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Abstract. In this study, a four-dimensional variational (4D-Var) data assimilation system was developed based on the 

GRAPES-CUACE atmospheric chemistry model, GRAPES-CUACE adjoint model and L-BFGS-B algorithm (GRAPES-

CUACE-4D-Var) and was applied to optimize black carbon (BC) daily emissions in North China on July 4 th 2016, when a 

pollution event occurred in Beijing. The results show that the newly constructed GRAPES-CUACE-4D-Var assimilation 45 

system is feasible and can be applied to perform BC emission inversion in North China. The BC concentrations simulated 

with optimized emissions show improved agreement with the observations over the North China with lower root-mean-

square errors and higher correlation coefficients. The model biases are reduced by 20-46%. The validation with observations 

that were not utilized in the assimilation shows that assimilation makes notable improvements, with values of the model 

biases reduced by 1-36%. Compared with the prior BC emissions, which are based on statistical data of anthropogenic 50 

emissions for 2007, the optimized emissions are considerably reduced. Especially for Beijing, Tianjin, Hebei, Shandong, 

Shanxi and Henan, the ratios of the optimized emissions to priori emissions are 0.4-0.8, indicating that the BC emissions in 

these highly industrialized regions have greatly reduced from 2007 to 2016. In the future, further studies on improving 

performance of GRAPES-CUACE-4D-Var assimilation system are still needed and are important for air pollution research 

in China. 55 

1 Introduction  

Three-dimensional (3-D) atmospheric chemical transport models (CTMs) are important tools for air quality research, which 

are used not only for predicting spatial and temporal distributions of air pollutants, but also for providing sensitivities of air 

pollutant concentrations with respect to various parameters (Hakami, et al., 2007). Among several methods of sensitivity 

analysis, the adjoint method is known to be an efficient means of calculating the sensitivities of a cost function with respect 60 

to a large number of input parameters (Sandu et al., 2005; Hakami et al., 2007; Henze et al., 2007; Zhai et al., 2018). The 

sensitivity information provided by the adjoint approach can be applied to a variety of optimization problems, such as 
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formulating optimized pollution-control strategies, inverse modelling and variational data assimilation (Liu, 2005; Hakami, 

et al., 2007). 

Four-dimensional variational (4D-Var) data assimilation, which is an important application of adjoint models, provides 65 

insight into various model inputs, such as initial conditions and emissions (Liu et al., 2005; Yumimoto and Uno, 2006). In 

the past decades, many scholars have successively developed adjoint models of various 3-D CTMs and the 4D-Var data 

assimilation systems to optimize model parameters. Elbern et al. (1999, 2000, 2001, 2007) constructed the adjoint of the 

EURAD CTM and performed inverse modelling of emissions and chemical data assimilation. Sandu et al. (2005) built the 

adjoint of the comprehensive chemical transport model STEM-III and conducted the data assimilation in a twin experiments 70 

framework as well as the assimilation of a real data set, with the control variables being O3 or NO2. Hakami et al. (2005) 

applied the adjoint model of STEM-2k1 model for assimilating black carbon (BC) concentrations and recovery of its 

emissions. Liu (2005) and Huang et al. (2018) developed the adjoint of CAMx model and further expanded it into an air 

quality forecasting and pollution-control decision support system. Müller and Stavrakou (2005) constructed an inverse 

modelling framework based on the adjoint of the global model IMAGES and used it to optimize the global annual CO and 75 

NOx emissions for the year 1997. More recently, the CMAQ community (Hakami et al., 2007) built the adjoint of CMAQ 

model and its 4D-Var assimilation scheme, which were used to optimize NOx emissions (Kurokawa et al., 2009; Resler et al., 

2010) and ozone initial state (Park et al., 2016). The adjoint of GEOS-Chem model and its 4D-Var assimilation system 

firstly developed by Henze et al. (2007, 2009) have been applied in a number of studies to improve aerosol (Wang et al., 

2012; Mao et al., 2015; Jeong and Park, 2018), CO (Jiang et al., 2015) and NMVOC (Cao et al., 2018) emissions estimates. 80 

Zhang et al. (2016) applied the 4D-Var assimilation system using the adjoint model of GEOS-Chem with the fine 1/4°× 5/16° 

horizontal resolution to optimize daily aerosol primary and precursor emissions over North China. These researches have 

laid good foundations for developing adjoint models of CTMs and optimizing model parameters. However, only a few of 

these adjoint models and their 4D-Var assimilation systems have been widely applied to regional air pollution in China. The 

development and applications of adjoint models of 3-D CTMs and their 4D-Var data assimilation systems are still limited in 85 

China. Further research and more attention are required.  

Nowadays, several mega urban agglomerations in China, such as the Beijing-Tianjin-Hebei region, the Yangtze River Delta 

region, and the Fenwei Plain, are still suffering from severe air pollution (Zhang et al., 2019; Xiang et al., 2019; Haque et al., 

2020; Zhao et al., 2020). Previous studies have shown that emission-reduction strategies, which are mainly based on the 

results of atmospheric chemistry simulations, play an important role in reducing pollutant concentrations and improving air 90 

quality (Zhang et al., 2016; Zhai et al., 2016). The emission inventory is an important basic data for atmospheric chemistry 

simulation, and its uncertainty will affect the accuracy of air pollution simulation, which in turn will affect the accuracy of 

pollution-control measures based on the model results (Huang et al., 2018). In order to improve the accuracy of atmospheric 

chemistry simulation and the feasibility of the pollution-control strategies, the emission data obtained by the “bottom-up” 

method needs to be optimized, which can be done through the atmospheric chemical variational assimilation system, to 95 

reduce the impact of emission uncertainty. 
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GRAPES-CUACE is an atmospheric chemistry model system developed by the Chinese Academy of Meteorological 

