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Abstract. The adjoint method is known for its efficient calculation of sensitive information. After decades of development, 

assimilation technology based on adjoint method has gradually become an important tool for emission inversion. On the 10 

basis of GRAPES-CUACE aerosol adjoint model, and combined with the optimization algorithm and pollutants observations, 

the GRAPES-CUACE 3D variational (GRAPES-CUACE-3D-Var) assimilation system was further developed, and was used 

in the inversion of BC emissions in Beijing-Tianjin-Hebei region. The results show that the newly constructed GRAPES-

CUACE-3D-Var assimilation system is reasonable and reliable, and can be applied to the emission inversion in Beijing-

Tianjin-Hebei region. Compared to the simulations using the a priori BC emissions, the model simulations driven by the a 15 

posterior BC emissions in two inversion schemes are in better agreement with measurements. The correlation coefficient 

between the simulations and the observations is increased from 0.2 before the inversion to 0.7 and 0.64, respectively, and the 

NMSE is reduced from 0.38 to 0.22 and 0.24, respectively, and the NMB is decreased from 51.53% to 43.37% and 40.90%, 

respectively, in the two inversion schemes. The spatial distributions of the a posterior BC emissions in the two inversion 

schemes are consistent with the distributions of the a priori BC emissions. The high-value areas are mainly located in the 20 

south of Beijing, Tianjin, central and southern Hebei, and northern Shandong. On the whole, the inversion scheme with a 

large observation ratio has better optimization effect. The observation information of the target time has a great influence on 

the a posterior BC emissions in a short period before the target time, and the influence decreases with the reverse time 

sequence. 

1 Introduction  25 

Adjoint method is an efficient sensitivity analysis tool developed based on adjoint operator theory and numerical model. 

Based on the idea of inverse simulation, by establishing the adjoint model of atmospheric chemistry model, the sensitivity of 

the objective function to any control variable (such as emission source) at any time and any spatial position can be obtained 

only by running the adjoint model once in inverse time sequence, and then various optimization control problems can be 
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solved quickly by using sensitivity information (Errico, 1997; Sandu et al., 2005; Liu, 2005; Carmichael et al., 2008; An et 30 

al., 2016). In the 1970s, Marchuk and Skiba (1976) first applied adjoint method to the field of atmospheric environment to 

optimize pollution sources location. With the development and popularization of adjoint methods in the later period, 

atmospheric chemical variational assimilation technology with adjoint model and optimization algorithm as its core has been 

widely applied to atmospheric pollutant emission inversion (Liu, 2005; Henze et al., 2009; Mao et al., 2015; Cao et al., 2018; 

Huang et al., 2018). 35 

The essence of source inversion using adjoint method is to solve the nonlinear optimization problem constrained by complex 

partial differential equations. Firstly, the objective function is established based on prior sources and observation data, and 

the gradient (sensitivity) of the objective function with respect to the emission source parameters is calculated using adjoint 

model. Then, the emission source parameters are updated according to the optimization algorithm, and the optimal solution 

of the objective function is obtained through successive iterations, thus obtaining the optimized emission source parameters 40 

(Liu, 2005). Adjoint inversion method can make up for the shortcomings of "bottom-up" and other conventional pollution 

source investigation methods, realize the reverse optimization and rapid update of the active inventory, and reduce the 

uncertainty of the source inventory. It is of great significance to improve the simulation accuracy of air pollution and 

formulate scientific and effective air quality management measures (Zeng and Wu, 2018; Zhu et al., 2018; Huang et al., 

2018). 45 

At present, atmospheric chemical models such as STEM(Sandu et al., 2005), CAMx(Liu, 2005), CMAQ(Hakami et al., 2007) 

and GEOS-Chem(Henze et al., 2007), which are widely used in the world, have successively developed corresponding 

adjoint models. Through forward model, adjoint model and optimization algorithm, a complete atmospheric chemical 

variational assimilation system has been constructed. Foreign scholars have carried out extensive research on the inversion 

of pollution sources. The types of pollution sources retrieved include BC, CO, NOx, dust and PM2.5 precursors, etc. The 50 

optimized source list covers the spatio-temporal scales from the region to the world and from the monthly average to the 

daily average (Hakami et al., 2005; Müller and Stavrakou, 2005; Pan et al., 2007; Kurokawa et al., 2009; Henze et al., 2009; 

