 

which case microbes lose excess C through overflow respiration. At equilibrium, microbes in our MIMICS-CN simulations 305 

primarily obtained N through recycling of SOM pools with favorably low C:N ratios, with the result that modeled microbes 

were almost always C-limited at equilibrium and rarely exhibited overflow respiration. Large pulses of low-quality litter can 

perturb this equilibrium and induce N limitation, but in the absence of losses of or plant competition for inorganic and dissolved 

organic N, C cycling in MIMICS proceeds in essentially the same way with or without accounting for N.  

MIMICS-CN accurately captured the stoichiometric relationships between C and N during litter decomposition (Fig. 310 

4). This stoichiometric relationship has been well-defined in the past using theoretical microbial stoichiometry and CUE 

(Parton et al., 2007), but comparable soil models without explicit microbial physiology have tended to over-predict N 

accumulation in litterbags (Bonan et al., 2013). Moreover, models without microbial explicit physiology also show N 

immobilization mineralization dynamics that are completely determined by initial litter quality, whereas MIMICS simulations 

show greater site-level variation (Figs. 4, S2). In MIMICS-CN, stoichiometric relationships drive litterbags to accumulate soil 315 

N until they reach a threshold C:N, after which litterbags become net sources of N. This threshold, representing the balance 

between microbial N requirements and availability, is a function of changes in litter stoichiometry during decomposition, as 

well as of the stoichiometry of microbes and their nutrient use efficiencies. By explicitly considering these dynamics MIMICS-

CN has a similar or lower RMSE for N remaining in litter bags than a model that implicitly represents microbes, DAYCENT 

(Table 2). 320 

 MIMICS-CN and DAYCENT capture N dynamics during decomposition with similar overall degrees of fit, but for 

different reasons. In DAYCENT, N immobilization and loss dynamics are driven by initial litter chemistry, and good model 

fit to data is achieved by capturing the average N immobilized for a given litter type regardless of biome and climate conditions 
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(see Fig. S1 and S2). By contrast, litterbag N immobilization in MIMICS-CN is driven by the availability of N in the underlying 

modeled soil and by site-specific effects (e.g. climate, clay content) on the simulated stocks and fluxes of N. As a result, 325 

MIMICS-CN generates greater variation in the amount N immobilized for a given litter type across sites (Figs. 3 and 4). Site-

specific variability in N immobilization patterns is also clearly visible in LIDET observations (colored dots, Fig. 4), but the 

introduction of site-specific variability in MIMICS-CN does not substantially improve model fit to data relative to DAYCENT. 

Spatial variability in ecosystem processes, like N mineralization rates, may be linked to factors like local-scale microbial 

community composition, soil moisture, or mineralogy (Graham et al., 2016; Smithwick et al., 2005; Soranno et al., 2019; 330 

Doetterl et al., 2015). While more work needs to be done to understand the factors controlling within and among site variation 

in soil C-N dynamics (Bradford et al., 2017), these results highlight that the explicit representation of microbial activity in 

MIMICS-CN may present opportunities to explore factors responsible for biogeochemical heterogeneity across scales. 

Although MIMCS-CN broadly captures appropriate climate and litter quality effects on leaf litter decomposition 

patterns, the model underestimates N accumulation in the highest C:N ratio litter (Triticum aestivum; Fig. 4f). Microbes in 335 

MIMICS-CN recycle nitrogen from necromass and necromass-derived SOM, which might allow microbes to scavenge the N 

required to decompose high C:N litter without having to accumulate it from the inorganic soil pool. In a real litterbag, 

necromass might be lost through leaching and microbial access to recycled biomass might be limited, and some microbial-

derived compounds may require extensive depolymerization and proteolysis before the N is available for recycling (Schulten 

and Schnitzer, 1997), thus favoring N uptake from the soil pool. Alternatively, N inputs to real litterbags in the LIDET study 340 

may have come from atmospheric deposition or other unintended sources that MIMICS-CN does not address. Nonetheless, 

the high C:N ratio of Triticum aestivum is not typical of the majority of litter inputs across diverse biomes (Brovkin et al., 

2012) which are well within the range that MIMICS-CN can simulate.   

