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The authors developed the GRAPES-CUACE three dimensional variational assimilation 

system (GRAPES-CUACE-3D-Var) based on the GRAPES-CUACE aerosol adjoint model by 

using the optimization algorithm and pollutants observations. It performed well in the 

inversion of BC emissions in Beijing-Tianjin-Hebei region. However, I still recommend this 

manuscript be revised before publication. Firstly, the inherent flaws in the transport model 

and emission inventory could produce the uncertainties in the results, please add some 

discussion. Secondly, the simulations were performed in wintertime, the stagnant conditions 

and temperature inversion are often difficult to reflect the reality. But almost all the pollutants 

reached a high level. How the author address the question? Some minor corrections are also 

needed listed in following. 1. “3D” in the title “Development of 3D Variational Assimilation 

System Based on GRAPESCUACE Adjoint Model (GRAPES-CUACE-3D-Var V1.0) and Its 

Application in Emission Inversion” is better replaced with the full name “three dimensional”. 

2. Page2, line49,“Foreign scholars” is inappropriate. It is recommended to change it to "Many 

scholars ". 3. Page3, line64, “the accompanying model” should be “the adjoint model” ? 4. 

Page3, line83, “cuace” should be “CUACE” ? 5. Page3, line85, “Chen” should be “Chen et 

al.”? 6. Page5, line137, “ground state value” should be “basic-state value”? There are some 

other similar words. 7. Page5, line138, “variable s” should be “variables”? 8. Page5, line153, 

“priori source” should be “a priori source” ? “posterior source” should be “a posterior 

source”? There are some other similar words. 9. Page6, line185, “i.e.” should be “then” ? 10. 

Page7, line190, “is in the central” should be “is the central” ? 11. Page7, line195, “the start-

up” should be “spin-up”? 12. Page7, line211, “the inverse evolution quantity” should be 

“inversion variables”? 13. Page11, line316, “(LIMITED-MEMORY BFGS QUASI-NEWTON 

METHOD)” is not necessary. 

Reply: We would like to thank the reviewer for his/her positive words and his/her helpful comments, 

which have allowed us to make improvements to our manuscript. Combined with the comments of 

Referee #2, we have upgraded the assimilation system, redesigned the emission inversion 

experiment, obtained more observations, and improved the readability of the text. The introduction 

and methods have been rewritten as suggested. Unfortunately, we spent a long time in upgrading 

and debugging the assimilation system, so that we did not obtain more satisfactory results of 

emission inversion within the specified time. So in the revised manuscript, we are unable to present 

the results and conclusion, for which we are very sorry. The responses to the specific questions are 

shown below. Thanks again for the reviewer’s valuable suggestions.  

As the reviewer understood, the inherent flaws in the transport model and emission inventory could 

produce the uncertainties in the results. The strongly constrained four-dimensional variational 

hypothesis the model is perfect, that is, model errors are not considered (Menard, 2010). So in our 

previous experiment, the uncertainties caused by the inherent flaws in the transport model were not 



considered. In the future, we will add the model evaluation with the priori and the optimized BC 

emission to determine the uncertainty of the model. We will also compare the optimized BC 

emission with other studies to quantify the uncertainty of the approach we used. 

The GRAPES-CUACE model used in this study is an online coupled meteorological-chemical 

model system. The interaction between meteorological conditions and pollutants has been included 

in the physical and chemical processes of the model. According to previous studies, the GRAPES-

CUACE model can reasonably simulate the spatial distribution and temporal trend of PM2.5 

concentrations in wintertime, and the correlation coefficient between the simulated concentration 

and the observed concentration of PM2.5 is about 0.5-0.9 (Wang et al., 2018a, 2018b). In the future, 

we will further evaluate the simulation effect and uncertainty of the GRAPES-CUACE model. 

1. We have modified the title with “Development of Four Dimensional Variational Assimilation 

System Based on GRAPES-CUACE Adjoint Model (GRAPES-CUACE-4D-Var V1.0) and Its 

Application in Emission Inversion”. 

2. Yes, we have realized this is inappropriate and modified it in the revised manuscript. 

3. Yes,“the accompanying model” should be “the adjoint model”, and we have modified it. 

4. Yes, “cuace” should be “CUACE”, and we have modified it. 

5. Yes,“Chen” should be “Chen et al.”, and we have corrected it. 

6. Yes,“ground state value” should be “basic-state value”. We have modified it. 

7. Yes,“variable s” should be “variables”, and we have corrected it. 

8. We used prior/posterior consistently throughout this time. 

9. Done. 

10. Done. 

11. Yes, “the start-up” should be “spin-up”, and we have modified it. 

12. Done. 

13. We have modified the expression as “Limited-memory BFGS (L-BFGS)”. 
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This manuscript presents a new chemical data assimilation system. While the work seems well 

motivated and potentially valuable eventually, overall the effort comes across as the first step 

in what needs to be a more thorough study prior to publication. From the onset, the 

manuscript struggles to explain why they are using an adjoint model for 3D-Var (typically this 

would be used for 4D-Var), which is then confused as they proceed to describe what is 

essentially a 4D-Var system but then provide code for something that seems like 3D-Var…it 

becomes very unclear what is the scope and objective. Further, the authors neglect to treat 

prior information in a Bayesian manner, leading to an ad hoc approach that is not justified. 

