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Abstract.

Climate reanalyses provide a plethora of
:::::
global

:
atmospheric and surface parameters in a consistent manner over multi-

decadal time scalesand at the global scale. Hence, they are widely-used in many fields, and an in-depth evaluation of the

different variables provided by reanalyses is a necessary means to provide feedback on the quality and potential improvements

to their users and the operational centers producing these data sets,
::::
and

::
to

::::
help

:::::::
guiding

::::
their

:::::::::::
development. Recently, the Eu-5

ropean Centre for Medium Range Weather Forecast (ECMWF) released its
::
the

:
new state-of-the-art climate reanalysis ERA5,

following up on its popular predecessor ERA-Interim. Different sets of variables from ERA5 were already evaluated in a hand-

ful of studies, but so far, the quality of surface
:::::::::
land-surface

:
energy partitioning has not been assessed yet. Here, we assess the

quality of
:::::::
evaluate

:::
the surface energy partitioning

::::
over

:::
land

:
in ERA5 over land by means of evaluating

::::::
ERA5,

:::
and

::::::::::
concentrate

::
on

:::
the

::::::::
appraisal

::
of the surface latent heat flux, surface sensible heat flux, and Bowen ratio against different reference data sets10

and using different modelling tools, and compare it to the quality of ERA-Interim. Most of our analyses point towards a better

quality of surface energy partitioning in ERA5 than in ERA-Interim, which can probably
:::
may

:
be attributed to a better repre-

sentation of land-surface processes in ERA5, but
:::
and

:
certainly to the better quality of near-surface meteorological variables, as

evidenced by our analysis. One of the key shortcomings of the reanalyses identified in our study is the overestimation of the

surface latent heat flux
:::
over

::::
land, which – although substantially lower than in ERA-Interim – still remains in ERA5. Overall,15

our results indicate the high quality of the
:::::
surface

:
turbulent fluxes from ERA5 and its general improvements as compared to

::
the

:::::::
general

:::::::::::
improvement

:::::
upon

:
ERA-Interim, thereby supporting

::::::::
endorsing

:
the efforts of ECMWF to improve their climate

reanalysis and
:
to
:
provide useful data to many scientific and operational fields.

Copyright statement. TEXT

1 Introduction20

The partitioning of available energy at the land surface into sensible and latent heat exerts a strong control on atmospheric

boundary layer
:::::
(ABL) dynamics and informs on the coupling strength between land and atmosphere. It translates variations in
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the state of the land surface (e.g. soil moisture) into changes in the state of the atmosphere (e.g. cloud formation, near-surface

air temperature, and the atmospheric boundary layer
::::
ABL

:
height), both at local and remote locations (Teuling et al., 2017;

Miralles et al., 2016; Guillod et al., 2015; Taylor et al., 2012; Seneviratne et al., 2010). Hence, surface energy partitioning is

a crucial process in the occurrence and development of extreme events such as droughts and heatwaves (Miralles et al., 2018,

2014; Teuling et al., 2010; Seneviratne et al., 2006). An accurate representation of the processes involved in this partitioning5

in land-surface models is thus essential to advance our understanding of past variations in climate, and leverage our abilities to

predict future climate and its impacts on our biosphere (Berg and Sheffield, 2018; Dirmeyer et al., 2017).

Climate reanalyses are data sets describing the past and present state of our climate system and are derived using cou-

pled numerical models in which a vast amount of observations is ingested through a state-of-the-art data assimilation system.

They typically cover multi-decadal periods and are produced using a constant model set-up and data assimilation frame-10

work (often referred to as the Integrated Forecast System, IFS), resulting in consistent data sets describing the recent state

of the atmosphere, ocean, and land surface at the global scale. Therefore, reanalyses are widely used to study past climate,

to derive long-term records of essential climate variables, to initialise climate or Earth system models, or to force land-

surface models offline. The latter approach typically results
:::
may

:::::
result

:
in higher-resolution specialised land-surface reanaly-

ses (Muñoz Sabater, 2019; Albergel et al., 2018; Reichle et al., 2017; Balsamo et al., 2015)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Muñoz Sabater, 2019; Albergel et al., 2018; Balsamo et al., 2015; Reichle et al., 2011)15

. During the last decade, several climate reanalyses have been produced,
:
such as the Modern-Era Retrospective analysis for Re-

search and Applications version 2 (MERRA-2; Gelaro et al. (2017)) from the National Aeronautics and Space Agency (NASA),

the Japanese 55-year ReAnalysis (JRA-55; Kobayashi et al. (2015)) from the Japanse Meteorological Agency (JMA), and the

ECMWF ReAnalysis Interim (ERA-I; Dee et al. (2011)) from the European Centre for Medium Range Weather Forecast

(ECMWF). Recently, ECMWF released ERA5 (Hersbach et al., 2020, 2018)
::::::::::::::::::
(Hersbach et al., 2020), a new global climate re-20

analysis currently spanning the period 1979–present, which serves as the successor of ERA-I. ERA5 is produced using an

enhanced modelling and data assimilation framework and it benefits from the assimilation of a significantly higher number

of improved observations compared to ERA-I. In addition, the archive will soon cover the period 1950–present and data will

become available with a latency of 2 to 4 days. Finally, data are provided at a better
:::::
higher

:
spatial (31 km vs. 80 km) and

temporal (hourly vs. 3-hourly) resolution than ERA-I. Note that in case of ERA-I, the 3-hourly resolution can,
::
in

::::
fact,

:
only be25

obtained by combining forescast
::::::
forecast and analysis steps (Dee et al., 2011).

The number of studies evaluating the quality of different variables from ERA5 is still limited; yet.
:::
Yet, results generally point

to improvements as compared to
::::
upon its predecessor and to a better quality than other existing reanalyses for various surface

and atmospheric variables
:::::::::::::::::::
(Hersbach et al., 2020). Tetzner and Thomas (2019), for instance, evaluated several meteorological

parameters from ERA5 and ERA-I over the southern Antarctic peninsula, and concluded that the better spatio-temporal resolu-30

tion at which physical processes are re-solved
:::::::
resolved in ERA5 positively affects the representation of these variables. These

results are
::::
were confirmed by Wang et al. (2019), who compared the quality of a similar set of near-surface meteorological

parameters from ERA5 and ERA-I by means of in situ validation and a modelling exercise where a thermodynamic sea-ice

model was forced with reanalysis data over the Arctic ice sheet. Jiang et al. (2019) and Urraca et al. (2018), on the other hand,

validated ERA5 radiation components against in situ measurements and compared their quality to other reanalyses, ground-35
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based observations, and satellite data. Although a small positive bias still remains in ERA5 surface irradiance
::::::::
according

::
to

::
the

:::::::
authors

:
– mainly due to errors in the simulation of cloud properties – the bias

:
it is significantly lower than in ERA-I and

MERRA-2, especially at inland stations
:::::::
locations (Urraca et al., 2018). However, in more complex terrain such as mountainous

or coastal regions, high-resolution regional-scale reanalyses such as the COnsortium for Small-scale MOdeling (COSMO)

REAnalysis version 6 (COSMO-REA6) from the German weather service,
:
perform better than ERA5

:::::::::::::::::
(Urraca et al., 2018).5

Also surface wind fields have been shown to be accurately represented in ERA5 (Olauson, 2018), mainly as a result of the

higher spatial resolution
:::::::
relatively

::::
high

::::::
spatial

::::::::
resolution

::
at
::::::
which

:::::::
physical

::::::::
processes

:::
are

:::::::
resolved. Other studies have focused

on the validation of vertical profiles of atmospheric properties such as humidity and temperature, typically revealing that the

representation of these fields is better in ERA5 than in various other data sets, including its predecessor ERA-I (e.g. Bruna-

monti et al., 2019; Graham et al., 2019; Zhang and Cai, 2019). Finally, Albergel et al. (2018)
::::::
Indirect

::::::::::
evaluations

::
of

::::::::
variables10

::::::
derived

:::::
from

:::::
ERA5

:::::
have

::::
also

::::
been

:::::::::
performed

:::::::
through

::::::::
different

:::::::::::
hydrological

::::::::
modelling

:::::::
studies:

::::::::::::::::::
Albergel et al. (2018)

:
,
:::
for

:::::::
instance,

:
compared the quality of ERA-I and ERA5 by forcing the Interactions between Soil, Biosphere, and Atmosphere

(ISBA) land-surface model with meteorological parameters derived from both reanalyses and comparing the simulated land-

surface parameters from ISBA to independent data from satellite observations and in situ measurements. Based on their study,

Albergel et al. (2018) concluded that the model forced
::::::
forcing

:::
the

:::::
model

:
with ERA5 performs consistently better – especially15

in terms of simulated
::::::
surface

:::::::::::
meteorology

::::::
yielded

:::::::::::
consistently

:::::
better

::::::::
estimates

::
of

:
hydrological states and fluxes– than the

model forced with .
:::::::
Finally,

::::::::::::::::
Tarek et al. (2020)

:::::
forced

:::
two

:::::::::::
hydrological

::::::
models

:::
for

::
a
::::
large

:::::::
number

::
of

::::::::::
catchments

::::::
across

:::
the

:::::::::
Continental

::::::
United

::::::
States

::::::::
(CONUS)

::
to
:::::

show
:::
the

::::::::::::
improvements

::
of

:::::::::::
precipitation

::::
and

::::::::::
near-surface

:::
air

::::::::::
temperature

::::
from

::::::
ERA5

::::
upon

:
ERA-I.

Despite the importance of an accurate representation of
::
the

:
processes involved in the surface energy partitioning, at present20

and to the authors best knowledge, no studies have
::::
study

:::
has

:
directly evaluated the partitioning of energy in ERA5 into

the two major surface turbulent fluxes
:::
over

::::
land

:
(i.e. the surface sensible and surface latent heat flux

::::
latent

::::
heat

::::::
fluxes). As

surface energy partitioning acts as a nexus between the land surface and atmosphere, such an analysis might provide useful

insights to further improve the modelling of this coupled system, and to advance the quality of future reanalyses. Therefore, the

objective of this study is to evaluate the surface turbulent fluxes (and their ratio; i.e. the Bowen ratio) from ERA5 for the period25

1983–2014
:::::::::
1983–2018

:
at different spatio-temporal resolutions. Several experiments are conducted using various observational

data sets and modelling tools to evaluate the spatial and temporal variability of these variables
::
the

::::::::
turbulent

:::::
fluxes

:
at different

scales, ranging from point to catchment-scale and sub-daily to yearly scales. The paper is organised as follows: in Sect. 2

we describe the experimental set-up and the data sets used in this study, and provide a brief overview of the key differences

between ERA-I and ERA5. In Sect. 3 we describe the results of our experiments and discuss the quality of surface energy30

partitioning in both reanalyses; concluding remarks are summarised in Sect. 4.
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2 Methods
::::
Data

:
and data

:::::::
methods

2.1 ERA5 and ERA-I
::::::::::
Reanalyses data

ERA5 is the latest state-of-the-art reanalysis produced at ECMWF (Hersbach et al., 2020, 2018)
::::::::::::::::::
(Hersbach et al., 2020), re-

placing the widely-used ERA-Ireanalysis (Dee et al., 2011). A first segment of the data set, covering the period 2010–2016,

was released early 2017, about a decade after the successful release of ERA-I. Compared to ERA-I, which uses IFS cycle5

31r1, ERA5 is produced using an improved version of ECMWF’s modelling and data assimilation system (IFS cycle 41r2)

and ingests information from a substantially larger volume of improved observations, resulting in a high-quality reanalysis

of global atmospheric, oceanic, and land-surface fields at hourly time steps, 137 vertical pressure levels, and at horizontal

spatial
::::::::
horizontal

:
resolution of approximately 31 km. Several of the changes relative to

::::::::::::
advancements

::::
upon

:
ERA-I are ex-

pected to affect the surface energy partitioning in ERA5 (Hersbach et al., 2020, 2018)
:::::::::::::::::::
(Hersbach et al., 2020), including (1) a10

better forcing of solar irradiance, greenhouse gases, and stratospheric sulphate aerosols, which affect the available energy at

the surface
:::
that

:::::::
strongly

:::::
drives

:::
the

::::::::
turbulent

::::::
fluxes, (2) a substantially better

:::::
higher spatial resolution, allowing for a more

realistic representation of surface-atmosphere interactions in complex terrain such as mountainous or coastal regions, and (3)

a better
::::
more

::::::::
advanced land-surface model, namely the Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land

(H-TESSEL), which has already been proven to enhance the quality of simulated
:
a
:::::::::::
demonstrated

::::
high

::::
skill

::
to

:::::::
simulate

:
surface15

turbulent heat fluxes in offline experiments (Balsamo et al., 2015; Albergel et al., 2012; Balsamo et al., 2008),
:::
(4)

::::::::::::
improvements

::
in

:::
the

::::::::::
atmospheric

::::
data

::::::::::
assimilation

::::::::::
component,

::::::
mainly

::::::::
affecting

:::
the

::::::::::
atmospheric

:::::::
forcing

::
of

:::
the

::::::::
turbulent

::::::
fluxes,

:::
and

:::
(5)

:::
an

::::::
evolved

::::
land

::::
data

::::::::::
assimilation

:::::::
system

::::::::
ingesting

::::
both

::::
snow

::::
and

:::
soil

::::::::
moisture

:::::::::::
observations

:::
into

:::
the

:::::::::::
land-surface

:::::
model

:::
of

:::
the

:::
IFS,

:::::::::
improving

:::
the

:::::::::::
land-surface

::::::
control

::
on

:::
the

::::::::
turbulent

:::::
fluxes.

Here, the surface sensible heat flux, surface latent heat flux, and Bowen ratio derived from both ERA5 and ERA-I are20

evaluated for the period 1983–2018 (i.e. the period covered with reference data
::
for

::::::
which

::::::::
reference

::::
data

:::
are

::::::::
available; see

Sects. 2.2 and 2.3) and the global domain
:::::
–2.4)

:::
and

:::::
across

:::
the

::::::
global

::::
land

::::::
surface. Next to the turbulent fluxes and the Bowen

ratio, precipitation, 2-meter air temperature, and surface radiation components (from which the surface net radiation is calcu-

lated) are processed. These variables are used to disentangle the role of improved atmospheric data and the better
:::
the

::::::::
improved

::::::::::
atmospheric

::::::
forcing

::::::
versus

:::
the

:::::
more

::::::
evolved

:
land-surface model on the quality of

::
in ERA5surface fluxes.

:
.
:::
All

::::::::
variables

:::
are25

::::::::::
downloaded

::
at

::::
their

:::::
native

:::::::::::::
spatio-temporal

:::::::::
resolutions

::::
and

:::::::::
temporally

:::::::::
aggregated

::
to

::::
both

::::::::
3-hourly

:::
and

:::::
daily

::::
time

::::::::
intervals.

2.2 FLUXNET 2015
::::::::::::::
Eddy-covariance

::::
data

In situ validation data for
:::::::::::::
eddy-covariance

::::
data

::
of

:
the turbulent fluxes (i.e. measured sensible and latent heat fluxes using the

eddy-covariance technique
:::
the

::::::::::
land-surface

:::::
latent

:::
flux

::::
and

::::::::::
land-surface

:::::::
sensible

:::
heat

::::
flux) are obtained from the FLUXNET 2015

synthesis data set providing data for
:::::::
covering the period 1991–2014. The data set is

:::::
fluxes

:::
are

:
processed as in Martens et al.30

(2017), including (1) masking of rainy intervals at hourly time steps to remove unreliable measurements due to wet sensors,

(2) removing gap-filled data records, and (3) aggregating to both 3-hourly and daily temporal resolutions. Note that for the

temporal aggregation, 20% of the higher resolution data within the interval are allowed to be missing. Aiming at the calcula-
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tion of robust validation statistics, only sites with at least 365 daily records (i.e. at least one full year of data) after masking are

retained, resulting in a validation data set of turbulent fluxes from
::::::
sample

::
of 143 quality-checked eddy-covariance sites (Fig. 1).

:::::
About

::::
50%

::
of

:::::
these

:::::::
selected

::::
sites

::::
have

:
a
::::::
record

:::::
length

::
of
:::::
more

::::
than

::
10

::::::
years,

::::
with

:
a
:::::::::
maximum

::
of

::
21

:::::
years.