4.2 Model evaluation: Equilibrium C and N cycling 

We conducted additional model evaluation by comparing model pools and fluxes at equilibrium to published observations. 345 

The parameter values used in the LIDET simulations produced reasonable estimates of equilibrium pools (soil organic C and 

N, microbial biomass C and N, and total inorganic N) and fluxes (heterotrophic respiration and N mineralization) (Table 3; 

Fig. 5). In combination with the LIDET results, these results indicate that MIMICS-CN can produce realistic simulations of 

both the short-term dynamic processes involved in litter decomposition and the soil-forming processes that produce 

equilibrium pools and fluxes over much longer time scales. In addition, MIMICS-CN simulates microbial stoichiometry, 350 

microbial growth and turnover, and microbially-mediated decomposition, rather than using prescribed values as in models that 

lack explicit representation of microbes. This increases the power of MIMICS-CN to explore the microbial and biogeochemical 

processes underpinning model predictions.  

Continent-wide observation of soil pools and fluxes range over several orders of magnitude (Table 3), but MIMICS 

simulations agreed well with the median of those ranges. Observations tended to be spread over a much larger range of values 355 

than the MIMICS-CN simulations, but these simulations only included information from 13 sites while the observations 
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included thousands of locations. The median values of observed and simulated values were within a factor of 2.5 for all pools 

(Fig 5). Differences in measurement depth or error in estimated bulk density values could account for some of the differences 

between measurements and simulations and for the spread across observed values. This is less of a concern for three of the 

variables used here (soil C:N, microbial biomass C as a percent of total soil C and microbial biomass N as a percent of total 360 

soil N), which are ratios that are comparable across sites. Microbial biomass C as a percent of total soil C and microbial 

biomass N as a percent of total soil N were highly conserved across sites, relative to soil stocks or microbial C or N, and may 

be particularly useful metrics for evaluating microbial explicit soil biogeochemical models since the size of the microbial 

biomass pool directly controls rates of SOM turnover and formation in models like MIMICS-CN. For these ratios, MIMICS-

CN reproduced distributions and median values that overlapped well with observations. In future work, direct comparisons of 365 

modeled and measured values for these ratios at specific sites may shed light on the limitations of the model and the origins of 

data-model disagreement. However, even the simple range comparisons included here provide evidence that the mechanistic 

representation of soil biogeochemistry in MIMICS-CN is ecologically realistic. Examinations of model realism like this are a 

crucial step in transitioning from theory and small-scale model tests to applications in ESMs or at larger scales where evaluation 

data are more sparse. 370 

Besides representing appropriate soil biogeochemical stocks, fluxes simulated by the models also agree well with 

observations. Specifically, MIMICS-CN simulations of heterotrophic respiration and net N mineralization rates fell within 

observed bounds, although the variation in observations was much greater than the variation in simulated values. Our 

simulations calculated rates at equilibrium assuming constant temperature and other factors, while real rates of these processes 

are driven by seasonally- and diurnally-variable temperature, soil moisture, and other factors, so predictably, our simulations 375 

produced smaller-than-observed variability in rates. MIMICS-CN produced total soil C:N values that fall within observed 

ranges, although observations again show greater variation of soil C:N ratios and have maximum values that are much higher 

than the maximum C:N ratios simulated by MIMICS-CN. SOM pools in MIMICS-CN are mostly comprised of microbial 

necromass, in addition to a small proportion of litter that enters SOM pools directly without first passing through microbial 

biomass. Increasing this proportion in the model is one way to increase the C:N of SOM pools and the overall system at 380 

equilibrium. At some sites, litter may contribute more directly to SOM pools than microbial necromass (Jilling et al., 2018). 

For example, forests often have a higher proportion of total soil C in the light fraction, which is almost entirely made up of 

plant residues,  compared to agroecosystems and many grasslands (Grandy and Robertson, 2007).  For those sites with large, 

direct contributions of plant matter to SOM, increasing the fraction of litter that passes directly into SOM in MIMICS may be 

appropriate.  385 

4.3 Exploring emergent SOM dynamics  

The distribution of SOM across simulated pools in MIMICS-CN (Fig. 6) illustrates how model-defined assumptions about 

pool stabilization mechanisms drive potential responses to environmental variables. The wide variation in SOM pool 

distributions among contrasting environments in our simulations provides support for experimental efforts aimed at 
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distinguishing between SOM pools to understand SOM responses to environmental changes and potential ecosystem 390 

feedbacks. For example, global change factors like warming can cause a range of different responses among SOM pools 

(Conant et al., 2008; Li et al., 2013; von Lützow and Kögel-Knabner, 2009; Plante et al., 2010). Experimental studies also 

show that increases in SOM resulting from increased inputs are not typically evenly distributed across different SOM pools 

(Lajtha et al., 2017; Stewart et al., 2009), which can influence feedbacks to productivity as well as the persistence of soil C 

gains in response to shifts in climate. Thus, while our broad-scale projections of how and why SOM differs among pools needs 395 

to be evaluated with experiments and data synthesis across environments, they can provide a starting point for understanding 

SOM responses to global change factors across environments.    

