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Abstract. We generate ocean biogeochemical model ensembles including several kinds of stochastic parameterizations. The 

NEMO stochastic modules are complemented by integrating a subroutine to calculate variable anisotropic spatial scales, 

which are of particular importance in high-resolution coastal configurations. The domain covers the Bay of Biscay at 1/36° 

resolution, as a case study for open-ocean and coastal shelf dynamics. At first, we identify uncertainties from assumptions 

subject to erroneous atmospheric forcing, ocean model improper parameterizations and ecosystem state uncertainties. The 5 

error regimes are found to be mainly driven by the wind forcing, with the rest of the perturbed tendencies locally augmenting 

the ensemble spread. Biogeochemical uncertainties arise from inborn ecosystem model errors and from errors in the physical 

state. Model errors in physics are found to have larger impact on chlorophyll spread than those of the ecosystem. In a second 

step, the ensembles undergo verification with respect to observations, focusing on upper-ocean properties. We investigate 

the statistical consistency of prior model errors and observation estimates, in view of joint uncertainty vicinities, associated 10 

with both sources of information. OSTIA-SST L4 distribution appears to be compatible with ensembles perturbing physics, 

since vicinities overlap, enabling data assimilation. The most consistent configuration for SLA along-track L3 data is in the 

Abyssal plain, where the spread is increased due to mesoscale eddy decorrelation. The largest statistical SLA biases are 

observed in coastal regions, sometimes to the point that vicinities become disjoint. Missing error processes in relation to 

SLA hint at the presence of high-frequency error sources currently unaccounted for, potentially leading to ill-posed 15 

assimilation problems. Ecosystem model-data samples with respect to Ocean Colour L4 appear to be compatible with each 

other only at times, with data assimilation being marginally well-posed. In a third step, we illustrate the potential influence 

of those uncertainties on data assimilation impact exercise, by means of multivariate representers and EnKF-type 

incremental analysis for a few members. Corrections on physical properties are associated with large-scale biases between 

model and data, with diverse characteristics in the open-ocean and the shelves. The increments are often characteristic of the 20 

underlying mesoscale features, chlorophyll included due to the vertical velocity field. Small scale local corrections are 

visible over the shelves. Chlorophyll information seems to have a very measurable potential impact on physical variables. 

1 Introduction 

The need for specific Data Assimilation (DA) methods and sustained observations in regional models and in coastal regions 

of larger-scale models has been identified early enough (see extensive reviews in De Mey, 2000 and Pinardi et al., 2017). 25 

Continental shelf and slope seas differ from the open ocean in the presence of the coast, strong bathymetry gradients, inputs 

from rivers, and shallower water. Flows in these shallower seas are forced by (inter alia) pressure and current fields from 

ocean-scale mass balances, circulation, tides and eddies, winds and air pressure variations, non-uniform density. For all 
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these, responses differ between the deep ocean and shallower shelf, and "the influence of coastal ocean processes is felt far 

beyond shelf break, interacting with open ocean dynamics and controlling the connectivity of remote ecosystems"1. 

In the coastal parts of regional ocean models, many factors can complicate the assimilation of data compared to the deep-

ocean; to name but a few, free-surface variations (tides, storm surges), anisotropy (offshore scales are generally shorter than 

alongshore scales), non-homogeneity, friction and mixing effects throughout the water column (driven in part by tides), and 5 

the fast response to the atmosphere on the shelf. The characterization and specification of model error are critical in any 

assimilation scheme, but extremely challenging in the coastal zone. The model errors are strongly dependent on time scale, 

but any attempt at separation is confounded by strong nonlinearity in the dynamics that can couple variability at different 

frequencies. 

As a first step, one must characterize the forecast errors under various error regimes by methods which include realistic error 10 

dynamics such as stochastic modelling (for example some recent studies for regional configurations are Vandenbulcke and 

Barth, 2015, in review 2018; Quattrocchi et al., 2014; Vervatis et al., 2016 and references within). Most studies point at the 

benefit of "advanced" assimilation methods with built-in error propagation (Kourafalou et al., 2015a, b), such as the 

Ensemble Kalman Filter (EnKF; Evensen, 2003) and other ensemble methods. As pointed out in Schiller et al. (2015), there 

may not be enough observations in many regions of the world to reliably estimate uncertainties of numerical models, to 15 

assimilate in those models, and to enable deterministic forecasts. Therefore, it can be expected that Ensemble Prediction 

Systems (EPS) will be widely used in the future, complementing the “deterministic” approach, for quantifying uncertainties 

in coastal products, and for providing probabilistic forecasts. 

Marine biogeochemical DA is progressively used in operational platforms as a tool to improve ocean forecasting systems; 

however, this remains a maturing subject with several challenges still to overcome. The EnKF in a simple 1D ecosystem 20 

model was first introduced by Eknes and Evensen (2002) and later by Allen et al. (2003), controlling the evolution of 

zooplankton and nutrients by assimilating chlorophyll. Simon and Bertino (2009) extended the EnKF to include a Gaussian 

anamorphosis transformation, accounting for non-Gaussian biogeochemical distributions. Ciavatta et al. (2014) instead of 

assimilating chlorophyll, adapted the EnKF to assimilate the SeaWiFS light attenuation coefficient 𝐾"(443), incorporating a 

bio-optical model. Moreover, recent studies have shed light on the assimilation of Ocean Colour Plankton Functional Types 25 

(PFTs), further improving marine ecosystem simulations (Ciavatta et al., 2016, 2018). Overall, biogeochemical model 

performance is strongly dependent by ocean dynamics and by several options in the assimilation scheme, and so the use of 

such systems is of vital importance for advancing ecosystem models (Gehlen et al., 2015). 

Lucas et al. (2008) performed stochastic ensembles using NEMO (Nucleus for European Modelling of the Ocean; 

http://www.nemo-ocean.eu/; Madec, 2012), based on a NATL4 configuration for the North Atlantic at 1/4° resolution. In 30 

their study, perturbations were derived based on EOF modes, in a multivariate context for air temperature and wind 

velocities, and in univariate for the incoming solar radiation. Later on, tools and methodologies to generate ensembles of 

perturbed NEMO simulations were introduced, including several kinds of stochastic parameterizations to simulate 

unresolved processes and scales. The ensemble capabilities of NEMO have been discussed in the literature following the 

SANGOMA (http://www.data-assimilation.net/) and OCCIPUT projects (Penduff et al., 2014), focusing on global and 35 

regional academic configurations spanning from 2° to 1/4° resolution (i.e. ORCA2, eORCA025, eNATL025) and from 

seasonal to decadal time scales (Brankart, 2013; Brankart et al., 2015; Candille et al., 2015; Garnier et al., 2016; Bessières 

et al., 2017). 

The scientific objectives of this paper cover a broad spectrum of interdisciplinary components, focusing on the generation of 

ensembles in high-resolution regional models. The study aims at guiding future ensemble-based modelling strategies, in 40 
                                                             
1 In : De Mey and Kourafalou (2014) 
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support of ensemble-based DA and probabilistic forecasting approaches. There are two scientific questions addressed in this 

work, using the Bay of Biscay as a case study for open-ocean and coastal processes. On the basis of prior knowledge in the 

literature for stochastic approaches and on what is feasible in terms of computational resources, we have selected a few 

sources of model uncertainties and we have excluded others, investigating: (a) Which are the main physical-biogeochemical 

model uncertainties in regional/coastal systems and how can we estimate them? (b) What are the impacts of the choice of 5 

different set of physical-biogeochemical perturbations on the analysed ocean state, by means of multivariate ensemble-based 

DA? In order to answer the first question, in Section 2, we present a generic method to complement the NEMO stochastic 

modules for high-resolution configurations, following the work of Brankart (2013), Brankart et al. (2015) and Bessières et 

al. (2017). In Section 3, we explore possible sources of ocean-ecosystem model errors in the coupled system and present an 

ensemble-based innovation statistics framework to evaluate upper-ocean uncertainties. The second question is addressed in 10 

Section 4, illustrating the potential impact of those ensembles on data assimilation by means of multivariate representers and 

EnKF-type incremental analysis for a few members. The concluding remarks of this work, including the code and data 

availability, are summarized in Sections 5 and 6. 

2 Methodology and experimental design 

2.1 The coupled ocean-biogeochemical model 15 

In this study, we use a regional configuration based on NEMO, in its stable version 3.6, covering the Bay of Biscay and the 

western part of the English Channel (Fig. 1). For a complete description of the numerical set-up, identical to the IBI-MFC 

within CMEMS, and for details of validation, the reader is referred to Maraldi et al. (2013). 

The NEMO ocean engine OPA (Océan PArallélisé) is coupled on-line with the passive tracer package TOP2 and the 

biogeochemical model PISCES-v2 (Pelagic Interactions Scheme for Carbon and Ecosystem Studies volume 2; Aumont et al., 20 

2015). The high-resolution configuration (hereafter BISCAY36) is inherited from earlier studies during MyOcean 

(Quattrocchi et al., 2014; Vervatis et al., 2016). The meteorological fields are provided by ECMWF (European Center for 

Medium-Range Weather Forecasts). The initial state and the components of the ocean and biogeochemical open boundary 

conditions, are inquired through the daily and weekly archives of CMEMS infrastructure, respectively. For the ocean model 

set up the reader is referred to Vervatis et al. (2016). 25 

The open boundaries of the biogeochemical model are forced by the global system BIOMER4V1R1 (resolution: 1/2°; 

http://www.mercator-ocean.fr/), providing 3D global weekly mean analysis of dissolved iron, nitrate, phosphate, silicate, 

oxygen, chlorophyll, phytoplankton concentrations and primary production parameters. The coupling frequency between the 

ocean model and PISCES is set one every two time-steps, i.e. 150 s for physics and 300 s for biogeochemistry. The on-line 

high-frequency coupling is optimal compared to an off-line approach, in terms of conservation of tracers. Note that on-line 30 

coupling means one-way ocean forcing to the ecosystem model, since no feedback is given back to the circulation model. 

The primitive equations are discretized on a 1/36° curvilinear Arakawa C-grid and the tracer transport model runs also in the 

same grid resolution (no coarsening). The TOP2 package controls the advection-diffusion equations of the passive tracers 

and the biogeochemical SMS (Sources Minus Sinks) terms. The numerical scheme for the biogeochemical processes is 

forward in time (Euler) and differs from the classical leap-frog scheme used in physics. The advection scheme is the same as 35 

in physics, i.e. QUICKEST (Leonard, 1979), but using limiter of Zalezak (1979). These options have been tested by 

Gutknecht et al. (2016) and now are used in the IBI-MFC operational system (http://marine.copernicus.eu/). 

The equations of PISCES include 24 prognostic variables simulating the biogeochemical cycles of oxygen, carbon and the 

main nutrients controlling phytoplankton growth, i.e. nitrate, ammonium, phosphate, silicic acid and iron. The model 

distinguishes four plankton functional types based on size, including two phytoplankton compartments (nanophytoplankton 40 
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and diatoms) and two zooplankton classes (microzooplankton and mesozooplankton). The distinction of the two 

phytoplankton size classes, along with the description of multiple nutrient co-limitations allows the model to represent ocean 

productivity, across different biogeographic ocean provinces (Longhurst, 1998). The phytoplankton prognostic variables are 

the total biomass in C, Fe, Si (only for diatoms) and chlorophyll and hence the Fe/C, Si/C, Chl./C ratios are variable. This 

allows a more accurate conversion of phytoplankton into chlorophyll concentrations, which is of great importance for 5 

comparisons with proxy ocean colour satellite data. Other Redfield ratios between C/N/P are kept constant according to 

Takahashi et al. (1985) values 122/16/1. PISCES also distinguishes three non-living pools for organic carbon: small 

Particulate Organic Matters (sPOM), big Particulate Organic Matters (bPOM; different settling velocities with sPOM) and 

semi-labile Dissolved Organic Carbon (DOC). 