Other issues such as a lack of an appropriate dataset for testing, lack of cross validation, no 

exploration of the role of prior error covariances, and also the unavailability of the underlying 

model code amount to this work seeming rather premature. I look forward to a complete 

manuscript being submitted at a later date, here or elsewhere. 

Reply: We thank the reviewer for his/her careful reading of the manuscript and his/her valuable 

comments. We have deeply considered the points brought up by the reviewer, and have learned a 

lot from the comments. We did our best to upgrade the assimilation system, redesign the emission 

inversion experiment, obtain more observations, and improve the readability of the text. The 

introduction and methods have been rewritten as suggested. Unfortunately, we spent a long time in 

upgrading and debugging the assimilation system, so that we did not obtain more satisfactory results 

of emission inversion within the specified time. So in the revised manuscript, we are unable to 

present the results and conclusion, for which we are very sorry. The responses to the specific 

questions are shown below. Thanks again for the reviewer’s valuable suggestions.  

 

Main comments: 

The introduction briefly mentions many previous 4D-Var studies that have used adjoint 

models for estimating emissions of aerosols and trace gases. However, it is not discussed 

anywhere why the authors are using their adjoint model for 3D, what is the background of 

other studies using 3D-Var, and how this compares to 4D-Var. Nor is very much background 

provided about the GRAPES-CUACE model âA˘T it isn’t even ˇ mentioned until the final 

paragraph. No background on model performance is discussed that motivates the need for the 

GRAPES-CUACE 3D-Var. In other words, the introduction is not written very specifically for 

this manuscript. 

Reply: According to the reviewer’s valuable suggestions, we have added the description of 

GRAPES-CUACE model and the motivation for the development of GRAPES-CUACE-4D-Var. 

We have rewritten this part as follow: 

“1 Introduction  

Three-dimensional (3-D) atmospheric chemical transport models (CTMs) are important tools for air 



quality research, which are used not only for predicting spatial and temporal distributions of air 

pollutants, but also for providing sensitivities of air pollutant concentrations with respect to various 

parameters (Hakami, et al., 2007). Among several methods of sensitivity analysis, the adjoint 

method is known to be an efficient means of calculating the sensitivities of a cost function with 

respect to a large number of input parameters (Sandu et al., 2005; Hakami et al., 2007; Henze et al., 

2007; Zhai et al., 2018). The sensitivity information provided by the adjoint approach can be applied 

to a variety of optimization problems, such as formulating optimized pollution-control strategies, 

inverse modelling and variational data assimilation (Liu, 2005; Hakami, et al., 2007). 

Four-dimensional variational (4D-Var) data assimilation, which is an important application of 

adjoint models, provides insight into various model inputs, such as initial conditions and emissions 

(Liu et al., 2005; Yumimoto and Uno, 2006). In the past decades, many scholars have successively 

developed adjoint models of various 3-D CTMs and the 4D-Var data assimilation systems to 

optimize model parameters. Elbern et al. (1999, 2000, 2001, 2007) constructed the adjoint of the 

EURAD CTM and performed inverse modelling of emissions and chemical data assimilation. Sandu 

et al. (2005) built the adjoint of the comprehensive chemical transport model STEM-III and 

conducted the data assimilation in a twin experiments framework as well as the assimilation of a 

real data set, with the control variables being O3 or NO2. Hakami et al. (2005) adapted the adjoint 

model of STEM-2k1 model for assimilating black carbon (BC) concentrations and recovery of its 

emissions. Liu (2005) and Huang et al. (2018) developed the adjoint of CAMx model and further 

expanded it into an air quality forecasting and pollution-control decision support system. Müller 

and Stavrakou (2005) constructed an inverse modelling framework based on the adjoint of the global 

model IMAGES and used it to optimize the global annual CO and NOx emissions for the year 1997. 

More recently, the CMAQ community (Hakami et al., 2007) built the adjoint of CMAQ model and 

its 4D-Var assimilation scheme, which were used to optimize NOx emissions (Kurokawa et al., 2009; 

Resler et al., 2010) and ozone initial state (Park et al., 2016). The adjoint of GEOS-Chem model 

and its 4D-Var assimilation system firstly developed by Henze et al. (2007, 2009) have been applied 

in a number of studies to improve aerosol (Wang et al., 2012; Mao et al., 2015; Jeong and Park, 

2018), CO (Jiang et al., 2015) and NMVOC (Cao et al., 2018) emissions estimates. Zhang et al. 

(2016) applied the 4D-Var assimilation system using the adjoint model of GEOS-Chem with the 

fine 1/4°× 5/16° horizontal resolution to optimize daily aerosol primary and precursor emissions 

over North China. These researches have laid good foundations for developing adjoint models of 

CTMs and optimizing model parameters. However, only a few of these adjoint models and their 

4D-Var assimilation systems have been widely applied to regional air pollution in China. The 

development and applications of adjoint models of 3-D CTMs and their 4D-Var data assimilation 

systems are still limited in China. Further research and more attention are required.  