In MIMICS, the turnover of chemically-protected and available SOM pools is based on temperature-sensitive 

Michaelis-Menten kinetics and litter chemistry (the latter controlling allocation of litter pools to the different microbial 

functional groups). This results in SOMC pools (analogous to light fraction or POM pools) that are negatively correlated with 400 

MAT and positively correlated with litter lignin content (Fig. 6d, 6e). Turnover of the physicochemically-protected SOM pool, 

on the other hand, occurs via first-order kinetics with a rate constant modified by clay content, and the equilibrium values of 

this pool are determined by inputs that largely come from microbial biomass and biomass turnover rates (Fig. 1). Therefore, 

the equilibrium values of SOMp (analogous to heavy fraction or MAOM pools) were strongly positively correlated with the 

product of ANPP and clay content (Fig. 6c). This relationship broadly reflects the expected importance of total soil C inputs 405 

and their  potential to be preserved after microbial processing by association with clays (Kleber et al., 2015). However, these 

two variables are also likely to covary with others, especially MAT, highlighting the difficulty of isolating individual 

mechanisms that regulate SOM. 

Across the sites included in these simulations, chemically-protected SOM formed a higher proportion of total SOM 

at lower MAT, while physicochemically-protected SOM was favored at warmer sites (Fig. 6b). In global simulations with the 410 

carbon-only version of MIMICS, these assumptions result in MIMICS projecting longer soil C turnover soil C times and larger 

soil C pools in the tropics than other models (Koven et al., 2017; Wieder et al., 2018) and a higher vulnerability of high latitude 

soil C stocks (Wieder et al., 2015b, 2019). Evaluating the accuracy of our model assumptions and the resulting patterns in soil 

C and N cycling requires coupling process-level studies of the fate of decomposing litter (e.g. using isotope tracers) to broad-

scale evaluation of SOM pool distributions across environmental gradients. 415 

Soil C:N ratios simulated by MIMICS-CN across sites were highly correlated with soil clay content (R2=0.88), 

suggesting that, in the model, soil stoichiometry emerges from the relative contributions of SOM across physicochemically- 

and chemically-protected pools (Fig. 6). Although the spread of C:N values across the sites simulated by MIMICS-CN was 

small (Fig. 6f), C:N tended to decrease with increasing temperature, and simulated soil C:N was more correlated with site 

temperature (R2=0.42) than any of the litter characteristics used to drive the model, such as litter lignin (R2=0.03) or litter C:N 420 

(R2=0.005). This result directly contradicts a recent study using a first-order linear model which presumed that litter quality 

and soil quality at equilibrium were directly proportional (Menichetti et al., 2019). Although many soil biogeochemical models 

prescribe soil C:N ratios for individual pools, the stoichiometry of SOM in MIMICS-CN is an emergent property of the model.  
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The lack of correlation between simulated soil C:N and litter C:N in MIMICS-CN simulations suggests an intriguing 

follow-up question: in the field, is SOM stoichiometry correlated with litter quality, or is it better explained by climate, edaphic, 425 

and mineralogical gradients that impact soil microbial community composition, microbial activity, and mineral-mediated 

mechanisms of SOM persistence? Various regional studies provide limited support for the relationships generated by MIMICS-

CN between soil C:N and MAT (Miller et al., 2004) or clay content (Hassink et al., 1993; Homann et al., 2007; Jenny, 1941), 

though a large-scale synthesis of measurements across all of these variables is still needed. Presently, MIMICS-CN assumes 

that microbial biomass stoichiometry largely controls the C:N ratios of stable SOM, with relatively minor contributions from 430 

litter quality. However, a small proportion of litter inputs become stabilized in MIMICS-CN without first passing through the 

stoichiometric filter of microbial biomass, and increasing this fraction in the model is a means to increase the C:N of simulated 

stable SOM. The strength of the mineral sink for microbial necromass in the model also impacts the relative balance of 

microbe- or plant-derived stable SOM, which in turn impacts modeled soil C:N. This result implies that in the field, C:N 

stoichiometry might be used as a means to differentiate the degree to which a given soil fraction is derived from direct plant 435 

inputs or microbial biomass, and mineralogical variables might be useful for explaining differences in fraction distributions 

across soils that impact C:N. Studies like Mikutta et al. (2019) illustrate the way that C:N can be used to assess the relative 

contributions of plant matter or microbial residues to stable SOM. Future work will use measured C:N of soils and soil fractions 

and isotopic insights into the plant or microbial origins of stable SOM to improve the parameterization of this aspect of the 

model and better understand the relationship between mechanisms of SOM stabilization and soil stoichiometry.  440 