Sciences (CAMS)(Gong and Zhang, 2008; Zhou et al., 2008, 2012; Wang et al., 2010, 2015). GRAPES (Global/Regional 

Assimilation and PrEdiction System) is a numerical weather prediction system built by China Meteorological Administration 

(CMA), and it can be used as a global model (GRAPES-GFS) or as a regional mesoscale model (GRAPES-Meso) (Chen et 100 

al., 2008; Zhang and Shen, 2008). CUACE (CMA Unified Atmospheric Chemistry Environmental Forecasting System) is a 

unified atmospheric chemistry model constructed by CAMS to study both air quality forecasting and climate change(Gong 

and Zhang, 2008; Zhou et al., 2008, 2012). Using the meteorological fields provided by GRAPES-Meso, the GRAPES-

CUACE model has been realized the online coupling of meteorology and chemistry (Gong and Zhang, 2008; Zhou et al., 

2008, 2012; Wang et al., 2010, 2015). The GRAPES-CUACE model not only plays an important role in the scientific 105 

researches on air pollution in China (Gong and Zhang, 2008; Zhou et al., 2008, 2012; Wang et al., 2010, 2015, 2018), but 

also has been officially put into operation since 2014 at National Meteorological Center of CMA for providing guidance for 

air quality forecasting over China (Ke, 2019).  

Recently, An et al. (2016) constructed the aerosol adjoint module of GRAPES-CUACE model, which has been subsequently 

applied in tracking influential BC and PM2.5 source areas in north China (Zhai et al., 2018; Wang et al., 2018a, 2018b, 2019). 110 

However, these applications of GRAPES-CUACE aerosol adjoint model are still limited to sensitivity analysis, and the 

sensitivity information is not fully used to solve various optimization problems mentioned above. At the same time, 

considering the current severe pollution situation in mega urban agglomerations in China, more accurate emission data are 

urgently required to formulate reasonable and effective pollution-control strategies. In this study, we developed a new 4D-

Var data assimilation system on the basis of the GRAPES-CUACE adjoint model, which was applied for assimilating 115 

surface BC concentrations and optimizing its daily emissions in North China on July 4th 2016, when a pollution event 

occurred in Beijing. The following part is divided into four sections. Section 2 introduces the data and methods, Section 3 

describes the GRAPES-CUACE-4D-Var assimilation system, Section 4 presents the results and discussions, and the 

conclusions are placed in Section 5. 

2 Methodology 120 

2.1 Forward model description 

2.1.1 GRAPES-Meso 

GRAPES-Meso is a real-time operational weather forecasting model used by China Meteorological Administration (Chen et 

al., 2008; Zhang and Shen, 2008). The GRAPES-Meso model uses fully compressible non-hydrostatic equations as its model 

core. The vertical coordinates adopt the height-based, terrain-following coordinates, and the horizontal coordinates use the 125 

spherical coordinates of equal longitude-latitude grid points. The horizontal discretization adopts an Arakawa-C staggered 

grid arrangement and a central finite-difference scheme with second-order accuracy, while the vertical discretization adopts 
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the vertically staggered variable arrangement proposed by Charney-Phillips. The time integration discretization uses a semi-

implicit and semi-Lagrangian temporal advection scheme. The large-scale transport processes (both horizontal and vertical) 

for all gases and aerosols in GRAPES-CUACE are calculated by the dynamic framework of GRAPES-Meso, which 130 

implements the quasi-monotone semi-Lagrangian (QMSL) semi-implicit scheme on each grid (Wang et al., 2010). The 

physical processes principally involve micro-physical precipitation, cumulus convection, radiative transfer, land surface and 

boundary layer processes. Each physical process incorporates several schemes and  can also be tailored by the user (Xu et al., 

2008). The major physical options that we selected include the WSM6 cloud microphysics scheme (Hong et al., 2006), the 

Betts-Miller-Janjic cumulus convection scheme (Betts et al., 1986; Janjic, 1994); the RRTM(Rapid Radiative Transfer 135 

Model; Mlawer et al., 1997) long-wave radiation scheme, the short-wave scheme based on Dudhia (1989); the Monin-

Obukhov surface layer scheme (Monin et al., 2009); the MRF planetary boundary layer scheme (Mellor et al., 1974; Andre 

et al., 1978); and the Noah land surface scheme (Chen et al., 1996). 

2.1.2 CUACE 

The atmospheric chemistry model CUACE mainly includes three modules: the aerosol module(module_ae_cam), the 140 

gaseous chemistry module(module_gas_radm) and the thermodynamic equilibrium module(module_isopia) (Gong and 

Zhang, 2008; Zhou et al., 2008, 2012; Wang et al., 2010, 2015). The interface program that connects CUACE and GRAPES-

Meso is called aerosol_driver.F. This program transmits the meteorological fields calculated in GRAPES-Meso and the 

emission data processed as needed to each module of CUACE. The physical and chemical processes of 66 gas species and 7 

aerosol species (sulfate, nitrate, sea salt, black carbon, organic carbon, siol dust and ammonium) in the atmosphere are 145 

comprehensively considered in the CUACE model (Wang et al., 2015). 