Wang et al., 2012; Mao et al., 2015; Zhang et al., 2015; Jeong and Park, 2018). Hakami et al. (2005) used the adjoint model 

of atmospheric chemical transport model STEM-2k1, based on aerosol observation data in Asia Pacific region, combined 

with optimization algorithm, to inverse artificial sources of BC aerosol in East Asia. The results show that the simulation 55 

results based on posterior sources are closer to the observation data. Müller and Stavrakou(2005) optimized the global CO 

and NOx emissions from man-made and natural sources in 1997 based on IMAGES adjoint model, using ground and 

satellite observation data of CO and NO2.Kurokawa et al. (2009) developed a four-dimensional variational assimilation 

system RC4-NOx, which is specially used to optimize NOx emissions, and used this system to retrieve NOx emissions from 

eastern China in 1996, 1999 and 2002. Wang et al. (2012) combined MODIS satellite data and used GEOS-Chem adjoint 60 

model to inverse the dust source flux in Taklimakan desert. Mao et al. (2015) discussed the effect of model resolution on BC 

inversion, and believed that the finer the model resolution, the smaller the inversion error. Zhang et al. (2015) shows that 

there are obvious differences in the distribution of posterior sources based on inversion of different prior source inventories. 
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Jin (2001) used the accompanying model of the three-dimensional advection model to inverse the SO2 emission source in 

Lanzhou. Zhang et al. (2016) optimized the primary source emission of PM2.5 in north China during APEC in 2014 on a 65 

daily average time scale based on GEOS-Chem assimilation system. Huang et al. (2018) updated monthly emission source 

inventory based on CAMx adjoint model. Cao et al. (2018) used GEOS-Chem adjoint model to inverse the monthly 

NMVOC emissions from human activities and biomass combustion in China in 2007. 

In recent years, An et al. (2016) have constructed the aerosol adjoint model of atmospheric chemistry model GRAPES-

CUACE, and applied it to source tracking and source sensitivity analysis of PM2.5 pollution events (Wang et al., 2017; Zhai 70 

et al., 2018; Wang et al., 2018a, 2018b, 2019). Under the current severe pollution situation in the central and eastern regions 

and Beijing-Tianjin-Hebei region (Wang et al., 2014a, 2014b; Zhang et al., 2019), it is urgent to develop and construct an 

atmospheric chemical variational assimilation system and use it to retrieve pollution source parameters to obtain more 

accurate spatial and temporal distribution of pollution sources, improve the accuracy of air pollution simulation, and reduce 

the uncertainty of control schemes based on simulation results. Therefore, this study further develops the advantages of 75 

GRAPES-CUACE aerosol adjoint model. Based on the "source-concentration" sensitivity (gradient) information provided by 

the adjoint model, combined with the optimization algorithm and concentration observation data, a GRAPES-CUACE three-

dimensional variational assimilation system (GRAPES-CUACE-3D-Var) is developed and constructed, and the BC emission 

sources in Beijing-Tianjin-Hebei region are inversed using this system. 

2 Data and Methods 80 

2.1 GRAPES-CUACE model 

GRAPES-CUACE is an atmospheric chemical model system independently developed by Chinese scientists (Wang et al., 

2010, 2015). It is the combination of the atmospheric chemistry model cuace (cma unified atmospheric chemistry 

environmental forecasting system) (Gong and Zhang, 2008) and the meteorological model GRAPES (global-regional 

assistance and prediction system) (Chen, 2008). GRAPES-CUACE model realizes the on-line coupling of meteorology and 85 

chemistry, using the GRAPES regional mesoscale model GRAPES-Meso as the driving force of meteorological field. 

CUACE mainly includes three modules: aerosol module, gas module and thermodynamic equilibrium module. The aerosol 

module involves six aerosol components: sulfate, nitrate, sea salt, black carbon, organic carbon and dust. The particle size is 

divided into 12 particle size segments: 0.01-0.02 μm, 0.02-0.04 μm, 0.04-0.08 μm, 0.08-0.16 μm, 0.16–0.32 μm, 0.32–0.64 

μm, 0.64–1.28 μm, 1.28–2.56 μm, 2.56–5.12 μm, 5.12–10.24 μm, 10.24–20.48 μm and 20.48–40.96 μm according to the 90 

observation results of the particle size distribution of desert soil in China using a multi-component multiphase aerosol 

particle size separation algorithm (Wang et al., 2010). The core part of the aerosol module is the aerosol physical and 

chemical process, which mainly includes detailed aerosol processes such as aerosol source, transportation, moisture 

absorption growth, collision, nucleation, condensation, dry and wet deposition, cloud and sub-cloud removal, and  aerosol-
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cloud interaction, etc (Gong and Zhang, 2008; Wang et al., 2010). In addition, the secondary formation process of natural 95 

sources, anthropogenic sources and aerosols has been added to the module (Gong and Zhang, 2008). 