Nowadays, several mega urban agglomerations in China, such as the Beijing-Tianjin-Hebei region, 

the Yangtze River Delta region, and the Fenwei Plain, are still suffering from severe air pollution 

(Zhang et al., 2019; Xiang et al., 2019; Haque et al., 2020; Zhao et al., 2020). Previous studies have 

shown that emission-reduction strategies, which are mainly based on the results of atmospheric 

chemistry simulations, play an important role in reducing pollutant concentrations and improving 

air quality (Zhang et al., 2016; Zhai et al., 2016). The emission inventory is an important basic data 

for atmospheric chemistry simulation, and its uncertainty will affect the accuracy of air pollution 

simulation, which in turn will affect the accuracy of pollution-control measures based on the model 

results (Huang et al., 2018). In order to improve the accuracy of atmospheric chemistry simulation 



and the feasibility of the pollution-control strategies, the emission data obtained by the “bottom-up” 

method needs to be inverted, which can be done through the atmospheric chemical variational 

assimilation system, to reduce the impact of emission uncertainty. 

GRAPES-CUACE is an atmospheric chemistry model system developed by the Chinese Academy 

of Meteorological Sciences (CAMS)(Gong and Zhang, 2008; Zhou et al., 2008, 2012; Wang et al., 

2010, 2015). GRAPES (Global/Regional Assimilation and PrEdiction System) is a numerical 

weather prediction system built by China Meteorological Administration (CMA), and it can be used 

as a global model (GRAPES-GFS) or as a regional mesoscale model (GRAPES-Meso) (Chen et al., 

2008; Zhang and Shen, 2008). CUACE (CMA Unified Atmospheric Chemistry Environmental 

Forecasting System) is a unified atmospheric chemistry model constructed by CAMS to study both 

air quality forecasting and climate change(Gong and Zhang, 2008; Zhou et al., 2008, 2012). Using 

the meteorological fields provided by GRAPES-Meso, the GRAPES-CUACE model has been 

realized the online coupling of meteorology and chemistry (Gong and Zhang, 2008; Zhou et al., 

2008, 2012; Wang et al., 2010, 2015). The GRAPES-CUACE model not only plays an important 

role in the scientific researches on air pollution in China (Gong and Zhang, 2008; Zhou et al., 2008, 

2012; Wang et al., 2010, 2015, 2018), but also has been officially put into operation since 2014 at 

National Meteorological Center of CMA for providing guidance for air quality forecasting over 

China (Ke, 2019).  

Recently, An et al. (2016) constructed the aerosol adjoint module of GRAPES-CUACE model, 

which has been subsequently applied in tracking influential BC and PM2.5 source areas in north 

China (Zhai et al., 2018; Wang et al., 2018a, 2018b, 2019). However, these applications of 

GRAPES-CUACE aerosol adjoint model are still limited to sensitivity analysis, and the sensitivity 

information is not fully used to solve various optimization problems mentioned above. At the same 

time, considering the current severe pollution situation in mega urban agglomerations in China, 

more accurate emission data are urgently required to formulate reasonable and effective pollution-

control strategies. In this study, we developed a new 4D-Var data assimilation system on the basis 

of the GRAPES-CUACE adjoint model, which was adapted for assimilating surface BC 

concentrations and optimizing its daily emissions in North China on July 4th 2016, when high BC 

concentrations observed in Beijing. ” 

 

Section 2.1: Given this is a paper in GMD, the description of the model needs to be much more 

complete. Here is a brief list of immediate questions; the authors would need to revise to 

address these and also provide a more detailed and complete description of the model in 

general. 

Reply: According to the reviewer’s good instructions, we have provided a more detailed and 

complete description of GRAPES-CUACE atmospheric chemistry model and its adjoint model. For 

details, please see Section 2 in the revised manuscript. 

 

What gas phase species are included? Does the model account for gas phase oxidation SO2 to 

SO4, or NOx to HNO3? Several recent papers have shown that NH3 plays an important role 

in governing aerosol concentrations in this region, given its role ammonium nitrate. However, 

it appears this model does not include NH3 or NH4, is that correct? How is missing this key 

species going to impact the results of this model? Another significant component of urban 

PM2.5 in the BTH region is secondary organic aerosol (SOA). Is any SOA included in this 



model, or is all the organic carbon assumed to be primary? If not, how does this bias the 

resulting calculations? How do the authors convert from mass of organic carbon to total mass 

for estimating PM2.5? Is the PM2.5 concentration estimated at dry or wet (i.e. including H2O 

in the mass) conditions, and if so, at what RH? 