CUACE adopts CAM (Canadian Aerosol Module; Gong et al., 2003) and RADM II (the second-generation Regional Acid 

Deposition Model; Stockwell et al., 1990) as its aerosol module and gaseous chemistry module, respectively. CAM involves 

six types of aerosols: sulfate(SF), nitrate(NI), sea salt(SS), black carbon(BC), organic carbon(OC) and siol dust(SD), which 

are segregated into 12 size bins with diameter ranging from 0.01 to 40.96 μm according to the multiphase multicomponent 150 

aerosol particle size separation algorithm (Gong et al., 2003; Zhou et al.,2008, 2012; Wang et al., 2010, 2015). CAM  also 

calculates the vertical diffusion trend of aerosol particles by solving the vertical diffusion equation. The core of CAM is the 

aerosol physical and chemical processes, including hygroscopic growth, coagulation, nucleation, condensation, dry 

deposition/sedimentation, below-cloud scavenging, and aerosol activation, which is coherently integrated with the gaseous 

chemistry in CUACE(Gong et al., 2003; Zhou et al.,2008, 2012; Wang et al., 2010, 2015). The gas chemistry provides the 155 

production rates of sulphate aerosols and secondary organic aerosols (SOA), and meanwhile generates an oxidation 

background for aqueous phase aerosol chemistry, in which sulphate transformation changes the distributions of SO2 in 

clouds (Zhou et al., 2012). Both nucleation and condensation are considered for sulphate aerosol formation depending on the 

atmospheric state after gaseous H2SO4 formed from the oxidation of sulphurous gases such as SO2, H2S and DMS(Zhou et 

al., 2012). Second organic aerosols as generated from gaseous precursors are partitioning among different bins through 160 
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condensation using the same approach as the gaseous H2SO4 condensation to sulphate (Zhou et al., 2012). Given that the 

nitrates(NI) and ammonium(AM) formed through the gaseous oxidation are unstable and prone to further decomposition 

back to their precursors, CUACE adopts ISORROPIA to calculate the thermodynamic equilibrium between them and their 

gas precursors (West et al., 1998; Nenes et al., 1998a, 1998b; Zhou et al., 2012). ISORROPIA contains 15 equilibrium 

reactions, and the main species include gas phase: NH3, HNO3, HCL, H2O, liquid phase: NH
+ 

4 , Na+, H+, Cl−,NO
− 

3 , SO
2− 

4 , HSO165 

− 

4 , OH−, H2O, and solid phase: (NH4)2SO4, NH4HSO4, (NH4)3H(SO4)2, NH4NO3, NH4Cl, NaCl, NaNO3, NaHSO4, Na2SO4 

(Nenes et al., 1998a).  

The emissions used in this study are based on statistical data of anthropogenic emissions reported from government agencies 

for 2007 (Cao et al., 2011). Emission source types included residences, industry, power plants, transportation, biomass 

combustion, livestock and poultry breeding, fertilizer use, waste disposal, solvent use, and light industrial product 170 

manufacturing (Cao et al., 2011; Zhai et al., 2018). These emission data were transformed through the Sparse Matrix 

Operator Kernel Emissions (SMOKE) module into hourly gridded off-line data for 32 species, including BC, OC, SF, NI, 

fugitive dust particles and 19 non-methane volatile organic compounds (VOC), CH4, NH3, CO, CO2, SOx and NOx, at three 

vertical levels (non-point source on the ground, middle elevation point source at 50m and high elevation point source at 

120m), as required by the GRAPES-CUACE model. Furthermore, natural sea salt and natural sand/dust emissions were also 175 

calculated on-line in the model (Zhou et al., 2012; Zhai et al., 2018). 

2.2 Adjoint model 

2.2.1 Adjoint theory 

Assuming that 𝐋 is a linear operator defined in the Hilbert space H, if there is another linear operator 𝐋∗ satisfying: 

∀x, y ∈ H, (Lx, y) = (x, L∗y)                                                                                                                                                      (1) 180 

Then 𝐋∗ is called the adjoint operator of 𝐋 (Ye and Shen, 2006). Where (. , . ) denotes the inner product in H. If x, y are 

continuous functions on a domain Ω, the inner product is defined as (x, y) = ∫
Ω

x ∙ ydΩ; if x, y are discrete vectors, x =

[x1, x2, … , xN]，y = [y1, y2, … , yN]，then the inner product is (x, y) = ∑ xi ∙ yi
N
i=1 . When  x and y denote vectors and L is a 

matrix (independent of x and y), we can obtain: 

(Lx, y) = yTLx = xTLTy = (x, LTy).                                                                                                                                           (2) 185 

In other words, for a matrix-type linear operator, the adjoint operator is its transpose: L∗ = LT (Liu, 2005). 

An atmospheric chemistry model can be viewed as a numerical operator 𝐅: 𝑹𝑛 → 𝑹𝑚, which can be expressed as: 

 Y = F(X),                                                                                                                                                                                    (3) 

where X ∈ 𝑅𝑛  and Y ∈ 𝑅𝑚  are vectors representing the input and output variables in the atmospheric chemistry model, 

respectively. If F is differentiable, then the differential of Y (𝛿𝑌) can be denoted by the differential of X (𝛿𝑋), and the tangent 190 

linear model (TLM) of the atmospheric chemistry model can be expressed as: 

𝛿𝑌 = ∇𝑋𝐹 ∙ 𝛿𝑋,                                                                                                                                                                           (4) 
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where 𝛿𝑋 ∈ 𝑅𝑛 and 𝛿𝑌∗ ∈ 𝑅𝑚 are input and output variables in the TLM, respectively. And ∇𝑋𝐹 is the Jacobian matrix.  