2.2 Adjoint theory and methods  

Let 𝐋 be a continuous linear operator defined on Hilbert space, if there is a continuous linear operator 𝐋∗ satisfying: 

∀𝐱, 𝐲 ∈ 𝐇, (𝐋𝐱, 𝐲) = (𝐱, 𝐋∗𝐲)                                                                                                                                                      (1) 

Then 𝐋∗ is called the adjoint operator of 𝐋 (Ye and Shen, 2006). Where (. , . ) denotes inner product. If 𝐱, 𝐲 are continuous 100 

functions on domain Ω, the inner product is defined as (x, y) = ∫
Ω

x ∙ ydΩ; if 𝐱, 𝐲 is a discrete vector: 𝐱 = [x1, x2, … , xN]，

𝐲 = [y1, y2, … , yN]，then there are (𝐱, 𝐲) = ∑ xi ∙ yi
N
i=1 ., When 𝐱, 𝐲 is a vector and 𝐋 is a matrix independent of  𝐱, 𝐲, we can 

get (𝐋𝐱, 𝐲) = 𝐲𝐓𝐋𝐱 = 𝐱𝐓𝐋𝐓𝐲 = (𝐱, 𝐋𝐓𝐲), in other words, for matrix linear operators, the adjoint operator is its transposition, 

i.e. L∗ = LT ; If the component of the matrix is complex, the adjoint operator is the conjugation of its transpose (Liu, 2005) . 

The atmospheric chemistry model can be divided into several small programs, and each small program is abstracted into a 105 

vector function 𝐅: 𝑹𝑛 → 𝑹𝑚, which can be expressed as: 

 𝐲 = 𝐅(𝐱)                                                                                                                                                                                     (2) 

Where 𝐱，𝐲 are n-dimensional independent variables and m-dimensional dependent variables respectively, corresponding to 

input variables and output variables in the forward model. Assuming that 𝐅 is continuously differentiable, the tangent linear 

program of the original model can be expressed as: 110 

𝐝𝐲 = ∇𝐱𝐅 ∙ d𝐱                                                                                                                                                                              (3) 

Where ∇𝐱𝐅 is the Jacobian matrix of the forward model operator. According to the property of adjoint operator (formula (1)), 

the transform tangent linear mode (3) can be obtained:  

 𝐝𝐱∗ = ∇𝐱
T𝐅 ∙ d𝐲∗                                                                                                                                                                         (4) 

Equation (4) is the adjoint model of the forward model (2). Where dx∗ m is n-dimensional and dy∗  is m-dimensional. 115 

Comparing equations (3) and (4), it can be seen that tangent model and adjoint model exchange the dimensions of input and 

output, and the operators are transposed (Liu, 2005) . The tangent linear model reflects the concentrated influence of the 

input disturbance on each output disturbance, while the adjoint model reflects the dependence of the output disturbance on 

each input disturbance (Cheng et al., 2004). It is not difficult to see that the gradient of the tangent mode calculation function 

needs to be run n times, and the adjoint mode needs to be run m times. When n≫m (n-dimensional emission source, 120 

pollutant concentration of m stations), the calculation efficiency of the adjoint mode is much higher than that of the tangent 

mode (Liu, 2005). 

2.3 GRAPES-CUACE aerosol adjoint model 

Based on the GRAPES-CUACE atmospheric chemistry model, An et al. (2016) constructed the adjoint model of GRAPES-

CUACE aerosol module, which mainly includes the adjoint of aerosol physical and chemistry process, the adjoint of flux 125 

https://doi.org/10.5194/gmd-2019-313
Preprint. Discussion started: 3 February 2020
c© Author(s) 2020. CC BY 4.0 License.