Reply: Gas phase species in GRAPES-CUACE atmospheric chemistry model include SO2, NOx, 

NH3, CO, CO2, CH4 and non-methane volatile organic compounds (VOC). The GRAPES-CUACE 

model accounts for gas phase oxidation SO2 to SO4 and NOx to HNO3, and it also include NH3 and 

NH4. In GRAPES-CUACE model, six types of aerosols (sulfate, nitrate, sea salt, black carbon, 

organic carbon and siol dust) are formed in the aerosol module and they are segregated into 12 size 

bins with diameter ranging from 0.01 to 40.96 μm, while the ammonium is formed through the 

thermodynamic equilibrium module (ISORROPIA). Our research object is black carbon, so we 

didn’t add the description of ammonium in the manuscript published on GMDD. According to the 

reviewer’s good suggestions, we have added a more detailed model description this time. SOA in 

GRAPES-CUACE model is calculated through the aerosol and gas modules. Not all the organic 

carbon is assumed to be primary, and the organic carbon generated from gaseous VOC is also 

calculated in the gas module. The PM2.5 concentration estimated at dry conditions. 

We have added a more complete description of the aerosol module, gas module and the 

thermodynamic equilibrium module in GRAPES-CUACE model in the part of Methodology as 

follow: 

“The atmospheric chemistry model CUACE mainly includes three modules: the aerosol 

module(module_ae_cam), the gaseous chemistry module(module_gas_radm) and the 

thermodynamic equilibrium module(module_isopia) (Gong and Zhang, 2008; Zhou et al., 2008, 

2012; Wang et al., 2010, 2015). The interface program that connects CUACE and GRAPES-Meso 

is called aerosol_driver.F. This program transmits the meteorological fields calculated in GRAPES-

Meso and the emission data processed as needed to each module of CUACE. The physical and 

chemical processes of 66 gas species and 7 aerosol species (sulfate, nitrate, sea salt, black carbon, 

organic carbon, siol dust and ammonium) in the atmosphere are comprehensively considered in the 

CUACE model (Wang et al., 2015). 

CUACE adopts CAM (Canadian Aerosol Module; Gong et al., 2003) and RADM II (the second-

generation Regional Acid Deposition Model; Stockwell et al., 1990) as its aerosol module and 

gaseous chemistry module, respectively. CAM involves six types of aerosols: sulfate(SF), 

nitrate(NI), sea salt(SS), black carbon(BC), organic carbon(OC) and siol dust(SD), which are 

segregated into 12 size bins with diameter ranging from 0.01 to 40.96 μm according to the 

multiphase multicomponent aerosol particle size separation algorithm (Gong et al., 2003; Zhou et 

al.,2008, 2012; Wang et al., 2010, 2015). CAM  also calculates the vertical diffusion trend of 

aerosol particles by solving the vertical diffusion equation. The core of CAM is the aerosol physical 

and chemical processes, including hygroscopic growth, coagulation, nucleation, condensation, dry 

deposition/sedimentation, below-cloud scavenging, and aerosol activation, which is coherently 

integrated with the gaseous chemistry in CUACE(Gong et al., 2003; Zhou et al.,2008, 2012; Wang 

et al., 2010, 2015). The gas chemistry provides the production rates of sulphate aerosols and 

secondary organic aerosols (SOA), and meanwhile generates an oxidation background for aqueous 

phase aerosol chemistry, in which sulphate transformation changes the distributions of SO2 in clouds 

(Zhou et al., 2012). Both nucleation and condensation are considered for sulphate aerosol formation 



depending on the atmospheric state after gaseous H2SO4 formed from the oxidation of sulphurous 

gases such as SO2, H2S and DMS(Zhou et al., 2012). Second organic aerosols as generated from 

gaseous precursors are partitioning among different bins through condensation using the same 

approach as the gaseous H2SO4 condensation to sulphate (Zhou et al., 2012). Given that the 

nitrates(NI) and ammonium(AM) formed through the gaseous oxidation are unstable and prone to 

further decomposition back to their precursors, CUACE adopts ISORROPIA to calculate the 

thermodynamic equilibrium between them and their gas precursors (West et al., 1998; Nenes et al., 

1998a, 1998b; Yu et al., 2005; Zhou et al., 2012). ISORROPIA contains 15 equilibrium reactions, 

and the main species include gas phase: NH3, HNO3, HCL, H2O, liquid phase: NH
+ 

4 , Na+, H+, 

Cl−,NO
− 

3 , SO
2− 

4 , HSO
− 

4 , OH−, H2O, and solid phase: (NH4)2SO4, NH4HSO4, (NH4)3H(SO4)2, NH4NO3, 

NH4Cl, NaCl, NaNO3, NaHSO4, Na2SO4 (Nenes et al., 1998a). ” 

 

There should be discussion of model evaluation, ie comparison against in situ measurements, 

either here or elsewhere. 

Reply: According to previous studies, the GRAPES-CUACE model can reasonably simulate the 

spatial distribution and temporal trend of PM2.5 and BC concentrations, and the correlation 

coefficient between the simulated concentration and the observed concentration of PM2.5 is about 

0.5-0.9 (Wang et al., 2018a, 2018b), the and the correlation coefficient between the simulated 

concentration and the observed concentration of BC is about 0.6 (An et al., 2016). We also compared 

the simulated BC concentration in July 2016 against in situ measurements. The correlation 

coefficient is about 0.4 and the simulated BC concentration is relatively higher than the observed 

BC concentration. Since the priori emission used in this study was based on statistical data of 

anthropogenic emissions for 2007 (Cao et al., 2011). We were going to show the model evaluation 

with the priori and the optimized BC emission. However, we did not obtain the satisfactory results 

of the emission inversion within the specified time. Therefore, we did not write this part of the 

content into the revised manuscript. 