:
Note that the same

set of towers is used in the sub-daily (i.e. 3-hourly) and daily evaluations of the turbulent fluxes, making the validation metrics

between experiments comparable. As the temporal variability of the turbulent fluxes is strongly influenced by the seasonal5

cycle of its main drivers, the performance of the land-surface scheme in response to anomalous weather conditions (i.e. with

respect to the seasonal cycle) might be masked when raw time series are analysed. As such, most of the analyses in this study

are based on standardised anomalies to better evaluate the skill of ERA5 in capturing the effect of specific meteorological

conditions on surface energy partitioning. To calculate the climatology, only FLUXNET sites with a minimum record length

of five years are considered, resulting in 77
::::::::::::::
inter-comparable.

:::
As

::::::
shown

::
in

::::
Fig.

::
1,

:
eddy-covariance towers when anomalies10

are used for validation (Fig. 1). Note that about 50% of these selected sites has a record length of more than 10 years, with

a maximum of 21 years.
::::
sites

:::
are

:::
not

::::::::
uniformly

::::::::::
distributed

:::::
across

:::
the

::::::
global

::::
land

::::::
surface

:::
and

:::::::::::::
hydro-climatic

:::::::
regimes

:::
are

:::
not

::::::
equally

::::::::::
re-presented

::::::
within

:::
the

::::
data

:::
set.

::
As

:::::
most

::::
sites

:::
are

::::::
located

::
in

:::
the

:::::::
CONUS

:::
and

:::::::
Europe,

:::::
warm

::::
and

:::::
humid

::::::
regions

:::::
such

::
as

::
the

::::::
tropics

:::
are

:::::
only

:::::
poorly

::::::::
covered.

::::::
Hence,

::::::
results

::::::::
presented

::
in

:::
this

:::::
paper

::::::
should

:::
be

:::::::::
interpreted

::::
with

:::
the

:::::::::::
shortcomings

:::
of

:::
the

:::::::::
FLUXNET

:::::
2015

:::
data

:::
set

::
in

:::::
mind,

::
as
::::::
further

:::::::::
discussed

::
in

::::
Sect.

::
3.

:
15

Location of the selected eddy-covariance sites. Sites with a record length of less than 5 years (i.e. where no anomalies

are calculated) are plotted in green and sites with a record length of more than 5 years (i.e. where anomalies are calculated)

are plotted in yellow. Sites where measurements of meteorological data are also available are indicated with a diamond. The

background provides information on the climatological (1983–2018) annual temperature and precipitation derived from ERA5.

The
:::
The

::::
daily

:
Bowen ratio at each eddy-covariance site is calculated at daily temporal resolution as the ratio of the surface20

::::::::::
land-surface sensible heat flux and the surface

::::::::::
land-surface latent heat flux. The Bowen ratio might be highly unstable when

the turbulent fluxes are small compared to the measurement error of the eddy-covariance system
:
,
::::
even

::
at
:::
the

:::::
daily

::::::::
temporal

::::::::
resolution. Therefore, outliers in the in situ time series of the Bowen ratio are masked by removing records outside the following

window: [q25−1.5(q75−q25);q75 +1.5(q75−q25)], where q75 and q25 are the 75% and 25% quantiles of the Bowen ratio time

series, respectively (Martens et al., 2016). Next25

::::::
Finally,

::::
next

:
to the turbulent fluxes, measurements of surface net radiation, near-surface air temperature, and precipitation

at the eddy-covariance sites are processed in a similar way
::
as

::::
well

:::::
using

:
a
::::::
similar

::::::::
approach

:::
as

::
for

:::
the

::::::::
turbulent

:::::
fluxes, except

for the masking of rainy intervals. These
::
As

:::::
these

:
variables are typically not recorded at each eddy-covariance siteand are

therefore ,
::::
they

:::
are

:
only available at 83 sites in total.

For each eddy-covariance site in the validation data set, the variables from the corresponding ERA5 and ERA-I grid cell30

are extracted at their native spatial resolution and as both 3-hourly and daily (temporal) aggregates. The Bowen ratio from

both reanalyses is calculated and processed in a similar manner as for the in situ data, including the removal of outliers and

only at the daily resolution. Eddy-covariance sites located within the same grid cell of the reanalysis are treated separately

in the validation to avoid potential problems resulting from merging sensors with different absolute values and gaps in their

record (Martens et al., 2017). In summary, the FLUXNET 2015 data set is used here to evaluate the surface energy partitioning35
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– and some key meteorological drivers of the turbulent fluxes – in ERA5 and ERA-I at both 3 hourly and daily temporal

resolution for the period 1991–2014.

2.3 Catchment water and energy-balance data

Whenever
:
If changes in water storage can be

:::
are neglected, the catchment-scale latent heat flux can be calculated as precipita-

tion minus river discharge; both averaged over a sufficiently long time period (Miralles et al., 2016; Liu et al., 2014; Wang and5

Dickinson, 2012; Miralles et al., 2011; Vinukollu et al., 2011)and by
:
.
:::
By taking into account the latent heat of vaporisation

and the density of water:

λρE = λρ(P −Q), (1)

where λ is the latent heat of vaporisation of water (
:::::::
assumed

::
to

:::
be

:::::::
constant;

:
2260·103 J kg−1), ρ is the density of liquid water

(
:::::::
assumed

::
to

::
be

::::::::
constant; 1000 kg m−3), E is terrestrial evaporation (m s−1), λρE is the surface

::::::::::
land-surface

:
latent heat flux10

(W m−2), P is precipitation rate (m s−1), and Q is the river discharge (m s−1). The assumption that changes in catchment

water storage can be ignored requires the consideration of a sufficiently long period as compared to the concentration time

of the catchment; as in Miralles et al. (2016)
::::
often, a yearly aggregation period will be considered here

:
is
::::::::::

considered
::
to

:::
be

:::::::
sufficient

:::::::::::::::::::::::::
(see e.g. Miralles et al., 2016).

A similar reasoning as for the catchment mass balance can be made in terms of energy balance: when changes in energy15

storage can be neglected, the energy balance at the catchment implies that the surface
::::::::::
land-surface

:
sensible heat flux can be

calculated as the difference between surface net radiation and the sum of ground and latent heat fluxes:

H =Rn − (G+λρE), (2)

where H is the surface sensible heat flux (W m−2), Rn is the surface net radiation (W m−2), and G is the ground heat flux (W

m−2). Combining Eqs. 1 and 2 thus provides a means to evaluate the long-term average catchment-scale Bowen ratio, derived20

from surface net radiation, ground heat flux, precipitation, and river discharge as:

β =
(Rn −G)

λρ(P −Q)
− 1, (3)

where β (–) is the Bowen ratio.

In this study, Eqs 1–3 are used in combination with an observational data set of river discharge covering the period 1983–

2014 to derive an annual validation
:::::::::::
benchmarking

:
data set of the turbulent fluxes and the Bowen ratio at the catchment scale.25

2.3.1
:::::::::
Discharge

Discharge measurements are obtained from the Global Runoff Data Centre (GRDC), providing data for nearly 4000 catchments

with a daily or monthly temporal resolution. As in Miralles et al. (2016), records with data artifacts are first removed based on an
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exhaustive visual screening, and only catchments with an area between
:::::
larger

::::
than 2500 km2 and 100·103 km2 are considered.

In addition, only catchments with a gridded area (on a regular 0.25◦ latitude–longitude grid) deviating less than 20% from

the area reported by GRDC are retained. If measurements are recorded at multiple locations and thus for different drainage

areas (particularly in Central Europe), measurements further downstream are favoured. By doing so, catchments are selected

without any spatial overlap (due to possible sub-catchments measured upstream). After this initial filtering, data available at5

the daily scale are first aggregated to monthly values, given that at least 25
:
days per month are present. To reduce the impact

of e.g. human disturbances (e.g.
::::
such

::
as

:
large-scale groundwater pumping or construction works in the catchment) on our

analysis
:::::::::
regulations

::
of
:::::

river
::::
flow, non-overlappingmoving windows

:
,
:::::::
centered

:::::::
moving

:::::::
averages

:
containing monthly data of 15

years are calculated over the time series. Any catchments
::
as

::::::::
described

::
in

::::::::::::::::::
Dehghani et al. (2019)

:
.
::::
Any

:::::::::
catchment for which the

average of a window exceeds
::
is

::::::::
exceeded more than three of its standard deviations by the mean of the subsequent window10

are discarded to remove catchments where obvious changes in mean river discharge occur over
::::::::::
disturbances

:::::
occur

::::::
during the

study period. Finally, monthly averages are aggregated to annual averages, conditioning on at least 10 months per year being

present.

2.3.2
:::::::::::
Atmospheric

:::::::
forcing

Surface net radiation and precipitation to derive catchment-scale validation data for the turbulent fluxes and the Bowen ratio15

using Eqs. 1–3 are taken from the respective reanalysis in order to
:::::
mainly

:
evaluate the effect of the land-surface control

::::::
scheme

:
in the IFS on the surface energy partitioning, rather than the combined effect of the atmospheric and land surface

model.
::::::::::
land-surface

::::::
model.

:::::::::
Therefore,

:::
the

::::::::
reanalyses

::::
data

:::::::
(Section

::::
2.1)

:::
are

:::::::::
temporally

:::::::::
aggregated

::
to

:::
the

::::::
annual

::::::::
resolution

::::
and

:::::::
spatially

:::::::::
aggregated

::
to

:::
the

:::::
scale

::
of

:::
the

::::::::::
catchments.

2.3.3
:::::::
Ground

::::
heat

::::
flux20

The ground heat flux is calculated as a fixed fraction of
::
the

:
surface net radiation depending on the land cover as in Martens et al.

(2017, 2016) , using
:::
and

:::::::::::::::::
Miralles et al. (2011)

:
.
::::
The

::::
land

:::::
cover

::
is

::::::::::::
parameterised

::
by

:
the Global Vegetation Continuous Fields

product (MOD44B v6; Dimiceli et al. (2015)) derived from measurements of the MODerate-resolution Imaging Spectrora-

diometer (MODIS), and the open water product from Tuanmu and Jetz (2014). Alltogether, the data set described in this section

is .
:::::::
Hence,

::::
each

::::
grid

:::
cell

::
is

:::::::
covered

::
by

::
a
::::::
certain

::::::
fraction

:::
of

:::
tall

:::::::::
vegetation

::::
(e.g.

:::::::
forests),

:::
low

:::::::::
vegetation

::::
(e.g.

::::::::::
grasslands),

::::
and25

:::
bare

::::
soil.

:::
For

:::
the

:::::::
fraction

::
of

:::
tall

:::::::::
vegetation,

:::
the

::::::
ground

::::
heat

:::
flux

::
is

:::::::
assumed

::
to

::
be

::::
10%

::
of

:::
the

:::
net

::::::::
radiation,

:::::
while

:::
for

::
the

::::::::
fractions

::
of

:::
low

:::::::::
vegetation

:::
and

::::
bare

:::
soil

:::
the

::::::::::::
corresponding

:::::::::
percentages

:::
are

::::
20%

::::
and

::::
35%

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Miralles et al., 2011; Santanello and Friedl, 2003; Kustas and Daughtry, 1990)

:
.
:::::::::
Altogether,

:::
the

::::::
fraction

::
of

:::
net

::::::::
radiation

:::::::
assumed

::
to

::
be

::::::::
converted

::::
into

:::
the

::::::
ground

::::
heat

:::
flux

::
is

:::
the

:::::::
weighted

:::::::
average

::
of

:::
the

::::::
former

:::::::::
percentages

::::
with

:::
the

:::::::::
fractional

::::
land

::::::
covers.

2.4
::::::

Balloon
:::::::::
soundings30
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:::
The

:::::::::
Integrated

:::::
Global

::::::::::
Radiosonde

:::::::
Archive

::::::
(IGRA;

::::::::::::::::
Durre et al. (2006))

::
is

:
a
::::
data

:::
set

::
of

:::::
direct

::::::::::
atmospheric

::::::::
sounding

::::::::::
observations

::::
from

:::::::
balloons

::::::
across

::
the

::::::
globe,

:::::::::::
representative

:::
of

:::::::
different

::::::::::::
environmental

:::
and

:::::::
climate

::::::::
conditions

:::::::::::::::::::
(Wouters et al., 2019)

::
and

::::
can

::
be

:
used to evaluate the turbulent fluxes from

::::::::
estimated

::::::
profiles

:::
of

::::::::::
atmospheric

:::::::::
properties.

::::
The

::::
data

:::
set

::::
will

::
be

::::
used

:::::
here

::
to

:::::::
evaluate

:::::::::
atmosheric

::::::
profiles

:::::::
derived

::::
from

:::::::
forcing

::
an

:::::
ABL

:::::
model

::::::::
(Section

:::
2.6)

::::
with

:
ERA5 and ERA-I at the catchment scale

and yearly temporal resolution for the period 1983–2014.
::::
data.

::::
The

::::::
balloon

:::::::::
soundings

:::
are

::::::::
screened

:::
for

:::
the

::::::::::
observation

::::
time5

:::
and

::::::
quality

::
as

:::
in

:::::::::::::::::
Wouters et al. (2019)

:
.
::
A

:::::::
detailed

:::::::::
description

:::
of

:::
this

::::
data

::::
set,

:::::::
together

::::
with

::
a

:::::::::
description

::
of

::::
the

:::::::::
processing

:::
and

::::::
quality

::::::
checks

::::
can

::
be

::::::
found

::
in

::::::::::::::::::
Wouters et al. (2019).

::::
The

::::
data

:::
set

::::
used

:::
in

:::
this

:::::
study

:::::::
consists

:::
of

::::::::::::
approximately

::::::
18000

:::::::::::::
quality-checked

::::::::::::::::
morning–afternoon

::::::::
sounding

::::
pairs

::::
from

::::
121

::::::::
locations

:::::
across

:::
the

:::::
globe

::::
from

:::::
1981

::
to

:::::
2018.

2.5 GLEAM

The Global Land Evaporation Amsterdam Model (GLEAM) is a process-based semi-empirical model designed to estimate10

terrestrial evaporation and its separate components at the global scale from satellite observations alone (Miralles et al., 2011).

In summary, GLEAM first calculates potential evaporation using the Priestley and Taylor equation (Priestley and Taylor, 1972)

for four land cover fractions per grid cell: (1) low vegetation, (2) tall vegetation, (3) bare soil, and (4) open water. Estimates of

potential transpiration (for the first two fractions) are converted into actual transpiration by applying an empirical multiplicative

stress factor. The latter is calculated as a function of vegetation optical depth – which is used as a proxy for vegetation water15

content (Liu et al., 2013, 2011) – and root-zone soil moisture. The root-zone soil moisture in GLEAM is calculated using

a multi-layer soil water balance model driven by precipitation, and is further optimised using a Newtonian Nudging data

assimilation scheme (Martens et al., 2017, 2016). For the bare soil fraction, the evaporative stress factor is calculated based on

surface soil moisture alone, while for the open-water fraction, no evaporative stress is considered (i.e. actual equals potential

evaporation). Finally, for grid cells covered by snow, sublimation is calculated using the Priestley and Taylor equation with20

a specific set of parameters (Murphy and Koop, 2005). The fraction of precipitation intercepted by the vegetated surface and

directly evaporated back into the atmosphere (i.e. rainfall interception loss) is only calculated for the fraction of tall vegetationin

GLEAM. For this purpose, the implementation of Gash’s analytical model of rainfall interceptionloss (Gash, 1979) by Valente

et al. (1997) is usedin GLEAM. Ultimately, the total evaporative flux is then calculated by summing the fluxes calculated for

the four cover fractions. For a detailed description of GLEAM, we refer
:::
the

::::::
readers

:
to Martens et al. (2017, 2016) and Miralles25

et al. (2011, 2010).

Here, GLEAM is used as a tool to assess quality differences in some key meteorological drivers of the turbulent fluxes,

derived from ERA5 and ERA-I, and to explore the skill of the land-surface model implemented in ERA5 (H-TESSEL) to

accurately model the control of the land surface on the turbulent heat fluxes. To do so, GLEAM is forced by an up-to-date

version of the GLEAM v3a forcing data base described in Martens et al. (2017), which uses near-surface air temperature and30

surface net radiation from ERA-I (hereafter referred to as GLEAM+ERA-I). Next, GLEAM is also forced using the same

data set, but with near-surface air temperature and surface net radiation from ERA5 (hereafter referred to as GLEAM+ERA5).

Although GLEAM has been designed to target the accurate estimation of terrestrial evaporation (or surface latent heat flux)only,

here, the
:
,
:::
we

:::
also

::::::::
calculate

:::
the

::::::::
estimated

:
surface sensible heat flux , calculated as the residual of the energy balance,

:
ignoring
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changes in energy storage (Eq. 2), and .
::::::

Based
:::
on

:::
the

::::::::
estimates

::
of

::::
both

::::::::
turbulent

::::::
fluxes, the Bowen ratio from GLEAM are

also evaluated. GLEAM
::
is

::::
also

:::::::::
calculated.