5 

 

calculation process of six kinds of particles (sulfate, nitrate, sea salt, black carbon, organic carbon and sand dust), the adjoint 

of aerosol transmission process and the adjoint of GRAPES-Meso and CUACE interface program (Jin, 2012; Zhai, 2015; An 

et al., 2016). The constructed GRAPES-CUACE aerosol adjoint model has passed the correctness test (Jin, 2012; Zhai, 2015; 

An et al., 2016), and has been well applied in BC (Zhai, 2015; An et al., 2016) and PM2.5 source tracking (Wang et al., 2017; 

Zhai et al., 2018; Wang et al., 2018a, 2018b, 2019) in North China. 130 

Fig. 1 shows the operation flow of the GRAPES-CUACE atmospheric chemistry model and its adjoint model, where J is the 

objective function, and different objective functions can be defined according to the concerned problems. c is the model state 

variable (such as BC concentration); s is the model control variable (such as emission sources, mainly including VOCs, NOx, 

NH3, SO2 and PPM2.5, etc.). Firstly, the atmospheric chemistry model of GRAPES-CUACE is integrated forward, and the 

Basic-state values of each integration step are stored. Subsequently, the gradient ∇𝑐𝐽 of the objective function with respect to 135 

the state variable is calculated and used as an adjoint forcing term, the adjoint model is driven in inverse time sequence, and 

the corresponding ground state value information is read at each integration step, and finally the sensitivity ∇𝑠𝐽  of the 

objective function J with respect to the control variable s at any time and at any spatial position is obtained. 

2.4 Gradient descent method  

The Gradient descent method is the most classical method in the unconstrained optimization algorithm. It uses the negative 140 

gradient direction as the descending direction for iterative search, which has the advantages of low storage cost, simple and 

easy implementation (Song et al., 2012). For unconstrained optimization problems: 

 min 𝑓(𝑥), 𝑥 ∈ 𝑅𝑛                                                                                                                                                                       (5) 

Where f(x) has a continuous first-order partial derivative and has a unique minimum value point. The calculation 

process of the gradient descent method is as follows: ① given the first guess value x0 of variable x, setting 145 

tolerance  ε > 0, making k = 0; ② calculate ∇𝑓(𝑥𝑘), if ||∇𝑓(𝑥𝑘)|| < 𝜀，stop and output 𝑥𝑘；otherwise, let 𝑑𝑘 =

−∇𝑓(𝑥𝑘); ③ The step λk takes a fixed value or is obtained by one-dimensional search method, so that xk+1 = xk +λkdk, 

k=k+1, turn ②. 

2.5 Source inversion principle based on adjoint model  

The adjoint inversion method is essentially based on the Bayesian theory framework, that is, the prior distribution of 150 

variables is corrected by using observation information. The objective function of source inversion is generally expressed as: 

𝑱(𝐱) =
1

2
γ(𝐱 − 𝐱𝐛)T𝐁−1(𝐱 − 𝐱𝐛) +

1

2
(𝐅(𝐱) − 𝐲)T𝐑−1(𝐅(𝐱) − 𝐲)                                                                                            (6) 

Where 𝐱𝐛 and  𝐱 are the priori source and the posterior source vector defined in the n-dimensional control space 𝐄, and y is 

the observation vector defined in the m-dimensional observation space O, and 𝐅 is the forward model operator (observation 

operator) , and B and R are a priori error covariance matrix of n×n and an observation error covariance matrix of  m×m 155 

respectively, and γ is a weighting factor, which is used to adjust the relative proportion of the observation term and the prior 

https://doi.org/10.5194/gmd-2019-313
Preprint. Discussion started: 3 February 2020
c© Author(s) 2020. CC BY 4.0 License.



6 

 

term in the objective function so as to fully retain the observation data and effective information in the priori estimation in 

the posteriori estimation(Henze et al., 2009; Cao et al., 2018). 

The gradient of the objective function 𝑱 with respect to the variable 𝐱 is: 

 𝛁𝐉(𝐱) = γ𝐁−1(𝐱 − 𝐱𝐛) + 𝐅T𝐑−1(𝐇(𝐱) − 𝐲)                                                                                                                            (7) 160 

Where 𝐅T is the adjoint of the forward model. Based on the gradient calculated by the adjoint model, combined with the 

optimization algorithm, the gradient is used to iteratively update 𝐱, so that the objective function 𝑱(𝐱) takes a minimum value, 

and 𝐱 at this time is the reasonable source distribution. 