 

134-138: This sounds like 4D-Var, unless the GRAPES-CUACES model itself is only 2D. Can 

the authors please clarify why they describe their system as 3D-Var? 

Reply: The GRAPES-CUACE model itself is 3D. Since the optimization was performed offline in 

our previous experiment, we thought that in a strict sense, this assimilation system cannot be called 

4D-Var. In the revised manuscript, we have upgraded the code that was executed online and 

conformed to the description of 4D-Var. 

 

140-142: Being “classic” or “simple” isn’t necessarily a good thing. In this case, the steepest 

decent method can be highly inefficient, requiring many more iterations to reach the minimum 

than other approaches. Given the wide availability of more advanced gradient-based 

minimization algorithms (such as quasi-newton variable metric methods like L-BGFS-B), it’s 

not clear why the authors chose the steepest descent method. 

Reply: In the previous experiment, the code of L-BFGS-B was not successfully debugged. So we 

used the steepest descent method instead. According to the reviewer’s good suggestions, we have 

re-debugged the L-BFGS-B code and successfully applied it to the assimilation system this time. 

 



Section 2.5: Here is where the authors should describe in detail the following highly critical 

components of the inversion: gamma, B and R. What are their values? What assumptions 

were made in comping up with those values? What simulation experiments were considered 

to evaluate how robust the model inversion performance is for these values? etc. 

Reply: According to the reviewer’s valuable suggestions, we have described gamma, B, and R in 

detail as follows: 

“Based on Bayesian theory and the assumption of Gaussian error distributions (Rodgers, 2000), the 

cost function of the emission inversion is generally defined as follow: 

𝐽(𝑥) =
1

2
γ(𝑥 − 𝑥b)TB−1(𝑥 − 𝑥b) +

1

2
∑ (𝐹𝑖(𝑥) − 𝑦𝑖)TR−1(𝐹𝑖(𝑥) − 𝑦𝑖)𝑝

𝑖=0                       (9)                                                                   

where 𝑥, which we sought to optimize, generally represents the state vector of emissions or their 

scaling factors, 𝑥b is the priori estimate of 𝑥, B is the error covariance estimate of  𝑥b, F is the 

forward model, 𝑦 is the vector of measurements that are distributed during the time interval [t0, tp], 

R is the observation error covariance matrix, and γ is the regularization parameter.” 

“According to Cao et al. (2011), the uncertainty of priori BC emissions used in this study is 76.2%. 

Therefore, we assigned the priori error covariance matrix (B) to be diagonal and the uncertainty to 

be 76.2% for BC emissions. Due to the lack of information to completely construct a physically 

representative B, the regularization parameter γ  is introduced to balance the background and 

observation terms in the cost function. As described in Henze et al. (2009), an optimal value of γ 

can be found with the L-curve method (Hansen, 1998). Here, we followed this method, and obtained 

γ = 0.01 through several emission inversions with a range of γ (10, 1, 0.1, 0.01, 0.001, 0.0001, 

0.00001). ” 

“The observation error covariance matrix (R), which is difficult to quantify, generally includes 

contributions from the measurement error, the representation error, and the forward model error 

(Henze et al., 2009; Zhang et al., 2016; Cao et al., 2018). And there is also a certain error in 

calculating the BC concentration based on the BC/PM2.5 ratio. To reflect the possibly large 

uncertainties of the observation, we assumed R to be diagonal and with error of 100%.” 

 

Section 2.6: Here the authors provide a few sentences about the data that is missing (ie, 

measurements of BC), but they provide very little information about the data that is actually 

used. Instead, they need to describe the measurements used in this study, addressing the 

following points: how many cites? where are they located (provide figure)? what species do 

they measure? at what RH are the masses recorded? what is the frequency of the observations? 

what instruments are used to make the measurements? 

Reply: According to the reviewer’s good instructions, we have added a more detailed description of 

BC and PM2.5 measurements used in this study as follow: 

“The surface measurements of BC were collected from China Atmosphere Watch Network 

(CAWNET). The CAWNET was established by China Meteorological Administration to monitor 

the BC surface mass concentration over China in 2004, and had 54 monitoring stations in the 

summer of 2016. The monitoring of BC was conducted by an aethalometer (Model AE 31, Magee 

Scientific Co., USA), which uses a continuous optical gray scale measurement method to produce 



real-time BC data (Gong et al., 2019). In this study, we used the recommended mass absorption 

coefficient for the instrument at an 880-nm wavelength with 24-hour mean values of BC during July 

1-31, 2016 at 5 representative stations of CAWNET in North China (Fig.S1).  