::::
The

::::::
model is run for the period 1989–2015 – where 1989 is used as a spin-up

year (Martens et al., 2017) – and the output from both experiments is evaluated against the eddy-covariance data described in

Sect. 2.2 at the daily temporal scale, as GLEAM does not support sub-daily simulations
:
at

:::::
daily

:::::::
temporal

::::::::::
resolution,

:::
and

:::
on

:
a
::::::
regular

:::::
0.25◦

:::::::::::::::
latitude–longitude

::::
grid

::::::::::::::::::
(Martens et al., 2017).

::::
All

::::::
inputs,

:::::
either

::::::
sourced

:::::
from

::::::
ERA-I

::
or

::::::
ERA5,

:::
are

:::::::::
processed5

::
as

::
in

:::::::::::::::::
Martens et al. (2017)

:
,
::::::::
including

::
a

:::::
linear

::::::::::
re-sampling

::
in

:::::
both

::::
time

:::
and

:::::
space

:::
to

:::
the

:::::::::::::
spatio-temporal

:::::::::
resolution

::::
used

:::
by

:::::::
GLEAM.

2.6 CLASS4GLboundary layer model

The Chemistry Land-surface Atmosphere Soil Slab
::::::::
(CLASS) model for GLobal studies (CLASS4GL; http://class4gl.eu) is a

free software tool designed to investigate the dynamics of the atmospheric boundary layer (ABL )
::::
ABL and its sensitivity to10

different land and atmospheric conditions using data from weather balloons (Wouters et al., 2019). The core of the platform

::::::::::
CLASS4GL is the ABL model CLASS

:
,
:::::
which

::
is coupled to a soil-vegetation module that simulates the

:::::::
allowing

:::
the

:::::::::
simulation

::
of

:::
the diurnal evolution of the ABL using a timestep

::::
with

:
a
::::::::
temporal

:::::::::
resolution of 60 seconds. The platform is able to mine

appropriate observational data from global radio soundings, satellite data, and reanalysis data from the last 40
:
years to constrain

and initialise the
::::
ABL model. Its interactive interface automatises multiple simulations of the atmospheric boundary layer

::::
ABL15

in parallel and allows to perform global perturbation experiments. It aims at fostering
:
to

:::::
foster

:
a better understanding of land–

atmosphere feedbacks and to disentangle the drivers of (extreme) weather conditions globally.

Here, CLASS4GL is used as a tool to assess whether the surface energy partitioning in ERA5 has been improved upon

the one in ERA-I .
::
in

:
a
:::::::

similar
:::::::::
experiment

:::
as

::::::::
described

::
in
:::::

Sect.
:::
2.5

:::::
with

::::::::
GLEAM.

:
Therefore, CLASS4GL is forced with

the turbulent fluxes derived from both ERA5 and ERA-I to simulate diurnal tendencies of potential temperature, humidity,20

and mixed-layer height. The latter are evaluated against direct observations from balloon soundings from across the globe,

representative of different environmental and climate conditions (Wouters et al., 2019). These soundings are sourced from the

Integrated Global Radiosonde Archive (IGRA; Durre et al. (2006)) and are screened for the observation time and quality.A

detailed description of this
::
As

::::::::
described

:::
by

:::::::::::::::::
Wouters et al. (2019)

:
,
::
the

::::::::::
evaporative

:::::::
fraction

::::::
derived

:::::
from

::::::::
reanalysis

::::
data

::::::
(either

:::::
ERA-I

::
or

:::::::
ERA5)

:
is
::::
used

::
to

:::::
guide

:::
the

::::::::::
simulations

::
of

:::
the

::::
ABL

::::::
diurnal

:::::::::
evolution,

:::
and

:::
the

:::::::
resulting

::::::::
afternoon

:::::::
profiles

::
of

::::::::
humidity,25

:::::::
potential

:::::::::::
temperature,

:::
and

::::
ABL

::::::
height.

:

2.7
:::::::::
Evaluation

:::::::
strategy

2.7.1
:::::::::
Evaluation

:::::
using

:::::::::::::::
eddy-covariance

::::
data

::::
and

:::::::
balloon

:::::::::
soundings

::::
Both

:::
the

::::::::
turbulent

:::::
fluxes

::::
(and

::::::
Bowen

:::::
ratio)

:::::
from

:::
the

:::::::::
reanalyses

:::::
(Sect.

::::
2.1)

:::
and

:::
the

::::::::
estimates

:::::
from

:::
the

:::::::
GLEAM

:::::::::::
experiments

:::::
(Sect.

:::
2.5)

:::
are

:::::::
directly

::::::::
compared

:::::::
against

:::
the

::
in

:::
situ

::::::::::::::
eddy-covariance

::::::::::::
measurements

:::::
(Sect.

::::
2.2).

:::
For

:::::
each

:::::::::::::
eddy-covariance

::::
site30

::
in

::
the

:::::::::
validation data set, together with a description of the processing and quality checks can be found in Wouters et al. (2019)

.The data set used in this study consists of 18000 quality-checked morning–afternoon sounding pairs from 121 locations across

9
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the globe from 1981 to 2018.
::
the

::::::::
variables

::::
from

:::
the

::::::::::
overlapping

::::::
model

:::
grid

::::
cells

:::
are

::::::::
extracted

::
at

::::
their

::::::
native

:::::
spatial

:::::::::
resolution

:::
and

::::
both

::
as

::::::::
3-hourly

:::
and

:::::
daily

:::::::::
(temporal)

:::::::::
aggregates.

:::::
Note

:::
that

:::
for

:::
the

:::::::::::
experiments

::::::::
involving

::::::::
GLEAM,

::::
only

:::::
daily

::::::::
estimates

::
are

:::::::::
available.

::::::::::::::
Eddy-covariance

::::
sites

::::::
located

::::::
within

:::
the

:::::
same

::::::
model

:::
grid

::::
cell

:::
are

::::::
treated

:::::::::
separately

::
in

:::
the

:::::::::
validation

::
to

:::::
avoid

:::::::
potential

::::::::
problems

:::::::
resulting

:::::
from

:::::::
merging

::::::
sensors

::::
with

:::::::
different

:::::::
absolute

::::::
values

:::
and

::::
gaps

::
in

::::
their

::::::
record

::::::::::::::::::
(Martens et al., 2017)

:
.
::::
Also

::::
note

:::
that

:::::
there

::
is

:
a
:::::::::
substantial

:::::::::
mismatch

:::::::
between

:::
the

:::::::
footprint

:::
of

:::
the

:::::::::::::
eddy-covariance

::::::
system

::::
and

:::
the

:::::
model

::::
grid

:::::
cells,5

:::::::
resulting

::
in

:
a
::::::::::::::::
representativeness

::::
error

:::
that

::::
can

::
be

:
a
::::::::::
substantial

::::::
fraction

::
of

:::
the

::::
total

:::::
error

::::::::::::::::::
(Jiménez et al., 2018).

:

In summary, the evaporative fraction from both ERA-I and ERA5 is used to optimise the root-zone soil moisture in

CLASS4GL in an iterative procedure as described in Wouters et al. (2019). The resulting output of the modelling framework

is evaluated against the measurements
::
As

:::
the

::::::::
temporal

::::::::
variability

::
of
:::
the

::::::::
turbulent

:::::
fluxes

::
is
:::::::
strongly

:::::::::
influenced

:::
by

::
the

::::::::
seasonal

::::
cycle

::
of

:::
its

::::
main

::::::
drivers

::
at
:::
the

::::::
scales

:::::::::
considered

::
in

:::
this

::::::::::
experiment,

:::
the

:::::::::::
performance

::
of

:::
the

:::::::::::
land-surface

:::::::
schemes

::
in

::::::::
response10

::
to

:::::::::
anomalous

:::::::
weather

::::::::
conditions

::::
(i.e.

::::
with

::::::
respect

::
to
:::
the

::::::::
seasonal

:::::
cycle)

:::::
might

:::
be

::::::
masked

:::::
when

::::
raw

::::
time

:::::
series

:::
are

::::::::
analysed.

::
As

:::::
such,

:::
the

:::::::::
evaluation

::
of

:::
the

::::::::
turbulent

:::::
fluxes

:::::::
against

:::
the

:::::::::
FLUXNET

::::
data

:::
set

::::
will

::
be

:::::
done

:::::
based

::
on

:::::::::::
standardised

:::::::::
anomalies

::
to

:::::
better

:::::::
evaluate

:::
the

::::
skill

::
of

:::
the

:::::::::
reanalyses

::
in

::::::::
capturing

:::
the

:::::
effect

::
of

:::::::
specific

::::::::::::
meteorological

:::::::::
conditions

:::
on

:::
the

::::::
surface

::::::
energy

::::::::::
partitioning.

:::::::::
Therefore,

::::::::::
standardised

:::::::::
anomalies

::
of

:::
the

:::::::
turbulent

:::::
fluxes

:::
are

:::::::::
calculated

::::
(and

::::::
Bowen

:::::
ratio)

::::
from

:::
(1)

::
the

::::::::::
reanalyses,

::
(2)

:::
the

::::::::
GLEAM

:::::::::::
experiments,

:::
and

:::
(3)

:::
the

::::::::::::::
eddy-covariance

::::::::::::
measurements

::::
prior

::
to

:::::::::
calculating

:::::::::
validation

:::::::
metrics.

::::
Note

::::
that

:::
the15

:::::::::
calculation

::
of

::::::::::
standardised

:::::::::
anomalies

:::::
allows

::
to
:::::::
directly

:::::::
compare

:::
the

::::::
quality

::
of

:::
the

::::::::
turbulent

:::::
fluxes

:::
and

:::
the

::::::
Bowen

:::::
ratio,

::::::
despite

::::
their

:::::::
different

:::::
orders

:::
of

:::::::::
magnitude.

:

:::::::
Anomaly

:::::
time

:::::
series

:::
are

:::::::::
calculated

:::
by

:::
(1)

::::::::::
subtracting

:::
for

:::::
each

::::
time

:::::::
interval

:::
the

::::::::
expected

:::::
value

::::
(i.e.

:::
the

::::::::::::
climatology),

::::::::
calculated

::
as

::::
the

:::::::::::
multi-annual

::::::
average

:::
for

::::
that

::::
time

::::::::
interval,

:::
and

:::
(2)

:::::::
dividing

:::
by

:::
the

::::::::
standard

::::::::
deviation

::
of

:::
the

:::::::::::
expectation.

::
To

::::::::
calculate

:::::::::::
climatologies

::
of

:::
the

::::::::::::::
eddy-covariance

::::
data,

::::
only

::::::::::
FLUXNET

::::
sites

::::
with

::
a
::::::::
minimum

::::::
record

:::::
length

::
of
::::

five
:::::
years

:::
are20

:::::::::
considered,

::::::::
resulting

::
in

::
77

::::::::::::::
eddy-covariance

::::::
towers

::
for

:::
the

:::::::::
evaluation

::
of

:::
the

::::::::
anomaly

::::
time

:::::
series

::::
(Fig.

:::
1).

:::::
Using

:::
the

:::::::::::
standardised

:::::::::
anomalies

::
of

::::
the

::
in

::::
situ

::::::::::::::
eddy-covariance

::::::::::::
measurements

::
as

::
a
:::::::::
reference,

:::
the

:::::::
Pearson

::::::::::
correlation

::::::::
coefficient

::::
(R)

:::
and

:::::
Mean

::::::::
Absolute

::::::::
Difference

:::::::
(MAD)

::
of

:::
the

::::::::
reanalyses

::::
data

::::
sets

:::
and

:::
the

::::::::
estimates

::::
from

:::::::
GLEAM

:::
are

:::::::::
calculated

::
to

:::::::
evaluate

::::
their

::::::
quality

:::::
(Sect.

::::::
3.1.1).

::
In

::::::::
addition,

:::
the

:::::
Mean

:::::::::
Difference

:::::
(MD)

::
of

:::
the

::::
raw

::::
data

:::::
series

::
is

::::::::
calculated

::
to

::::::
assess

:::
the

:::
bias

::
in

:::
the

:::::::::
estimates.

::::::
Metrics

:::
are

:::::::::
visualised

::
in

:::::
violin

::::
plots

::::::::::
constructed

:::::
using

:
a
::::::
kernel

::::::
density

:::::::::
estimation

::::::::
approach

::::
with

:
a
:::::
band25

:::::
width

::::::::
calculated

:::::::::
according

::
to

::::::::::
Scott (1979).

::::
For

:::
the

:::
MD

::::
and

::
R,

::
a

::::
95%

:::::::::
confidence

::::::
interval

::
is
:::::::::
calculated

::
at

::::
each

:::::::::
FLUXNET

::::
site

::::::::
following

:::
the

::::::::
procedure

::::::::
outlined

::
in

:::::::::::::::::::::::::
De Lannoy and Reichle (2016).

:::::
First,

:::
the

::::::::
temporal

:::::::::::::
auto-correlation

:::
in

::::
both

:::
the

::::::::
reference

:::
and

::::::::
estimated

::::
time

:::::
series

::
is
:::::::::

calculated
::
to

::::::
correct

::::
the

::::::
degrees

:::
of

:::::::
freedom

:::::::::::::::::
(Gruber et al., 2020).

:::::::
Second,

::
a
:::::::::
confidence

:::::::
interval

:
is
:::::::::
calculated

::
at

::::
each

::::::::
FLXNET

::::
site

::::::::
assuming

:
a
::::::
normal

::::::::::
distribution

:::
for

::
R

:::::
(after

:::::::
applying

::
a
:::::
Fisher

:::::::::::::::
Z-transformation

::
to

:::
the

::::
time

:::::
series)

::::
and

:
a
:::::::
Student

:::::::::::
t-distribution

:::
for

:::
the

:::::
MD.

::::::
Metrics

:::
are

:::::
then

:::::::
assumed

::
to

:::
be

::::::::::
statistically

:::::::
different

::
at

:::
the

::::
5%

::::::::::
significance30

::::
level

::
if

::::
their

:::::::::
confidence

::::::::
intervals

:::
do

:::
not

:::::::
overlap.

::::
Note

::::
that

:::
we

:::
do

:::
not

::::::::
calculate

:::::::::
confidence

::::::::
intervals

:::
for

:::
the

::::::
MAD,

::
as

:::::
there

::
are

:::
no

:::::::::
analytical

::::::::
solutions

:::::::
available

:::
for

::::
this

::::::
metric

:::
and

::::
the

:::::::::
calculation

::::
thus

:::::::
requires

::
a
:::::::::::::
non-parametric

::::::::
approach

::::::
relying

:::
on

:::::::::::::
computationally

:::::
heavy

::::::
Monte

:::::
Carlo

::::::::::
simulations

:::::::::::::::::
(Gruber et al., 2020).

:::::::
Finally,

:::
the

:::::::::
confidence

::::::::
intervals

::
for

:::
the

::::
MD

::::
and

::
R

:::
are

:::::::
averaged

::::::
across

:::
the

:::::::::
FLUXNET

::::
data

:::
set

:::
and

:::
the

:::::::
average

:::::::::
confidence

::::::
interval

::
is
::::::::
reported.
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::
In

:
a
::::::
similar

::::::
manner

::
as

:::
for

:::
the

::::::::
GLEAM

:::::::::
experiment,

:::
the

::::::::::
simulations

::
of

::::::::::
CLASS4GL

:::::
(Sect.

::::
2.6)

:::
are

::::::::
validated

::::::
against

::::::::
afternoon

::::::
profiles

:
from balloon soundings thereby providing an indirect and independent

::::::
sourced

:::::
from

:::
the

:::::
IGRA

::::
data

:::
set

:::::
(Sect.

:::::
2.4).

::::::::
However,

:::
the

::::
skill

::
of

::::::::::
CLASS4GL

::
is
::::::::
evaluated

::::::
based

::
on

:::
the

:::::
Root

:::::
Mean

:::::::
Squared

:::::
Error

:::::::
(RMSE)

::
–

:::::
rather

::::
than

:::::
MAD

::
–

::
R,

::::
and

::::
MD,

::
all

:::::::::
calculated

::
on

::::
raw

::::
time

:::::
series,

::::
and

::::::
results

::
are

:::::::::
visualised

::
in

::::::
Taylor

:::::
plots.