4.4 Limitations and future work 

MIMICS-CN combines reasonable biogeochemical simulations with the option to explore underlying microbial processes, but 

limitations remain. For example, MIMICS only represents two microbial groups with different stoichiometric and 

physiological parameters, but real soils contain a much more diverse array of microbial functional groups with different 

responses to environmental conditions and different couplings between C and N cycles. CUE and NUE are critical microbial 445 

parameters in MIMICS-CN, but the relationships between CUE and microbial community composition (Maynard et al., 2017), 

microbial growth rate (Molenaar et al., 2009; Pfeiffer et al., 2001), temperature (Allison, 2014; Dijkstra et al., 2011; Frey et 

al., 2013; Steinweg et al., 2008), substrate quality (Blagodatskaya et al., 2014; Frey et al., 2013; Sinsabaugh et al., 2013), or 

any number of other aspects of microbial metabolism are complex, difficult to quantify, and challenging to represent at the 

scale of a whole soil community (Geyer et al., 2016). In its current configuration, MIMICS-CN also simplifies a number of 450 

ecosystem biogeochemical processes, and there are several important pathways of N cycling currently absent from the model. 

For example, MIMICS-CN does not currently represent free living biological N fixation, direct mycorrhizal exchanges for 

plant C for microbial N, dissolved organic C or N losses, denitrification/nitrification/other inorganic N transformation and loss 

pathways, plant uptake of N, or inorganic N leaching beyond a simple linear decay rate. Some of these shortcomings may be 

remedied by integrating MIMICS with a full ecosystem biogeochemical model that represents the greater complexity of the 455 

plant-soil continuum.  
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MIMICS-CN provides a pathway to reconcile mechanistic explanations for phenomena like priming and plant-soil 

feedbacks with emergent patterns in terrestrial biogeochemistry across landscapes. MIMICS-CN and microbial models like it 

are a good first step towards representing the complex ecological factors that drive the coupling of soil C and N 

biogeochemistry, including the distribution of SOM among functionally relevant pools and SOM C:N ratios. Future work 460 

could compare model formulations that take different approaches to microbial community and stoichiometric parameters (e.g. 

flexible microbial parameters like C:N or CUE, additional microbial groups, partitioning microbial metabolism into a greater 

number of pathways) and refinement of mechanisms that confer SOM persistence. These efforts should also assess the 

ramifications of different choices for simulating existing data and predicting the long-term response of soil C and N cycles to 

global change. Our work demonstrates that MIMICS-CN can reproduce site and litter quality effects on litter decomposition 465 

C and N dynamics at a landscape scale, while also pointing to the importance of underlying, interacting microbial and 

biogeochemical factors in regulating SOM dynamics. Future work coupling MIMICS-CN to experiments and syntheses 

relating the distribution of SOM across pools to their underlying controls across gradients will improve our confidence in our 

ability to understand and project SOM dynamics. 

Code and data availability 470 

MIMICS-CN (v1.0) is written in R using packages rootSolve (Soetaert and Herman, 2009) and hydroGOF (Zambrano-

Bigiarini, 2017). Figures were generated using packages  ggplot2 (Wickham, 2016), reshape2 (Wickham, 2007), scales 

(Wickham, 2018), gridextra (Auguie, 2017), and cowplot (Wilke, 2016). The R scripts and datasets used to generate model 

results are available at https://zenodo.org/record/3534562. See Appendix A for equations. 
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Appendix A: Model equations 490 

The structure and assumptions in the C-only version of MIMICS have been described previously (Wieder et al., 2014, 2015b), 

and the structure and assumptions in MIMIC-CN are described in section 2.1 (“Model formulation”) of the methods section 

of this paper. The C fluxes (mg C cm-3 h-1) from donor to receiver pools in MIMICS-CN, numbered on Fig. 1, are defined by 

the following: 

 495 

LITm,C_MICr,C = MICr,C × Vmax[r1] × LITm,C / (Km[r1] + LITm,C), (A1) 