2.2 Stochastic parameterizations 10 

A generic approach based on first-order autoregressive processes AR(1) of different stochastic parameterizations is proposed 

for both components of the coupled system. The work is based on recent advances in NEMO explicitly simulating the effects 

of model uncertainties. A comprehensive analysis for the stochastic formulation of NEMO is given in Brankart (2013) and 

Brankart et al. (2015). A theoretical background for probabilistic ocean modelling, with technical details on implementation 

strategies based on NEMO (e.g. online ensemble diagnostics, connection with observation operators and DA systems) is 15 

provided by Bessières et al. (2017). 

Brankart et al. (2015) studied the impact of two broad categories in ensemble modelling: the first is the Stochastic Perturbed 

Parameterized Tendencies (SPPT) and the second is the Stochastic Parameterization of Unresolved Fluctuations (SPUF). 

The SPPT implementation aims at estimating relevant perturbations on the models’ parameterized tendencies and perform 

Monte-Carlo techniques to obtain a pdf of these tendencies. The stochastically derived parameterized tendencies are added to 20 

the models’ non-parameterized tendencies (the latter assumed free of uncertainties). In line with SPPT, the SPUF 

implementation aims at obtaining an ensemble of forecasts with enhanced reliability. The method is based on random walks 

sampling gradients from the state vector. Those gradients are added to the models’ operator as unresolved scales and/or 

(bio)diversity. 

In this study, ensemble simulations are performed with the SPPT method in which stochastic perturbations are generated by 25 

maps 𝜉 of AR(1) processes. In practice, every time-step Gaussian AR(1) processes are generated following the expression 

defining 𝜉: 

𝜉()* = 𝑒-
.
/ ∙ 𝜉( + 𝜎 ∙ 1 − 𝑒-

5
/ ∙ 𝑤 + 𝜇 ∙ 1 − 𝑒-

.
/        (1) 

where 𝑘 is the model time-step, 𝑤 is white Gaussian noise, 𝜇, 𝜎 and 𝜏 the mean, the standard deviation (uncertainty 

amplitude) and the correlation timescale, respectively. Brankart et al., (2015) performed independent Gaussian 30 

autoregressive processes at every model grid point and introduced spatial dependence via Laplacian filtering to the 𝜉(:) 2D or 

3D maps (grid index 𝑖 = 1, … ,𝑚). In their work, an alternative is also proposed to solve an elliptic equation noting that both 

methods are flow dependent. 

In the present study, we aim at complementing the NEMO stochastic modules, by integrating a subroutine to calculate 

explicitly variable anisotropic 2D spatial scales. The latter is of high importance, especially in high-resolution regional 35 

applications. Technically, this is done by solving an elliptic Gaussian equation on a few model grid points randomly selected 

in the domain. In general, the multivariate normal distribution expression 𝒢(𝒓) is given by: 

𝒢(𝒓) = *
AB𝚺

𝑒-
.
5 𝒓-𝒓

D𝚺E. 𝒓-𝒓           (2) 
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where 𝒓 ∈ 𝑟*, … , 𝑟H  a distance vector from the mean centers 𝒓 ∈ 𝑟*, … , 𝑟I  located on a few model grid points 𝑖 =

1, … ,𝑚 < 𝑠, and 𝚺 the covariance matrix ℝI×I (in general non-diagonal for rotated distributions) of the variances 𝝈𝒓A ∈

𝜎O**
A, … , 𝜎OII

A  controlling the length scales of the Gaussian distributions. The vector 𝒓 covers the whole model domain 

over which perturbations are generated. For this specific configuration, we use a bivariate form of the elliptic Gaussian 

equation (i.e. 2D spatial fields), with diagonal 𝚺 covariance matrix. Other options include a tensor form that would make 5 

those patterns coast-aware (Barth et al., 2009). The latter is not important for the specific BISCAY36 configuration (e.g. not 

many islands/islets) and for the variables we choose to perturb (e.g. atmospheric forcing). The relation between 𝜉 and 𝒢(𝒓) 

maps is illustrated in the programming flowchart for the integrated algorithm in Appendix A. 

The tuning of the perturbation patterns depends on the properties of each parameterized tendency. Α typical correlation 

length can be chosen per tendency. In order to introduce anisotropy, the spatial length scales and the mean vector of the 2D 10 

distributions vary randomly per ensemble member. Instead of implementing white noise 𝑤 in Eq. (1), a multi-modal 

stochastic pattern is calculated as the sum of Eq. (2) over a few randomly selected model grid points solving the equation: 

𝒢(𝒓)(:) = 0I
:Q*             (3) 

The uncertainty amplitude of the AR(1) processes can be tuned by tapering techniques at ±𝜎 declared in Eq. (1). The 

method incorporates the anamorphosis transformation capabilities of NEMO discussed in Brankart et al. (2015). This is 15 

done, by applying a nonlinear change of the Gaussian stochastic maps into non-Gaussian distributions, before using them in 

the models’ parameterized tendencies. 

Overall, this work provides a simple and computationally inexpensive way introducing spatial scales in comparison to the 

filtering operator. The implementation is done in a full MPI context and the technical aspects are presented in Appendix A. 

The method is generic and yields positive results, in terms of realistic spatial patterns compared to noise, especially in high-20 

resolution configurations. Figure 2, shows examples of AR(1) stochastic patterns drawn for several variables of the coupled 

system, in order to introduce model uncertainties. In the case of the elliptic Gaussian equation a robust stochastic pattern is 

explicitly formulated, such as for instance the wind, with multi-scales varying around an average of 𝜎O~1° (Figs. 2a-d). In 

the same simulation larger spatial stochastic patterns can be applied to other atmospheric variables, for example the air 

temperature and sea level pressure adopting scales of 𝜎O~2° and 𝜎O~3° respectively (Figs. 2e-f). The optimal use of the 25 

filtering operator is achieved in coarse global/regional configurations performing a few Laplacian passes (Brankart et al., 

2015; Garnier et al., 2016). At 1/36° resolution the option to iterate 100 times the Laplacian operator results to noisy spatial 

patterns, not representative for most oceanic processes (Fig. 2g). 

2.3 Experimental environment 

Ensemble forecasting systems are optimally designed in view of high demand in computational resources. The present 30 

configuration uses the enhanced MPI strategy of NEMO for double parallelization in the spatial domain and the ensemble 

dimensions (Bessières et al., 2017). The latter means that ensemble simulations are carried out by just one call to the 

executable of the coupled NEMO-PISCES system. The approach is generic and provides the flexibility to test various 

options in the resources geometry, under different programming environments and HPC facilities. In this study, BISCAY36 

scales-out using 96 processors of domain decomposition per ensemble member, excluding land processors. The 35 

configuration uses the NEMO I/O strategy and is connected to an external server (i.e. XIOS controlled by an XML file) thus, 

increasing the total number of processors for the ensemble simulations including those handling the I/O specifications (e.g. 

model variables, domains, grid, output frequencies etc.). In this context, our ensemble experiments are designed to fit the 

scalability limits encountered in nowadays operational systems. Vervatis et al. (2016) showed that results for BISCAY36 

converge with increasing ensemble size in the range of 20 to 40 members. In this work, we set the same range of members 40 
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resulting to a scalability problem of the order of O(10V) cores (cf. Appendix B). The operational feasibility of such a system 

is viable in today’s NWP systems and elements of this work could be transferred to other operational platforms. 

A five months’ spin-up period is allowed for the free run with no stochastic parameterizations (hereafter Control Run-CR), 

from July to November 2011. As in Vervatis et al. (2016) the CR is carried out for the ocean model to develop coherent 

structures starting from PSY2V4R2 analysis (resolution: 1/12°; http://www.mercator-ocean.fr/) and identify the main 5 

physical processes in the Bay of Biscay. The same period is used for the spin-up of the on-line coupled biogeochemical 

model. The deterministic CR is extended from December 2011 to June 2012 and serves as a reference for the ensemble 

experiments. In Fig. 3, we present the ocean state of the unperturbed CR on April 30, 2012, for the surface variables SSH, 

SST, SSS, total chlorophyll concentration and the two classes of chlorophyll “nano” and “diatoms”. 

One important challenge in ensemble forecasting is to find the most important sources of model errors and assess properly 10 

the stochastic parameterizations. In order to tackle this issue, we designed a twofold experiment. At first we aim at 

identifying model uncertainties in the Bay of Biscay, performing medium-range ensembles of 20 members for one month 

during the spring bloom period in April 2012 (i.e. S1-8 experiments in Table 1). Several stochastic parameterizations are 

tested on a case-by-case basis. The stochastic options are reassessed for each sensitivity experiment. A final selection of 

perturbations is established, having a noticeable impact in terms of spread in upper-ocean properties. In a second step, we 15 

perform seasonal-range ensembles of 40 members (i.e. Ens1-3 experiments in Table 1) following an optimal stochastic 

environment, defined from the previous less expensive computationally sensitivity experiments. In line with this, we decided 

not to perturb variables that the model is not sensitive to, as for example the Photosynthetically Active Radiation (PAR) 

coefficient 𝑘WXY  for the penetrative solar radiation (sensitivity experiments not shown). In summary, the stochastic 

parameterizations are optimal in terms of realistic physical-biogeochemical perturbations, i.e. proper spatiotemporal scales 20 

and noise-to-signal ratio, as well as computational efficiency (e.g. no members are dropped during the ensemble run). The 

seasonal-range ensembles are carried out from December 2011 to June 2012 and focus on the impact of model errors in 

surface chlorophyll concentrations. 

In Table 1, we summarize our adopted options for an optimal stochastic protocol of the sensitivity experiments S1-8 and 

seasonal-range ensembles Ens1-3 in BISCAY36, including also Ens0 as a reference ensemble discussed by Vervatis et al. 25 

(2016). The Ens0 ensemble is different from the Ens1-3 ensembles, since it was generated by performing stochastic 

modelling of the wind forcing using EOF modes. All sensitivity S1-8 and seasonal-range Ens1-3 ensembles (and their 

members) were initialized by using the ocean and the biogeochemical states of the deterministic CR, without perturbing the 

initial conditions. Flow dependent errors are not constrained by DA and the perturbation mechanism remains at work 

through the whole period. A total number of 40 stochastic restarts is archived, where “pseudo-random” seed numbers (with 30 

different random sequences) are saved for all stochastic parameterizations. The production of those 40 stochastic restarts is 

achieved by performing a pre-simulation experiment of only a few time-steps, using the NEMO ensemble capabilities in 

double parallelisation for the model domain and the ensemble members. Those stochastic restarts were used to ensure the 

reproducibility of the stochastic patterns upon initialisation of the ensembles. The latter capability allows us to investigate 

the growth rate of model uncertainties, with the same age of errors, under different atmosphere-ocean states. For this, we use 35 

the first 20 stochastic restarts to initialize the sensitivity experiments S1-8 in April 2012, as well as to initialize the first 20 

members of the seasonal-range ensembles Ens1-3 in December 2011. The latter exercise aims at generating the same 

stochastic patterns for 20 members, over two different periods. In addition, the second set of 20 members is used to test the 

convergence of covariances in our seasonal-range ensembles. 