2.7.2
:::::::::
Evaluation

:::::
using

::::::::::
catchment

:::::::::::::
energy-balance

:::::
data5

::::
Next

::
to

:::
the evaluation of the surface energy partitioning in both reanalyses . Alltogether, the experiment investigates whether the

partitioning provided by
:::::::
turbulent

:::::
fluxes

:::::
from ERA5 is more consistent with observed atmospheric boundary layer parameters

than that provided by ERA-I
::::::
against

::
in

::::
situ

:::::::::::::
eddy-covariance

:::::::::::::
measurements,

:::
an

::::::::
evaluation

:::::::
against

:::::::::::::
catchment-scale

:::::
water

::::
and

:::::
energy

:::::::
balance

::::
data

:::::
(Sect.

::::
2.3)

::
is

:::
also

::::::::::
performed.

:::::
Given

:::
the

::::::
typical

::::
bias

::
in

::::::::::::::
eddy-covariance

::::::::::::
measurements,

:::::::::
especially

::
in

::::
case

::
of

:::
the

::::::
surface

:::::
latent

::::
heat

:::
flux

:::::::::::::::
(Beer et al., 2010)

:
,
::
an

:::::::::
evaluation

::
of

:::
the

:::::::::
magnitude

:::
of

::
the

::::::
fluxes

::::::
should

::
be

:::::::::
interpreted

::::
with

:::::
care.10

::
On

::::
the

::::
other

::::::
hand,

:::
the

:::::::::::::
catchment-scale

:::::::::::::
energy-balance

::::
data

::
is
:::::::

thought
:::

to
::
be

::::
less

::::::
biased,

:::::::::
especially

::
at

:::
the

::::::::
temporal

::::::
scales

:::::::::
considered

::
in

:::
this

:::::
study,

::::
and

::
is

:::::::
therefore

:::::
better

::::::
suited

::
to

:::::::
evaluate

:::
the

:::::::::
magnitude

::
of

:::
the

:::::
fluxes

::::::::::::::::::
(Miralles et al., 2016).

:

:::
For

::::
each

:::::::::
catchment

::
in

:::
the

:::::
data

:::
set,

:::
the

::::::::
turbulent

:::::
fluxes

:::
of

:::
the

:::::::::
reanalyses

:::::::
(Section

::::
2.1)

:::
are

::::::::::
temporally

:::::::::
aggregated

:::
to

:::
the

:::::
annual

:::::::::
resolution

::::
and

:::::::
spatially

:::::::::
aggregated

:::
to

:::
the

::::
scale

:::
of

:::
the

::::::::::
catchments.

:::::
Next,

:::
the

::::
MD

:::::::
between

:::
the

::::::::
reference

::::
data

:::
set

::::
and

::
the

:::::::::
reanalysis

::
is

::::::::
calculated

::
to
::::::
assess

:::
the

:::::::::
magnitude

::
of

:::
the

::::::
surface

::::::
energy

::::::::::
partitioning.

:::::::
Results

::
are

::::::::
spatially

::::::::
visualised

::
in

::::::
global15

::::
maps

::::
and

::::::::
compared

::::::
against

::::
each

:::::
other

::
by

::::::
means

::
of

::::::
scatter

::::
plots.

3 Results and discussion

3.1 Evaluation using eddy-covariance data

3.1.1 Direct comparison to in situ data

Figure 2 shows violin plots of the Mean Difference (MD ,
:::
MD

::
(raw in situ time series as reference), Mean Absolute Difference20

(MAD ,
:::::
MAD

:
(anomaly in situ time series as reference), and Pearson correlation coefficient (R ,

:
(anomaly in situ time series

as reference) of the turbulent fluxes and the Bowen ratio against in situ eddy-covariance measurements. Violins are shown

:::::::
Average

::::::
metrics

:::::
across

:::
the

::::::::::
FLUXNET

::::
data

:::
set

:::
and

::::
their

:::::::::
confidence

:::::::
interval

:::
are

:::::::
reported

::
in

:::::
Table

::
1.

:::::
Violin

:::::
plots

:::
are

::::::::
presented

for the surface latent heat flux (3-hourly and daily resolution), surface sensible heat flux (3-hourly and daily resolution) and

Bowen ratio (daily resolution), for ERA5 (green; GLEAM+ERA5) and ERA-I (orange; GLEAM+ERA-I
:::::
yellow), respectively.25

As shown, statistics are consistently
:::
(and

::::::::::
statistically

:::::::::::
significantly) better for ERA5 than for ERA-I, with typically higherR and

lower MAD against in situ measurements(the bias ,
::::
even

:::::::
though

:::
the

:::
bias

:::::
(MD)

:
remains relatively similar). This indicates that

ERA5 is better capturing the temporal dynamics in surface energy partitioning, both at sub-daily and daily temporal resolutions.

Especially for the daily-aggregated surface sensible heat flux
:
,
:
a clear improvement is shown

:::
can

::
be

::::
seen, with the median R

of ERA5 across all reference sites approaching the 75% percentile of the ERA-I distribution.
:::::::::::
Nevertheless,

::::::::::
differences

:::
are30

:::::::::
statistically

:::::::::
significant

::
in

:::::
more

::::
sites

::
at

:::
the

::::::::
sub-daily

::::
scale

::::
than

::
at
:::::
daily

::::::::::
resolutions:

:::
the

:::::::
Pearson

:::::::::
correlation

:::::::::
coefficient

:::
for

:::
the
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::::::
surface

:::::::
sensible

::::
heat

:::
flux

:::::
from

:::::
ERA5

::
is
:::::::::::
significantly

:::::
better

:::
(at

:::
the

:::
5%

::::::::::
significance

:::::
level)

::
at

::::
63%

::::
and

::::
38%

::
of
::::

the
::::
sites

::
at

:::
the

:::::::
3-hourly

:::
and

:::::
daily

::::::::
temporal

::::::::::
resolutions,

::::::::::
respectively.

::::::
ERA-I,

:::
on

:::
the

:::::
other

:::::
hand,

::
is

::::
only

::::::::::
significantly

:::::
better

:::
in

::::::::::::
approximately

::::
10%

::
of

:::
the

:::::
sites,

:::::
while

::
in

:::
the

:::::::::
remainder

::
of

:::::
sites,

:::::::::
differences

::::
are

:::
not

:::::::::
significant.

:
For the surface latent heat flux and Bowen

ratio, improvements are less remarkable, but still consistent. ,
:::
as

::
R

:
is
:::::::::::
significantly

:::::
better

:::
for

:::::
ERA5

::
in
:::::

59%,
:::::
29%,

:::
and

:::::
39%

::
of

::
the

::::::::::::::
eddy-covariance

::::
sites

:::
for

:::
the

::::::
surface

:::::
latent

::::
heat

::::
flux

::::::::
(3-hourly

:::
and

:::::
daily

::::::::::
resolutions)

:::
and

:::
the

::::::
Bowen

:::::
ratio.

::::
The

:::::::
opposite

::
is5

::::
only

:::
true

::
in

:::::
about

:::
8%

:::
of

:::
the

::::
sites.

:::
As

::::::
shown

::
in

:::
Fig.

::
2,
::::
both

::::::
ERA5

:::
and

::::::
ERA-I

::::
tend

::
to

:::::::::::
overestimate

:::
the

::::::
surface

:::::
latent

::::
heat

::::
flux

:::
and

::::::::::::
underestimate

:::
the

::::::
Bowen

:::::
ratio.

::::::::::
Conversely,

:::
the

:::::::
average

::::
bias

::
in

:::
the

::::::
surface

:::::::
sensible

::::
heat

::::
flux

::
is

:::::
close

::
to

::::
zero.

:::::::::
However,

:::::::
advances

::
in

::::::
ERA5

::::
have

:::
not

::::
been

::::
able

::
to

:::::
make

:
a
::::
huge

:::::::::
difference

::
in

:::::
these

:::::::::
tendencies,

::
as

:::::::
statistics

:::
of

:::::
ERA5

:::
and

::::::
ERA-I

:::
are

:::::
close

::
to

::::
each

::::
other

:::
and

::::::::::
statistically

:::::::::
significant

::
in

::::
only

:::
1–2

:::::
sites. Notably, for both ERA-I and ERA5, validation statistics are generally

better for sensible than for latent heat fluxes (see higher median R and lower MAD for sensible heat fluxes, irrespective of data10

set and temporal aggregation). Albeit the differences in pre-processing techniques and
:
in

:::
the

:
sample of eddy-covariance sites,

these results are consistent with those by Balsamo et al. (2015) based on a validation of ERA-I only. When the seasonality is

not removed (Fig. A1), turbulent fluxes of ERA5 still outperform those from ERA-I, although differences are smaller. In terms

of seasonal cycle, the surface sensible heat flux is not necessarily better estimated than the surface latent heat flux; in fact,

statistics are generally worse at daily temporal resolution as shown in Fig. A1.15

Violin plots of temporal validation statistics of the surface latent heat flux (λρE), surface sensible heat flux (H), and Bowen

ratio (β) from ERA5 (green) and ERA-I (orange). Statistics are calculated against in situ eddy-covariance measurements at both

3-hourly and daily temporal resolutions. Violins represent the distribution of the individual validation statistics with indication

of the median and inter-quartile range and are calculated using a kernel density estimation approach. Statistics include the

Mean Difference (MD, raw in situ time series from 143 sites as reference), Mean Absolute Difference (MAD, anomaly in situ20

time series from 77 sites as reference), and the Pearson correlation coefficient (R, anomaly in situ time series from 77 sites as

reference). For MD, the distribution of β is plotted on the right y-axis.

Figure 3 shows the difference between temporal validation statistics
::::::::
calculated

::
at

:::
the

::::::::
anomaly

::::
time

:::::
series

:
(i.e. MAD and

R) of the surface latent heat flux, surface sensible heat flux, and Bowen ratio from ERA5 and ERA-I. Sites are clustered as a

function of precipitation and mean
:::::
mean

:::::
annual

:::::::::::
precipitation

::::
and near-surface air temperature measured at the

::::::::::::
corresponding25

eddy-covariance station
:::
site. Results are consistent with those in Fig. 2, with an overall higher quality (blue

::::
green

:
color) in

the sensible and latent heat fluxes from ERA5. However, it can be argued that there is a tendency of ERA-I to perform better

than ERA5 in warm and dry regimes, especially for the latent heat flux and Bowen ratio. These climates are, nonetheless,

only sampled by three eddy-covariance towers and thus results may not be generalised. In addition, conclusions based on

the performance in certain climate regimes should be interpreted with care, as FLUXNET sites are not uniformly distributed,
:
:30

mild climates are generally over-represented , and most sites are located in Europe and the Continental United States (CONUS)

:::::::
CONUS,

:
as shown in Fig. 1 and described in Baldocchi et al. (2001).

Difference between temporal validation statistics of the surface latent heat flux (λρE), surface sensible heat flux (H), and

Bowen ratio (β) from ERA5 and ERA-I grouped as a function of precipitation rate (P ) and near-surface air temperature (T )

calculated at the in situ site. Statistics are calculated against in situ eddy-covariance measurements at daily resolution and35
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then averaged across the sites within each group. Statistics include the Mean Absolute Difference (MAD, anomaly in situ

time series from 77 sites as reference) and the Pearson correlation coefficient (R, anomaly in situ time series from 77 sites as

reference). Circles show the R from ERA5 minus the one from ERA-I, while squares show the MAD from ERA-I minus the

one from ERA5; hence, blue colors represent better statistics for ERA5 compared to ERA-I. The size of the symbols relates to

the number of in situ sites per group.5

Presumably, much of the improvement in surface energy partitioning in ERA5 over ERA-I can be attributed to a better repre-

sentation of land-surface processes in the more advanced H-TESSEL land-surface model .
:::
and

:::
the

::::::::
improved

::::
data

::::::::::
assimilation

::::::
system

:::::::
wrapped

::::::
around

:::
the

::::::
model.

::::
Note

:::
that

::::
both

::::::::::::
improvements

::
in

:::
the

::::::::::
atmospheric

::::
data

::::::::::
assimilation

::::::
system

:::
(by

:::::::::
improving

:::
the

::::::::::
atmospheric

::::::
drivers

::
of

:::
the

::::::::
turbulent

::::::
fluxes)

::::
and

:::
the

::::::::::
land-surface

::::
data

::::::::::
assimilation

::::
(by

:::::::::
improving

:::
the

::::::::::
land-surface

:::::::::
constraint

::
on

:::
the

::::::::
turbulent

::::::
fluxes)

:::::
might

:::::
affect

::::
the

:::::::
turbulent

::::::
fluxes.

:
The better performance of H-TESSEL – in reference to TESSEL,10

its antecessor used in ERA-I – was already illustrated by Balsamo et al. (2015), who compared the quality of different land-

surface variables from ERA-I and ERA-I/Land over the Northern Hemisphere. The latter
::::::::::
ERA-I/Land

:
is in essence an offline

simulation of H-TESSEL forced with atmospheric data derived from ERA-I. Although quality differences between ERA-I and

ERA-I/Land cannot
::
can

::::
not only be attributed to the land-surface scheme but also to the different model set-up (i.e. online

vs. offline simulation), Balsamo et al. (2015) argued that most of the improvement was due to the land-surface model. As15

H-TESSEL is now also implemented in ERA5, similar
::::::::
analogous

:
improvements can thus be expected in ERA5 over ERA-I

regarding the simulation of land-surface variables.

Despite the fact that several studies have shown the high performance of H-TESSEL as compared to TESSEL for simulating

a variety of land-surface parameters (e.g. Balsamo et al., 2015; Albergel et al., 2012), Balsamo et al. (2015)
::::
also showed that

improvements in the turbulent fluxes of ERA-I/Land over ERA-I could not be uniquely linked to the different land-surface20

scheme. Hence, the better quality of surface energy partitioning in ERA5 does most likelynot only benefit from
::
is,

::::
most

::::::
likely,

:::
not

::::
only

:::::
owed

::
to an improved parameterisation of the land surface, but also from a better quality of the atmospheric drivers,

simulated by the coupled atmospheric model, which is constrained by a 4D-variational data assimilation algorithm benefiting

from a larger number of quality controlled observations (Hersbach et al., 2020, 2018)
::
of

:
a
:::::
large

:::::::
number

::
of

:::::::::::::::
quality-controlled

::::::::::
observations

:::::::::::::::::::
(Hersbach et al., 2020). The better quality of some key meteorological parameters is confirmed by the results25

presented in Fig. A3, which shows violin plots of the validation statistics for surface net radiation, 2-meter air temperature, and

precipitation at the FLUXNET sites, for 3-hourly and daily temporal resolutions, respectively. Although statistics from ERA5

are better at both temporal resolutions, especially the sub-daily variability of all three variables has been substantially improved

over ERA-I, which may largely be the result of a better modelling of cloud properties in ERA5 (Hersbach et al., 2020, 2018)

::::::::::::::::::
(Hersbach et al., 2020).30

Finally, as described in Sect. 2.1, one of the key improvements in ERA5 upon its predecessor is the higher spatial resolution

at which atmospheric and land processes are resolved. However, Fig. A2 shows that when ERA5 is linearly re-sampled to

the spatial resolution of ERA-I, statistics calculated against eddy-covariance measurements only change marginally. Never-

theless, such an analysis only gives a crude idea of the impact of the spatial resolution as (1) due to non-linear processes and

feedback mechanisms, a simple re-sampling of the model output does not properly represent the effect of the high-resolution35
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numerical modelling;
:
, (2) the effect is expected to be the highest in complex terrain such as mountainous regions, coastal

areas, or highly-heterogeneous landscapes, which are under-represented in the FLUXNET data base;
:
,
:::
and (3) representativity

:::::::::::::::
representativeness errors – resulting from the relatively small footprint of eddy-covariance towers as compared to model grid

cells – are still
::::::
remain considerable at the spatial resolution of ERA5.

3.1.2 Evaluation using GLEAM5

Forcing GLEAM with meteorological data derived from ERA5 and ERA-I provides a convenient and alternative means to

evaluate and compare the quality of the reanalyses. Moreover, it allows an evaluation of the usefulness of ERA5 to drive offline

models explicitly designed to estimate specific land-surface variables (in the
:::::
fluxes

:::
(in case of GLEAM, terrestrial evaporation).

:::::::::::
Nevertheless,

:::::
results

::
of
:::::
such

::
an

:::::::::
experiment

::::::
should

::
be

:::::::::
interpreted

::::
with

::::
care

::
as

:::::
errors

::
in

:::
the

::::::
forcing

:::::
might

:::
be

:::::::::::
compensated

::
for

:::
by

::
the

:::::::
model.