LITs,C_MICr,C = MICr,C × Vmax[r2] × LITs,C / (Km[r2] + LITs,C), (A2) 

SOMa,C_MICr,C = MICr,C × Vmax[r3] × SOMa,C / (Km[r3] + SOMa,C), (A3) 

MICr,C_SOMC = MICr,C β × τ[r],   (A4) 

LITm,C_MICK,C = MICK,C × Vmax[K1] × LITm,C / (Km[K1] + LITm,C),  (A5) 500 

LITs,C_MICK,C = MICK,C × Vmax[K2] × LITs,C /  (Km[K2] + LITs,C),  (A6) 

SOMa,C_MICK,C = MICK,C × Vmax[K3] × SOMa,C / (Km[K3] + SOMa,C),  (A7) 

MICK,C_SOMC = MICK,C β × τ[K],   (A8) 

SOMp,C_SOMa,C = SOMp,C × D,    (A9) 

SOMc,C_SOMa,C = (MICr,C × Vmax[r2] × SOMc,C / (KO[r] × Km[r2] + SOMc,C))  + 505 

           (MICK,C × Vmax[K2] × SOMc,C / (KO[K] × Km[K2] + SOMc,C)). (A10) 

 

where pools and parameters are described in section 2.1 and Table 1, respectively. The N fluxes (mg N cm-3 h-1) from donor 

to receiver pools in MIMICS-CN are calculated based on the C fluxes between pools and the C:N ratio of donor pools. These 

fluxes are numbered on Fig. 1 and defined by the following: 510 

 

LITm,N_MICr,N = A1 × LITm,N / LITm,C,  (A11) 

LITs,N_MICr,N = A2 × LITs,N / LITs,C,  (A12) 
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SOMa,N_MICr,N = A3 × SOMa,N / SOMa,C, (A13) 

MICr,N_SOM,N = A4 × MICr,N / MICr,C,   (A14) 515 

LITm,N_MICK,N = A5 × LITm,N / LITm,C,  (A15) 

LITs,N_MICK,N = A6 × LITs,N / LITs,C,   (A16) 

SOMa,N_MICK,N = A7 × SOMa,N / SOMa,C,  (A17) 

MICK,N_SOM,N = A8 × MICK,N / MICK,C,  (A18) 

SOMp,N_SOMa,N = A9 × SOMp,N / SOMp,C, (A19) 520 

SOMc,N_SOMa,N = A10 × SOMc,N / SOMc,C. (A20) 

 

Each time step, the microbial pools in MIMICS-CN take up inorganic N from the DIN pool proportional to the biomass in 

each pool. Subsequently, the C:N ratio of all the inputs to each microbial pool is calculated, and the microbial pools spill 

either excess C or excess N to maintain a model-defined C:N ratio of microbial biomass. The algorithm that determines the 525 

release of excess C or N is determined using the following equations: 

 

DINupr = (1 - Nleak) × DIN × MICr,C / (MICr,C + MICK,C), (A21) 

DINupK = (1 - Nleak) × DIN × MICK,C / (MICr,C + MICK,C),  (A22) 

upMICr,C = CUE[1] × (A1 + A3) + CUE[2] × (A2), (A23) 530 

upMICr,N  = NUE × (A11 + A13 + A12) + A21, (A24) 

CNupr = A23 / A24,     (A25) 

Overflowr = A23 - (A24 × min(CNr, A25)),  (A26) 

Nspillr = A24 - (A23 / max(CNr, A25)),   (A27) 

upMICK,C = CUE[3] × (A5 + A7) + CUE[4] × (A6),  (A28) 535 

upMICK,N = NUE × (A15 + A17 + A16) + A22,  (A29) 

CNupK = A28 / A29,    (A30) 

OverflowK = A28 - (A29 × min(CNK, A30)),  (A31) 

NspillK = A29 - (A28 / max(CNK, A30)).  (A32) 

 540 

Inorganic N leaches slowly from the model according to a model-defined rate: 

 

LeachingLoss = Nleak × DIN. (A33) 

 