The surface PM2.5 concentrations were obtained from the public website of China Ministry of 

Ecology and Environment (MEE) (http://www.mee.gov.cn/). The network started to release real-

time hourly concentrations of SO2, NO2, CO, ozone (O3), PM2.5 and PM10 in 74 major Chinese cities 

since January 2013, which further increased to 338 cities in 2016. The PM2.5 data were collected by 

the TEOM1405-F monitor, which draws ambient air through a sample filter at constant flow rate, 

continuously weighing the filter and calculates the near real-time mass concentration of the collected 

particulate matter. We used hourly surface PM2.5 concentrations for July 1-31, 2016 at 48 cities in 

North China, including 12 cities in the Beijng-Tianjin-Hebei region (Fig.S1). Here, we have 

averaged PM2.5 concentrations at several monitoring sites in each city to represent a regional 

condition.  

To improve the performance of emission inversion, adequate observations are needed for 

constraining the model. Due to the limited BC monitoring sites in North China, we used the surface 

PM2.5 concentrations at 48 cities described above and the BC/PM2.5 ratio to obtain the hourly BC 

concentrations for July 1-31, 2016 at 48 cities in North China. The detailed calculation process can 

be found in the Supplement. ” 

 

190-200: So the inversion is only performed for this brief period of a few days? While a good 

place to start, this seems very preliminary and only the first step of a study that needs to be 

completed prior to being published. 

Reply: The inversion can be performed for a longer period (i.e. one month). Since the parallel 

computing mode of the adjoint model and the assimilation system used in this study is still in the 

development stage, the emission inversion can only be performed in a serial mode at present. It 

takes about 240 hours to execute one iteration of a 1-month simulation under the conditions of serial 

mode. In general, it takes 10-12 iterations to converge (Zhang et al., 2016). Thus, it will take at least 

2400 hours (100 days) to converge if the emission inversion is performed for one month. Therefore, 

the emission inversion is only performed for one day, which is indeed very preliminary and only the 

first step of a study, as the reviewer pointed out. In the future, when the adjoint model and the 

assimilation system is successfully implemented in parallel mode, we will perform emission 

inversion for a longer period. 

 

197: It is not clear to me what the authors mean by “inversion area” âA˘T is this the ˇ only 

region over which they are optimizing the emissions? Why would they artificially define such 

a region? The adjoint model should give them gradients with respect to each emission within 

their model domain, and any emission with a significant gradient should be optimized. Only 

adjusting emission in a pre-defined region will bias the results by over-adjusting these 

emissions. 

Reply: In the previous emission inversion, “inversion area” is the only region over which they are 

optimizing the emissions. We artificially defined such a region to reduce calculation and storage. 

We have realized that this is inappropriate. And we have redesigned the emission inversion, in which 

the gradients with respect to each emission within the model domain were included, and any 

http://www.mee.gov.cn/


emission with a significant gradient would be optimized. Thanks to the reviewer for helping us 

correct this problem. 

 

205: Two major problems here: (1) Scientifically, this is a very bad idea; source inversion 

problems are ill-posed. The authors need to include some sort of prior constraint 

/regularization. The paper is recommended for rejection based on this alone. Note that if the 

penalty term is removed and R is assumed to be a uniform diagonal matrix, R itself has little 

to no impact on the inversion, which is also not good. Well formulated inversions are critically 

dependent upon R and B âA˘T this needs to be taken further ˇ into account. 

Reply: Thanks for pointing this out. We have realized that our approach is inappropriate, and we 

have redesigned the emission inversion, in which the penalty term was not removed and R and B 

were taken into account. Please see section 3.1 in the revised manuscript or the response to problem 

(2) below. 

 

(2) In terms of manuscript presentation, the authors have already defined the cost function, 

in a different form, using different notation âA˘T they need to introduce one ˇ and only one 

set of notation and definition for the the cost function in section 2, and then use that in section 

3. Introducing one but using another is confusing. 

Reply: We apologize for the confusing description in the previous manuscript. We have rewritten 

the description of cost function. And there was only one cost function was defined this time. The 

description of the cost function is as follows: 

“3.1 Cost function 

Based on Bayesian theory and the assumption of Gaussian error distributions (Rodgers, 2000), the 

cost function of the emission inversion is generally defined as follow: 

𝐽(𝑥) =
1

2
γ(𝑥 − 𝑥b)TB−1(𝑥 − 𝑥b) +

1

2
∑ (𝐹𝑖(𝑥) − 𝑦𝑖)TR−1(𝐹𝑖(𝑥) − 𝑦𝑖)𝑝

𝑖=0                        (9)                                                                  

where 𝑥, which we sought to optimize, generally represents the state vector of emissions or their 

scaling factors, 𝑥b is the priori estimate of 𝑥, B is the error covariance estimate of  𝑥b, F is the 

forward model, 𝑦 is the vector of measurements that are distributed during the time interval [t0, tp], 

R is the observation error covariance matrix, and γ is the regularization parameter.  