In this study, we investigate whether ensemble-based cross-covariances are enriched, with the possibility to increase DA 40 

performance, by perturbing both components of the coupled ocean-biogeochemical model. In this regard, an increasing 
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complexity of experiments to augment chlorophyll spread is designed as follows: initially perturbing only physics (Ens1), 

then only biogeochemistry (Ens2) and finally both models simultaneously (Ens3). Following our strategy with the stochastic 

restarts, we are able to reproduce the ocean circulation of the Ens1 40 members in both Ens2 and Ens3 experiments. The 

same applies for the Ens2 biogeochemical perturbations integrated in Ens3 run. In the coupled simulation, the evolution of 

the biogeochemical tracers is described by the advection-diffusion equation: 5 

𝜕[𝐶 = − 𝛻 𝑢 ∙ 𝐶
_"`ab[:cd

− 𝐾e	𝛻eA𝐶
ecO:gcd[_h
":iijH:cd

− 𝜕g 𝐾g	𝜕g𝐶
`aO[:b_h
":iijH:cd

kdH*

+ 𝑆𝑀𝑆(𝐶)
n:chcop

kdHA

kdHV

       (4) 

where on the right hand of Eq. (4) the first term represents the advective transport of tracers along isopycnals, the second and 

third terms the 3D parameterized diffusion processes and the last term denotes all biological processes affecting the 

concentration of tracer 𝐶 including the Sources Minus Sinks (𝑆𝑀𝑆), such as for example respiration, death and grazing in 

phytoplankton growth and decay. The experimental protocol followed herein is illustrated in Eq. (4) with the production of 10 

different ensembles. 

2.4 Generation of stochastic perturbations 

Μodel parameterized tendencies 𝜕[𝒫(𝔁, 𝓾, 𝓹) are a function of the state vector 𝔁, the forcing 𝓾 and the vector of the model 

parameters 𝓹. The proposed experimental protocol is designed to reveal the main sources of model uncertainties. In addition, 

we aim at expanding the ensemble capabilities of BISCAY36 compared to Vervatis et al. (2016) wind perturbations. The 15 

SPPT-AR(1) approach is now applied to several kind of model tendencies. These uncertainties emerge from assumptions on 

erroneous atmospheric forcing, ocean model improper parameterizations and ecosystem model state uncertainties. The 

scientific base of these assumptions is discussed below. 

2.4.1 Erroneous atmospheric forcing 

Downscaling methods are subject to many sources of model uncertainties and one of the most prominent is the boundary 20 

conditions. In this study, we consider uncertainties based on atmospheric forcing, though equally important are errors 

imposed on open-ocean boundaries (not discussed in this study; the subject is investigated by Ghantous et al., in review 

2018). The atmospheric forcing in coastal/regional applications is likely to trigger large scale biases and constitute a major 

source of ocean model uncertainties. We investigate here uncertainties on the wind velocities 𝓤 = (𝒖_:O, 𝒗_:O), the Sea 

Level Pressure (𝑺𝑳𝑷) and the air temperature (𝑇_:O), i.e. 𝓾	 ∈ 	 𝓤, 𝑺𝑳𝑷, 𝑇_:O . The ECMWF fields are multiplied by AR(1) 25 

stochastic processes (Figs. 2a-f) following an SPPT scheme: 

𝓾( → (1 + 𝛼 ∙ 𝜉() ∙ 𝓾(           (5) 

at every time-step 𝑘, where 𝛼 is an optional tapering value in the range 0	1  (Buizza et al., 1999). In Eq. (1), we select 

representative values for the uncertainty amplitude 𝜎, the average spatial correlation length 𝜎O and the correlation timescale 𝜏 

per tendency. Output diagnostics from the CR are analysed to deduce pdfs (not shown) for all variables of interest. Wind 𝓤 30 

and 𝑺𝑳𝑷 exhibit normal distributions, whereas 𝑇_:O shows a bimodal distribution due to the seasonal cycle. Hereof, we 

assume that uncertainties are related to synoptic timescales, e.g. atmospheric phenomena such as storms, and we set a 

temporal correlation length of a few days for all atmospheric variables. The synoptic timescales are also verified by time-

lagged autocorrelation methods applied in the CR. The spatial scales of the atmospheric fluctuations are determined by 

calculating the atmospheric perturbations over synoptic timescales or by performing EOFs (Vervatis et al., 2016 and 35 

references within). The signal-to-noise ratio is assigned according to the statistical properties of the pdfs. The values reported 

in Table 1 are in agreement with other studies in the literature (e.g. Palmer et al., 2009). 
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2.4.2 Ocean model improper parameterizations 

Air-sea fluxes of momentum, heat and mass are key quantities linking the two mediums. The physical processes related to 

these quantities are parameterized in terms of bulk coefficients. These parameterizations are deduced from empirical laws 

and incorporate wind-speed dependent coefficients, with feedback from the sea state on the fluxes. In this study, we assume 

model errors based on limitations of the parameterization of air-sea interaction. Stochastic perturbations are imposed to the 5 

models’ momentum drag 𝑐", latent 𝑐a and sensible 𝑐e heat coefficients. The AR(1) distribution and temporal scales are the 

same as those of the wind (Table 1). On the other hand, the spatial scales are assumed to be the one of the ocean state and are 

set of a few Rossby radii of deformation in BISCAY36 (Fig. 2g). The same stochastic pattern is applied to all coefficients, 

i.e. the coefficient perturbations are dependent to each other, in order to retain the convergence of iterative processes in the 

CORE bulk formulae (Large and Yeager, 2004) and to augment the impact of the method. The positiveness of the 10 

coefficients (similarly to lognormal distributions) is verified by tapering methods and for different stability conditions and 

wind speed regimes in the bulk formulae. Similarly to Eq. (5) the SPPT perturbation scheme is expressed as: 

𝓹( → (1 + 𝛼 ∙ 𝜉() ∙ 𝓹(           (6) 

Model errors based on flux boundary conditions are also imposed at the bottom layer. The bottom drag 𝑐n parameterizations 

are based on model assumptions for the vertical shear, the mixing scheme and the nature of the seabed (rocky, sandy or 15 

muddy), which modifies the bottom boundary layer. The stochastic fluctuations aim at introducing model uncertainties due 

to tidal mixing in the shelves. The bottom drag in many cases is approximated as a permanent feature in ocean models (e.g. 

constant minimum values in the Abyssal plain as in Maraldi et al., 2013) and therefore, large temporal scales up to one 

month are imposed in Eq. (1). Finally, considering limited knowledge for the dominant scales in the bottom layer (or more 

precisely, the departures from the "mean bathymetry" involving the nature of the seabed), we apply white noise and 20 

Laplacian filtering to introduce AR(1) spatial scales (Fig. 2h). The formulation of the bottom drag follows a quadratic log-

law, with minimum positive values clamped at 2.5×10-V in the Abyssal plain and maximum values observed in the shallow 

areas of the English Channel. 

2.4.3 Ecosystem model state uncertainties 

Marine ecosystems encompass many sources of uncertainties stemming from unresolved model processes. These 25 

uncertainties are attributable to two broad categories, i.e. unresolved biodiversity and unresolved scales. The first category 

refers to the biodiversity restriction of only a few tens of species resolved by the model in an effort to reduce state variables 

(Le Quéré et al., 2005). This case calls also attention to errors in the parameterization of biogeochemical missing processes, 

controlling the feedback between sub-systems, i.e. ecosystem, chemistry, oxygen and carbonate models. These errors emerge 

from a limited number of compartments, often leading to a crude parameterization of their processes. The second category 30 

indicates uncertainties of unresolved scales, imposed even by resolved species. The SPUF scheme appears to be the most 

natural method to simulate uncertainties for both categories of unresolved biodiversity and scales. However, one must 

consider that performing random walks in the view of a large state vector could be computationally expensive. In line with 

this, unresolved biodiversity can be explored via the SPPT scheme (Brankart et al., 2015; Garnier et al., 2016). 

Model errors due to unresolved biodiversity can be investigated by perturbing the biogeochemical tracers and/or the 35 

parameters (e.g. nutrient limitations, growth/mortality rates, grazing etc.). In this study, we follow the work by Brankart et 

al., (2015) and use an SPPT-AR(1) scheme to introduce uncertainties in all 24 tracers of PISCES, in the 𝑆𝑀𝑆(𝐶) term of Eq. 

(4). This is practically done by introducing a stochastic field 𝜉( described in Eq. (1), at every time-step 𝑘, given by: 

𝑆𝑀𝑆((𝐶) → 𝑆𝑀𝑆((𝐶) ∙ 𝑒
��-

�5
5           (7) 
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The stochastic perturbations are assumed to have a lognormal distribution and large uncertainty amplitude 𝜎 up to 60% 

(Table 1). The bias correction term �55  (Simon and Bertino, 2009) is part of the model tuning to increase patchiness in the 

areas near peak values (Fig. 2i). The spatial scales are representative of a few Rossby radii of deformation and correlation 

time-scale up to 10 days, i.e. characteristic of the underlying mesoscale dynamics. Note, that these are 3D stochastic 

fluctuations. Sensitivity experiments showed that perturbing all tracers across all levels with the same 2D stochastic pattern, 5 

yields robust uncertainty regimes with an ensemble spread increasing in time. The latter approach is the one followed in this 

study. Alternatives such as having different stochastic patterns per level and/or tracers degrades the impact of the method. 

3 Ensemble generation and evaluation framework 

3.1 Like-for-like ensemble simulations 

Ensemble like-for-like sensitivity experiments S1-8 are performed in order to assess error regimes based on stochastic 10 

modelling of the ocean-ecosystem state. In Fig. 4, we present maps of model uncertainties for all medium-range ensembles 

after one-month spin-up on April 30, 2012. The reference simulation for those second-order moments is the CR, illustrated 

in Fig. 3, for the upper-ocean state variables under investigation. These small ensembles are useful for the tuning of the 

stochastic parameters and their spread is moderate compared to the seasonal-range ensembles with longer spin-up period. 

Results in medium-range experiments suggest that error regimes for SST and SSH are mainly driven by the wind forcing 15 

(Fig. 4a, g in comparison with Fig. 4f, l). Wind uncertainties have a large impact on upper-ocean uncertainties in terms of 

Sverdrup dynamics influencing both geostrophic and Ekman components. Imposing the same perturbation field for both u 

and v wind velocities, i.e. not changing the wind azimuth, result in similar uncertainties for the vorticity and Ekman 

pumping, further enhancing model errors. 

The rest of the perturbed variables locally augment the ensemble spread in filament-like patterns in the periphery of eddies, 20 

near river plumes and in the shelf slope due to energy trapping (cf. Fig. 4 with respect to Fig. 3). Air temperature 

uncertainties have a significant impact on SST (Fig. 4b) and chlorophyll compared to other experiments excluding S1 (Fig. 