2.6 Data 

Adequate observation data is the basis for pollution source inversion, and better inversion results can be obtained by using 165 

observation data with large space-time density (Müller and Stavrakou, 2005; Jeong and Park, 2018). The observation sites of 

the Ministry of Environmental Protection in the Beijing-Tianjin-Hebei region are relatively dense, but the BC concentration 

is not involved in the monitored pollution factors, and the BC observation data is relatively scarce. Therefore, the BC 

concentration of 18 stations in Beijing-Tianjin-Hebei region is estimated as "BC observation concentration" in this study 

based on the monthly average ratio of BC/PM2.5 and the PM2.5 concentration monitored by the Ministry of Environmental 170 

Protection (Fig. 2). The monthly average ratio of BC/PM2.5 in this study is 4.35% according to the proportion of BC/PM2.5 

in December 2015 in Beijing's southern suburb site and the results of Zhang et al.(2017). 

3 Construction of 3D variation assimilation system based on GRAPES-CUACE adjoint model  

Based on the GRAPES-CUACE atmospheric chemistry model and its adjoint model, combined with gradient descent 

method and observation data, the GRAPES-CUACE-3D-Var assimilation system (Fig. 3) was constructed, mainly including 175 

GRAPES-CUACE atmospheric chemical model calculation and ground state value storage, observation data and adjoint 

forcing term processing, adjoint model calculation, gradient extraction, target function calculation and model parameter 

optimization iteration, etc. Taking the source inversion problem as an example, it is expected to minimize the difference 

between the simulated concentration and the observed concentration at 18 stations in Beijing-Tianjin-Hebei region (Fig. 2). 

Firstly, the emission source parameter is defined as independent variable x, and the objective function is established; 180 

Operating the GRAPES-CUACE atmospheric chemical model to tp time and storing the ground state value of each 

integration step; Taking the difference between the simulated and observed values of 18 stations at tp time as the forcing term, 

the adjoint model is driven in inverse time sequence, and the sensitivity of the objective function to the emission source 

parameters at each time in [tp,t0] time period is obtained. Updating emission source parameters by using an optimization 

module; Cycle the GRAPES-CUACE-3D-Var assimilation system until the objective function achieves a minimum value, i.e. 185 

a more reasonable posterior source distribution is obtained. 
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4 Inversion of BC emission source in Beijing-Tianjin-Hebei region based on GRAPES-CUACE-3D-Var assimilation 

system  

4.1 Test design 

The simulation scope of this study is in the central and eastern region of China (105°E-125°E, 32.25°N-43.25°N) (Fig. 2), 190 

and the horizontal grid resolution is 0.5°×0.5°, including 41×23 grids, vertically divided into 31 layers. The integration step 

is 300s, and the meteorological field uses FNL data at 6h intervals. The emission sources uses the INTEX-B2006 list of 

0.5°×0.5° (Zhang et al., 2009), in which the anthropogenic emissions sources in North China have been updated with 2010 

emission basic data and emission factors (Lv, 2015). The simulation period is from 20: 00 on November 27 to 19: 00 on 

December 1, 2015 (BJT) and the first 3 days serve as the start-up period for meteorological and chemical transmission 195 

simulation to eliminate the difference between the idealized initial concentration and the actual concentration. The inversion 

area is the Beijing-Tianjin-Hebei region (113°E-119.5°E, 35.25°N-42.25°N) (black dotted line in Figure 2), and the a priori 

source is the BC emission source in the Beijing-Tianjin-Hebei region. The target time (tp) is defined as 07:00 on December 1, 

2015 (BJT). By inverting the hourly BC emission sources from 20: 00 on November 30 to 07: 00 on December 1 in Beijing-

Tianjin-Hebei region, the simulated concentration of 18 stations in Beijing-Tianjin-Hebei region (Figure 2) at the target time 200 

is closer to the observed concentration. 

Due to the large difference between the prior sources and the emissions in 2015 (Zheng et al., 2018), this study mainly 

considers to fully retain the effective information of observation data in the posterior estimation, and defines the objective 

function as follows:  

J(x) =
1

2
∑ (Csim,i − Cobs,i)

T
R−1(Csim,i − Cobs,i)      18

i=1                                                                                                              (8) 205 

Among them, Csim,i and Cobs,i are respectively the simulated concentration and observed concentration of BC at each station 

at the target time (07:00 on December 1, 2015). It is difficult to quantify the covariance matrix R of observation errors, 

which includes observation instrument errors, physical and chemical process errors involved in numerical model simulation 

and simulation accuracy errors (Cao et al., 2018). Considering that the calculation of BC concentration by proportional 

method may cause large errors, so the observation error covariance matrix R takes 500%.  210 

