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Abstract. A significant proportion of the uncertainty in climate projections arises from uncertainty in the representation of land

carbon uptake. Dynamic Global Vegetation Models (DGVMs) vary in their representations of regrowth and competition for

resources, which results in differing responses to changes in atmospheric CO2 and climate. More advanced cohort-based patch

models are now becoming established in the latest DGVMs. These models typically attempt to simulate the size-distribution

of trees as a function of both tree-size (mass or trunk diameter) and age (time since disturbance). This approach can capture5

the overall impact of stochastic disturbance events on the forest structure and biomass, but at the cost of increasing the number

of parameters and ambiguity when updating the probability density function (pdf) in two-dimensions. Here we present the

Robust Ecosystem Demography (RED), in which the pdf is collapsed on to the single dimension of tree mass. RED is designed

to retain the ability of more complex cohort DGVMs to represent forest demography, while also being parameter sparse and

analytically solvable for the steady-state. The population of each Plant Functional Type (PFT) is partitioned into mass classes10

with a fixed baseline mortality along with an assumed power-law scaling of growth rate with mass. The analytical equilibrium

solutions of RED allow the model to be calibrated against observed forest cover using a single parameter - the ratio of mortality

to growth for a tree of a reference mass (µ0). We show that RED can thus be calibrated to the ESA LC_CCI (European Space

Agency Land Cover Climate Change Initiative) coverage dataset for nine PFTs. Using Net Primary Productivity and litter

outputs from the UK Earth System Model (UKESM), we are able to diagnose the spatially varying disturbance rates consistent15

with this observed vegetation map. The analytical form for RED circumnavigates the need to spin-up the numerical model,

making it attractive for application in Earth System Models (ESMs). This is especially so given that the model is also highly

parameter-sparse.

1 Introduction

A key requirement of Earth System Science is to estimate how much carbon the land surface will take-up in the decades ahead20

(Ciais et al., 2014). This is an important component of the total carbon budget consistent with avoiding global warming thresh-

olds, such as 2◦C (Schleussner et al., 2016). Unfortunately, projections of future land carbon storage still span a wide-range

(Brovkin et al., 2013; Friedlingstein et al., 2014; Arora et al., 2019). Beyond the CO2 and nutrient fertilisation effects and
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land-use change, significant uncertainty also arises from the representation of vegetation demographics such as recruitment,

compeitition and mortality (Brovkin et al., 2013; Ahlström et al., 2015). The representation of plant communities within Earth

System Models (ESMs) is achieved through the use of Dynamic Global Vegetation Models (DGVMs). DGVMs employ a vari-

ety of biophysical, biogeographical and biochemical processes to simulate growth, competition and recruitment of vegetation.

The variety in the number and resolution of the processes contributes to the differences found at the Earth System level.5

Within the context of modelling vegetation at a global level, there is a trade-off between the complexity of ecological process

representation and the necessity of parsimony at scale (Fisher et al., 2018). DGVMs range from the simplistic, older, top-down

approaches to that of complex individual-based DGVMs. For example, in the first instance the TRIFFID model (Cox, 2001)

simulates the fractional area of each Plant Functional Type (PFT) using phenomenological Lotka-Volterra equations. The ben-

efit of the TRIFFID approach is its simplicity and robustness. However, the model suffers from the lack of size representation10

and other processes which results in the over-estimation of regrowth time (Burton et al., 2019). In the second-instance, indi-

vidual based models can explicitly represent a multitude of biological and ecosystem processes at an individual plant level

(Smith, 2001; Sato et al., 2007). The benefit of this is that size-dependent physiology and spatial heterogeneity can be explic-

itly represented. However, multiple ensemble-members are often needed to construct meaningful forest statistics, which makes

such models computationally expensive to run at large scales. Compromises between the complexity of individual-based and15

top-down DGVMs exist as a class of tree cohort models. In the ED model (Moorcroft et al., 2001; Medvigy et al., 2009) the

tree population is partitioned between patch disturbance and biomass classes allowing for the scaling of process to be repre-

sented in both age and size. ED2 can realistically model forests around the world (boreal, rainforest and temperate) (Medvigy

et al., 2009; Fisher et al., 2018). However, parameterisation of competition within cohort DGVMs can result in a wide spread

of outcomes when simulating climate change (Fisher et al., 2010; Scheiter et al., 2013).20

In a similar vein other models have limited the number of cohort dimensions. The POP model (Haverd et al., 2014), uses

stand-age cohorts as the dimension for population dynamics, every time-step applying crowding and resource limited mortality

rates. Another example is the ORCHIDEE-MICT (Yue et al., 2018), which disaggregates the populations of a PFT into patch

cohort functional types, with transitions between cohorts diagnosed when the average basal diameter passes a threshold.

This paper presents a simplified cohort model (Robust Ecosystem Demography (RED)) which updates the number of trees in25

each mass class, but does not separately track tree-age or patch-age. RED assumes that the tree size-distribution of a forest

is determined by how the rates of tree growth and mortality vary with tree size (Kohyama et al., 2003; Coomes et al., 2003;

Muller-Landau et al., 2006; Lima et al., 2016). We follow many other studies in assuming that tree-growth rates vary with the

three-quarter power of tree mass (m3/4), as suggested by metabolic scaling theory (West et al., 1997). Where tree mortality

rate can also be assumed to be approximately independent of tree mass, the demographic equation yields equilibrium tree-size30

distributions which follow a Weibull distribution. This is sometimes termed Demographic Equilibrium Theory (DET) (see

Appendix B). These simplifications significantly reduce the number of free parameters in RED, but still enable it to fit forest

inventory data in North America (Moore et al., 2018) and South America (Moore et al., 2020).
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2 Description of the Model

A full list of variables, parameters and units are given in Table 1.