5). Uncertainties in the wind drag coefficient have moderate impact on the wind stress and consequently on the spread of 

surface variables compared with those of the wind forcing (approx. an order of magnitude smaller; Fig. 4d, j). This is 

because the expression of 𝑐" has a correction dependency based on the different wind speed regimes. The ocean response to 25 

SLP forcing has two components: the first-order Inverse Barometer (IB), which is isostatic and dominant at large scales, and 

the second-order non-IB, which depends mostly on the geographic region. The IB response to SLP perturbations has spatial 

scales that are equal or larger than the external Rossby radius and the IB pumping on the Abyssal plain (Tai, 1993). If we 

subtract the IB response from SSH then we are left with the non-IB, which in our case is of limited impact on SST and SSH 

(Fig. 4c, i). Uncertainties in the bottom drag coefficient amplify error regimes mostly for SST and less for SSH, along the 30 

shelf break and on the shelves, and especially on the macrotidal area of the English Channel dynamically controlled by 

strong tidal currents and fronts (Fig. 4e, k). 

Biogeochemical uncertainties arise from inborn ecosystem model errors and from errors in the ocean state variables (Fig. 5). 

All sensitivity experiments perturbing physics leave an imprint on chlorophyll uncertainties, which is on several occasions 

significant compared to other model variables, like for instance the SSH and SST. When perturbing only the ecosystem 35 

model, we implement an identical stochastic pattern across all variables and vertical levels in order to increase the impact of 

the method. Since physics are not perturbed, the biogeochemical uncertainties are passively advected via ocean circulation. 

In all cases, physical model errors are found to have larger impact on chlorophyll spread than those of the ecosystem 

perturbations. The latter is explained by the fact that ocean physics identical to all members (i.e. S7) is a strong dynamical 

attractor to the system, by means of a nutrient export heavily influenced by the velocity field, which consequently tends to 40 
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supress other sources of uncertainty, such as those of the SMS of the biogeochemical model. In general, the spread is largest 

in S8 where both physics and biogeochemical perturbations are applied simultaneously. Biogeochemical uncertainties result 

from errors in the coupled system in variable proportions depending also on the location. An example, is the chlorophyll 

uncertainties in the English Channel compared to the mesoscale field in the Abyssal plain. 

An uneven ensemble spread is apparent comparing “nano” and “diatoms” compartments of chlorophyll (Figs. 5i-n). The 5 

latter is expected from the different model parameters of the phytoplankton classes and the additional requirements in 

nutrient supply of Si for the primary production of diatoms. Larger uncertainties between the two classes are observed for 

the nano-chlorophyll, especially in the open-ocean, whilst diatoms have larger uncertainties in the shelves and in the English 

Channel, where errors are dynamically controlled by tides. In line with this, it is evidenced that the uncertainty regimes for 

each class follow the different size class chlorophyll abundance patterns in the region (cf. Fig. 5 with respect to Fig. 3), 10 

especially during spring bloom. 

An interesting remark is that even though model uncertainties are in general larger when both physical and biogeochemical 

models are perturbed, a small decrease in chlorophyll spread may be observed over the Abyssal plain in presence of coherent 

eddies. This effect is attributed to two facts. First, the ensembles are not constrained by DA and therefore, "old-errors" in the 

system contaminate the error regimes of "flow-dependent" errors and second, biogeochemical processes may be resolved on 15 

the sub-mesoscale cancelling part of the mesoscale error patterns. The latter does not change the fact that the dominant 

spatial scales in the Abyssal plain are characteristic of the underlying quasigeostrophic mesoscale features, chlorophyll 

included due to the mesoscale vertical velocity field. 

The investigation of uncertainty regimes for other state variables of PISCES, is beyond the scope of this study. A brief 

remark, is that the observed error patterns in upper-ocean ecosystem properties, for instance for zooplankton classes or 20 

nutrients, are similar to those of chlorophyll classes (not shown). 

3.2 Ensemble-based innovation statistics 

The ensembles undergo verification with respect to observations and in particular with respect to model-data misfits 

(hereafter called “innovation” for simplicity). In this study, we focus on upper-ocean properties for SLA, SST and surface 

total chlorophyll. First, it is understood that the innovation spread is the result of prior uncertainties of both the model and 25 

observations. Therefore, that spread should be consistent in terms of ensemble statistics with the prior model uncertainty 

estimates and the observational uncertainties (measurement and representativity errors). The observational networks are 

accessed via the CMEMS TACs infrastructure (http://marine.copernicus.eu/) and are summarized in Table 2. The 

observational errors are drawn from literature or the TACs infrastructure when available, and their estimate is set to a 

representative constant value for each variable (Table 2). 30 

For the consistency analysis of Ens1 perturbing physics only, we use two observational networks, one for SST and one for 

SLA (Obs1a, b in Table 2). In turn, one observational network is used for the consistency check of Ens2 and Ens3 ecosystem 

model uncertainties (Obs2 in Table 2). The objective is to compare distributions, calculating first- and second-order statistics 

in data space pertaining to the distribution of observational samples, ensemble samples in data space and innovation samples, 

i.e. "Observations minus Ensemble" (𝑂𝑚𝐸) metrics. For this task, observations are perturbed with a Gaussian random 35 

number, in order to generate data distributions with the proper error standard deviation for each network. All observations 

are considered independent (no cross-correlations) and their Error Covariance Matrix (ECM) is diagonal. 

Considering an observation 𝒚c and model states 𝒙i of the ensemble in data space, i.e. 𝐻 𝒙i , we define the innovation 

vector 𝒅 = 𝒚c − 𝒚i = 𝒚c − 𝐻 𝒙i ≈ 𝜀c − 𝑯𝜀i, where 𝐻 an observation operator and H a linearized version, 𝜀c ∈ 𝑁 0, 𝑹  

the measurement error, with 𝑹 being the diagonal observational ECM, and 𝜀i ∈ 𝑁 0, 𝑷i  the true (unknown) model error, 40 
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with 𝑷i	being the prior ECM. The approximated form 𝑷i of the prior ECM is derived by the estimate of the model error 

𝜀i = 𝒙i − 𝒙i. The following ensemble-based consistency statistics in data space are calculated: 

Ensemble spread (i.e. 1std): 𝜎i = (𝑯 𝒙i − 𝑯 𝒙i )A      (8) 

Ensemble mean innovation vector, which denotes the center of the mean 𝑂𝑚𝐸 distribution and should be close to zero: 

𝑂𝑚𝐸n:_H = 			 𝒅            (9) 5 

Standard deviation (i.e. 1std) of the debiased mean 𝑂𝑚𝐸 distribution, which should be larger than 𝜎i and it is valid even if 

𝑂𝑚𝐸n:_H is not small: 𝐷𝑂𝑚𝐸 = (𝒅 − 𝒅)A         (10) 

In addition, we calculate quantiles in data space to assess the ensemble median Q2(50%), the mid-spread Q1(25%)-Q3(75%) 

and the ensemble envelope Q0(1%)-Q4(99%). 

3.2.1 SST L4 gap-free gridded observations 10 

The use of high-resolution SST observations appears necessary when it comes to validate ensembles at eddy-resolving 

scales, such as in BISCAY36 at 1/36° resolution. The OSTIA SST L4 gap-free gridded dataset is chosen for the evaluation 

of Ens1 perturbing physics. OSTIA is a near-real-time daily-mean product of foundation SST free of diurnal variability. The 

model proxy for the foundation SST has been chosen to be the temperature interpolated at 10-meter depth. The dataset is 

reconstructed from merged multi-sensor in-situ and satellite observations for the Global Ocean, delivered on a rectangular 15 

grid at 0.05°×0.05° horizontal resolution. 

Figure 6 shows examples of consistency metrics for different datasets and periods based on innovation samples. An 

ensemble of OSTIA SST, randomly perturbed using a Gaussian law assuming an observational error of 0.5	°𝐶, is compared 

with Ens1 (Fig. 6a). The Ens3 ensemble exhibits an identical statistical behaviour, since there is no feedback onto physics 

from the ecosystem model. The calculations are carried out through the whole period of the seasonal-range ensemble. For 20 

the S6 ensemble in Fig. 6b, calculations are performed in April 2012. 

Both model and data ensembles appear to be compatible with each other since vicinities overlap (Fig. 6a). Assimilating those 

observations, with those error estimates, with an ensemble or Bayesian filter would probably be well-posed, at least in data 

space, in the sense that the joint uncertainty vicinities associated with both sources of information appears to be nonzero. The 

statistical properties showing that the ensemble is consistent, are the model error estimate σ� being lower than the innovation 25 

spread DOmE, and the ensemble mean innovation vector OmE���  contained within the observational error interval ±0.5	°C, 

which are desired conditions in both cases (Fig. 6b). It can be seen that the σ� spread indicator slowly evolves in time, 

mainly increasing, consistently with the fact that the perturbation mechanism remains active throughout the period. 

However, there are occasions where the Ens1 spread is reduced and the ensemble envelope is being under-dispersive and 

sometimes biased with respect to the observational pdf. This is observed over a short period during the spring shoaling of the 30 

thermocline. This model overconfidence is likely associated with missing error re-stratification processes in our stochastic 

protocol, such as for example, the vertical subgrid scale physics which are not perturbed (e.g. the vertical eddy viscosity and 

diffusivity coefficients calculated in the turbulent closure scheme). 

Another remark comparing the seasonal-range Ens1 and medium-range S6 ensembles, is that the SST model errors initially 

increase with similar rates (Fig. 6b), despite the fact that they have different number of members and initial conditions. The 35 

stochastic restarts in these two experiments are identical and therefore, the stochastic fields applied in the perturbed 

tendencies are alike. However, after a few days the model errors appear to increase with different rates, pertaining to the 

different ocean-atmosphere states during December for Ens1 and April for S6. 
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In Fig. 6b, we compare the Ens1 SST spread with the reference ensemble Ens0 (Vervatis et al., 2016). Both stochastic 

approaches in Ens0 and Ens1 ensembles can be considered as variants of the perturbed tendency scheme. In case of the 

AR(1) processes we have the option to perturb several variables in Ens1, compared to the stochastic modelling of the wind 

forcing in Ens0. Therefore, the former yields a larger SST spread during winter and at the end of the run, with their 

difference ranging at about 0.05	°𝐶 to 0.1	°𝐶. At the end of the run both ensembles become biased with respect to the 5 

observations (cf. Vervatis et al., 2016 for Ens0 and Fig. 6b for Ens1), since are not constrained by DA. During spring in 

presence of a strong thermocline the spread is reduced in both ensembles, suggesting that there are missing error processes in 

both stochastic protocols (i.e. in addition to the wind for Ens0 and all variables perturbed in Ens1). 

3.2.2 SLA L3 along-track observations 

The data space consistency analysis for Ens1 SSH is carried out with the CMEMS SLA L3 along-track product in Table 2, 10 

assuming a Gaussian uncorrelated observational error of 0.05	𝑚. The product includes processed data from several altimetry 

missions and in specific, for our period of interest from Envisat and Cryosat-2, delivered at 14	𝑘𝑚 resolution for filtered and 

sub-sampled corrected data. Both data and model include tides. The model includes pressure forcing and therefore, an 

inverted barometer (IB) correction is applied to the model and observations. In order to calculate the SLA model equivalent, 

we use the Mean Dynamic Topography (MDT) of the parent model IBI36 (Mounir Benkiran pers. comm.). 15 

Figure 7a shows the distributions corresponding to averages of all SLA along track observations crossing the BISCAY36 

domain, as well as the Ens1, Ens0 ensemble envelopes in data space. Both model ensembles appear to have more energy at 

the weekly timescale, occasionally at shorter timescales, and overall at the seasonal timescale compared to the observations. 