In the source inversion problem, directly taking the emission source intensity as the inverse evolution quantity may lead to 

negative emission source intensity, which is inconsistent with the actual situation. Therefore, the emission source factor is 

usually taken as the independent variable for inversion (Mao et al., 2015). Henze et al. (2009) and Jiang et al. (2015) used 

the logarithmic method to define the emission source factor x: 

x = ln (
s

sb
)                                                                                                                                                                                   (9) 215 

Where sb is the a priori source emission intensity and s is the source variable that needs to be inverted. In fact, Equation (9) 

contains the influence of a priori source information on the objective function. In order to compare the influence of the 

proportion of prior information in (9) on the inversion results, this study designed a set of comparative experiments: x =
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0.1ln (s/sb) and x = 0.01ln (s/sb), respectively recorded as C_10 and C_100. In the C_10 and C_100 tests, the gradient of 

the objective function J with respect to the emission factor x is: 220 

C_10：∇xJ = ∇sJ ∙ sb ∙ e10x ∙ 10                                                                                                                                                (10) 

C_100：∇xJ = ∇sJ ∙ sb ∙ e100x ∙ 100                                                                                                                                          (11) 

Among them, ∇𝐬𝐽 is obtained by the adjoint model calculation. Comparing equations (10) and (11), it can be seen that the 

proportion of prior information in the C_100 test is relatively large. In contrast, the C_10 test more fully retains the effective 

information in the observation data. 225 

According to the above test design, the GRAPES-CUACE-3D-Var assimilation system (Fig. 3) is driven by a priori emission, 

and the objective function is reduced step by step through cyclic iteration until the difference between the objective function 

of the k+1 iteration and the k  iteration is less than 1% to reach the convergence condition and the iteration is stopped. The 

emission adjustment factor xk+1 of the k+1 iteration process is selected as the optimal estimation, and the BC posterior 

source strength is calculated by using it. 230 

4.2 Adjoint sensitivity analysis 

The sensitivity of the objective function to BC priori source at any time in the inversion period can be obtained by running 

the GRAPES-CUACE-3D-Var assimilation system. Figure 4 shows the hourly sensitivity distribution from 20: 00 November 

30 to 07:00 December 1, 2015. The sensitivity in the southern part of Beijing is negative, indicating that increasing the BC 

emission source intensity in this area will reduce the difference between the simulated concentration and the observed 235 

concentration. The sensitivity of Tianjin, southern Hebei and northwestern Shandong is positive, indicating that reducing BC 

emission source intensity in these areas can improve the consistency of simulation and observation. 

At the target time (07:00 on December 1st), the sensitivity value (absolute value) in the inversion area is relatively large, and 

the sensitivity value (absolute value) gradually decreases along with the inverse time sequence. At the same time, the 

sensitivity coverage continues to expand to 11 hours before the target time (20:00 on November 30), and the sensitivity 240 

distribution has been extended to Shanxi, Inner Mongolia and Shandong-Henan borders outside the inversion area. This 

phenomenon shows that in a short period before the target time (December 1, 05:00-07:00), BC emission source intensity in 

the inversion area has the greatest influence on the target function, and its influence gradually decreases with the inverse 

time sequence, while BC emission source intensity outside the inversion area starts to have some influence on the target 

function. 245 

4.3 BC concentration comparison before and after inversion  

The objective function values of the C_10 and C_100 tests decreased with the increase of iteration times, and the objective 

function values of the two tests decreased from the initial 2288.5 (the 0th) to 1296.0 (the 18th) and 1295.5 (the 19th) (fig. 5a), 

respectively. From the point of view of a single site, the BC posterior source simulation optimized by the C_10 and C_100 
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tests is obviously better than the BC prior source simulation. At the target time (07:00 on December 1, 2015), the simulated 250 

concentration of each site based on the BC posterior source is closer to the observed concentration (fig. 5b), and the 

correlation coefficient between the BC simulated concentration and the observed concentration is increased to 0.7 and 0.64 

respectively from 0.2 before optimization (fig. 6a). The normalized mean square error (NMSE) decreased from 0.38 before 

optimization to 0.22 and 0.24 respectively (fig. 6b), and the normalized mean deviation (NMB) decreased from 51.53% to 

43.37% and 40.90% (fig. 6c). In general, the optimization results of the C_10 and C_100 tests are relatively reasonable, and 255 

the simulation results of each station have been improved to a certain extent at the target time (07:00 on December 1, 2015).  