::::::::
However,

:::::::::
parameters

::
in

::::::::
GLEAM

:::
are

::::
fully

::::::
based

::
on

::::::::
literature

::::::
studies

::::::::::::::::::::::::::::::::::::
(Martens et al., 2017; Miralles et al., 2011)10

:::
and

:::
are

:::
not

:::::::::
calibrated,

::
the

:::::::
analysis

::::::::
presented

::
in

::::
this

::::
study

::
is
:::::::::
performed

::::
over

:
a
:::::
large

::::::
number

::
of

:::::
sites,

:::
and

:::
the

::::::::
modelling

::::::::
concepts

::
of

:::::::
GLEAM

::::
and

:::::::::::
ERA-I/ERA5

:::
are

:::::::::::
substantially

:::::::
different.

::::::
Hence,

::
it
::
is

:::::::
assumed

::::
here

::::
that

:::::
errors

::
in

::::::
neither

::::::
ERA-I,

:::
nor

::::::
ERA5

:::
are

::::::::::
compensated

:::
for

:::
by

::::::::
GLEAM.

Figure 4a shows violin plots of the MD (raw in situ time series as reference), MAD (anomaly in situ time series as reference),

and R (anomaly in situ time series as reference) of the turbulent fluxes and the Bowen ratio derived from GLEAM against in15

situ eddy-covariance measurements. Violins are
:::
The

:::::::
average

::
R

:::
and

:::::
MD,

:::::::
together

::::
with

::::
their

:::::::::
confidence

:::::::
interval,

:::
are

::::::::
reported

::
in

:::::
Table

::
1.

:::::
Violin

:::::
plots

:::
are shown for both turbulent fluxes and the Bowen ratio at daily temporal resolution; the violin limbs

correspond to GLEAM forced with ERA5 (green) and ERA-I (orange
::::::
yellow), respectively. Results presented in Fig. 4a show

that the estimates of the surface latent heat flux from GLEAM+ERA5 are consistently better than those from GLEAM+ERA-I,

especially in terms of R and MAD, while the bias in both is comparable and close to zero on average.
:::::
While

:::
for

:::
the

:::::
MD,20

:::::::::::::
GLEAM+ERA5

::
is

::::
only

:::::::::::
significantly

:::::
better

::
in

:
a
:::::::
handful

::
of

:::::
sites,

::
R

::
is

::::::::::
significantly

:::::
better

:::
in

::::
22%

::
of

:::
the

::::
sites

:::
for

:::
the

::::::::
turbulent

:::::
fluxes,

::::
and

::
in

:::
3%

:::
of

:::
the

::::
sites

:::
for

:::
the

::::::
Bowen

:::::
ratio.

::::::::
However,

:::
in

:::
the

:::::::
majority

::
of

:::::
sites

:::::
(75%

:::
for

:::
the

:::::::
turbulent

::::::
fluxes

:::
and

:::::
91%

::
for

:::
the

::::::
Bowen

::::::
ratio),

:::::::::
differences

::
in

::
R

:::
are

:::
not

::::::::::
statistically

:::::::::
significant.

:
These findings support the ones discussed in Sect. 3.1.1,

where it was found that some key meteorological drivers of the surface turbulent fluxes are in fact better represented in ERA5

than in ERA-I. On the other hand, with the exception of the bias, statistics for the surface sensible heat flux and Bowen ratio25

are slightly worse for GLEAM+ERA5 than for GLEAM+ERA-I
:
,
:::
but

:::
not

::::::::::
statistically

:::::::::
significant

::
in

:::::
terms

::
of

:::
R,

::
as

:::::::::
evidenced

::
by

:::
the

::::::::::
percentages

::::::::
reported

:::::
above. Nonetheless, when the seasonal cycle is not removed prior to the analysis (Fig. A4a)

GLEAM+ERA5 performs consistently (albeit only slightly) better for all variables, suggesting that the seasonality of the

meteorological variables used to force GLEAM is better captured in ERA5 than in ERA-I. Despite the fact that the most

prominent differences in quality of the surface latent heat flux from GLEAM+ERA5 and GLEAM+ERA-I can be found in30

mild climates as indicated in Fig. 5a, there is no clear tendency of GLEAM+ERA5 to perform better under specific climatic

conditions. The surface sensible heat flux and Bowen ratio from GLEAM+ERA5, on the other hand, tend to degrade in quality

(compared to GLEAM+ERA-I) when the climate gets drier and colder. It should be emphasised here again that GLEAM has

been specifically designed to estimate the latent heat flux, thus the surface sensible heat flux – calculated here as the residual
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from the energy balance – has not been subject to equally extensive validations than its latent counterpart, and is prone to be

more uncertain.

Violin plots of temporal validation statistics of the surface latent heat flux (λρE), surface sensible heat flux (H), and

Bowen ratio (β) from GLEAM+ERA5, GLEAM+ERA-I, and ERA5. (a) Compares the violins from GLEAM+ERA5 and

GLEAM+ERA-I and (b) compares the violins from GLEAM+ERA5 and ERA5. Statistics are calculated against in situ5

eddy-covariance measurements at daily temporal resolution. Violins represent the distribution of the individual validation

statistics with indication of the median and inter-quartile range and are calculated using a kernel density estimation approach.

Statistics include the Mean Difference (MD, raw in situ time series from 143 sites as reference), Mean Absolute Difference

(MAD, anomaly in situ time series from 77 sites as reference), and the Pearson correlation coefficient (R, anomaly in situ time

series from 77 sites as reference). For MD, the distribution of β is plotted on the right y-axis.10

Difference between temporal validation statistics of the surface latent heat flux (λρE), surface sensible heat flux (H),

and Bowen ratio (β) from GLEAM+ERA5, GLEAM+ERA-I, and ERA5 grouped as a function of precipitation rate (P )

and near-surface air temperature (T ) calculated at the in situ site. (a) Compares the statistics from GLEAM+ERA5 and

GLEAM+ERA-I and (b) compares the statistics from GLEAM+ERA5 and ERA5. Statistics are calculated against in situ

eddy-covariance measurements at daily resolution and then averaged across the sites within each group. Statistics include the15

Mean Absolute Difference (MAD, anomaly in situ time series from 77 sites as reference) and the Pearson correlation coefficient

(R, anomaly in situ time series from 77 sites as reference). In (a) circles show the R from GLEAM+ERA5 minus the one from

GLEAM+ERA-I, while squares show the MAD from GLEAM+ERA-I minus the one from GLEAM+ERA5; hence, blue

colors represent better statistics for GLEAM+ERA5 compared to GLEAM+ERA-I. In (b), statistics from GLEAM+ERA-I

are replaced by ERA5; hence, blue colors represent better statistics for GLEAM+ERA5 compared to ERA5. The size of the20

symbols relates to the number of in situ sites per group.

The turbulent fluxes and Bowen ratio from GLEAM+ERA5 can also be directly compared to ERA5 to provide a crude

evaluation of the skill of H-TESSEL as compared to the simpler land-surface scheme in GLEAM. Figure 4b shows that ERA5

is better capturing the temporal dynamics of the anomalies, generally resulting in lower MAD and higher R for all variables.

::
In

:::::
terms

::
of

::
R,

::::::
ERA5

::
is

:::::::::
performing

::::::::::
significantly

:::::
better

:::
(at

:::
the

:::
5%

::::::::::
significance

:::::
level)

::
at

:::::
27%,

::::
39%,

::::
and

::::
27%

::
of

:::
the

::::
sites

:::
for

:::
the25

::::::
surface

:::::
latent

::::
heat

::::
flux,

::::::
surface

::::::::
sensible

:::
heat

:::::
flux,

:::
and

::::::
Bowen

:::::
ratio,

:::::::::::
respectively.

::::::::::::::
GLEAM+ERA5

::
is

::::
only

::::::::::
performing

:::::
better

::
in

::::
15%,

::::
9%,

::::
and

::::
18%

::
of

:::
the

::::
sites

:::
for

:::
the

:::::
same

::::::::
variables,

:::::
while

:::
in

:::
the

:::::::
majority

::
of

:::::
sites,

:::::::::
differences

:::
are

::::
not

:::::::::
significant.

:
Only

in terms of the bias, ERA5 is overall performing worse than GLEAM+ERA5 ,
:::
(but

:::::
again,

:::::
only

:::::::::
significant

::
at

:
a
::::
very

:::::::
limited

::::::
number

::
of

::::::
sites), especially for the surface latent heat flux, which is consistently overestimated in ERA5 for almost all in situ

sites (close to 75% of the sites have a positive bias, Fig. 4b). This results in a median MD of 9 W m−2 compared to the slight30

underestimation of -2 W m−2 for GLEAM+ERA5 at daily time scales. The positive bias in the surface latent heat flux from

ERA5 is very similar to the one from ERA-I, with a median MD of 10 W m−2 across all in situ sites at daily resolutions

(Fig. 2). The tendency to overestimate the latent heat flux in ERA-I has been previously reported in different studies (Michel

et al., 2016; Miralles et al., 2016; Balsamo et al., 2015; Decker et al., 2012), and important changes in the IFS have thus not

been able to mitigate this bias in ERA5. Given the interaction between the coupled atmospheric and land-surface model in the35
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reanalysis, the consistent positive bias in the surface latent heat flux is potentially affected by both components of the modelling

framework. Although it is hard to identify the exact cause of this bias, it might be induced by the overestimation of the

number of wet days typically found in reanalysis data sets (Beck et al., 2019), combined with precipitation rates that are often

underestimated (Beck et al., 2019), and vegetation density that might be overestimated (Král, 2011). This presumably results in

an overestimation of the interception loss (Král, 2011), an important component of the total latent heat flux in densely-vegetated5

regions (Martens et al., 2017; Miralles et al., 2010). This hypothesis is somehow
::::
Note

:::
that

::::
this

:::::::::
hypothesis

:
is
:::::::
partially

:
supported

by our analysis: despite the fact that a positive bias can be found virtually everywhere, the strongest biases are typically found

in densely-vegetated sites (not shown). We should emphasis
::::::::
emphasise

:
here, however, that biases calculated against eddy-

covariance measurements should
::::
have

::
to

:
be interpreted with care, given the representativity errors

::::::::::::::
representativeness

::::::
errors

:::::::
resulting

:::::
from

:::
the

::::::::
mismatch

::
in
::::::

spatial
::::::::

footprint
::::::::
between

:::
the

::::
grid

:::
cell

::::
and

:::
the

:::::::::
instrument, and provided that turbulent heat10

fluxes are thought to be generally underestimated by the eddy-covariance technique, especially in case of the surface latent

heat flux (Beer et al., 2010). When the seasonal cycle is not removed prior to the evaluation (Fig. A4b), GLEAM+ERA5

seems to perform equally good or slightly better than ERA5, indicating that GLEAM+ERA5 is marginally better than ERA5

at capturing the seasonal dynamics (Fig. A4b), but worse at capturing the response of surface energy partitioning to short-

term anomalies in meteorological conditions (Fig. 4b).
:::::::::::
Nevertheless,

:::
we

::::::
would

:::
like

::
to

::::::::
highlight

::::
that

:::::
ERA5

::
is

:
a
::::::::::::
fully-coupled15

:::::::::::::
land-atmosphere

:::::::
system

:::::::::
permitting

:
a
::::::::
feedback

:::::
from

:::
the

::::
land

:::::::
surface

:::::::
towards

:::
the

::::::::::
atmosphere,

:::::
while

::::::::
GLEAM

::
is
:::
an

::::::
offline

::::::::::
land-surface

:::::
model

::::::
forced

::::
with

::::::::::
atmospheric

::::::::
variables

::::
from

::::::
ERA5.

:::
We

::::
note

::::
that

:::
this

:::::::
coupling

:::::::
between

:::
the

::::
land

::::::
surface

::::
and

:::
the

:::::::::
atmosphere

::::::
might

::::
have

:
a
:::::::::
substantial

:::::::
impact

::
on

:::
the

::::::
quality

:::
of

:::
the

::::::::
turbulent

:::::
fluxes

::::::::::::::::::::::::::::::::::
(Draper et al., 2018; Balsamo et al., 2015)

:
,

:::::::::
potentially

::::::::
explaining

:::
the

::::::::::
differences

:::::::
between

::::::::::::::
GLEAM+ERA5

:::
and

::::::
ERA5.

:

Figure
::::::::::
Nonetheless,

::::
Fig. 5b shows that for the surface latent heat flux, the better performance of ERA5 over GLEAM+ERA520

is mainly due to its better statistics in relatively wet or cold climatic regimes. In drier regimes and, especially warm regions

(mainly located along the west coast of the CONUS and few eddy-covariance sites in Australia; Fig. 1), GLEAM+ERA5 seems

to better capture the anomalies of the surface latent heat flux, which might indicate that H-TESSEL has room to improve the

response to water stress. For the Bowen ratio, similar conclusions may be drawn, even though the quality of the sensible heat

flux in ERA5 is consistently better than in GLEAM+ERA5.25

3.2 Evaluation using catchment energy-balance data

As described in Sect. 2.3, observations of river discharge may be combined with precipitation, net radiation, and the ground

heat flux to derive catchment-scale and long-term estimates of the surface turbulent fluxes and the Bowen ratio, providing

an alternative means to evaluate the surface energy partitioning in ERA-I and ERA5. Figure 6 compares the percentage MD

(%MD, i.e. MD divided by the mean of the reference data set) of the surface latent heat flux, surface sensible heat flux,30

and Bowen ratio (observations of catchment-scale variables as reference) from ERA5 to the one from
::
and

:
ERA-I by means

of
:::::
using a scatter plot. The results shown in Fig. 6 largely correspond to the ones shown in Fig. 2 for the MD and point

again to a substantial overestimation of the surface latent heat flux from ERA-I; in 83% of the catchments, a positive bias

is obtainedfor the flux. The .
::::::::::
Conversely,

::::
the surface sensible heat flux on the other hand is generally underestimated (a

16



negative bias is found in 61% of the catchments), resulting in an underestimation of the catchment-scale Bowen ratio as

well (a negative bias is found in 80% of the catchments). While absolute biases for the surface latent heat flux from ERA5

are lower than from ERA-I (an improvement is found in 75% of the catchments), ERA5 still overestimates the flux in most

catchments. Strikingly, ,
:::
as

:::
also

::::::::
indicated

:::
by

::::::::::::::::::
Hersbach et al. (2020)

:
.
::::
More

:::::::
striking

:::
are

:::
the

::::::
results

:::
for

:::
the

::::::
surface

:::::::
sensible

::::
heat

::::
flux: while ERA-I generally underestimates the surface sensible heat flux, ERA5 overestimates the flux

:
it
:
in about 70% of the5

catchments. In addition, the absolute bias of the surface sensible heat flux from ERA5 is higher than in ERA-I in 55% of the

catchments. However, this potential overestimation is not confirmed by the in situ validation presented in Sect. 3.1.1 (Fig. 2),

where the surface sensible heat flux from both reanalyses appeared nearly unbiased. Finally, for the Bowen ratio, estimates

of ERA5 are
::::::
appear better in about 60% of the catchments, arguably reflecting the improvement in the surface latent heat

flux.
::::
Note

:::
that

::
a
:::::
rather

::::::
strong

::::::::::::
overestimation

::
of

:::
the

::::::
surface

:::::
latent

::::
heat

::::
flux

:::
was

::::
also

:::::
found

::
in

:::::
other

::::::::
reanalyses

:::::
such

::
as

:::::::
NASA’s10

:::::::
MERRA

:::
and

::::::::::
MERRA-2

::::::::::::::::
(Draper et al., 2018)

:
.
::::::::
However,

::
in

:::
the

::::
latter

:::::::::
reanalyses,

::::
both

:::::::
surface

:::::::
turbulent

:::::
fluxes

:::::
were

::::::::::
consistently

:::::::::::
overestimated

::::::
which

::::
could

::::::::::
potentially

::
be

:::::
linked

::
to
::
a
:::::::
positive

:::
bias

::
in
:::
the

::::::::
incoming

::::::::
radiation

::
at

:::
the

::::
land

:::::::
surface.

Scatter plot of the bias of the surface latent heat flux (λρE), surface sensible heat flux (H), and Bowen ratio (β) from ERA-I

versus ERA5. The bias is calculated against catchment-scale estimates of the fluxes derived using discharge data (Eqs. 1–3)

and is assessed by the percentage Mean Difference (%MD, raw time series from 707 catchments as reference). The green area15

indicates points where the bias in ERA5 is better than in ERA-I, and vice versa for the orange area.