According to EQ. (1) and (2), the adjoint model of the TLM can be expressed as: 

𝛿𝑋∗ = ∇𝑋
𝑇𝐹 ∙ 𝛿𝑌∗,                                                                                                                                                                        (5) 195 

where  𝛿𝑌∗ ∈ 𝑅𝑚 and 𝛿𝑋∗ ∈ 𝑅𝑛  are input and output variables in the adjoint model, respectively. Comparing EQ. (4) and (5), 

it can be seen that the dimensions of input and output are exchanged between the TLM and the adjoin model, and the 

operator in EQ. (5) is the transpose of the operator in EQ. (4) (Liu, 2005). It is easy to see that the gradient (sensitivity) of 

the objective function with respect to input variables can be obtained through n times TLM simulations or m times adjoint 

simulations. When n>>m (such as n-dimensional emission sources and m-dimensional pollutant concentrations), the 200 

calculation efficiency of the adjoint model is much higher than that of the TLM (Liu, 2005). 

2.2.2 GRAPES-CUACE aerosol adjoint 

The GRAPES-CUACE aerosol adjoint model was constructed by An et al. (2016) based on the adjoint theory (Ye and Shen, 

2006; Liu, 2005) and the CUACE aerosol module, which mainly includes the adjoint of physical and chemical processes and 

flux calculation processes of six types of aerosols (SF, NI, SS, BC, OC and SD) in CAM module, the adjoint of interface 205 

programs that connect GRAPES-Meso and CUACE, and the adjoint of aerosol transport processes.  

As described in An et al. (2016), after the construction of the adjoint model is completed, its accuracy must be verified to 

confirm its reliability. Since the adjoint model is built on the basis of the TLM, the validity of the TLM must be ensured 

before the accuracy of the adjoint model is tested. The verification formula of tangent linear codes can be expressed as: 

Index = lim
𝛿𝑋→0

𝐹(𝑋+𝛿𝑋)−𝐹(𝑋)

𝛿𝑋𝐹′(𝑋)
= 1.0,                                                                                                                                              (6) 210 

where the denominator is the TLM output, and the numerator is the difference between the output value of the original 

model with input 𝑋 + 𝛿𝑋 and input 𝑋. It is necessary to decrease the value of 𝛿𝑋 by an equal ratio and repeat the calculation 

of the above formula. If the result approaches 1.0, the tangent linear codes are correct. It was verified that all input variables 

in the model, such as the concentration value of pollutants (xrow) and the particle’s wet radius (rhop), have passed the TLM 

test. 215 

The adjoint codes can be validated on the basis of the correct tangent linear codes. The adjoint codes and the tangent linear 

codes need to satisfy Eq.(2) for all possible combinations of X and Y. In Eq.(2), L and L∗ represent the tangent linear process 

and the adjoint process, respectively. To simplify the testing process, the adjoint input is the tangent linear output: Y = L(X). 

Thus, Eq.(5) can be expressed as: 

(∇𝐹 ∙ 𝑑𝑋, ∇𝐹 ∙ 𝑑𝑋) = (𝑑𝑋, ∇𝑇𝐹(∇𝐹 ∙ 𝑑𝑋)).                                                                                                                                (7) 220 

By substituting 𝑑𝑋 into the tangent linear codes, the output value ∇𝐹 ∙ 𝑑𝑋 can be obtained and the left part of the equation 

can be computed. Then, taking ∇𝐹 ∙ 𝑑𝑋 as the input of the adjoint codes, the adjoint output ∇𝑇𝐹(∇𝐹 ∙ 𝑑𝑋) can be obtained 

and the right part of the equation can be calculated. On condition that the left and right sides of EQ.(7) are equal within the 

range of machine errors, the constructed adjoint model is validated. It was verified that all input variables in the model have 
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passed the adjoint test. Taking the pollutant concentration variable (xrow) as an example, both sides of EQ.(7) produce 225 

values with 14 identical significant digits or more. This result is within the range of machine errors, so the values of the left 

and the right sides are considered equal. Thus, the pollutant concentration variable (xrow) has passed the adjoint test. 

After the TLM and the adjoint model were verified, the GRAPES–CUACE aerosol adjoint model was constructed. The 

operation flowchart of the adjoint model is shown in Fig. 1. J is the objective function, which can be defined according to the 

concerned problems. c and s represent state variables (such as BC concentration) and control variables (such as emission 230 

sources, mainly including VOCs, NOx, NH3, SO2 and PPM2.5) in the model, respectively. First of all, the GRAPES-CUACE 

atmospheric chemistry model should be integrated to store the basic-state values of the unequilibrated variables in 

checkpoint files. The intermediate values are recalculated or saved in stack using PUSH&POP method during the adjoint 

operating process. Subsequently, the gradient of J with respect to c (∇𝑐𝐽) as well as the saved basic-state values are taken as 

input data for the adjoint backward integration. Finally, the sensitivity of J with respect to s (∇𝑠𝐽) can be obtained. A full 235 

description of the construction, framework, and operational flowchart of the GRAPES-CUACE aerosol adjoint model can be 

found in An et al. (2016). 