In addition, the steric cycle of the observations appears to be weak in terms of contribution to the sea level variability. The 

minimum levels in both model and data are reached in mid-February, 2012, whilst for the rest of the simulation the SLA 20 

model equivalent shows larger variability than the data, most likely attributable to the prescribed open boundary conditions. 

A notable difference is observed between Ens1 and Ens0 ensembles, with the former being larger possibly because of the IB 

response to 𝑆𝐿𝑃 perturbations, as well as to the different stochastic approaches in the wind perturbations. Ens1 model 

uncertainties are comparable with those of the observational error, reaching a few centimetres in magnitude, whereas Ens0 

shows an unrealistic model overconfidence. 25 

As long as the center of distributions can be considered to be meaningful, a safe assumption in assimilation schemes where 

all errors are considered Gaussian, we find that the 𝑂𝑚𝐸n:_H stays in fair number of cases within the observational error 

interval (Fig. 7b). The most consistent configuration is in the Abyssal plain, where the spread is increased due to mesoscale 

decorrelation of eddies after spin-up. In contrast, the largest statistical biases are observed in coastal regions and in the 

English Channel. This is also confirmed by box/whisker plots in several regions as a means to visualize both distributions 30 

and their consistency (Figs. 7c-e). There are many cases where the joint uncertainty vicinities associated with both sources of 

information is clearly nonzero. However, several instances of strong bias are evident in two of the regions, sometimes to the 

point that vicinities become disjoint, e.g. during the week between 06 to 12 March, 2012 (Figs. 7c-e). Disjoint vicinities will 

lead to ill-posed assimilation problems, meaning that a solution will be obtained since all analysis schemes are convex, but 

the result will be meaningless. 35 

When inconsistency is found, a general reason is that other error processes are active in the model in addition to the ones 

generated by the range of Ens1 perturbations. This is more apparent in the Ens0, since in this particular ensemble there are 

no perturbations in 𝑆𝐿𝑃. Both ensembles appear as being occasionally under-dispersive, notably in coastal areas in the 

English Channel and the Celtic Sea (Fig. 7b). In the English Channel, we expect error processes such as residual tidal error, 

enhanced by the presence of hard-to-model local tidal fronts, and occasional Kelvin waves propagating along the coasts. In 40 

the case of the non-isostatic response to atmospheric pressure (e.g. the non-IB response), missing error processes can be also 
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present in ocean processes, as well as in the 𝑆𝐿𝑃 perturbations themselves. Some error processes seem also to be missing 

from the range of perturbations which we apply in the English Channel, hinting for instance at the presence of high-

frequency errors currently unaccounted for, although we cannot entirely attribute the misses to any given error process with 

the tools at hand. Another possible reason for the observed statistical inconsistency is the lack of altimetry observations, 

verified by thinning techniques when decimating observations (not shown). Future wide-swath altimetry products (e.g. 5 

SWOT, https://swot.jpl.nasa.gov/) are likely to provide better coverage in coastal regions and stronger constraints on models 

overall. 

3.2.3 Ocean Colour L4 gridded observations with gaps 

Central to this work, is the consistency analysis of ecosystem ensembles perturbing physics and/or biogeochemistry, against 

Ocean Colour (OC) products. OC technique exploits different radiation wavelengths and reflectances emerging from the sea 10 

surface, affected by phytoplankton and corresponding to different water types. In this study, we use surface total chlorophyll 

produced for the Global Ocean in the framework of the ESA Climate Change Initiative (CCI) programme, made available 

through CMEMS. This is a merged data records product from multiple sensors and ocean satellite passages provided in 

gridded format at 4	𝑘𝑚 resolution. The OC L4 product is reconstructed from L3 reprocessed daily composites applying 8-

days temporal averaging to fill in missing data. The spatial coverage for the specific ESA-CCI OC L4 product has data gaps. 15 

The OC chlorophyll proxy in models is often taken as an average of chlorophyll over the top 10% of the euphotic layer 

(Isabelle Dadou pers. comm.). In our case, estimating an euphotic layer of approximately 50	𝑚, we decided to tune the 

observation operator to return a model proxy as the mean value of the first 5	𝑚 of the water column. 

Figure 8 shows data space results of ecosystem ensembles and innovation statistics assuming an observational error of 

0.3	𝑚𝑔/𝑚V. Innovation statistics are calculated in log space applying an anamorphosis function to transform ecosystem 20 

lognormal distributions into Gaussian distributions. Among the seasonal-range ensembles the Ens3 exhibits the largest 

chlorophyll spread, with Ens2 being the least dispersive, as shown for the medium-range ensembles in section 3.1 (Fig. 5). In 

Fig. 8a, the Ens3 model-data samples appear to be marginally compatible with each other, since vicinities overlap only 

partially (also for Ens1-2 not shown, Ens3 being the best). There are also cases of disjoint pdfs with the most prominent in 

late-March. During this period, observations show a strong phytoplankton bloom weakly present in all ensemble members 25 

(but with the correct phase), resulting in disjoint distributions. Subsequent less intense blooms just before and after this event 

are also evidenced in both model and data samples, and in those cases the pdfs overlap only partial. In the same line of 

thinking with the previous discussed SST and SLA networks, assimilating those OC observations and with those error 

estimates, would probably be marginally well-posed, in the sense that the joint probability associated with both sources of 

information appears to be nonzero only at times. The most consistent configuration for Ens3 after the spin-up period appears 30 

to be May-June. 

In Fig. 8b, we illustrate the innovation metrics defined in section 3.2. It is verified that all ecosystem model ensembles are 

under-dispersive during the first three months of the simulation. After this period dispersion slowly increases over time. 

Towards the end of the run chlorophyll uncertainties appear larger than 0.1	𝑚𝑔/𝑚V, which is small compared with the 

chosen observational error, but not small with respect to the chlorophyll abundance at about 0.3	𝑚𝑔/𝑚V. In general, the CR 35 

underestimates chlorophyll abundance compared with OC data and subsequently leads to under-dispersive ecosystem model 

ensembles. An overview of the temporal evolution of the spread 𝜎i resulting from different stochastic protocols, indicates 

that chlorophyll uncertainty variations are mainly controlled by physical processes and their errors. Biogeochemical 

processes and their uncertainties have a moderate impact on model errors, except during periods of phytoplankton blooms 

where both components of the coupled system are important. In line with this, ecosystem model errors are increased more in 40 
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periods of higher biological productivity, than in periods of low biological productivity (e.g. comparison of Ens3 and S8 in 

Fig. 8b). 

An acceptable result examining the model spread 𝜎i for all ensembles against the innovation spread 𝐷𝑂𝑚𝐸, is that the 

former is always contained within the latter (Fig. 8b). However, this is not sufficient for consistency to be verified. This is 

because there is a constant bias of larger amplitude than the model dispersion, except near the end of the series. As a result, 5 

the 𝑂𝑚𝐸 metric most of the time is not contained within the observational error interval. 

4 Potential impact on ensemble data assimilation 

The aim of this section is to illustrate the potential impact of our ensemble-modelled uncertainties on data assimilation, by 

means of multivariate representers and EnKF-type incremental analyses. In all cases, we investigate the impact of 

observations onto unobserved variables, such as other data types or subsurface variables. The calculations are conducted 10 

with SDAP (Sequoia Data Assimilation Platform, https://sourceforge.net/projects/sequoia-dap/), whose functions were 

expanded to be interfaced with the NEMO platform and its biogeochemical component PISCES (cf. Appendix C). 

4.1 Ensemble-based single observation representers 

As a first step, we calculate representers (correlations or influence functions) of single observations from our ensembles, 

following Bennett et al. (1996). The representers are shown to be related to the estimate of the prior ECM 𝑷i,with prior state 15 

errors calculated by the representer matrix 𝑯𝑷i𝑯¦. In an ensemble-based context the prior ECM is approximated by 𝑁 

samples in a decomposed form as 𝑷i = 𝑺i𝑺iD, where 𝑺i = *
§-*

𝒙¨
i − 𝒙i§

¨Q*  the square root matrix of the error-

subspace, with ensemble mean 𝒙i = *
§

𝒙¨
i§

¨Q* . The control vector 𝒙i consists of the following variables 𝑆𝑆𝐻, 𝑇, 𝑆, 𝐶ℎ𝑙 . 

Convolution with a localization function is applied to constrain spurious long-distance correlations resulting from the small 

ensemble size. In the current setup, we use a Gaussian function with cut-off radius 3° and e-folding scale 0.2°. 20 

In Fig. 9a-f, we illustrate examples of zero-lag representers of single observation OSTIA SST, for three different locations 

on May 07, 2012. The representers are calculated from 40 members of Ens1 (Fig. 9a-d), also from a 20-member subset of 

Ens1 (Fig. 9e) and finally from 40 members of Ens0 (Fig. 9f), and are shown as correlations between SST and itself, in 

addition to all other surface variables of the control vector. The correlation structures reveal differences between the Abyssal 

plain and coastal areas, as well as between variables. On the English Channel and the south Armorican shelf, the filament-25 

shaped structures for SST, SSS and surface chlorophyll are linked to near-shore features, such as river discharges (e.g. Loire 

river plume), mid-shelf thermal fronts and tidal fronts. The SSS pattern is dipolar, which could be explained by meridional 

plume migration (Fig. 9b). Spring bloom can be seen on the shelf, which might be confirmed by the negative correlation 

between SST and chlorophyll (Fig. 9d), for example the surface layers heating up during spring with plankton depletion 

following a bloom. 30 

The SST and SSH appear as decorrelated in the domain due to large-scale atmospheric forcings directly influencing SST in 

the spring season, as well as low-frequency mesoscale variability (Fig. 9c). Due to the mixed conditions on the inner shelf at 

that time of year, the SSH response is relatively large-scale as it is associated with barotropic processes at the scale of the 

external Rossby radius. In case of smaller ensembles, i.e. 20 members (Fig. 9e) or under-dispersive ensembles, i.e. SSH in 

Ens0 (Fig. 9f), correlations due to partially-converged statistics increasingly contaminate the pattern of representers. Those 35 

patterns are however not very different from the ones of larger in size or dispersive ensembles, at least in their general 

shapes and signs, and mostly the range of positive-negative values is amplified. Similar results of rather broad and 

symmetrical structures are also found in case of SSH single observation representers (not shown). 
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Zero-lag representers of single observation OC data are calculated from Ens3. The most important finding is that correlations 

exhibit a different behavior in the open-ocean and in the shelves (Fig. 9g-i). Chlorophyll autocorrelation structures appear 

broad and symmetrical (with respect to the single-observation location) in the deep ocean, with scales dictated by the vertical 

velocity field of the underlying mesoscale quasigeostrophic features. The latter is in agreement with the ecosystem model 

error regimes discussed in section 3.1 and depicted in Fig. 5 investigating the medium-range ensembles. On the shelves, 5 

chlorophyll correlations appear more dipolar in nature, when calculated for instance with respect to the SST and SSS fields, 

representing smaller scale local conditions. Filament-shaped structures of negative correlations between chlorophyll and SST 

are again verified for the specific Ens3 stochastic protocol, indicating that model errors in primary production are mainly 

controlled by model uncertainties in physical processes. 