Given the fluxes defined above, the changes in C and N pools in each hourly timestep (mg C or N cm-3) are described by the 545 

following:  
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dLITm,C

dt
 = ILITm,C × (1-fi,met) - A1 - A5,       (A34)  

dLITs,C

dt
 = ILITs,C

 × (1-fi,struc) - A2 - A6,       (A35)  

dMICr,C

dt
 = CUE[1] × (A1 + A3) + CUE[2] × (A2) - A4 - Overflowr,    (A36)  550 

dMICK,C

dt
 = CUE[3] × (A5 + A7) + CUE[4] × (A6) - A8 - OverflowK,    (A37)  

dSOMp,C

dt
 = ILITm,C

 × fi,met + (fp,r × A4) + (fp,K × A8) - A9,     (A38)  
dSOMc,C

dt
 = ILITs,C

 × fi,struc + (fc,r × A4) + (fc,K × A8) - A10,     (A39)  

dSOMa,C

dt
 = (fa,r × A4) + (fa,K × A8) + A9 + A10 - A3 - A7,     (A40) 

dLITm,N

dt
 = 

ILITm,C × (1-fi,met)

CNm
 - A11 - A15,       (A41)  555 

dLITs,N

dt
 = 

ILITs,C
 × (1-fi,struc)

CNs
 - A12 - A16,       (A42)  

dMICr,N

dt
 = NUE × (A11 + A13 + A12) - A14 + DINup

r
 - Nspill

r
,    (A43)  

dMICK,N 

dt
= NUE × (A15 + A17 + A16) - A18 + DINup

K
 - Nspill

K
,    (A44)  

dSOMp,N

dt
 = 

ILITm,C
 × (fi,met)

CNm
 + (fp,r × A14) + (fp,K × A18) - A19,     (A45)  

dSOMc,N

dt
 = 

ILITs,C
 × (fi,struc)

CNs
 + (fc,r  × A14) + (fc,K × A18) - A20,     (A46)  560 

dSOMa,N

dt
 = (fa,r × A14) + (fa,K × A18) + A19 + A20 - A13 - A17,     (A47) 

dDIN

dt
 = (1 - NUE) × (A11 + A12 + A13 + A15 + A16 + A17) +  

Nspill
r
+ Nspill

K
- DINup

r
- DINup

K
- LeachingLoss.     (A48) 
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Table 1. Parameters used in MIMICS-CN for both LIDET and equilibrium simulations.  

Parameter Description Value Units 

fmet Partitioning of inputs to metabolic litter pool 0.85 - 0.013 (lignin/N) - 

fi Fraction of litter inputs transferred to SOM 0.05, 0.3 - 

Vslope (Met-r, Met-K, 

Struc-r) 
Regression coefficient  0.063 ln(mg C (mg MIC)-1 h-1)C-1 

Vslope (Struc-K, Avail-r, 

Avail-K) 
Regression coefficient 0.043 ln(mg C (mg MIC)-1 h-1)C-1 

Vint Regression intercept 5.47 ln(mg C (mg MIC)-1 h-1) 

aV Tuning coefficient 4.8  10-7 -  

Vmod Modifies Vmax   10, 1.5, 10, 3, 2.25, 2 -  

Vmax  
Temperature-sensitive maximum reaction 

velocity (T is mean annual soil temperature) 
e(Vslope×T+Vint) ×av ×Vmod mg C (mg MIC)−1 

Kslope (Met-r, Met-K, 
Avail-r, Avail-K)  

Regression coefficient    0.017 ln(mg C cm-3)C-1 

Kslope (Struc-r, Struc-K) Regression coefficient    0.027 ln(mg C cm-3)C-1 

Kint      Regression intercept  3.19 ln(mg C cm-3) 

aK Tuning coefficient  0.5 - 

Pscalar Physical protection scalar used in Kmod  (2  e-2  (fclay))-1   -  

Kmod Modifies Km  
0.125, 0.5, 0.25  Pscalar,  

0.5, 0.25, 0.167  Pscalar 
- 

KO Further modifies Km for oxidation of SOMc  6, 6 -  

Km 
Half saturation constant (T is mean annual 
soil temperature) 

e(Kslope×T+Vint) ×ak ×Kmod mg C cm−3 

 Microbial biomass turnover rate 
2.4  10-4  e0.3 ( fmet )  mod1  mod2,  

1.1  10-4  e0.1 ( fmet )  mod1  mod2 
h-1 

mod1 Modifies microbial turnover rate 0.6 < (NPP/100) < 1.3 - 

mod2 Modifies microbial turnover rate   0.55 / (.45  Inputs) - 

 Exponent that modifies turnover rate  2 - 

CUE Microbial carbon use efficiency 0.55, 0.25, 0.75, 0.35 mg mg-1 

NUE 
Proportion of mineralized N captured by 

microbes 
0.85 mg mg-1 

CNs C:N of structural litter (Measured CN – CNm  fmet) / (1- fmet) mg mg-1 

CNm C:N of metabolic litter 15 mg mg-1 

CNr C:N of copiotrophic microbial pool 6 mg mg-1 

CNk C:N of oligotrophic microbial pool 10 mg mg-1 

fp      Fraction of  partitioned to SOMp  0.015  e1.3 ( fclay ), 0.01  e0.8 ( fclay )  - 