2.3 L-BFGS-B method 

Limited-memory BFGS (L-BFGS) is an optimization algorithm in the family of quasi-Newton methods that approximates 

the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) using a limited amount of computer memory (Liu and Nocedal, 240 

1989). The L-BFGS-B algorithm extends L-BFGS to solve large nonlinear optimization problems subject to simple bounds 

on the variables (Byrd et al., 1995; Zhu et al., 1997), which can be expressed as:  

 min 𝑓(𝑥), 𝑥 ∈ 𝑅𝑛                                                                                                                                                                     (8.1) 

subject to 𝑙 ≤ 𝑥 ≤ 𝑢                                                                                                                                                                 (8.2) 

where f is a nonlinear function, the vectors l and u represent lower and upper bounds on the variables, and the number of 245 

variables n is assumed to be large. The algorithm is also appropriate and efficient for solving unconstrained problems in 

which the variables have no bounds. With the supply of the objective function f and its gradient g, but with no requirement of 

knowledge about the Hessian matrix of the objective function f, the algorithm can be useful for solving large problems where 

the Hessian matrix is difficult to compute or is dense.  

The brief procedure of the L-BFGS-B algorithm is as follows. At each iteration, a limited memory BFGS approximation to 250 

the Hessian is updated. The limited memory BFGS matrix is used to define a quadratic model of the objective function f. A 

search direction 𝑑𝑘 is computed by a two-stage approach. First, use the gradient projection method to identify a set of active 

variables, such as variables that will be held at their bounds. Then, the quadratic model is approximately minimized with 

respect to the free variables. The search direction is defined to be the vector leading from the current iterate to this 

approximate minimizer. Finally, a line search is performed along the search direction 𝑑𝑘  to compute a step length 𝜆𝑘 , and 255 

the variables are updated through 𝑥𝑘+1 = 𝑥𝑘 + 𝜆𝑘 𝑑𝑘 . The L-BFGS-B algorithm has three termination criteria: the number of 
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iterations reaches the set maximum value; the change of the objective function in consecutive iterations is relatively small; 

and the modulus of the projected gradient is small enough.  

 3 Description of GRAPES-CUACE-4D-Var 

The new 4D-Var data assimilation system, GRAPES-CUACE-4D-Var, was constructed on the basis of GRAPES-CUACE 260 

atmospheric chemistry model, GRAPES-CUACE aerosol adjoint model and L-BFGS-B method. A schematic diagram of 

GRAPES-CUACE-4D-Var is shown in Fig. 2. The main parts of GRAPES-CUACE-4D-Var include GRAPES-CUACE 

atmospheric chemistry simulation, during which the basic-state values of the unequilibrated variables in checkpoint files are 

saved, observations and adjoint forcing term processing, GRAPES-CUACE aerosol adjoint model simulation, gradient 

extraction, cost function calculation and optimization. The details of cost function, observations and optimization of 265 

emission inversion are as follows. 

3.1 Cost function 

Based on Bayesian theory and the assumption of Gaussian error distributions (Rodgers, 2000), the cost function of the 

emission inversion is generally defined as follow: 

𝐽(𝑥) =
1

2
γ(𝑥 − 𝑥b)TB−1(𝑥 − 𝑥b) +

1

2
∑ (𝐹𝑖(𝑥) − 𝑦𝑖)

TR−1(𝐹𝑖(𝑥) − 𝑦𝑖)𝑝
𝑖=0                                                                                  (9) 270 

where 𝑥, which we sought to optimize, generally represents the state vector of emissions or their scaling factors, 𝑥b is the 

priori estimate of 𝑥, B is the error covariance estimate of  𝑥b, F is the forward model, 𝑦 is the vector of measurements that 

are distributed during the time interval [t0, tp], R is the observation error covariance matrix, and γ is the regularization 

parameter.  

In this study, we followed the method in Henze et al. (2009), and defined 𝑥 as the state vector of scaling factors of BC 275 

emissions: 

𝑥 = ln (
𝑠

𝑠𝑏
)                                                                                                                                                                                 (10) 

where 𝑠 is the state vector of the daily gridded emissions of BC at three vertical levels (non-point source on the ground, 

middle elevation point source at 50m and high elevation point source at 120m), 𝑠𝑏 is the priori estimate of 𝑠. Thus, the priori 

estimate of 𝑥 (𝑥b) is equal to zero. According to Cao et al. (2011), the uncertainty of priori BC emissions used in this study is 280 

76.2%. Therefore, we assigned the priori error covariance matrix (B) to be diagonal and the uncertainty to be 76.2% for BC 

emissions. Due to the lack of information to completely construct a physically representative B, the regularization parameter 

γ is introduced to balance the background and observation terms in the cost function. As described in Henze et al. (2009), an 

optimal value of γ can be found with the L-curve method (Hansen, 1998). Here, we followed this method, and obtained γ =

0.0001  through several emission inversions with a range of γ  (10, 1, 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001, 285 

0.0000001).  
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3.2 Observations 

The surface measurements of BC were collected from China Atmosphere Watch Network (CAWNET). The CAWNET was 

established by China Meteorological Administration to monitor the BC surface mass concentration over China in 2004, and 

had 54 monitoring stations in the summer of 2016. The monitoring of BC was conducted by an aethalometer (Model AE 31, 290 

Magee Scientific Co., USA), which uses a continuous optical gray scale measurement method to produce real-time BC data 

(Gong et al., 2019). In this study, we used the recommended mass absorption coefficient for the instrument at an 880-nm 

wavelength with 24-hour mean values of BC during July 1-31, 2016 at 5 representative stations of CAWNET in North China 

(Fig.S1).  