Meanwhile, the results of C_10 and C_100 tests are slightly different. The objective function value of the C_100 test reaches 

the convergence condition in the moderate fluctuation decline. The objective function value of the C_10 test dropped sharply 

at the first iteration, rebounded and rose during the second iteration, and then the fluctuation dropped to a minimum (fig. 5a). 

From the correlation coefficient (fig. 6a) and NMSE (fig. 6b), the optimization effect of the C_10 test is better than that of 260 

the C_100 test, which is because the C_10 test better captures the BC concentration of site 5 (fig. 5b) at the target time (07: 

00 on December 1, 2015). 

4.4 Comparison of BC emission sources before and after inversion  

Fig. 7 shows the average BC prior sources and posterior sources and their difference distribution in Beijing-Tianjin-Hebei 

region from 20: 00 on November 30 to 07:00 on December 1, 2015. It can be seen that the distribution of BC posterior 265 

sources (figs. 7b,e) and prior sources (figs. 7a,c) retrieved from the C_10 and C_100 tests are relatively consistent, and the 

high-value areas are mainly located in the south of Beijing, Tianjin, central and southern Hebei and northern Shandong. 

Judging from the difference, the posterior source intensity of BC in Tianjin, central and southern Hebei and northern 

Shandong is lower than the prior source intensity (fig. 7c,f), which is consistent with the actual situation, that is, the BC 

emissions of each province show a downward trend year by year (Zheng et al., 2018). However, the BC posterior source 270 

intensity in southern Beijing has increased compared with the prior source intensity, which is inconsistent with the actual 

situation (Zheng et al., 2018). Because Beijing area is in the process of high PM2.5 concentration at the target time (07:00 on 

December 1, 2015). Zhang et al. (2017) showed that the BC ratio decreased with the increase of PM2.5 concentration. 

Therefore, the average monthly ratio of BC/PM2.5 used in this research will lead to the "observed concentration" of BC at 

site 5 (Figure 2) being too high (relatively, the simulated value is low), thus causing the emission of posterior sources in 275 

Beijing area to increase. Therefore, this phenomenon reflects that the source inversion test based on the GRAPES-CUACE-

3D-Var assimilation system can make full use of the observation information to correct the prior source distribution. If the 

BC concentration at site 5 at the target time (07: 00 on December 1, 2015) calculated in this study is the actual observation 

concentration, then Figures 7c and F show that both C_10 and C_100 tests have made reasonable adjustments to BC source 

emissions in southern Beijing based on the observation value. 280 

In addition, the posterior sources retrieved by the C_10 and C_100 tests are slightly different. Compared with the C_10 

inversion source, the C_100 test has a low inversion value for the BC source intensity in southern Beijing (Fig. 7c, f). This is 
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because the proportion of observations in the C_10 test is larger than that of the C_100 test (Formula (10) and (11)), and the 

C_10 test makes full use of the BC observation concentration of the site 5 at the target to correct the BC prior source in 

Beijing. When the difference between the simulated concentration and the observed concentration of BC at Site 5 is reduced, 285 

the BC source intensity in southern Beijing will naturally increase. Figure 8 shows the timely varying difference distribution 

of the C_10 inversion source and the C_100 inversion source. It can be seen that in the shorter period before the target time 

(03:00-07:00 on December 1st), the difference of BC source intensity in the south of Beijing is large, and the difference is 

small before that. This phenomenon indicates that the observation data of the target moment has a great influence on the 

posterior source in the short period before the target time, and its influence gradually decreases with the inverse time 290 

sequence. 

5 Summary and discussion  

Based on the GRAPES-CUACE aerosol adjoint model, combined with gradient descent method and observation data, the 

GRAPES-CUACE-3D-Var assimilation system is constructed, mainly including GRAPES-CUACE forward model 

calculation and ground state value storage, observation data and adjoint forcing term processing, adjoint model calculation, 295 

gradient extraction, target function calculation and model parameter optimization iteration, etc. Based on this system, taking 

the difference of BC simulation and observation concentration at 18 stations in Beijing-Tianjin-Hebei region on December 1, 

2015 (BJT) as the objective function, and considering the influence of the proportion of observation data on the optimization 

effect, the design comparison tests C_10 and C_100 inversed BC emission sources in Beijing-Tianjin-Hebei region (113 °E-