In this study, we followed the method in Henze et al. (2009), and defined 𝑥 as the state vector of 

scaling factors of BC emissions: 

𝑥 = ln (
𝑠

𝑠𝑏
)                                                                    (10)                                                                                                                                    

where 𝑠 is the state vector of the daily gridded emissions of BC at three vertical levels (non-point 

source on the ground, middle elevation point source at 50m and high elevation point source at 120m), 

𝑠𝑏 is the priori estimate of 𝑠. Thus, the priori estimate of 𝑥 (𝑥b) is equal to zero. According to Cao 

et al. (2011), the uncertainty of priori BC emissions used in this study is 76.2%. Therefore, we 

assigned the priori error covariance matrix (B) to be diagonal and the uncertainty to be 76.2% for 

BC emissions. Due to the lack of information to completely construct a physically representative B, 

the regularization parameter γ is introduced to balance the background and observation terms in 

the cost function. As described in Henze et al. (2009), an optimal value of γ can be found with the 

L-curve method (Hansen, 1998). Here, we followed this method, and obtained γ = 0.01 through 



several emission inversions with a range of γ (10, 1, 0.1, 0.01, 0.001, 0.0001, 0.00001). ” 

 

220 - 225: This interpretation is not correct. For a multiplicative relationship of a*b*10, one 

cannot ascribe the factor of 10 as being related to b any more than a, since both a*(b*10) and 

(a*10)*b are equivalent. The introduction of these subjective rescaling of 10 or 100 is arbitrary 

and likely just compensation for some other deficiency in the inversion framework. The 

Bayesian approach for including prior information in the inversion via equation 6 is the best 

way to incorporate the prior into the inversion framework; the authors should stick with that 

approach. 

Reply: Thanks for pointing this out. We have realized that the interpretation is not correct. And we 

insisted on Bayesian approach in the revised manuscript, as mentioned above in the response to 

problem (2). 

 

4.3: The authors use a comparison of the posterior model to the observations used during the 

inversion as a means of validation. This is a rather weak test, as by definition if the cost 

function has reduced, then the model is going to do a better job of matching these observations. 

Instead, the authors should test against an independent set of observations (not used during 

the inversion), or consider methods for calculating the posterior error in the emissions 

themselves (comparison to other studies, estimation using numerical techniques from the 

inversion, etc). 

Reply: According to the reviewer’s valuable suggestions, we were going to validate the inversion 

effect using the observations that were not used during the inversion. And we have addressed it in 

section 3.4 in the revised manuscript. We proposed that “The hourly BC concentrations at 36 cities 

during this time interval are adapted for the emission inversion, and the BC concentrations of the 

remaining 12 cities are used for validation of the inversion effect.” In future work, we will also 

compare our results to other studies.  

 

Code: I checked both web sites provided for downloading the GRAPES-CUACE model and 

did not see code download at either location. The urls provided are generic links for large 

institutions. This does not meet the minimum standard of code availability for GMD. 

Reply: We are sorry for not being able to download the GRAPES-CUACE code. Since the code of 

the GRAPES-CUACE model is not open source, and we are not the developers of the GRAPES-

CUACE model, we have no right to make the code public. The websites we provided are the official 

websites of the Numerical Weather Prediction Center of Chinese Meteorology Administration and 

the Chinese Academy of Meteorological Sciences. Only through official registration and 

authorization can the code of the GRAPES-CUACE model be obtained. 

 

I also reviewed the code provided the supplemental. I do not see how this code accomplishes 

the steps described in the paper. I don’t see where the information for the adjoint is input into 

the optimization routine, where the updated scaling factors are calculated, and where these 

are provided to the forward model to run, iteratively. The optimization seems to be running 

entirely offline, which would be consistent with 3D-Var; however the process described the 

manuscript and the accompanying flow chart (fig 3) shows a 4D-Var system. In general, the 



code is not well documented nor explained, which again is antithetical to the purpose of 

publishing in GMD. It also appears to allow for the cost function to have “converged” if it is 

increasing, rather than decreasing, which is odd. Shouldn’t J(k+2) always be less than J(k+1)? 

Reply: As the reviewer understood, the optimization was performed entirely offline in our previous 

experiment. In the revised manuscript, we have adopted the L-BFGS-B method and upgraded the 

code, which was executed online and included where the information for the adjoint is input into 

the optimization routine, where the updated scaling factors are calculated, and where these are 

provided to the forward model to run, iteratively. We have also realized that it’s not correct to allow 

for the cost function to have “converged” if it is increasing, rather than decreasing. During our 

testing of the new code, the cost function is always reduced (J(k+2) is always less than J(k+1)).  

 

- The grammar and writing needs a lot of work throughout, pretty much every sentence. It 

goes beyond my responsibility to edit in this detail, but the authors will need to hire editing 

services or engage additional co-authors to help with this in their next submissions. 

Reply: We apologize for the typos and grammatical issues underlined by the reviewer. We have 

carefully revised the manuscript to improve this point specifically.  

 

Other: 

Throughout: Use the phrase a priori / a posteriori OR prior / posterior consistently throughout, 

and do not mix-and-match. 

Reply: Thanks for pointing this out. We used prior/posterior consistently throughout this time. 

 

23 - 25: rewrite, not clear 

Reply: The expression of these sentences is inappropriate, so we deleted them. 

 

42: What is meant by “reverse optimization”? 

Reply: We apologize for the inappropriate expression. What we wanted to express is the 

optimization of emission. We have corrected it in the revised manuscript.  