The surface PM2.5 concentrations were obtained from the public website of China Ministry of Ecology and Environment 295 

(MEE) (http://www.mee.gov.cn/). The network started to release real-time hourly concentrations of SO2, NO2, CO, ozone 

(O3), PM2.5 and PM10 in 74 major Chinese cities since January 2013, which further increased to 338 cities in 2016. The PM2.5 

data were collected by the TEOM1405-F monitor, which draws ambient air through a sample filter at constant flow rate, 

continuously weighing the filter and calculates the near real-time mass concentration of the collected particulate matter. We 

used hourly surface PM2.5 concentrations for July 1-31, 2016 at 48 cities in North China, including 12 cities in the Beijng-300 

Tianjin-Hebei region (Fig.S1). Here, we have averaged PM2.5 concentrations at several monitoring sites in each city to 

represent a regional condition.  

To improve the performance of emission inversion, adequate observations are needed for constraining the model. Due to the 

limited BC monitoring sites in North China, we used the surface PM2.5 concentrations at 48 cities described above and the 

BC/PM2.5 ratio to obtain the hourly BC concentrations for July 1-31, 2016 at 48 cities in North China. The detailed 305 

calculation process can be found in the Supplement.  

The observation error covariance matrix (R), which is difficult to quantify, generally includes contributions from the 

measurement error, the representation error, and the forward model error (Henze et al., 2009; Zhang et al., 2016; Cao et al., 

2018). And there is also a certain error in calculating the BC concentration based on the BC/PM2.5 ratio. To reflect the 

possibly large uncertainties of the observation, we assumed R to be diagonal and with error of 100%. 310 

3.3 Optimization 

Minimization of the cost function EQ. (9) is performed through optimization. Starting from an initial guess (𝑥 equal to zero), 

the forward model simulates BC concentrations at each integration step during the time interval [t0, tp], and the adjoint model 

which is driven by the discrepancy between simulated and observed BC concentrations calculates the gradients of the cost 

function with respect to the scaling factors of BC emission (Fig.2). Subsequently, the gradients are supplied to the L-BFGS-315 

B optimization routine (Byrd et al., 1995; Zhu et al., 1997) to minimize the cost function iteratively (Fig.2). At each iteration, 

the improved estimates of the scaling factors are implemented and the forward and adjoint models are integrated.  

http://www.mee.gov.cn/
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3.4 Setup of emission inversion experiment 

The simulation domain in this study is North China (105°E-125°E, 32.25°N-43.25°N, Fig. S1), covering 41 × 23 horizontal 

grids with resolution of 0.5° × 0.5°, and vertically divided into 31 layers with integration time step of 300 s. The FNL data at 320 

a 6-h interval is used as meteorological input. The priori emission used here is the daily gridded BC emission at three vertical 

levels (non-point source on the ground, middle elevation point source at 50m and high elevation point source at 120m) 

mentioned above. The results calculated by the BC/PM2.5 ratio show that the BC concentration in Beijing was high on July 

4th 2016. So the assimilation window is from 20:00 Beijing Time (BJT) 3 July to 19:00 BJT 4 July 2016. The hourly BC 

concentrations at 36 cities during this time interval are used for the emission inversion, and the BC concentrations of the 325 

remaining 12 cities are used for validation of the inversion effect (Fig. S1). The simulation is initialized at 20:00 BJT 30 

June, the first three days are set as the spin-up time. The convergence criterion used in the optimization is that the objective 

function decreases by less than 1% in consecutive iterations. According to the maximum estimation range of the priori 

emissions, here the upper and lower bounds of the scaling factors of BC emissions are ln(1.6) and ln(0.4), respectively. 

4 Results and discussion 330 

4.1 Comparisons between the simulated and observed concentrations 

The progression of the cost function at iteration k (Jk/J0) during the optimization procedure is shown in Fig. 3. The cost 

function quickly reduces and reaches the convergence criterion after 8 iterations, with values of the converged cost function 

reduced by 37%.  

Fig. 4 shows the spatial distribution of observed and simulated daily BC concentrations on July 4th 2016. In general, the 335 

results simulated with the priori emission reflect the distribution characteristics of BC concentration in North China to a 

certain extent,  with high values are mainly located in Beijing and central and southern Hebei, and low values are mainly 

located in Inner Mongolia and eastern Shandong. However, the differences between the simulated and the observed BC 

concentrations are considerable, and almost all are over-predictions. The optimized (posteriori) emissions compensate the 

over-predictions and largely reduces the model biases. For instance, the model biases for BC in Beijing, Tianjin, 340 

Shijiazhuang, Jinan, Taiyuan and Zhengzhou are reduced by 46% (from 5.4 to 2.9 μg/m3), 26% (from 6.6 to 4.9 μg/m3), 29% 

(from 18.4 to 13.1 μg/m3), 20% (from 6.6 to 5.3 μg/m3), 34% (from 4.1 to 2.7 μg/m3), 20% (from 6.9 to 5.5 μg/m3), 

respectively (Fig.4a,b). The results simulated with the optimized emission also show improved agreement with the 

observations over the North China with lower root-mean-square errors and higher correlation coefficients (Fig.4a,b).  