Figures 7–9 show maps of the catchment-scale %MD of the surface latent heat flux (Fig. 7), surface sensible heat flux

(Fig. 8), and Bowen ratio (Fig. 9) for ERA5, ERA-I, and the difference in their absolute values. While ERA-I overesti-

mates the surface latent heat flux virtually everywhere, biases are relatively larger in the east of the CONUS and the south

of Europe (in regions like Spain and the south of France). In these regions, a strong reduction in bias can be observed for20

ERA5.
::::::
Despite

:::
the

::::::::
complex

::::::::::
interactions

:::::::
between

::::
the

::::
land

::::::
surface

::::
and

:::
the

::::::::::
atmosphere

::
in

:::
the

::::
IFS,

:::::
these

::::::::::::
improvements

::::
can

:::::::::
potentially

::
be

::::::
related

::
to

::
an

::::::::
improved

::::::::::::
representation

::
of

:::::::::::
precipitation

::
in

:::::
ERA5

::
as

::::::
shown

:::
by

::::::::::::::::::
Hersbach et al. (2020)

:::
and

::::::::
affecting

::
(1)

::::::::::
interception

::::
loss

::
in

::::::::::::::
radiation-limited

::::::
regions

:::::
such

::
as

:::
the

:::
east

:::
of

:::
the

:::::::
CONUS

:
–
::::::
which

:::::
might

::::::::
represent

:
a
:::::::::
substantial

:::::::
portion

::
of

::::
total

::::::::::
evaporation

::
in

:::::::
forested

::::::
regions

:::::::::::::::::::::::::::::::::::::::::
(Martens et al., 2017; Miralles et al., 2011, 2010)

:
–

:::
and

:::
(2)

:::
the

::::::::::
land-surface

:::::::::
constraint

::
on

::::::::
terrestrial

::::::::::
evaporation

::
in

:::::::::::
water-limited

::::::::::
evaporation

::::::
regimes

::::
like

::
the

:::::
south

::
of

:::::::
Europe.

::::
Note

::::
that

::
the

:::::
latent

::::
heat

:::
flux

::
in
:::
the

:::::
latter25

::::::
regions

:::
will

::::
also

::
be

:::::::
strongly

:::::::
affected

::
by

::::::::::::
improvements

::
in

:::
the

::::::::::
land-surface

::::
data

::::::::::
assimilation

::::::
system

::::::::::::::::::::::::::::::::::::
(Hersbach et al., 2020; Balsamo et al., 2015)

:
. Over large parts of Europe and western Russia

::
on

:::
the

:::::
other

::::
hand, the surface latent heat flux from ERA5 is nearly unbiased,

while the overestimation in other regions still remains, albeit reduced compared to ERA-I. Except for a small number of catch-

ments in the northeast of Brazil and the west of the Sahel, the bias of the surface latent heat flux is lower in ERA5 than in

ERA-I. The surface sensible heat flux from ERA-I is typically underestimated in high latitudes and the eastern part of the30

CONUS, while an overestimation can be seen in most other regions. However, as discussed in the previous paragraph, the

bias in the surface sensible heat flux of ERA5 is typically higher, especially over Europe, western Russia, and the east of the

CONUS, regions where the bias in the surface latent heat flux improved.
:
is

:::::::
reduced

::
in

::::::
ERA5.

:::::::
Finally,

::
in

:::::::
absolute

::::::
terms,

:::
the

:::
bias

::
in

:::
the

::::::
Bowen

:::::
ratio

:::::::
increases

:::::
from

:::::
ERA5

:::
to

:::::
ERA-I

:::
as

::::::::
evidenced

::
in

::::
Fig.

::
9,

:::
and

::::::
largely

:::::::
follows

:::
the

:::::::
patterns

::
set

:::
by

:::
the

::::
bias

::
in

:::
the

:::::::
surface

:::::::
sensible

::::
heat

:::
flux

::::
(Fig.

:::
8).

:
35
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Maps of the bias of the surface latent heat flux (λρE) from ERA5 and ERA-I. The bias is calculated against catchment-scale

estimates of the fluxes derived using discharge data (Eqs. 1–3) and is assessed by the percentage Mean Difference (%MD, raw

time series from 707 catchments as reference). In the last row, ∆ presents the difference between the absolute bias in ERA5

and ERA-I; hence, blue colors represent lower bias in ERA5 than in ERA-I.

Maps of the bias of the surface sensible heat flux (H) from ERA5 and ERA-I. The bias is calculated against catchment-scale5

estimates of the fluxes derived using discharge data (Eqs. 1–3) and is assessed by the percentage Mean Difference (%MD, raw

time series from 707 catchments as reference). In the last row, ∆ presents the difference between the absolute bias in ERA5

and ERA-I; hence, blue colors represent lower bias in ERA5 than in ERA-I.

Maps of the bias of the Bowen ratio (β) from ERA5 and ERA-I. The bias is calculated against catchment-scale estimates of

the fluxes derived using discharge data (Eqs. 1–3) and is assessed by the percentage Mean Difference (%MD, raw time series10

from 707 catchments as reference). In the last row, ∆ presents the difference between the absolute bias in ERA5 and ERA-I;

hence, blue colors represent lower bias in ERA5 than in ERA-I.

Finally, it should be emphasised here that the quality of the catchment-scale sensible heat flux (and Bowen ratio) estimates

used as reference is potentially lower than that of the surface latent heat flux, as (1) the assumption that the ground heat flux

is a fixed fraction of the surface net radiation only affects the estimates of the sensible heat (Eq. 2)
:
,
:
and (2) the estimates of15

sensible heat flux depend on the estimates of surface latent heat (Eq. 2), resulting in a propagation of errors which is difficult

to assess. Hence, the catchment-scale evaluation of the surface sensible heat flux should be
:::
and

::::::
Bowen

:::::
ratio

::::::
should

::
be

:::::
more

carefully interpreted.

3.3 Evaluation using CLASS4GL

Figure 10 shows the evaluation of the model output
::::::::
validation

::
of

:::
the

::::::::
estimated

::::::::
afternoon

:::::
ABL

::::::::
properties

:
from CLASS4GL –20

forced with
:::::
forced

::::
with

:::
the

::::::
surface

::::::
energy

::::::::::
partitioning

:::::
from ERA-I

:
(on the one hand)

:
and ERA5 (on the other hand– against

the
:
).
::::
The

::::::::
validation

::
is
:::::::::
performed

:::
by

:::::::::
comparison

:::::::
against

:
a
:
global archive of balloon soundings (Sect. 2.6). Results are shown

for the diurnal tendency
:::::::
temporal

::::::
change

:::::::::
(tendency)

:
of potential temperature (dθ/dt), humidity (dq/dt), and mixed-layer

height (dh/dt). It is found that the overall model performance for
:::
The

:::::::
overall

::::::::::
performance

::
at
:

reproducing the diurnal
::::
ABL

tendencies is improved when CLASS4GL is forced with ERA5 instead of ERA-I. This is the case for all scores
::::::::
statistical25

:::::
scores

:::::
being

:
considered and for each variable

::::
ABL

:::::::
variable

:::::
being analysed. In addition, this is also the case for most of the

::
in

::::
most Köppen–Geiger climate classesseparately, which suggests that the

:::::
higher performance is consistent among the regions

worldwide
:::::
across

::::::
climate

:::::::
regimes. The largest impact is found on the simulated

:::::::::::
improvement

::
in

::::::::
simulated

:::::
ABL

:::::::::
properties

:
is
::::::
found

:::
for

:::
the tendency of specific humidity, where the bias is reduced from 0.12 to 0.06

:::
0.10

:::
to

::::
0.05 g kg−1 h−1 if

:::::
when

CLASS4GL is forced with ERA5 instead of ERA-I, respectively. Most
:
.
::::
Most

::
of

:::
the

:
improvement can be found in days where30

the mixed layer tends to dry out during its daytime
:::
the

::::::
diurnal

:
growth (i.e. negative tendency of specific humidity) and is

most likely related to the substantially lower bias in the surface latent heat flux from ERA5than from ERA-I ,
:
as discussed in

Sects. 3.1.1 and 3.2. Also
:
, the Pearson correlation coefficient (0.38 vs. 0.52

::::
0.37

::
vs.

::::
0.50), normalised Root Mean Squared Error

(RMSD
::::::
RMSE; 0.22 vs. 0.16

::::
0.17 g kg−1 h−1),

:
and normalised standard deviation (1.2 vs. 1.03) point towards improvement
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of the model performance
:::::::::::
improvements

:::
of

:::
the

::::
ABL

::::::::::
simulations

:::::
when

:::::
forced

:::
by

:::
the

::::::
surface

::::::
energy

::::::::::
partitioning

:::::
from

:::::
ERA5.

For the other variables (dh/dt and dθ/dt)improvements are less clear, but ,
::::::::::::
improvements

:::
are

::::
only

::::::
minor,

:::
but

::::
still consistent.

These results highlight that the surface energy partitioning in ERA5 improves the skill of CLASS4GL in simulating the diurnal

variations in the atmospheric boundary layer; hence beneficial for boundary layer climate studies
:::
can

:::
lead

:::
to

::::::::
improved

::::
skill

::
in

::
the

:::::::
diurnal

::::
ABL

::::::::::
simulations

::
by

::::::::::
mixed-layer

:::::::
models

::::
such

::
as

:::::::
CLASS.5

Skill comparison of the CLASS4GL model (http://class4gl.eu; Wouters et al., 2019) for reproducing diurnal changes in

boundary layer properties forced with surface evaporative fraction from ERA5 versus ERA-I. Shown are the tendencies of the

mixed-layer height (dh/dt), potential temperature (dθ/dt) and specific humidity (dq/dt), which are assessed by comparison

of model simulations against the IGRA sounding data between 1981 and 2015. The first (ERA5 forced) and second (ERA-I

forced) row show modeled versus observed data points (gray) and the corresponding median (green) and interquartile range10

(red) of the model. The 1–1 line is shown as a black dashed line. The last row indicates the model skill forced with ERA5

(circles) versus ERA-I (squares) with Taylor plots. The transparent symbols show the overall performance of 18k sounding

pairs from 121 stations, whereas the colored symbols indicate the performance per Köppen-Geiger climate class and for which

the size is proportional to number of sounding pairs.

3.4 Global patterns of surface energy partitioning15

Figure 11 shows maps of the multi-annual average of the surface latent heat flux, surface sensible heat flux, and Bowen ratio

from ERA5 and ERA-I, as well as the difference between both. In both data sets, the expected geographical patterns set by

the
::::::
general

:
climatic conditions emerge. High values for the surface latent heat flux can be found around the Equator

::::::
equator

where both the availability of water and the supply of energy are high, while the lowest values can be found in arid regions

such as the Sahara desert, central Australia, the Namibian desert, and the Gobi desert. In terms of surface sensible heat flux,20

an opposite pattern is shown, with relatively lower values in the tropics, where most of the available energy is consumed to

evaporate water, and very high values in the deserts, where virtually no water is evaporated. The Bowen ratio clearly marks the

tropical forests and deserts; with intermediate values for mild climates such as central and western Europe.

Maps of the multi-annual average of surface latent heat flux (λρE, W m−2), surface sensible heat flux (H , W m−2), and

Bowen ratio (β) from ERA5 and ERA-I. In the last row, ∆ presents the difference between ERA5 and ERA-I; hence, blue25

colors represent higher values in ERA5 compared to ERA-I.

The globally-averaged surface sensible heat flux from land amounts to 27.2 W m−2 and 26.9 W m−2 for ERA5 and ERA-I,

respectively; a difference of only 1.1% (ERA-I as reference). For the surface latent heat flux, the difference is higher and

sums up to -5.2% (ERA-I as reference), with global averages of 44.1 W m−2 and 46.5 W m−2 for ERA5 and ERA-I, re-

spectively. The latter two values correspond to a yearly total volume of evaporated water of approximately 97.8·103 km3 and30

103.1·103 km3. Despite that these values
::::::
Similar

:::::
values

::::::::
typically

:::::
found

::
in

::::::::
literature

:
–
::::::::
although

:::::
based

::
on

:::::::
different

:::::::::::
land-surface

::::::
models

::
or

:::::::
retrieval

:::::::::
algorithms,

:::::
input

::::
data

::::
sets,

::
or

:::::
region

::::::::::
considered

::::
(e.g.

::::
areas

:::::::::::
permanently

::::::
covered

:::
by

::::
snow

::
or
:::
ice

::::::::
included

::
or

:::
not)

::
–
:::::
range

:::::::
between

::::::
55·103

::::
km3

::::
and

::::::
80·103

::::
km3

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Miralles et al., 2016; Wang and Dickinson, 2012, and references therein)

:
,

:::::::
pointing

::::::
towards

:::
an

::::::::::::
overestimation

::
of

:::
the

::::
total

::::::
volume

::
of

:::::::::
evaporated

:::::
water

::
in

::::
both

:::::
ERA-I

::::
and

::::::
ERA5.

::
In

::::
terms

::
of
:::::::::::::::
globally-averaged
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:::::
energy

::::::
fluxes,

:::
the

::::::::
turbulent

:::::
fluxes

:::::
from

::::
both

:::::::::
reanalyses lie within (or close to) the uncertainty ranges reported by Wild et al.

(2015)– ,
:
who inferred the magnitude of the global energy fluxes based on a detailed analysis of a variety of observations and

model-based estimates– the values for the .
:::::::::

However,
:::
the surface sensible heat flux and

::::
from

::::
both

:::::::::
reanalyses

::::
can

::
be

::::::
found

:::
near

:::
the

::::::
lower

::::::::
boundary

::
of

:::
the

:::::::
interval,

:::::
while

:::
the

:
surface latent heat flux are at the lower and higher limit of these intervals,

respectively.
:::
may

:::
be

:::::
found

::::
near

:::
the

::::::
upper

::::
limit

::
of
::::

the
:::::::
interval.

::::
This

::
is
::::
also

:::
the

::::
case

:::::
when

:::::::::
compared

::
to

::::::
values

:::::::
reported

:::
in5

::::::::::::::::
Draper et al. (2018)

::::
who

:::::::
analysed

:::
the

::::::::
turbulent

:::::
fluxes

::
of

:::::::
NASA’s

::::::::
reanalyses

::::::::
products

::::::::
MERRA,

:::::::::
MERRA2,

:::
and

:::::::::::::
MERRA-Land.

::::
They

:::::
found

::::::
values

:::
for

::::
both

:::::
fluxes

:::::::
ranging

:::::::
between

::
42

:::
W

::::
m−2

:::
and

:::
50

::
W

:::::
m−2,

:::::::::
depending

::
on

:::
the

:::::::::
reanalysis

:::::::::
considered.

:
These

results confirm our findings in Sects. 3.1 and 3.2 and align
:::
are

::
in

:::
line

:
with results previously reported in literature (e.g. Miralles

et al., 2016; Wild et al., 2015; Mueller et al., 2013; Jiménez et al., 2011, and references therein) where similar biases were

found for ERA-I.10

Figure 11 shows that the lower globally-averaged surface latent heat flux from ERA5 mainly results from reduced values

along the east coast of the CONUS, the south of Europe, the Sahel, India, and large parts of South America. These regions align

well with the areas identified in Miralles et al. (2016) where ERA-I seemed to strongly overestimate the surface latent heat

flux, and thus point to a better performance of ERA5 in these specific regions, although positive biases still prevail (Fig. 7).

The surface latent heat flux from ERA5 is higher than in
:::
the

:::
one

:::::
from ERA-I in only

::::
only

::
in

:
a few areas, such as the central15

CONUS, eastern Australia, and eastern Europe. For the surface sensible heat flux, differences between ERA5 and ERA-I are

clearly defined, with substantially higher values in the equatorial forests and lower values in (semi-)arid regions in the case of

ERA5.

4 Conclusions

This study evaluated the surface energy partitioning over land in ECMWF’s latest reanalysis ERA5 by assessing the quality of20

the surface latent heat flux, surface sensible heat flux, and Bowen ratio at different spatio-temporal scales and using different

validation approaches. Results were also compared with the predecessor ERA-I
:::
for

::::::::
reference. Different in situ validation data

sets
:
–

::::::::
including

::::::::::::::
eddy-covariance,

:::::
river

::::::::
discharge,

::::
and

:::::::
balloon

::::::::
sounding

::::
data

:
–
:
were used to directly validate the reanalysis

fields, and GLEAM and CLASS4GL were adopted as modelling tools to evaluate the surface energy partitioning in both

reanalyses.25

In a first experiment, the turbulent fluxes and the Bowen ratio from the reanalyses were directly compared against eddy-

covariance measurements from the FLUXNET 2015 data set. The analysis revealed that ERA5 performed consistently better

than ERA-I for all variables analysed, both at daily and sub-daily temporal resolutions, resulting in lower MAD and higher

R against in situ data. The differences were most clear when anomaly time series were analysed, indicating that – although

statistics also improved in case of the raw time series – ERA5 is substantially better capturing the response of surface energy30

partitioning to specific meteorological events. As one of the key changes in ERA5 is the use of the state-of-the-art H-TESSEL

land-surface model
:::
and

::::::::::::
improvements

::
in
::::

the
::::::::::
land-surface

::::
data

:::::::::::
assimilation

::::::
system, an important part of the improvements

may be attributed to the improved land parameterisation. However, a validation of some key meteorological variables against
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in situ measurements also showed better quality of these parameters from ERA5 than from ERA-I. These results were largely

confirmed by an experiment where GLEAM was forced with meteorological fields retrieved from both reanalyses, showing a

higher quality of the output based on ERA5 forcing data. Finally, although ERA5 did not seem to perform particularly better

:::
than

::::::
ERA-I

:
in specific climates, it was shown that GLEAM forced with ERA5 meteorology performed better than ERA5 in

terms of estimating the surface latent heat flux in warm and dry regimes, indicating possible shortcomings in the land-surface5

scheme to capture the response of surface energy partitioning to heat and drought stress in ERA5.