fc Fraction of  partitioned to SOMc 0.3  e-3 ( fmet ), 0.9  e-3 ( fmet )  - 

fa   Fraction of  partitioned to SOMa  1 - ( fp + fc )  - 

D Desorption rate from SOMp to SOMa  10-6  e-4.5 ( fclay ) h-1  

Nleak Rate of loss of inorganic N pool 0.2 h-1 
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Table 2. Goodness-of-fit statistics comparing MIMICS-CN and DAYCENT simulations to observations of C and N in decomposing 

litterbags in the LIDET study, aggregated by biome. DAYCENT results are subset from simulations in Bonan et al. (2013) to match 825 
the sites included in MIMICS-CN simulations. The values shown are the number of observations (n), Pearson’s correlation 

coefficient squared (R2), root mean square error (RMSE), and bias calculated between observed and simulated percent C and N 

remaining. For more details on the sites grouped into each biome, see Wieder et al. (2015). 

 

  MIMICS-CN Carbon DAYCENT Carbon MIMICS-CN Nitrogen DAYCENT Nitrogen 

Biome n R2 RMSE bias R2 RMSE bias R2 RMSE bias R2 RMSE bias 

Tundra 114 0.74 12.56 9.49 0.78 8.32 3.21 0.33 0.32 0.09 0.41 0.31 0.00 

Boreal 60 0.61 14.30 9.32 0.73 9.06 -0.55 0.64 0.28 0.07 0.72 0.27 -0.14 

Conifer 60 0.79 18.61 -16.42 0.89 9.09 5.93 0.73 0.20 0.05 0.79 0.26 0.13 

Deciduous 94 0.59 16.40 -8.92 0.80 12.36 9.20 0.51 0.31 -0.13 0.63 0.33 0.18 

Humid 151 0.50 17.24 -3.23 0.61 15.18 -4.22 0.14 0.44 -0.13 0.24 0.45 -0.04 

Arid 113 0.61 16.67 2.09 0.68 19.90 11.63 0.32 0.29 0.16 0.01 0.49 0.20 

Tropical 46 0.57 15.29 7.75 0.64 20.81 17.04 0.46 0.45 0.36 0.20 0.55 0.35 

All 638 0.63 16.00 -0.12 0.67 14.36 4.73 0.29 0.34 0.03 0.30 0.40 0.08 

 830 
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Table 3. Ranges of MIMICS-CN estimates of steady-state values for a variety of soil pools and fluxes, compared against observed 

ranges from several continent-wide data synthesis studies. The ranges of values included for MIMICS-CN are derived from 860 
simulations of sites included in the LIDET study. 

 

  MIMICS-CN range Published range Reference 

Total C (mg cm-3)* 7.0-50 

3.9-89 Zak et al. 1994 

2.7-360 Xu, Thornton and Post 2013 

5.2-610 Cleveland and Liptzin 2007 

Total N (mg cm-3)* 0.60-5.1 

0.38-5.1 Zak et al. 1994 

0.66-22 Xu, Thornton and Post 2013 

0.39-24 Cleveland and Liptzin 2007 

Soil C:N 9.6-12 

4.0-40 Colman and Schimel 2013 

10-28 Zak et al. 1994 

11-31 Xu, Thornton and Post 2013 

2.0-82 Cleveland and Liptzin 2007 

Inorganic nitrogen (g cm-3) 0.01-0.06 0.12-8.1 Zak et al. 1994 

Respiration (g C cm-3 hr-1) 0.02-0.28 
0.01-0.70 Colman and Schimel 2013 

0.21-0.91 Zak et al. 1994 

Net N mineralization (g N cm-3 hr-1) 0-0.01 
0-0.10 Colman and Schimel 2013 

0.004-0.058 Zak et al. 1994 

Microbial biomass C (mg cm-3) 0.15-1.3 

0.03-1.3 Zak et al. 1994 

0.01-5.3 Xu, Thornton and Post 2013 

0.08-39 Cleveland and Liptzin 2007 

Microbial biomass N (mg cm-3) 0.02-0.16 

0.006-0.33 Zak et al. 1994 

0.042-0.64 Xu, Thornton and Post 2013 

0.018-4.9 Cleveland and Liptzin 2007 

Microbial biomass C as % of soil C 0.95-4.8 

0.18-3.3 Zak et al. 1994 

0.99-5.0 Xu, Thornton and Post 2013 

0.27-93 Cleveland and Liptzin 2007 

Microbial biomass N as % of soil N 1.2-5.9 

1.1-15 Zak et al. 1994 

2.3-5.7 Xu, Thornton and Post 2013 

0.48-64 Cleveland and Liptzin 2007 

    