4.2 Incremental analysis 10 

In this section, we carry out an EnKF-type analysis step for the first two members-001/002 of all ensembles Ens1, Ens2, 

Ens3, as well as for different subsets and seasons, using multiple observations together. The analysis step consists in 

calculating a linear combination of representers weighted by innovation. This is identical to the classic analysis step of a 

stochastic Ensemble Kalman Filter with one difference: observations are not perturbed. Using unperturbed observations 

leads to the loss of statistical consistency for the second-order moments and forbids calculating innovation-based 15 

diagnostics; but legit EnKF increments for individual members would be harder to interpret physically because of the 

observation noise. So we decided to keep observations unperturbed in this section. 

We calculate the Kalman gain matrix 𝑲 = (	𝜚	°	𝑷i𝑯¦	)	(	𝜚	°	𝑯𝑷i𝑯¦ + 𝑹	)-* from an ensemble, and multiply it by the 

(member-dependent) innovation vector 𝒅 = 𝒚c − 𝐻 𝒙i , where 𝒚c denotes the (member-independent) observation vector. 

Thinning techniques are applied to high density observational networks, in order to reduce the computational time and 20 

optimize DA performance. The symbol 	°	 denotes the Schur (element-wise) product of two matrices and 𝜚 is the smooth 

Gaussian correlation function to perform localization (cf. previous section 4.1). In this study, we focus our investigation on 

the analysis increment 𝑲 ∙ 𝒅. 

4.2.1 Incremental analysis using SST L4 

In Figs. 10a-b, we illustrate the SST correction on the first two members-001/002 on May 7, 2012, using the prior ECM from 25 

Ens1 40 members and assimilating the OSTIA SST L4 dataset. Both SST corrections reveal a large scale N-S pattern, 

associated with the fact that the model appears to be cold biased in that period with respect to the observations over the Irish 

shelf and the English Channel. In addition, the incremental analysis show corrections for mesoscale processes in the Abyssal 

plain and shelf processes near the river plumes. An interesting feature is the correction of the Bay of Biscay sub-gyre located 

in the area 4°-6°W and 44°-46°N, confirmed by consistent increments in SSH, SSS and especially in surface total 30 

chlorophyll, hinting at sub-gyre scale changes in the vertical velocity (Figs. 10c-e). Increments of the opposite sign between 

SST and chlorophyll indicate that physical processes in the Bay of Biscay, such as tidal mixing, slope currents, river plumes 

and open-ocean mesoscale activity, play an important role for the biological productivity of the area. 

In order to evaluate the impact of the Ens1 on the 3D T/S and chlorophyll model update, we examine the increment profiles 

(no vertical localization) on two specific locations in the Abyssal plain and the Armorican shelf for the first member-001 35 

(Fig. 11). The correction profiles reflect a fairly deep mixed layer in winter and a thinner mixed layer during spring, with 

chlorophyll changes at sub-surface layers hinting at ongoing bloom-related changes. Distinct vertical shifts in the increment 

are associated with the shallow thermocline depth during spring (~10-30 m) and with the depth of the euphotic layer (~40-50 

m) influencing the sub-surface vertical corrections of chlorophyll. In the Abyssal plain, at depths greater than 1000 m the 

vertical T/S corrections are possibly linked to the upper-ocean low-frequency mesoscale circulation, which affects the deep 40 
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vortex dynamics. This is an intriguing result showing that deep model errors can be controlled by ensemble-based DA 

methods, in which model ensembles are generated by perturbing surface variables and assimilating data of near surface 

ocean properties. 

4.2.2 Incremental analysis using Ocean Colour L4 

In Fig. 12, we highlight the fact that most of the total chlorophyll correction, as seen from the increments of the first 5 

member-001, arise from uncertainties in physics (i.e. Ens1 and Ens3), though ecosystem model uncertainties in most areas in 

the domain do enhance the effect of the physics. Moreover, in case where physics is not perturbed (i.e. Ens2) one can see 

mesoscale features in the correction (e.g. Abyssal plain), since the physics and hence the dynamics are the same for all 

members, to the contrary of Ens1 and Ens3. At a sub-surface level of 15 m depth, a signature of the ocean bottom relief is 

observed in the correction fields, propagating in the perpendicular direction with the seabed features (resulting to a parallel 10 

crest-through signal) over the Celtic shelf near 7°-8°W and 48°-49°N. It is expected that biogeochemical processes will be 

sensitive to bottom Ekman pumping, especially in shallow shelf regions, and possibly to internal tides and waves induced by 

barotropic tides and winds, in this Bay of Biscay high-resolution configuration. 

An interesting remark is the opposite sign in increments, e.g. over the Celtic shelf, derived from the different model 

ensembles of the coupled system, and in specific between the Ens1 perturbing physics and the Ens2 perturbing 15 

biogeochemistry. High positive increments over the shelves for all three ensembles, suggest that chlorophyll abundance is 

underestimated in those areas during spring subsequent blooms. The latter holds true in the continental shelf break near 3°-

4°W and 46°-47°N, an area dynamically controlled by barotropic/baroclinic tidal processes, which in turns contribute to 

vertical mixing and enhance primary production. It is worth noting that in some coastal areas where the coupled system 

appears to underestimate chlorophyll abundance, a very small correction is applied instead, due to the model overconfidence 20 

(i.e. under-dispersive ensembles) with respect to observations and their errors. Figure 10e and Fig. 12a present diverse 

correction patterns when different observations are assimilated, hinting at dissimilar processes captured by the prior ECMs in 

combination with each network, e.g. in these cases by SST or OC respectively. Following this latter argument comparing the 

increments of Fig. 10e and Fig. 12a, it is apparent that the chlorophyll correction is rather small when OC is not assimilated, 

possibly because of weak cross-covariances between ocean and ecosystem properties. 25 

4.2.3 Incremental analysis using both SST L4 and Ocean Colour L4 

In this section, we illustrate the multivariate impact of both temperature and total chlorophyll by using two observational 

networks simultaneously, namely the OSTIA SST L4 and the OC L4 (cf. Table 2). Changes to analyses with respect to 

univariate DA networks are observed for all variables varying from moderate to being locally large. In Figs. 13a-d, we depict 

the correction fields on May 7, 2012 of the state vector surface variables for the first member-001, based on ensemble 30 

covariances of Ens3 40 members. 

The SST N-S correction pattern is not as distinct as the one when assimilating only OSTIA SST, especially in the English 

Channel area (Fig. 13a vs. Fig. 10a). In addition, the increments appear amplified, especially over the Irish shelf, with less 

refined patterns. The latter is also true for other surface variables, such as the SSH and SSS (Figs. 13b-c vs. Figs. 10c-d). 

This effect is attributed to the presence of OC data in the solution of the DA convex scheme, in a situation where vicinities 35 

might be disjoint. In such a case, the analysis scheme possibly impacts more ecosystem properties than ocean physics. In the 

same line of thinking, chlorophyll correction values are moderately decreased when both observational networks are 

assimilated, compared to the analysis when assimilating only OC L4 (Fig. 13d vs. Fig. 12c). It should be noted that in case of 

chlorophyll, the increments appear less sensitive to changes when multivariate observing networks are brought together, 

compared with the correction in physical properties. 40 
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In addition, we investigate the convergence of covariances and its impact on the increment analysis, incorporating different 

ensembles and ensemble sizes (i.e. Ens1 vs. Ens3 and 10 vs. 40 members; Figs. 13a, d, e-h). Modifications in the SST 

analyses between Ens3 and Ens1 40 members in a multivariate context are minor (Fig. 13a vs. Fig. 13e). If we use fewer 

ensemble members, the analyses for both ocean physics and biogeochemistry properties resemble the correction patterns of 

larger ensembles. However, the increments are notably less smooth because covariances are calculated from partially 5 

converged statistics (Figs. 13e-f vs. Figs. 13g-h). A final remark is that in case of chlorophyll assimilation in conjunction 

with OSTIA SST, the analysis scheme moderately contributes to small scales, for all variables augmenting the increment 

values around ocean coherent dynamical features. 

5 Discussion and conclusions 

In this study, our contributions were specifically targeted at the generation of ensembles, in particular (but not solely) for 10 

high-resolution ocean configurations including regional and coastal physics and biogeochemistry. In addition, we sought to 

verify those ensembles against observational networks monitoring upper-ocean properties, in the sense of nonzero joint 

probabilities between model and data. As final step, we have illustrated the potential impact of those ensembles would have, 

once validated, on assimilated and unassimilated variables of the coupled system. The most important paradigm of this work 

was to adopt a balanced approach building ocean-biogeochemical regional model ensembles and testing their relevance. 15 

Our stochastic implementation is based on first-order autoregressive processes in the context of an SPPT scheme (Brankart 

et al., 2015), applied to several sources of model uncertainties in the coupled system. These tendencies emerge from 

assumptions subject to erroneous atmospheric forcing, ocean model improper parameterizations and ecosystem model state 

uncertainties. The method is complemented to account for spatial correlations and anamorphosis transformation of 

anisotropic uncertainty patterns, which is of vital importance in high-resolution regional configurations. The implementation 20 

is compatible with the enhanced MPI strategy of NEMO for double parallelization in the spatial domain and the ensemble 

dimensions (Bessières et al., 2017). 

Wind uncertainties are found to dominate all other atmosphere-ocean sources of model errors. The Ensemble spread, after a 

spin-up period of one month, focusing on upper-ocean properties is approximately 0.05 m for SSH and 0.5 °C for SST, 

though these values vary depending on season and cross shelf regions. Ecosystem model uncertainties resulting from 25 

perturbations in physics appear to be larger than those perturbing the 𝑆𝑀𝑆  concentration of the biogeochemical 

compartments, resulting in total chlorophyll spread slightly larger than 0.1	mg/mV. The statistical spin-up period for 

biogeochemical variables appeared longer, Ο(3 months). 

The validation of ensembles with respect to the gridded gap-free OSTIA SST L4, assuming an observational Gaussian error 

of 0.5	°C standard deviation, suggests that the seasonal-range ensembles perturbing physics appear to be fairly consistent 30 

with the data distribution. The joint probability associated with both sources of information appeared to be always nonzero, 

enabling assimilation of that dataset. However, Ens1 (likewise Ens3 which is statistically identical with Ens1 for physical 

properties) was under-dispersive in SST and sometimes biased with respect to the observational pdf. Overall, pattern 

consistency through 𝑂𝑚𝐸n:_H and 𝐷𝑂𝑚𝐸 metrics was found fairly good with SST data, especially for the large scales. 

Analysing the consistency of ensembles with respect to the along-track SLA L3 CMEMS product (observational Gaussian 35 

error of 0.05	𝑚 standard deviation), we could see the presence of strong biases between the model and along-track data 

distributions. All ensembles following various stochastic protocols for sea level (e.g. this study Ens1, likewise Ens3, and 

Ens0 following Vervatis et al., 2016) appeared under-dispersive, notably in coastal regions. Consistency was improved for 

the open-ocean as a result of SLP perturbations with 5-day correlation timescale, having an isostatic effect triggering an IB 

pumping on the Abyssal plain. The sea level model-data misfits were found to be associated with strong SSH spatial 40 
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gradients, in particular in the shelf regions such as the English Channel and Celtic Sea. Some error processes seemed to be 

missing from the range of perturbations which we applied in the English Channel – in particular, some high-frequency error 

processes are currently unaccounted for. Overall, we could not clearly attribute the missing processes to any particular error 

process with the tools at hand. Probabilistic "attribution" approaches are likely to provide more insight for sea level (e.g. 