It is crucial to validate the assimilation results by observations that were not utilized in the assimilation. The BC 345 

concentrations at 12 cities were used for validation (Fig.4c,d). Assimilation compensates over-predictions, reduces  the root-

mean-square errors (from 5.2 to 4.4) and improves the correlation coefficients (from 8.6 to 8.7). The model biases for BC in 
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Hengshui and Yizhou are reduced by 28% (from 7.2 to 5.2 μg/m3) and 36% (from 3.9 to 2.5 μg/m3), respectively. The 

improvements of the remaining 10 cities are also notable, with values of the model biases reduced by 1-20%. 

4.2 Comparisons between the priori and optimized BC emissions 350 

Fig.5 shows the spatial distributions of the priori and optimized daily BC emissions, which are at three vertical levels (non-

point source on the ground, middle elevation point source at 50m, and high elevation point source at 120m) as required by 

the GRAPES-CUACE model. The BC emissions on the ground are mostly non-point sources, and at 50m are concentrated 

middle elevation sources, therefore they are distributed in a large area (Fig. 5a,c). While the BC emissions at 120m are 

mainly from a few high elevation point sources, so they are scattered in the area (Fig. 5e). It can be seen that the distributions 355 

of optimized BC emissions at three vertical levels are relatively consistent with those of priori emissions (Fig. 5b,d,f). 

However, the optimized emissions are considerably reduced (Fig. 5b,d,f). Especially for the regions where observation sites 

are located in, such as southern Beijing, Tianjin, central and southern Hebei, northwest Shandong, central Shanxi, and 

northern Henan, BC emissions decrease significantly. As for the regions where observation sites are not located in, such as 

Liaoning and Jiangsu, BC emissions are almost unchanged. The reason for this phenomenon is discussed in Section 4.3. 360 

In order to analyse the differences between the priori and optimized BC emissions in Beijing-Tianjin-Hebei-Shanxi-

Shandong-Henan region in more depth and detail, we calculated the ratio of the optimized emissions to priori emissions 

(optimized emissions divide by priori emissions), as shown in Fig. 6. In general, assimilation has the largest reduction in 

non-point source on the ground (Fig.6a), followed by middle elevation point source at 50m (Fig.6b), and the smallest 

reduction in high elevation point source at 120m (Fig.6c). This is related to the intensity of BC emissions at three vertical 365 

levels. The intensity of BC emissions on the ground (Fig.5a) is about 1-2 orders of magnitude higher than that of the middle 

elevation point source at 50m  (Fig.5c)  and high elevation point source at 120m  (Fig.5e). In other words, the BC emissions 

on the ground have the most significant effect on the overall cost function and therefore reduced most during the progression 

of assimilation. 

The priori BC emissions used in this study are based on statistical data of anthropogenic emissions for 2007 (Cao et al., 370 

2011), and the BC observations used for assimilation are from 2016, so the ratios of the optimized emissions to priori 

emissions can reflect the changes in BC emissions from 2007 to 2016 to a certain extent. From the perspective of each 

province, we can see that the ratios of the optimized emissions to priori emissions in Beijing, Tianjin, Hebei, Shanxi, 

Shandong and Henan are 0.4-0.8, 0.4-0.7, 0.4-0.8, 0.6-0.8, 0.4-0.8 and 0.5-0.8, respectively. This indicates that the BC 

emissions in these highly industrialized regions have greatly reduced from 2007 to 2016, which is consistent with previous 375 

studies (Zheng et al., 2018). Table 1 lists the anthropogenic BC emissions in China by province in 2006 and 2016 and the 

emission ratios of 2016 relative to 2006. According to previous researches, the emission ratios of 2016 relative to 2006 are 

0.41-0.82 in Beijing-Tianjin-Hebei-Shanxi-Shandong-Henan region, and 0.73 over China. It can be seen that the ratios of the 

optimized emissions to priori emissions calculated in this study are within a reasonable range, which also shows that the 
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newly constructed GRAPES-CUACE-4D-Var assimilation system can obtain reasonable BC emissions based on the 380 

observations.  

4.3 Discussion 

Although Section 4.1 shows that assimilation reduces the model biases and improves all statistical values at each site, there 

are still over-predictions to a certain degree. In addition to the emission, the initial concentration is also an important factor 

that affects the BC simulation. Here, we take Beijing as an example to analyse the influence of the initial concentration on 385 

the BC simulation. Fig.7 shows the comparison of observed and simulated (with the priori and optimized BC emissions, 

respectively) BC concentrations in Beijing from 20:00 July 3rd to 19:00 July 4th 2016. At the initial moment (20:00 July 3rd 

2016), the initial concentration for simulation (11.5 μg/m3) was about two times higher than the observations (5.7 μg/m3). 

With such a high initial concentration, the simulated BC concentrations with priori emissions were significantly higher than 

the observed concentrations at all times. The simulations with optimized emissions compensated the over-predictions, but 390 

the BC concentrations were still higher than the observations in the first few hours (from 20:00 July 3rd to 02:00 July 4th 

2016). And the model biases during this time period was 5.2 μg/m3. As the influence of the initial concentration on the 

simulation gradually weakened, the simulated BC concentrations with optimized emissions were largely reduced and much 

closer to the observations from 03:00 to 19:00 July 4th 2016, and the model biases during this time period also decreased, 

with the value of 1.9 μg/m3. This indicates that for short-term simulation, the influence of initial concentration on the 395 

simulation is not negligible. In the following work, it is also of great significance to use the GRAPES-CUACE-4D-Var 

assimilation system to optimize the initial concentration to improve the simulation effect. 