 

82: I don’t think the nationality of the people who developed the model is scientifically relevant. 

Reply: Yes, the nationality of the people who developed the model is not scientifically relevant. We 

apologize for this expression. And we will never again appear similar inappropriate expressions. 

 

128: Can the authors be more specific here? What was checked, and how accurate did they 

find the performance to be? 

Reply: The tangent linear model (TLM) and the adjoint code of the GRAPES-CUACE model were 

checked. According to the reviewer’s valuable suggestions, we have added more specific description 

of the adjoint validation as follow: 

“2.2.2 GRAPES-CUACE aerosol adjoint 

The GRAPES-CUACE aerosol adjoint model was constructed by An et al. (2016) based on the 

adjoint theory (Ye and Shen, 2006; Liu, 2005) and the CUACE aerosol module, which mainly 



includes the adjoint of physical and chemical processes and flux calculation processes of six types 

of aerosols (SF, NI, SS, BC, OC and SD) in CAM module, the adjoint of interface programs that 

connect GRAPES-Meso and CUACE, and the adjoint of aerosol transport processes.  

As described in An et al. (2016), after the construction of the adjoint model is completed, its 

accuracy must be verified to confirm its reliability. Since the adjoint model is built on the basis of 

the TLM, the validity of the TLM must be ensured before the accuracy of the adjoint model is tested. 

The verification formula of tangent linear codes can be expressed as: 

Index = lim
𝛿𝑋→0

𝐹(𝑋+𝛿𝑋)−𝐹(𝑋)

𝛿𝑋𝐹′(𝑋)
= 1.0,                                                 (6)                                                                                              

where the denominator is the TLM output, and the numerator is the difference between the output 

value of the original model with input 𝑋 + 𝛿𝑋 and input 𝑋. It is necessary to decrease the value 

of 𝛿𝑋 by an equal ratio and repeat the calculation of the above formula. If the result approaches 

1.0, the tangent linear codes are correct. It was verified that all input variables in the model, such as 

the concentration value of pollutants (xrow) and the particle’s wet radius (rhop), have passed the 

TLM test. 

The adjoint codes can be validated on the basis of the correct tangent linear codes. The adjoint codes 

and the tangent linear codes need to satisfy Eq.(2) for all possible combinations of X and Y. In Eq.(2), 

L and L∗ represent the tangent linear process and the adjoint process, respectively. To simplify the 

testing process, the adjoint input is the tangent linear output: Y = L(X). Thus, Eq.(5) can be 

expressed as: 

(∇𝐹 ∙ 𝑑𝑋, ∇𝐹 ∙ 𝑑𝑋) = (𝑑𝑋, ∇𝑇𝐹(∇𝐹 ∙ 𝑑𝑋)).                                          (7)                                                                                       

By substituting 𝑑𝑋 into the tangent linear codes, the output value ∇𝐹 ∙ 𝑑𝑋 can be obtained and 

the left part of the equation can be computed. Then, taking ∇𝐹 ∙ 𝑑𝑋 as the input of the adjoint codes, 

the adjoint output ∇𝑇𝐹(∇𝐹 ∙ 𝑑𝑋)  can be obtained and the right part of the equation can be 

calculated. On condition that the left and right sides of EQ.(7) are equal within the range of machine 

errors, the constructed adjoint model is validated. It was verified that all input variables in the model 

have passed the adjoint test. Taking the pollutant concentration variable (xrow) as an example, both 

sides of EQ.(7) produce values with 14 identical significant digits or more. This result is within the 

range of machine errors, so the values of the left and the right sides are considered equal. Thus, the 

pollutant concentration variable (xrow) has passed the adjoint test.” 

 

150: It is more correct to say that the cost function is based on the Bayesian method. The 

adjoint is just a tool used for finding the minimum of this cost function. Strictly speaking, 

there is no such thing as an “adjoint inversion”, since the adjoint is just one piece of the overall 

inversion framework. I know that people may say that, casually, but in scientific manuscripts 

we should be more careful. Bayesian method leads to the cost function. One approach to 

minimizing the cost function is 4D-Var. An adjoint is just a part of the numerical tools we often 

use as part of 4D-Var (keep in mind it is possible to do 4D-Var without an adjoint…). 

Reply: Thanks for pointing this out. We have revised the expression as follow: 

“Based on Bayesian theory and the assumption of Gaussian error distributions (Rodgers, 2000), the 

cost function of the emission inversion is generally defined as follow: 

𝐽(𝑥) =
1

2
γ(𝑥 − 𝑥b)TB−1(𝑥 − 𝑥b) +

1

2
∑ (𝐹𝑖(𝑥) − 𝑦𝑖)TR−1(𝐹𝑖(𝑥) − 𝑦𝑖)𝑝

𝑖=0                      (9)”                                                                  



 

161: Technically FˆT is the transpose of the model Jacobian. In contrast, the adjoint model is 

what is used to solve the product of FˆT and a vector. The vector here would be the adjoint 

forcing, Rˆ(-1)(H(x) - y) 

Reply: Thanks for pointing this out. In the future, we will pay attention to using correct and rigorous 

expressions. 
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