Hannart et al., 2016). 5 

Regarding chlorophyll, our consistency analysis in log-space showed a statistical biogeochemical spin-up time of 𝛰(3 

months). During this spin-up period the ecosystem model ensembles Ens1, Ens2 and Ens3 appeared as being under-

dispersive and biased with respect to gridded OC L4 data (log-transformed observational Gaussian error of 0.3	𝑚𝑔/𝑚V 

standard deviation). The situation slowly improved over time for the second half of the simulation. In all three cases, the 

model and observational ensembles appeared to be marginally compatible with each other. The most consistent 10 

configuration for chlorophyll appeared to be May-June for Ens-3. Statistical consistency was not always verified for 

chlorophyll as it was for SST and to a lesser extent for SSH. It seems difficult to attribute those error patterns to specific 

physical or biogeochemical processes, without further probabilistic "attribution" analysis. 

Finally, we illustrated the impact of those ensemble-modelled uncertainties on data assimilation, by means of multivariate 

representers and EnKF-type analyses in which observations were not perturbed, as a step towards developing an assimilation 15 

scheme. We first calculated correlations and representers of single observations, and in the second step we calculated 

analyses with multiple observations together. One objective was to access the impact of observations onto unobserved 

variables, such as other data types or subsurface variables. 

The most important findings in the incremental analysis include the following. Corrections on physical properties are 

associated with large-scale biases, notably a N-S pattern for SST between open-ocean and the shelves. Small scale local 20 

corrections are mainly visible over the shelves in near-shore coastal areas, explained by meridional river plume migration, 

mid-shelf thermal fronts and barotropic/baroclinic tidal processes. Incremental analysis on the water column structure 

denotes vertical changes linked to thermocline seasonal variability, such as for example the winter extended MLD and the 

spring shoaling of the thermocline. Distinct vertical shifts in the increment are also sought at depths near the euphotic layer 

(~40-50 m) controlling the sub-surface vertical corrections of chlorophyll. The scales of the correction patterns in the 25 

Abyssal plain are often characteristic of the underlying quasigeostrophic mesoscale features, chlorophyll included due to the 

mesoscale vertical velocity field. Most of the chlorophyll correction arise from uncertainties in physics, but biogeochemical 

model errors tend to enhance the effect of the physics. Logically, assimilating chlorophyll seems to have a very measurable 

impact on physical variables. 

Our ensembles were found on some occasions under-dispersive and additional approaches should be envisaged in future 30 

steps of this work, to augment model errors mainly for ecosystem variables. To list a few for the next phase (a) inflation 

techniques in the initial conditions may open some degrees of freedom in the first time-steps of the model run, (b) perturbing 

the biogeochemical parameters (see also Garnier et al., 2016) in addition to 𝑆𝑀𝑆 concentrations, activate the feedback of 

biology onto physics in the NEMO-PISCES coupled system, and (d) incorporating atmospheric ensembles, such as the 

ECMWF-EPS system increasing the number of members to 50 (https://apps.ecmwf.int/archive-catalogue/). 35 

One next step will also consist in analysing consistency patterns in data space between ensemble spread and ensemble of 

innovations. This can be most effectively achieved e.g. in the space spanned by array modes (Le Hénaff et al., 2009; 

Lamouroux et al., 2016; Charria et al., 2016), which can be calculated with our ensembles (Vervatis et al., in prep.). 

In line with the above, the dynamics of regional (nested) models are largely controlled by the open boundary (OB) 

conditions, with of course some dependency on the considered geographic area. Bay of Biscay dynamics is influenced by the 40 

North East Atlantic circulation, especially along the southern slope, with the seasonal reversal of the Iberian Poleward 
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Current (IPC). At depth, the entrance from the south of Mediterranean water masses has been shown to influence the Bay of 

Biscay hydrology between 600 and 1500 (Koutsikopoulos and Le Cann, 1996) and potentially the circulation (through 

interactions between eddies and deep salty lenses (see for instance Carton et al., 2013). 

Uncertainties on the OB conditions, either on the numerical scheme or on the prescribed values in case of active boundaries, 

are therefore expected to contribute significantly to the model error budget (see also Kim et al., 2011). So it is natural to 5 

consider perturbing the OB conditions. This would very likely lead to an increase of the ensemble spread from the surface to 

at least 1500 m. However, the methods to perturb OB are not straightforward, in particular because of the need to ensure 

physical consistency between the perturbed variables, and because the errors on the prescribed fields at the OB are usually 

unknown. A favourable situation occurs when an ensemble of nesting or parent solutions is available and provides an 

estimate of OB uncertainties to the child model (Ghantous et al., in review 2018). 10 

6 Code and data availability 

The ensemble simulations have been performed with the NEMO platform (http://www.nemo-ocean.eu/), in its stable version 

3.6, freely available under the CeCILL public license. The code was downloaded from Mercator Ocean svn repository based 

on the NEMO revision 12956. The following cpp keys have been used to compile the code: key_top, key_pisces, key_bdy, 

key_tide, key_dynspg_ts, key_ldfslp, key_zdfgls, key_traldf_c2d, key_dynldf_c2d, key_vvl, key_mpp_mpi, key_iomput, 15 

key_xios2. The XML I/O Server is based on XIOS version 2.0 revision 1490. 

The latest SDAP (SEQUOIA Data Assimilation Platform; De Mey- Frémaux, pers.comm., 2018) for UnixTM and Linux is 

freely available from the repository of the project's web page https://sourceforge.net/projects/sequoia-dap/. The SDAP 

system components are distributed under the GNU General Public License. 

The additional algorithm described in Appendix A is also available from the open-source software platform Zenodo with 20 

doi:10.5281/zenodo.2556530. The FORTRAN subroutine integrated within the “stopar.F90” module is compatible with the 

NEMO MPI environment and it is delivered without any warranty, declining any responsibility for errors, or improper usage. 

The model ensemble output, the observations and the tools to process data are accessible upon request at the ECMWF 

premises, through the DHS (Data Handling System) and the ECFS (ECMWF's File Storage) client-server application. 
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PA002007. 30 

Appendix A: Elliptic Gaussian equation in NEMO MPI environment 

The stochastic parameterizations in this paper are based on the ensemble capabilities of NEMO (Brankart et al., 2015; 

Bessières et al., 2017). We use the generic FORTRAN codes included in the trunk NEMOGCM/NEMO/OPA_SRC/STO/. 

Our work complements NEMO stochastic modules in terms of explicit calculation of AR spatial scales, by solving an elliptic 

Gaussian equation. A subroutine called “sto_par_xygau” is integrated in “stopar.F90” module. Various options remain valid, 35 

such as the use of Laplacian filtering, anamorphosis functions, higher order AR processes for both SPPT and SPUF methods. 

The programming flowchart illustrates the integrated algorithm in NEMO MPI environment.  
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Algorithm sto_par_xygau 

Purpose: Solve the elliptic Gaussian equation 𝒢(𝒓)(:)I
:Q* = 0. 

Method: Work on MPI communicator allocated per ensemble member. 

On zero-processor create the vectors of the centers 𝒓 ∈ 𝑟*, … , 𝑟I  and the 
variances 	𝝈𝒓A ∈ 𝜎O**

A, … , 𝜎OII
A  of the Gaussian distributions. The centers are 

randomly selected on a few model grid points. The length scales vary randomly in the two 
dimensions around a typical correlation length per tendency. 

Broadcast the vectors on the rest of the processors for all sub-domains (call 
MPI_BARRIER, call MPI_BCAST). 

Draw multi-modal spatial maps of 𝒩(0,1) distribution covering the whole model domain, 

by solving the elliptic Gaussian equation on a few model grid points (𝑖): 𝜉(𝒊) 𝒢(𝒓)(:). 

Normalize the stochastic amplitude by a factor of 𝑓(𝒊) and global online diagnostics of 
statistical moments 𝜇, 𝜎 to ensure 𝒩(0,1) distribution (call MPI_ALLREDUCE, call 

MPI_SUM): 𝜉(𝒊) {𝑓(𝒊), 𝜇, 𝜎} ∙ 𝜉(:). 

Appendix B: Computational resources and performance 

For a detailed analysis of the computational resources and performance for the generation of ensembles with the BISCAY36 

configuration, the reader is referred to ECMWF's "Progress and Technical Reports" in 

https://www.ecmwf.int/en/research/special-projects/spgrverv-2016/. 

We briefly recapitulate the most recent setup compiling and running the code at ECMWF HPCF. The model ensembles are 5 

carried out on CCA and CCB clusters, which are Cray XC40 systems integrating Intel Broadwell nodes, with 36 cores per 

node and 128 GB (2400 MHz DDR4) memory per node. The code is compiled under the Intel Broadwell software 

environment using the Cray Development Toolkit (CDT) cdt/17.03, with intel/17.0.3.053 compiler, and the following 

libraries: cray-netcdf-hdf5parallel/4.4.1.1 and cray-hdf5-parallel/1.10.0.1. The same environment is used for the compilation 

of XIOS version 2.0. We use -O3 optimization in the FCFLAGS of the compilation architecture file. The model output 10 

consists of daily files of the ocean state vector and the two classes of chlorophyll, as well as three-day averages of 14 3D-

biogeochemical variables. 

BISCAY36 scales-out using 96 processors of domain decomposition per ensemble member, excluding land processors. 

Taking under account the ECMWF's hardware/software specifications, we have tested the following resources geometry: (a) 

for 10 members, we have used 960 NEMO processors and 48 XIOS servers filling a total of 28 nodes, (b) for 20 members, 15 

we have used 1920 NEMO processors and 24 XIOS servers filling a total of 54 nodes. The ensemble simulations were 

submitted as batch jobs for a 30-day run. For these examples, the ECMWF's job epilogue during production returned 

information for the runtime average at about 489 minutes, with runtime standard deviation at approximately 29 minutes, 

including the first/last reading/writing time-steps. 

Appendix C: SDAP and NEMO-v3.6/PISES-v2 interface 20 

Within the CMEMS Service Evolution project SCRUM (Stochastic Coastal/Regional Uncertainty Modelling), an ensemble-

based consistency analysis toolbox (nicknamed "scrumcat": SCRUM analysis toolbox) has been developed to document the 

statistical consistency of ensemble-based model uncertainties with respect to observations and their errors. The "scrumcat" 

toolbox is built upon the Sequoia Data Assimilation Platform (SDAP; https://sourceforge.net/projects/sequoia-dap/; De Mey-

Frémaux, pers.comm., 2018) and offers the following advantages: 25 

• Fully modular 
• Provides all data structures and services required by an ensemble-based application 
• Interfaced with the European FP7 SANGOMA project Fortran library 
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• Written in Fortran-90 
• Open Source licensing (GPL/CeCill) 
• Versioned with svn 
• SDAP Makefile and configuration tool 
• Model grid services, including e.g. interpolation and regional masks 5 
• Data services, including e.g. observation operators and decimation 
• Off-Line Analysis services (OLA) and OLA explorer post-processing tool 
• Interfaced with ocean modelling platforms; the most recent work includes NEMO-v3.6 and PISCES-v2 grid 

bathymetry, ocean-biogeochemical state variables in the control vector, observation operators 
• NetCDF I/O: CMEMS data input, ensemble input, grid input, regional masks input 10 
• An observational error covariance model 
• Array-space consistency diagnostics 
• Runs on several platforms, including ECMWF HPC machines under intel, gnu and cray programming environments 

SDAP is a recent (2014) rewrite of Sequoia, a modular assimilation system builder developed by P. De Mey with post-docs 

and LEGOS engineers, and disseminated via the SIROCCO French coastal ocean modelling national service 15 

(http://sirocco.omp.obs-mip.fr/) and SANGOMA European project (http://www.data-assimilation.net/). Over the years, 

Sequoia and SDAP have been used in research, operational forecasting, and for industrial partnerships. 