As described in Section 4.2, after assimilation, the BC emissions in the regions where observation sites are located decrease 

significantly, while in the regions where observation sites are not located, such as Liaoning and Jiangsu, BC emissions are 

almost unchanged. This may be due to the short period of the observation data used for assimilation. In this study, since the 400 

GRAPES-CUACE-4D-Var assimilation system has not yet implemented parallel computing, the assimilation window was 

set for 24 hours. In such a short period of time, the pollutants emitted from Liaoning and Jiangsu may have not been 

transported to the regions where observation sites are located in, thus having little impact on the BC concentrations in these 

regions. In other words, the emissions from Liaoning and Jiangsu have little effect on the overall cost function so there is 

little change during the progression of assimilation. Therefore, implementing parallel computing of the GRAPES-CUACE-405 

4D-Var assimilation system and performing emission inversion for a longer period (i.e. one month) is another important task 

in the future. 
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5 Conclusions 

In this study, we developed a new 4D-Var data assimilation system for the GRAPES-CUACE atmospheric chemistry model 

(GRAPES-CUACE-4D-Var) and applied it for assimilating surface BC concentrations and optimizing its daily emissions in 410 

North China on July 4th 2016, when a pollution event occurred in Beijing. The main conclusions are as follows. 

(1) The newly constructed GRAPES-CUACE-4D-Var assimilation system is feasible and can be applied to perform BC 

emission inversion in North China. 

(2) The BC concentrations simulated with optimized emissions show improved agreement with the observations over the 

North China with lower root-mean-square errors and higher correlation coefficients. The model biases are reduced by 415 

20-46%. The validation of assimilation results with observations that were not utilized in the assimilation shows that 

assimilation compensates over-predictions, reduces the root-mean-square errors and improves the correlation 

coefficients. The improvements are also notable, with values of the model biases reduced by 1-36%. 

(3) Compared with the prior BC emissions, the optimized emissions are considerably reduced. Especially for Beijing, 

Tianjin, Hebei, Shandong, Shanxi and Henan, the ratios of the optimized emissions to priori emissions are 0.4-0.8, 420 

indicating that the BC emissions in these highly industrialized regions have greatly reduced from 2007 to 2016, which is 

consistent with previous studies. 

In the following work, implementing parallel computing of the GRAPES-CUACE-4D-Var assimilation system and 

performing emission inversion for a longer period is an important task. Apart from the emissions, the initial concentration is 

also an important factor for short-term simulation. It is of great significance to use the GRAPES-CUACE-4D-Var 425 

assimilation system to optimize the initial concentration to improve the simulation effect. 

Meanwhile, several mega urban agglomerations in China are facing atmospheric compound pollution with high PM2.5 and O3 

concentrations (Li et al., 2019; Zhang et al., 2019; Xiang et al., 2019; Haque et al., 2020; Zhao et al., 2020). To improve air 

quality, it is urgent to formulate reasonable and effective emission-reduction measures. Therefore, further studies on 

expanding the function of the GRAPES-CUACE-4D-Var assimilation system and taking into account factors such as air 430 

quality standards, the proportion of emissions that can be reduced, the economic cost and residents’ health benefits of 

emission reduction, are crucial for formulating optimized pollution-control strategies for PM2.5 and O3 in China.  
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Figure 1: Running process of GRAPES-CUACE atmospheric chemistry model and its adjoint model. 605 

 

 

Figure 2: GRAPES-CUACE-4D-Var assimilation system. 
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 610 

Figure 3: Cost function reduction. 

 

 

Figure 4: The spatial distribution of observed and simulated daily BC concentrations on July 4th 2016. The observations (circles) 

are overplotted over model simulations with the (a, c) priori and (b, d) optimized emissions. The observations at 36 cities in (a, b) 615 
were used in the assimilation, and the observations at 12 cities in (c, d) were not used in the assimilation. The root-mean-square 

error (RMSE) and correlation coefficient (R) between observation and simulation are shown inset. The observed BC 

concentrations were calculated by the BC/PM2.5 ratio method. 
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 620 

Figure 5: Spatial distributions of the (a, c, e) priori and (b, d, f) optimized daily BC emissions. The emissions are at three vertical 

levels: (a, b) non-point source on the ground, (c, d) middle elevation point source at 50m, and (e, f) high elevation point source at 

120m, as required by the GRAPES-CUACE model. 

 

 625 
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Figure 6: The ratio of optimized emissions to priori emissions (optimized emissions divide by priori emissions). (a) non-point 

source on the ground, (b) middle elevation point source at 50m, and (c) high elevation point source at 120m. 

 

 

Figure 7: Comparison of observed and simulated (with the priori and optimized BC emissions, respectively) BC concentrations in 630 
Beijing from 20:00 July 3rd to 19:00 July 4th 2016. The observed BC concentrations were calculated by the BC/PM2.5 ratio method. 

 

Table 1 Anthropogenic BC emissions in China by province in 2006a and 2016b (units: Gg/year). 

Province 2006 2016 

Beijing 19.00 7.70 (0.41) 

Tianjin 15.00 10.81 (0.72) 

Hebei 137.00 97.99 (0.72) 

Shanxi 139.00 69.26 (0.50) 

Shandong 132.00 108.82 (0.82) 

Henan 133.00 82.42 (0.62) 

Total China 1811.00 1315.28 (0.73) 

Note: numbers in the parentheses represent emission ratios relative to 2006. 

a Source: Zhang et al., 2009. 635 
b Source: MEIC (Multi-resolution Emission Inventory for China), http://www.meicmodel.org/index.html. 