In a second experiment, catchment-scale turbulent fluxes derived using discharge,
:

precipitation, net radiation
:
,
:
and ground

heat flux data were used to verify the bias in the annual turbulent fluxes from ERA-I and ERA5. Here, a substantial overesti-

mation of the surface latent heat flux from ERA-I became evident. On the other hand, the surface sensible heat flux appeared

generally underestimated. While the biases in ERA5 for the surface latent heat flux were found to be lower – a strong reduction10

was found along the east coast of the CONUS and in the south of Europe – a general tendency to overestimate the
:::::
latent

::::
heat

flux still remains in ERA5. In case of the surface sensible heat flux on the other hand, the sign of the bias reversed (i.e. in ERA5

the flux tends to be overestimated) and increased in absolute value.

A better quality of the surface energy partitioning in ERA5 was also confirmed by an experiment where CLASS4GL was

forced with surface fluxes
:::
the

::::::::::
evaporative

::::::
fraction

:
from ERA-I and ERA5, and outputs .

::::::::::
Simulations

::
of
:::

the
:::::::

diurnal
::::::::
evolution15

::
of

:::
the

::::
ABL

:
were validated against a global archive of balloon soundings. CLASS4GL forced with ERA5 showed an overall

better skill for simulating the diurnal boundary layer dynamics than CLASS4GL
::::
when

:
forced with ERA-I. Especially in

reproducing the tendencies of specific humidity, CLASS4GL seemed to strongly benefit from the
::::::::
seemingly

:
better surface

energy partitioning in ERA5
:
, resulting in a substantially lower biasof the modelled variable. The latter could be attributed to

the lower bias in the surface latent heat flux in ERA5 than in ERA-I. Since ERA5 forced
:::::::::::
ERA5-forced

:
experiments better20

explained the global variability of the boundary layer dynamics, this experiment confirmed the overall better surface energy

partitioning in ERA5 than in ERA-I, which is in line with the other independent experiments presented in this paper
:::
here.

Finally, the global patterns of turbulent fluxes and Bowen ratio were analysed, and the globally-averaged magnitude of the

fluxes was compared with values reported in literature. While the spatial patterns are realistic in both data sets, and align with

the expectations from the major hydro-climatological regions, the substantial overestimation of the surface latent heat flux25

in both reanalyses emerged once again. However, the magnitude of the surface latent heat flux was found to be about 5%

lower in ERA5 than in ERA-I, pointing towards the reduction of the bias, while the surface sensible heat flux only increased

approximately 1%. The main reductions in the surface latent heat flux were found in regions that have
:::
had

:
previously been

highlighted in literature as hotspots of overestimation
:
in
::::::

ERA-I, such as the south of Europe, the Sahel, India, large parts of

South America, and the east coast of the CONUS.30

In summary,
:::
this

:::::
paper,

::
a
::::::
variety

::
of

::::::::
methods

:::
and

::::
data

::::
sets

:::::
were

::::
used

::
to

:::::::
evaluate

::::
the

::::::
quality

::
of

:::
the

::::::::
turbulent

:::::
fluxes

:::::
(and

::::::::::
near-surface

:::::::::::
meteorology)

:::::
from

::::::
ERA5.

:::
As

::::::::
discussed

:::::::::
throughout

:::
the

::::::::::
manuscript,

:::
all

:::::::::
techniques

:::
and

::::::::
reference

::::
data

::::
sets

:::::
come

::::
with

::::
their

::::
own

::::::::::
uncertainties

::::
and

::
are

:::::::
derived

:::::
based

::
on

::::::::
different

::::::::::
assumptions

::::::
leading

::
to

::::::::
potential

::::
flaws

::
in
:::
the

::::::::
analyses

::::::::
presented

::
in

:::
this

:::::
paper.

:::::::::::::::
Eddy-covariance

::::
sites

::
in

:::
the

::::::::::
FLUXNET

::::
data

::
set

:::
are

::::
not

::::::::
uniformly

:::::::::
distributed

::::::
across

:::
the

:::::
globe,

:::::::
neither

:::
are

:::
the

::::::::
discharge

::::::::::::
measurements

:::
and

::::::
balloon

:::::::::
soundings

::::
used

::
in

:::
this

:::::
study.

:::::::::
Therefore,

::::::::::
conclusions

::::::
should

:::
not

::
be

::::::::::
extrapolated

::
to
:::::::
regions35
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:::
that

:::
are

:::::::::::::::
under-represented

::
in

::::
these

::::
data

::::
sets.

::
In

:::::::
addition,

:::
the

::::::
quality

::
of

::::
each

::::::::
reference

::::
data

:::
set

:
is
:::::::
affected

:::
by

:::::::::::
measurement

:::::
errors

:::
and

:::::::::::
uncertainties

:::::::::
introduced

::
by

:::::::::::
assumptions

:::::
made

:::::
during

:::
the

::::::::::
processing.

:::::::
Finally,

::::
both

:::::::
GLEAM

::::
and

::::::::::
CLASS4GL

:::
are

:::::::
models

:::
and

::::::
cannot

::
be

::::::
treated

:::
as

::::::
ground

::::
truth

:::
as

::::
their

::::::::
estimates

:::
are

::::::::
impacted

::
by

:::::::::::
uncertainties

:::::::::
introduced

:::
by

:::
the

::::::
model

:::::::
structure

::::
and

::::::::::::::
parameterisation,

::
as

::::
well

:::
as

::::
their

::::::
inputs.

:::::::::::
Nevertheless,

:::::
most

:::::::
analyses

:::::
point

::::
into

:::
the

::::::::
direction

::
of

::::::::::::
improvements

:::::
from

::::::
ERA-I

::
to

::::::
ERA5,

::::::::::
irrespective

::
of

:::
the

:::::::::
validation

::::::::
technique

:::
or

::::::::
reference

::::
data

:::
set

:::::
used,

::::::
giving

:::::::::
confidence

::
to
::::

the
::::::::::
conclusions

::::
draw

:::
in5

:::
this

:::::
study.

:::
In

::::::::
summary,

::
it
:::
can

:::
be

:::::::::
concluded

::::
that

:
–
:

based on the validation data and tools used in this study ,
:
–
:

the quality

of the turbulent fluxes (and near-surface meteorology) from ERA5 shows a higher accuracy upon its predecessor
::
has

:::::
been

::::::::
improved. Although biases (especially in the surface latent heat flux) still prevail, changes in the IFS from ERA-I to ERA5,

:
and

improvements in the observational data sets that are assimilated into the models,
:
have thus generally resulted in enhancements

in the right direction
:
a
::::::::::::
higher-quality

::::::
surface

::::::
energy

::::::::::
partitioning

::
in

:::
the

:::::::::
reanalysis.10

Code and data availability. All data sets used in this study can be freely accessed from their respective repositories after registration. ERA-I

data were downloaded from the ECMWF web page (https://apps.ecmwf.int/datasets/data/), ERA5 data were retrieved from the Copernicus

Climate Data Store (https://cds.climate.copernicus.eu/), GLEAM data were accessed from https://www.gleam.eu/, GRDC discharge data can

be downloaded from https://www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html, the FLUXNET2015 Tier2 data set can

be accessed from the FLUXNET data portal at https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/, input data for CLASS4GL is available15

at https://www.CLASS4GL.eu/, and the output of CLASS4GL is available upon request. The source code of CLASS4GL can be accessed at

https://www.CLASS4GL.eu/.
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Table 1.
:::::::
Averaged

:::::::
metrics

:::
and

::::
their

:::::::::
confidence

:::::::
interval

::
of

::::::
surface

::::::
energy

:::::::::
partitioning

:::::
from

::::::
ERA5,

::::::
ERA-I,

:::::::::::::
GLEAM+ERA5,

::::
and

::::::::::::
GLEAM+ERA-I

:::::
across

:::
the

::::::::
FLUXNET

:::::
2015

:::
data

:::
set.

::::
λρE

:::
(3h)

: :::
λρE

:::::
(24h)

::
H

:::
(3h)

: ::
H

::::
(24h)

: :
β
::::
(24h)

::
W

::::
m−2

::
W

::::
m−2

::
W

:::
m−2

: ::
W

::::
m−2

:
–

:::
MD

: :::::
ERA5

:::
9.27

:::::::
(±0.080)

:::
8.49

:::::::
(±0.178)

::::
-2.60

:::::::
(±0.010)

: :::
-2.99

::::::::
(±0.140)

::::
-0.56

:::::::
(±0.013)

:::::
ERA-I

::::
11.12

:::::::
(±0.079)

: ::::
10.29

:::::::
(±0.180)

: ::::
-3.38

:::::::
(±0.099)

: :::
-3.66

::::::::
(±0.147)

::::
-0.69

:::::::
(±0.012)

::::::::::::
GLEAM+ERA5

: :::
n.a.

: ::::
-3.27

:::::::
(±0.176)

: :::
n.a.

:::
-5.83

::::::::
(±0.153)

::::
-0.25

:::::::
(±0.014)

::::::::::::
GLEAM+ERA-I

: :::
n.a.

: ::::
-3.76

:::::::
(±0.179)

: :::
n.a.

:::::
-10.14

:::::::
(±0.158)

::::
-0.39

:::::::
(±0.014)

:
R
: :::::

ERA5
:::
0.34

:::::::
(±0.002)

:::
0.41

:::::::
(±0.005)

::::
0.46

:::::::
(±0.002)

:::
0.50

:::::::
(±0.004)

: ::::
0.39

:::::::
(±0.006)

:::::
ERA-I

:::
0.31

:::::::
(±0.002)

:::
0.39

:::::::
(±0.005)

::::
0.42

:::::::
(±0.002)

:::
0.45

:::::::
(±0.004)

: ::::
0.36

:::::::
(±0.006)

::::::::::::
GLEAM+ERA5

: :::
n.a.

: :::
0.35

:::::::
(±0.005)

:::
n.a.

:::
0.45

:::::::
(±0.005)

: ::::
0.39

:::::::
(±0.006)

::::::::::::
GLEAM+ERA-I

: :::
n.a.

: :::
0.32

:::::::
(±0.005)

:::
n.a.

:::
0.46

:::::::
(±0.005)

: ::::
0.40

:::::::
(±0.007)

Appendix A: Supplementary figures
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Figure 1.
::
(a)

::::::
Location

::
of

:::
the

::::::
selected

::::::::::::
eddy-covariance

::::
sites.

::::::
(b)–(c)

::::
show

:
a
::::::
detailed

::::
view

::
of

:::
the

:::
sites

:::::
across

:::
the

::::::
CONUS

:::
(b),

::::::
Europe

::
(c)

:
,
:::
and

::::::
Autralia

::
(d)

:
.
::::
Sites

:::
with

::
a
:::::
record

::::
length

::
of
:::
less

::::
than

:
5
::::
years

::::
(i.e.

::::
where

:::
no

:::::::
anomalies

:::
are

::::::::
calculated)

:::
are

:::::
plotted

::
in

::::
green

:::
and

::::
sites

::::
with

:
a
:::::
record

:::::
length

::
of
:::::
more

:::
than

:
5
:::::
years

:::
(i.e.

:::::
where

:::::::
anomalies

:::
are

::::::::
calculated)

:::
are

::::::
plotted

:
in
::::::
yellow.

::::
Sites

:::::
where

::::::::::
measurements

::
of
::::::::::::
meteorological

:::
data

:::
are

:::
also

:::::::
available

::
are

:::::::
indicated

::::
with

:
a
:::::::
diamond.

::::
The

:::::::::
background

::::::
provides

:::::::::
information

::
on

:::
the

:::::::::::
climatological

::::
mean

:::::::::
temperature

:::
and

::::::::::
precipitation

:::::
derived

::::
from

:::::
ERA5

::::::::::
(1983–2018).
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Figure 2.
:::::
Violin

::::
plots

::
of

:::::::
temporal

:::::::
validation

:::::::
statistics

::
of

:::
the

:::::
surface

:::::
latent

:::
heat

:::
flux

::::::
(λρE),

::::::
surface

::::::
sensible

:::
heat

::::
flux

:::
(H),

:::
and

::::::
Bowen

::::
ratio

::
(β)

::::
from

::::::
ERA5

:::::
(green)

::::
and

:::::
ERA-I

:::::::
(yellow).

:::::::
Statistics

:::
are

::::::::
calculated

::::::
against

::
in

:::
situ

::::::::::::
eddy-covariance

:::::::::::
measurements

::
at

::::
both

:::::::
3-hourly

:::
and

::::
daily

:::::::
temporal

:::::::::
resolutions.

:::::
Violin

::::
plots

:::::::
represent

:::
the

:::::::::
distribution

::
of

:::
the

:::::::
individual

::::::::
validation

:::::::
statistics

::::
with

::::::::
indication

::
of

:::
the

::::::
median

:::
and

:::::::::
inter-quartile

:::::
range,

:::
and

:::
are

::::::::
calculated

::::
using

::
a
:::::
kernel

:::::
density

::::::::
estimation

::::::::
approach.

:::::::
Statistics

::::::
include

::
the

:::::
Mean

::::::::
Difference

:::::
(MD,

:::
raw

::
in

:::
situ

:::
time

:::::
series

::::
from

:::
143

::::
sites

::
as

::::::::
reference),

:::::
Mean

:::::::
Absolute

::::::::
Difference

::::::
(MAD,

::::::
anomaly

::
in

:::
situ

::::
time

:::::
series

::::
from

::
77

::::
sites

::
as

::::::::
reference),

:::
and

:::
the

::::::
Pearson

::::::::
correlation

::::::::
coefficient

:::
(R,

:::::::
anomaly

::
in

:::
situ

:::
time

:::::
series

::::
from

::
77

::::
sites

::
as

::::::::
reference).

:::
The

:::::::::
distribution

::
of

:::
the

:::
MD

::
of

::
β

:
is
::::::
plotted

::
on

:::
the

:::
right

::::::
y-axis.
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Figure 3.
::::::::
Difference

::::::
between

:::::::
temporal

::::::::
validation

:::::::
statistics

::
of

::
the

::::::
surface

::::
latent

::::
heat

:::
flux

::::::
(λρE),

:::::
surface

:::::::
sensible

:::
heat

:::
flux

::::
(H),

:::
and

::::::
Bowen

:::
ratio

:::
(β)

::::
from

:::::
ERA5

::::
and

:::::
ERA-I

::::::
grouped

:::
as

:
a
:::::::
function

::
of

:::::::::
precipitation

::::
rate

:::
(P )

:::
and

:::::::::
near-surface

:::
air

:::::::::
temperature

:::
(T )

::::::::
calculated

::
at

:::
the

::
in

:::
situ

:::
site.

:::::::
Statistics

:::
are

:::::::
calculated

::::::
against

::
in

:::
situ

::::::::::::
eddy-covariance

:::::::::::
measurements

::
at

::::
daily

::::::::
resolution

:::
and

:::
then

:::::::
averaged

:::::
across

:::
the

::::
sites

:::::
within

:::
each

:::::
group.

:::::::
Statistics

::::::
include

:::
the

::::
Mean

:::::::
Absolute

:::::::::
Difference

:::::
(MAD,

:::::::
anomaly

::
in

:::
situ

::::
time

::::
series

::::
from

::
77

::::
sites

::
as

::::::::
reference)

:::
and

:::
the

::::::
Pearson

::::::::
correlation

::::::::
coefficient

:::
(R,

::::::
anomaly

::
in

:::
situ

::::
time

::::
series

::::
from

::
77

::::
sites

::
as

::::::::
reference).