SDAP can work with structured grids (finite difference) as well as with finite elements/finite volume grids. Its standardized 

interface with numerical models allows it to couple with virtually any model. In-memory coupling with numerical models is 

supported. The user must provide a number of support routines with a predetermined interface and extend the model code 20 

with a few calls to SDAP routines. 

The system of interchangeable analysis kernels allows using several assimilation algebra, among which a full-rank kernel 

solved in the dual space, used in a 4D localized implementation of the EnKF (beluga) using MPI for scheduling of parallel 

runs in an ensemble. 

In its latest instance (v1.6), SDAP compiles under Intel, GNU and Cray FORTRAN compilers, and runs on desktop and 25 

laptop PCs, Intel Xeon clusters, and supercomputers such as Cray HPC. 

Ongoing work with SDAP follows the double parallelization implementation of NEMO ensemble capabilities (Brankart et 

al., 2015; Bessières et al., 2017), both in ensemble domain and domain decomposition, aiming at: 

• running ensemble methods (EnKF, EnOI, LETKF, Particle Filters) with MPI while the model already uses MPI 
domain decomposition 30 

• using a correction and restart strategy maintaining the assimilation interface code within NEMO, by interfacing the 
ASM and OBS modules 

• running ensemble methods efficiently on modern, 16+ core processors 
• making ensemble methods compatible with pnetcdf (parallel implementation of NetCDF) and nVidia GPU-based 

libraries (cublas and culapack) 35 
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Table 1. Table of simulations: Control Run (CR), ensemble medium-range sensitivity experiments (S1-8) and seasonal-

range ensembles (Ens1-3). The table shows the stochastic parameterizations based on first order autoregressive processes 

AR(1). An elliptic Gaussian equation is applied to introduce spatial correlations with variable/anisotropic length scales (1std: 

𝜎O in degrees), temporal correlations (𝜏 in days) and uncertainty amplitude (1std: 𝜎 no units) of the 2D normal distributions 10 

(prior to anamorphosis function if applied). The spatial correlation value for the bottom drag coefficient 𝑐n  is an 

approximation after 100 passes of the Laplacian operator. Ens0 is a seasonal-range ensemble performing stochastic 

modelling of the wind forcing based on EOF modes (Vervatis et al., 2016). 

experiment perturbed 
variables 

uncertainty 
amplitude (σ) 

correlation 
timescales (τ) spatial scales (σ¶) distribution 

CR  one year unperturbed free run (July 2011–June 2012) 
Ens0  wind perturbations based on EOF modes (Vervatis et al., 2016) 
 
 atmospheric forcing 
S1 𝒰 0.3 3 days 1° Gaussian 
S2 T��¶ 0.1 15 days 2° Gaussian 
S3 SLP 0.01 5 days 3° Gaussian 

 
 ocean model parameterizations 
S4 cº, c», c¼ 0.1 3 days 0.5° Gaussian 
S5 c� 0.2 30 days 0.2° Laplace flt* 
 
 synthesis of ocean-atmosphere model uncertainties 
S6 S1-5 medium range ens (April 2012; 20 mem) 
Ens1 S6 seasonal range ens (December 2011–June 2012; 40 mem) 

 
 ecosystem state 
  ocean-atmosphere state identical to the CR for all members 
  0.6 10 days 0.5° Lognormal** 
S7 SMS(C) medium range ens (April 2012; 20 mem) 
Ens2 S7 seasonal range ens (December 2011–June 2012; 40 mem) 

 
 synthesis of coupled ocean-biogeochemical model uncertainties 
S8 S6-7 medium range ens (April 2012; 20 mem) 
Ens3 Ens1-2 seasonal range ens (December 2011–June 2012; 40 mem) 
abbreviations: flt-filter; ens-ensemble; mem-members 
* 100 passes of the Laplacian filter in a Gaussian distribution per model grid point 15 
**A lognormal anamorphosis function is applied in the 𝑆𝑀𝑆 concentrations of the 24 PISCES prognostic variables 𝐶 

Table 2. CMEMS observation product identifiers (http://marine.copernicus.eu/). 

Obs1 (daily freq.) Product Identifier Error 

a) gridded 0.05c SST_GLO_SST_L4_NRT_OBS_010_001 0.5c𝐶 

b) along track 14	𝑘𝑚 SEALEVEL_GLO_PHY_L3_REP_OBS_008_045 0.05	𝑚 

Obs2 (8-days freq.) Product Identifier  

gridded 4	𝑘𝑚 OCEANCOLOUR_GLO_CHL_L4_REP_OBS_009_093 0.3𝑚𝑔/𝑚V 
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Figure 1  BISCAY36 model domain and bathymetry in meters. Black line denotes the 200 m isobath.  
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Figure 2  First-order autoregressive stochastic patterns, solving an elliptic Gaussian equation, applied in the perturbed tendencies 

schemes, see Eqs. (5-7): (a) wind 𝒰 initial stochastic pattern of member-001; all other subplots as in (a) for: (b-c) the second and third day 

respectively, (d) member-002, (e) air temperature T��¶, (f) sea level pressure SLP, (g) wind drag cº and turbulent coefficients c», c¼, (h) 

bottom drag coefficient c� applying a Laplacian filter, (i) lognormal distribution of Sources Minus Sinks 𝑆𝑀𝑆(𝐶) of biogeochemical 

tracers. Uncertainty amplitudes in colorbar and spatiotemporal scales are denoted in Table 1.  
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Figure 3  Control Run (CR) ocean model surface variables on April 30, 2012: (a) SSH in meters, (b) SST in °C, (c) SSS, (d-f) 

from left to right: total surface chlorophyll and the two classes "nano" and "diatoms" in mg/mV. Black line denotes the 200 m isobath.  
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Figure 4  Model uncertainties of medium-range ensembles in Table 1, after one-month spin-up on April 30, 2012. SST spread 

(i.e. 1std) in °C for S1-6 experiments perturbing the (a) wind 𝒰, (b) air temperature T��¶, (c) sea level pressure SLP, (d) wind drag cº and 

turbulent coefficients c», c¼, (e) bottom drag coefficient c� (f) all variables together; (g-l) SSH spread in meters perturbing the same 

variables as in (a-f). Note the different colorbars in SST with units varying up to 0.2 °C and in SSH up to 0.02 m. Black line denotes the 

200 m isobath.  
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Figure 5  (a-f) model errors of S1-6 experiments for total surface chlorophyll concentration in mg/mV, perturbing the physical 

variables described in Figs. 4a-f, (g) total surface chlorophyll spread in S7 experiment perturbing the sources minus sinks 𝑆𝑀𝑆(𝐶) of 

biogeochemical tracers, (h) total surface chlorophyll spread in S8 experiment perturbing all physical variables and 𝑆𝑀𝑆(𝐶) of 

biogeochemical tracers, (i-k and l-n) same as in (f-h) for nano-chlorophyll and diatoms spread, respectively. Black line denotes the 200 m 

isobath.  
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Figure 6  (a) OSTIA SST L4 in °C observation distribution and Ens1 ensemble envelope/inter-quantile ranges in data-space, (b) 

innovation statistics and spread; thin horizontal line denotes the observational error 0.5	°𝐶. Legend names declared in Tables 1, 2.  
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Figure 7  (a) SLA along track L3 observation distribution and Ens1, Ens0 ensemble envelopes in data-space (units: in meters; 

legend names declared in Tables 1, 2), (b) 𝑂𝑚𝐸n:_H map using Ens1 for the period starting on February 25, 2012 and for three consecutive 

weeks, (c-e) Ens1 box-whisker plots and observation error bars for the Abyssal plain, the Armorican shelf and the English channel, 

respectively. Black line denotes the 200 m isobath.  
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Figure 8  Same as Fig. 6 for Ocean Colour L4 total surface chlorophyll observations and ecosystem model ensembles, with 

innovation statistics calculated in log space. The observational error is set at 0.3	𝑚𝑔/𝑚V. Legend names declared in Tables 1, 2.  

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-31
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 28 February 2019
c© Author(s) 2019. CC BY 4.0 License.



34 
 

 
Figure 9  Zero-lag single observation representers for three different surface locations in the Abyssal plain, the Armorican shelf 

and the English channel, calculated as correlations between OSTIA SST L4 and all surface variables in the control vector, derived from 40 

members of Ens1 ensemble on May 07, 2012: (a) cor(SST,SST), (b) cor(SST,SSS), (c) cor(SST,SSH), (d) cor(SST,CHL), (e) same as (d) 

for 20 members, (f) same as (c) for Ens0. Correlations between OC L4 chlorophyll observations and surface variables in Ens3 control 

vector: (g) cor(CHL,SST), (h) cor(CHL,SSS) and (i) cor(CHL,CHL). A localization Gaussian function is applied to suppress distant 

spurious correlations, with radius 3° and e-folding scale 0.2°. Black line denotes the 200 m isobath. For SST and OC CMEMS 

observational products cf. Table 2.  
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Figure 10 Incremental analysis using OSTIA SST L4 (cf. Table 2) on May 7, 2012 using Ens1 40 members: (a-b) correction on 

SST in °C for the first two members-001/002, (c-e) correction of the first member on SSH in meters, on SSS and on surface total 

chlorophyll in 𝑚𝑔/𝑚V; (a) two locations illustrated in the following Fig. 11 for the Abyssal plain (green square [7°W 45°N]) and the 

Armorican shelf (green rhombus [2.6°W 46.3°N]). Black line denotes the 200 m isobath.  
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Figure 11 Incremental analysis using OSTIA SST L4 (cf. Table 2) on February 1, 2012 (grey lines) and on May 7, 2012 (black 

lines), using Ens1 40 members; cf. Fig. 10a for the two locations: (a-c) vertical correction of the first member-001 on T in °C, salinity and 

total chlorophyll in 𝑚𝑔/𝑚V in the Armorican shelf, and (d-f) same for the Abyssal plain.  
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Figure 12 Incremental analysis using Ocean Colour L4 (cf. Table 2) on May 7, 2012 using ensemble covariances from 40 

members and three different ensembles Ens1, Ens2, Ens3 (left to right in panels): (a-c) correction of the first member-001 on total 

chlorophyll in 𝑚𝑔/𝑚V at the sub-surface depth of 15 m, (d-f) prior model ensemble spread in data space of total chlorophyll in 𝑚𝑔/𝑚V, 

as a mean value of the first 5 m of the water column. Black line denotes the 200 m isobath.  
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Figure 13 Incremental analysis using OSTIA SST L4 and Ocean Colour L4 (cf. Table 2) on May 7, 2012: (a-d) ensemble 

covariances are calculated from Ens3 40 members; correction of the first member-001 (from left to right) on SST in °C, on SSH in meters, 

on SSS and on surface total chlorophyll in 𝑚𝑔/𝑚V, (e-f) same as (a) and (d) calculated from Ens1 40 members, (g-h) same as (e-f) 

calculated from Ens1 10 members. Black line denotes the 200 m isobath. 
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