119.5 °E, 35.25 °N-42.25 °N). 300 

The results show that: The newly constructed GRAPES-CUACE-3D-Var assimilation system is reasonable and reliable, and 

can be initially applied to BC source inversion in Beijing-Tianjin-Hebei region. Both C_10 and C_100 experimental 

inversions of BC posterior source simulation results are better than BC prior source simulation results. The correlation 

coefficient between BC simulated concentration and observed concentration is increased to 0.7 and 0.64 respectively from 

0.2 before inversion, NMSE is decreased to 0.22 and 0.24 respectively from 0.38 before inversion, NMB is decreased to 305 

43.37% and 40.90% from 51.53%. The BC posterior sources retrieved by C_10 and C_100 tests are consistent with the 

distribution of prior sources. The high value areas are mainly located in the south of Beijing, Tianjin, central and southern 

Hebei and northern Shandong. On the whole, the observation proportion in the C_10 test is larger, and its optimization effect 

is better than that in the C_100 test. The observation information at the target time has a great influence on the posterior 

source in a short period before the target time, and its influence gradually decreases with the inverse time sequence. The 310 

research ideas and experimental results in this paper have laid a foundation for the development of a complete GRAPES-

CUACE four-dimensional variational assimilation system. However, although BC/PM2.5 ratio method can be used in this 

study to obtain BC concentration at various stations in Beijing-Tianjin-Hebei region, there is still a certain difference 

between the actual BC observation concentration and the inversion result, resulting in a certain deviation from the real 
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source emission. At the same time, the gradient descent method slows down its convergence speed when approaching the 315 

minimum value, while the L-BFGS quasi-Newton method (LIMITED-MEMORY BFGS QUASI-NEWTON METHOD) is 

an efficient optimization algorithm with high computational accuracy, fast convergence speed and small memory footprint, 

which is suitable for solving large-scale optimization problems (Liu and Nocedal, 1989). In the following research, the 

constructed GRAPES-CUACE-3D-Var assimilation system will be developed into a complete GRAPES-CUACE-4D-Var 

assimilation system by using time-continuous observation data combined with L-BFGS quasi-Newton method, and more 320 

accurate pollution source emissions will be retrieved based on this. In addition, taking into account many factors such as air 

quality standard, pollution source reduction ratio, economic loss reduction and residents' health benefits, the GRAPES-

CUACE-4D-Var assimilation system is used to solve the PM2.5 and O3 optimization control scheme, so as to provide basis 

for optimal control of air pollution. 
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Figure 1: Running process of GRAPES-CUACE chemical model and its adjoint model. 
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Figure 2: Simulation domain (left) and emission inversion region and observation stations (right). 460 

 

 

Figure 3: GRAPES-CUACE-3D-Var assimilation system. 
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 465 

Figure 4: The distributions of sensitivity of the cost function to the a priori BC emissions from 20:00 30th Nov. 2015 to 07:00 1st Dec. 

2015. 

 

 

Figure 5: (a) Cost function reduction of ExperimentC_10 and ExperimentC_100, (b) BC concentrations observed (black diamond) 470 
and simulated with a priori (purple square) and a posterior BC emissions of ExperimentC_10 (red triangle) and ExperimentC_100 

(green circle) at each station at the objective time point (07:00 1stDec. 2015). 
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 475 

Figure 6: (a) Scatter plots, (b) NMSE and (c) NMB statistics of BC concentrations observed and simulated with a priori and a 

posterior BC emissions of ExperimentC_10 and Experiment C_100 at eighteen stations at the objective time point (07:00 1st Dec. 

2015). Note: one star superscript in (a) indicates the values are significantly correlated at the 0.01 level on both sides. 

 

 480 

Figure 7: Time-averaged distributions of (a, d) a priori and a posterior BC emissions of (b) Experiment C_10 and (e) Experiment 

C_100 and (c, f) their differences (A Posterior-A Priori) from 20:00 30th Nov. to 07:00 1st Dec. 2015 in Beijing-Tianjin-Hebei area. 
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Figure 8: Hourly distributions of the differences between a posterior BC emissions of Experiment C_10 and Experiment C_100 485 
(C_10-C_100) from 20:00 30th Nov. to 07:00 1st Dec. 2015 in Beijing-Tianjin-Hebei area. 
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