:::::
Circles

:::::
show

::
the

::
R

::::
from

:::::
ERA5

:::::
minus

::
the

:::
one

::::
from

::::::
ERA-I,

::::
while

::::::
squares

::::
show

:::
the

::::
MAD

::::
from

::::::
ERA-I

:::::
minus

::
the

:::
one

::::
from

::::::
ERA5;

:::::
hence,

::::
green

:::::
colors

:::::::
represent

:::::
better

:::::::
statistics

::
for

:::::
ERA5

::::::::
compared

::
to

:::::
ERA-I.

:::
The

::::
size

::
of

::
the

:::::::
symbols

:::::
relates

::
to

::
the

::::::
number

::
of
::
in

:::
situ

::::
sites

:::
per

:::::
group.
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Figure 4.
::::
Violin

::::
plots

::
of
::::::::

temporal
:::::::
validation

:::::::
statistics

::
of
:::

the
::::::
surface

:::::
latent

:::
heat

::::
flux

:::::
(λρE),

::::::
surface

:::::::
sensible

:::
heat

::::
flux

::::
(H),

:::
and

::::::
Bowen

:::
ratio

:::
(β)

::::
from

:::::::::::::
GLEAM+ERA5,

::::::::::::::
GLEAM+ERA-I,

:::
and

::::::
ERA5.

::
(a)

:::::::
Compares

:::
the

:::::
violin

::::
plots

::::
from

:::::::::::::
GLEAM+ERA5

:::
and

:::::::::::::
GLEAM+ERA-I

:::
and

::
(b)

:::::::
compares

::
the

:::::
violin

::::
plots

::::
from

:::::::::::::
GLEAM+ERA5

:::
and

:::::
ERA5.

:::::::
Statistics

:::
are

::::::::
calculated

:::::
against

::
in
::::

situ
::::::::::::
eddy-covariance

:::::::::::
measurements

:
at
::::
daily

:::::::
temporal

:::::::::
resolution.

:::::
Violin

::::
plots

:::::::
represent

:::
the

::::::::
distribution

::
of
:::

the
::::::::
individual

::::::::
validation

::::::
statistics

::::
with

::::::::
indication

::
of

:::
the

::::::
median

:::
and

:::::::::
inter-quartile

:::::
range,

:::
and

:::
are

::::::::
calculated

::::
using

::
a
:::::
kernel

:::::
density

::::::::
estimation

::::::::
approach.

:::::::
Statistics

::::::
include

::
the

:::::
Mean

::::::::
Difference

:::::
(MD,

:::
raw

::
in

:::
situ

:::
time

:::::
series

::::
from

:::
143

::::
sites

::
as

::::::::
reference),

:::::
Mean

:::::::
Absolute

::::::::
Difference

::::::
(MAD,

::::::
anomaly

::
in

:::
situ

::::
time

:::::
series

::::
from

::
77

::::
sites

::
as

::::::::
reference),

:::
and

:::
the

::::::
Pearson

::::::::
correlation

::::::::
coefficient

:::
(R,

:::::::
anomaly

::
in

:::
situ

:::
time

:::::
series

::::
from

::
77

::::
sites

::
as

::::::::
reference).

:::
The

:::::::::
distribution

::
of

:::
the

:::
MD

::
of

::
β

:
is
::::::
plotted

::
on

:::
the

:::
right

::::::
y-axis.
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Figure 5.
::::::::
Difference

::::::
between

:::::::
temporal

::::::::
validation

:::::::
statistics

::
of

::
the

::::::
surface

::::
latent

::::
heat

:::
flux

::::::
(λρE),

:::::
surface

:::::::
sensible

:::
heat

:::
flux

::::
(H),

:::
and

::::::
Bowen

:::
ratio

:::
(β)

::::
from

:::::::::::::
GLEAM+ERA5,

:::::::::::::
GLEAM+ERA-I,

:::
and

:::::
ERA5

::::::
grouped

::
as

:
a
:::::::
function

:
of
::::::::::
precipitation

:::
rate

:::
(P )

:::
and

:::::::::
near-surface

:::
air

:::::::::
temperature

:::
(T )

:::::::
calculated

::
at

:::
the

:
in
::::

situ
:::
site.

::
(a)

:::::::
Compares

:::
the

::::::
statistics

::::
from

:::::::::::::
GLEAM+ERA5

:::
and

::::::::::::
GLEAM+ERA-I

::::
and

::
(b)

:::::::
compares

::
the

:::::::
statistics

::::
from

::::::::::::
GLEAM+ERA5

:::
and

::::::
ERA5.

:::::::
Statistics

:::
are

::::::::
calculated

:::::
against

::
in
:::
situ

:::::::::::::
eddy-covariance

:::::::::::
measurements

::
at

::::
daily

::::::::
resolution

:::
and

::::
then

:::::::
averaged

::::
across

:::
the

::::
sites

:::::
within

::::
each

::::::
group.

:::::::
Statistics

::::::
include

:::
the

::::
Mean

:::::::
Absolute

:::::::::
Difference

::::::
(MAD,

::::::
anomaly

::
in
::::

situ
:::
time

:::::
series

::::
from

:::
77

::::
sites

::
as

:::::::
reference)

::::
and

::
the

:::::::
Pearson

::::::::
correlation

::::::::
coefficient

:::
(R,

:::::::
anomaly

::
in
::::

situ
:::
time

:::::
series

::::
from

:::
77

::::
sites

::
as

::::::::
reference).

::
In
:::

(a)
::::
circles

:::::
show

:::
the

::
R

:::
from

:::::::::::::
GLEAM+ERA5

:::::
minus

:::
the

:::
one

:::::
from

:::::::::::::
GLEAM+ERA-I,

:::::
while

::::::
squares

::::
show

:::
the

:::::
MAD

::::
from

:::::::::::::
GLEAM+ERA-I

:::::
minus

:::
the

::::
one

::::
from

::::::::::::
GLEAM+ERA5;

::::::
hence,

::::
green

:::::
colors

::::::::
represent

::::
better

:::::::
statistics

:::
for

::::::::::::
GLEAM+ERA5

::::::::
compared

::
to

:::::::::::::
GLEAM+ERA-I.

:::
In

::
(b)

:
,
:::::::
statistics

::::
from

::::::::::::
GLEAM+ERA-I

:::
are

::::::
replaced

:::
by

:::::
ERA5;

:::::
hence,

:::::
green

:::::
colors

:::::::
represent

:::::
better

::::::
statistics

:::
for

::::::::::::
GLEAM+ERA5

::::::::
compared

::
to

:::::
ERA5.

:::
The

::::
size

::
of

::
the

:::::::
symbols

:::::
relates

::
to

::
the

::::::
number

::
of

::
in

:::
situ

::::
sites

::
per

::::::
group.
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Figure 6.
:::::
Scatter

:::
plot

::
of

:::
the

:::
bias

::
of

:::
the

:::::
surface

:::::
latent

:::
heat

:::
flux

::::::
(λρE),

:::::
surface

:::::::
sensible

:::
heat

:::
flux

::::
(H),

:::
and

:::::
Bowen

::::
ratio

:::
(β)

::::
from

:::::
ERA-I

:::::
versus

:::::
ERA5.

:::
The

::::
bias

:
is
::::::::
calculated

::::::
against

::::::::::::
catchment-scale

:::::::
estimates

::
of

:::
the

::::
fluxes

::::::
derived

:::::
using

:::::::
discharge

:::
data

:::::
(Eqs.

:::
1–3)

:::
and

::
is
:::::::
assessed

::
by

:::
the

::::::::
percentage

::::
Mean

:::::::::
Difference

::::::
(%MD,

:::
raw

::::
time

::::
series

::::
from

:::
707

:::::::::
catchments

::
as

::::::::
reference).

::::
The

::::
green

::::
area

:::::::
indicates

:::::
points

:::::
where

::
the

::::
bias

::
in

:::::
ERA5

:
is
:::::
better

:::
than

::
in

::::::
ERA-I,

:::
and

:::
vice

:::::
versa

::
for

:::
the

:::::
brown

::::
area.
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Figure 7.
::::
Maps

::
of

:::
the

:::
bias

::
of

:::
the

::::::
surface

::::
latent

::::
heat

:::
flux

::::::
(λρE)

::::
from

:::::
ERA5

:::
and

::::::
ERA-I.

::::
The

:::
bias

::
is

::::::::
calculated

::::::
against

::::::::::::
catchment-scale

:::::::
estimates

::
of

::
the

:::::
fluxes

::::::
derived

:::::
using

:::::::
discharge

:::
data

:::::
(Eqs.

::::
1–3)

:::
and

:
is
:::::::

assessed
::
by

:::
the

::::::::
percentage

:::::
Mean

::::::::
Difference

::::::
(%MD,

:::
raw

::::
time

:::::
series

:::
from

::::
707

::::::::
catchments

::
as
:::::::::

reference).
:::
The

::::::
bottom

:::
map

::::::::
represents

:::
the

::::::::
difference

:::
(∆)

:::::::
between

::
the

:::::::
absolute

:::
bias

::
in
::::::

ERA-I
:::
and

::::::
ERA5;

:::::
hence,

::::
green

:::::
colors

:::::::
represent

::::
lower

::::
bias

::
in

:::::
ERA5

:::
than

::
in

::::::
ERA-I.
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Figure 8.
::::
Like

:::
Fig.

::
7,

::
but

:::
for

:::
the

:::::
surface

::::::
sensible

::::
heat

:::
flux

::::
(H).
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Figure 9.
::::
Like

:::
Fig.

::
7,

::
but

:::
for

:::
the

:::::
Bowen

::::
ratio

:::
(β).
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Figure 10.
:::
Skill

::
of

::::::::::
CLASS4GL

::
at

:::::::::
reproducing

::::::
diurnal

::::::
changes

::
in
::::
ABL

::::::::
properties

:::::
when

:::::
forced

::::
with

::::::
surface

:::::::::
evaporative

:::::::
fractions

::::
from

:::::
ERA5

:::::
versus

::::::
ERA-I.

:::::
Shown

:::
are

:::
the

::::::::
tendencies

::
of

:::
the

:::::::::
mixed-layer

:::::
height

:::::::
(dh/dt),

:::::::
potential

::::::::::
temperature

::::::
(dθ/dt),

:::
and

:::::::
specific

:::::::
humidity

::::::
(dq/dt),

:::::
which

:::
are

::::::
assessed

:::
by

:::::::::
comparison

::
of

:::::
model

:::::::::
simulations

::::::
against

::
the

:::::
IGRA

:::::::
sounding

::::
data

:::::::
between

::::
1981

:::
and

:::::
2015.

:::
The

:::
first

::::
row

::::
shows

:::::::
modeled

:::::
versus

:::::::
observed

::::
data

:::::
points,

:::
and

:::
the

:::::::::::
corresponding

::::::
median

:::
and

::::::::::
inter-quartile

::::
range

::
of

:::
the

:::::::::
simulations

:
in
::::

solid
:::::

lines,
:::::
where

::::
green

::::::::
represents

:::::
ERA5

:::
and

:::::
brown

:::::
ERA-I.

:::
The

::::
1–1

:::
line

:
is
:::::
shown

::
as

:
a
:::::
black

:::
line

::
for

::::::::
reference.

:::
The

::::::
bottom

:::
row

:::::::
illustrates

:::
the

:::
skill

::
of

:::
the

::::
ABL

::::::::
simulations

:::::
when

:::::
forced

:::
with

:::::
ERA5

:::::::
(circles)

:::::
versus

:::::
ERA-I

::::::::
(triangles)

:
in
:::
the

::::
form

::
of

:::::
Taylor

::::
plots.

::::
The

::::::::
transparent

:::::::
symbols

::::
show

::
the

::::::
overall

:::::::::
performance

::
of

:::::
18000

:::::::
sounding

::::
pairs

::::
from

:::
121

:::::::
stations,

::::::
whereas

:::
the

::::::
colored

::::::
symbols

::::::
indicate

:::
the

::::::::::
performance

::
per

::::::::::::
Köppen-Geiger

::::::
climate

:::
class

::::
and

::
for

:::::
which

:::
the

:::
size

:
is
::::::::::

proportional
::
to

::
the

::::::
number

::
of

:::::::
sounding

:::::
pairs.
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Figure 11.
::::
Maps

::
of

:::
the

::::::::::
multi-annual

:::::
average

::
of
::::::

surface
:::::
latent

:::
heat

:::
flux

:::::
(λρE,

::
W

:::::
m−2),

::::::
surface

::::::
sensible

::::
heat

:::
flux

:::
(H ,

::
W

:::::
m−2),

:::
and

::::::
Bowen

:::
ratio

:::
(β)

::::
from

:::::
ERA5

:::
and

::::::
ERA-I.

::
In

::
the

:::
last

::::
row,

::
∆

::::::
presents

:::
the

::::::::
difference

::::::
between

:::::
ERA5

:::
and

::::::
ERA-I;

:::::
hence,

:::::
green

:::::
colors

:::::::
represent

:::::
higher

:::::
values

:
in
:::::
ERA5

::::::::
compared

::
to

:::::
ERA-I.
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Figure A1. Violin plots of temporal validation statistics of the surface latent heat flux (λρE), surface sensible heat flux (H), and Bowen

ratio (β) from ERA5 (green) and ERA-I (orange
::::
yellow). Statistics are calculated against in situ eddy-covariance measurements at both 3-

hourly and daily temporal resolutions. Violins
:::::
Violin

::::
plots

:
represent the distribution of the individual validation statistics with indication

of the median and inter-quartile range, and are calculated using a kernel density estimation approach. Statistics include the Mean Absolute

Difference (MAD, raw in situ time series from 143 sites as reference) and the Pearson correlation coefficient (R, raw in situ time series from

143 sites as reference). For MAD, the
::
The

:
distribution of

::
the

::::
MAD

::
of
:
β is plotted on the right y-axis.
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Figure A2. Violin plots of temporal validation statistics of the surface latent heat flux (λρE), surface sensible heat flux (H), and Bowen

ratio (β) from ERA5 (green) and ERA5 linearly re-sampled to the spatial grid of ERA-I (orange
:::::
yellow). Statistics are calculated against

in situ eddy-covariance measurements at both 3-hourly and daily temporal resolutions. Violins
::::
Violin

:::::
plots represent the distribution of

the individual validation statistics with indication of the median and inter-quartile range and are calculated using a kernel density estimation

approach. Statistics include the Mean Difference (MD, raw in situ time series from 143 sites as reference), Mean Absolute Difference (MAD,

anomaly in situ time series from 77 sites as reference), and the Pearson correlation coefficient (R, anomaly in situ time series from 77 sites

as reference). For MD, the
::

The
:
distribution of

:::
the

:::
MD

::
of β is plotted on the right y-axis.

36



0

0.25

0.5

0.75

1

M
A

D
 (
−

)

Rn (3h) Rn (24h) T (3h) T (24h) P (3h) P (24h)
0

0.25

0.5

0.75

R
(−

)

ERA5 ERA-I

Figure A3. Violin plots of temporal validation statistics of the surface net radiation (Rn), 2-meter air temperature (T ), and precipitation

rate (P ) from ERA5 (green) and ERA-I (orange
:::::
yellow). Statistics are calculated against in situ eddy-covariance measurements at both 3-

hourly and daily temporal resolutions. Violins
:::::
Violin

::::
plots

:
represent the distribution of the individual validation statistics with indication

of the median and inter-quartile range, and are calculated using a kernel density estimation approach. Statistics include the Mean Absolute

Difference (MAD, anomaly in situ time series from 83 sites as reference) and the Pearson correlation coefficient (R, anomaly in situ time

series from 83 sites as reference).
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Figure A4. Violin plots of temporal validation statistics of the surface latent heat flux (λρE), surface sensible heat flux (H), and Bowen ratio

(β) from GLEAM+ERA5, GLEAM+ERA-I, and ERA5. (a) Compares the violins
::::
violin

::::
plots

:
from GLEAM+ERA5 and GLEAM+ERA-I

and (b) directly compares the violins
::::
violin

::::
plots

:
from GLEAM+ERA5 and ERA5. Statistics are calculated against in situ eddy-covariance

measurements at daily temporal resolution. Violins
::::
Violin

::::
plots represent the distribution of the individual validation statistics with indication

of the median and inter-quartile range and are calculated using a kernel density estimation approach. Statistics include the Mean Absolute

Difference (MAD, raw in situ time series from 143 sites as reference) and the Pearson correlation coefficient (R, raw in situ time series from

143 sites as reference). For MAD, the
::
The

:
distribution of

::
the

::::
MAD

::
of
:
β is plotted on the right y-axis.
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