*Depths simulated by MIMICS-CN are for the top 30 cm of soil, whereas published ranges represent measurements ranging from the top 5 

to top 30 cm. 
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Figure 1. Overview of the pools and fluxes of C and N in MIMICS-CN. Black outlines indicate pools that contain C; green outlines 865 
indicate pools that contain N. Litter inputs (I) are determined based on site-specific net primary productivity and partitioned 

between metabolic and structural litter pools (LITm and LITs) using a site-specific litter quality metric (fmet) calculated using litter 

lignin and N content. Temperature-sensitive forward Michaelis-Menten kinetics (Vmax and Km, red lines) determine the flux of litter 

pool C and N and available SOM C and N (SOMa) into microbial biomass (MICr and MICK). Fluxes of C into microbial pools result 

in respiration losses according to a defined carbon use efficiency (CUE). Microbes maintain biomass stoichiometry by spilling excess 870 
C as overflow respiration or excess N into the dissolved inorganic nitrogen pool (DIN) based on a prescribed biomass C:N. Microbial 

biomass turnover (τ, blue) varies by functional type (MICr and MICK) and is proportional to the square of microbial biomass. 

Microbial biomass turns over into available (SOMa), physicochemically-stabilized (SOMp) and chemically-stabilized (SOMc) soil 

organic matter pools. Inorganic N (DIN) leaks from the model at a first-order rate. Numbers in parentheses indicate the equations 

in Appendix A that correspond to each depicted flux. Parameter values, units and descriptions are given in Table 1. 875 
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Figure 2. Litter decomposition timeseries simulated by MIMICS-CN (lines with shaded area) compared to observations (points and 

error bars) of (a) percent mass remaining and (b) percent of initial N remaining over ten years for six different litter types at the 

Harvard Forest LTER. Litter decomposition data came from the LIDET study (Parton et al., 2007; Bonan et al., 2013; mean ±1 SD). 

Spread in the observations and model are largely generated by the effects of initial litter quality on decomposition rates and N 880 
dynamics. Model parameters were calibrated to fit MIMICS-CN to observations from Harvard Forest (Table 1).  
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Figure 3. MIMICS-CN simulations of percent C remaining (top) and N remaining (bottom) in litterbags in the LIDET study versus 

observed values, colored by litter type (left) or biome (right). Dashed line shows the 1:1 line. 
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885 
Figure 4. MIMICS-CN simulations of immobilization-mineralization thresholds across litters of different quality. Litter quality (in 

terms of C:N and lignin content) decreases from upper left panel to lower right panel. Red triangles show model simulations of C 

losses vs N losses from litterbags in the LIDET study. Colored dots show observed C vs N losses across biomes (Parton et al. 2007). 
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Figure 5. Distributions of MIMICS-CN estimates of steady-state values for a variety of soil pools and fluxes, compared against 890 
observed ranges from several continent-wide data synthesis studies. Black lines show the median value across all observations; red 

lines show median value of MIMICS-CN simulations. 
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Figure 6. Variation in steady state SOM pools and environmental factors controlling their distribution in MIMICS-CN simulations 

across LIDET sites. Top panels show the (a) total C stocks in physicochemically-protected, chemically-protected, and available SOM 895 
pools (SOMp, SOMc, SOMa pools, respectively) arranged by the site mean annual temperature (MAT), or the (b) relative fraction 

of each SOM pool arranged in the same way. Upper right and bottom panels show the correlations between C in each SOM pool 

and environmental drivers including: (c) SOMp vs. the product of annual net primary productivity (ANPP) and clay content, (d) 

SOMc and SOMa vs. MAT, and (e) SOMc and SOMa vs. lignin content of litter inputs at each site. Finally, (f) soil stoichiometry is 

largely determined by the fraction of total SOM pools that are considered physicochemically protected. 900 
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