Table 1. Model variables, parameters and units

Symbol Definitions Units

Dimensions
t Time year

m Carbon mass of an individual within a PFT kgC

ESM Inputs
P Total assimilate of Net Primary Productivity minus local (leaves, wood and roots) litterfall kgC m−2 yr−1

γd Disturbance mortality rate, the fraction of population dying over a year due to explicitly yr−1

modelled reasons

Individual
m0 Lowest/sapling mass boundary kgC

g Structural growth of an individual at a given mass and time kgC yr−1

g0 Structural growth of an individual at the lowest mass boundary at a specific time kgC yr−1

a Crown area of an individual at a given mass m2

a0 Crown area of an individual at the lowest mass boundary m2

φg Constant describing the power law scaling of structural growth across mass −
φh Constant describing the power law scaling of height across mass −
φg Constant describing the power law scaling of crown area across mass −
α The fraction of total growth going into seedling recruitment −

Cohort
n Number density across mass space, the derivative of N with respect to mass (kgC)

−1
m−2

N Number density m−2

G Growth density kgC m−2 yr−1

ν The fractional coverage −
γ Mortality rate, the summation of the baseline and additional mortalities across mass yr−1

γb Baseline mortality rate, the fraction of population dying over a year due to non-explicitly yr−1

modelled reasons

s The fraction of space available for seedlings −
F The flux of population density over time m−2yr−1

Λd Demographic litter, the loss of carbon due to competition and mortality kgC m−2 yr−1

M Biomass density kgC m−2

ck,l Competition coefficient, the fraction a PFT, k, that is shaded by the canopy of PFT l −
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Symbol Definitions Units

Equilibrium
µ0 The boundary turnover parameter - the ratio of mass lost to gained due to growth in the −

boundary mass class

λi The proportional population of the ith class to the ith− 1 class at equilibrium −
eq Subscript denoting a variable in equilibrium −

Numerical
k, l Indices representing the PFT number −
i, j Indices representing mass class number −
I The largest mass class −
(k) The current time-step −
ξ The size scaling coefficient, where mass classes are defined as mj = ξ mj−1, with ξ > 1 −

2.1 Theory

The underlying theoretical model for RED is a continuity equation, for each PFT and spatial location, which describes the

time-evolution of the number density n of plants per unit area of mass m:

∂n

∂t
+

∂

∂m
ng =−γn (1)

Here g is the growth rate and γ is the mortality rate of a plant of massm. In general, g and γ could take any form of relationship5

with size, but for large-scale applications we make simplifying assumptions for these functions consistent with observed n from

forest inventory data (Moore et al., 2018, 2020). By default we assume that γ is independent of plant mass, and that g follows

a power-law of plant mass:

g = g0

(
m

m0

)φg
(2)

Here g0 is the growth rate of a plant with the reference mass, m0. A value of φg = 0.75 is assumed by default, consistent10

with the meta-analysis of field-based measurements by Niklas and Spatz (2004). We also follow Niklas and Spatz (2004) in

assuming the scaling of plant canopy area a with plant mass:

a= a0

(
m

m0

)φa
(3)

where φa = 0.5 by default. Solutions for n can be integrated over mass to derive the total plant number,N =
∫
n ,dm, the total

growth rate, G=
∫
gn dm, the total biomass, M =

∫
mn dm, and the fractional area covered ν =

∫
an dm.15

2.2 Discrete Mass Classes

We wish to produce a model of vegetation demography that can be updated numerically and which explicitly conserves vege-

tation carbon, providing a constraint on the number of plants moving between mass classes in the discrete form. In order to do
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this we integrate Eq. (1) over finite mass ranges:

∂Ni
∂t

+Fi−Fi−1 =−γNi (4)

where i denotes the ith mass class; Fi is the flux of plants growing out of the ith mass class and into the (i+ 1)th mass class;

Fi−1 is the flux of plants growing out of the (i− 1)th mass class and into the ith mass class; and Ni is the number of plants

per unit area in the ith mass class. For clarity, Eq. (4) is deliberately presented as continuous in time at this stage, as the focus5

in this subsection is on discretization of the mass profile. The fully numerical version of RED, which includes discretization of

time, is described in Section 2.4 and 2.5. In order to explicitly conserve carbon, the flux Fi must take the form (see Appendix

A) :

Fi =
Ni gi

(mi+1−mi)
(5)

where mi is the mean mass of a plant in the ith mass class, and gi is the growth rate per plant of the ith mass class [kgC yr−110

plant−1].

2.3 Seedling production and gap competition

To solve Eq. (4) we also require a lower boundary condition which represents the rate at which seedlings of mass m0 are

introduced into the cohort. Here we assume that a fixed fraction, α, of the total assimilate available to a PFT (P ), is devoted

to producing new seedlings, with the remainder G= (1−α)P being allocated to the growth of existing plants. Spreading is15

homogeneous across the entirety of the grid-box, but only seedlings established within ‘unoccupied’ space will survive to join

the plant cohort. The net incoming flux of seedlings of mass m0 is therefore:

F0 =
αP

m0
s=

α

(1−α)

G

m0
s (6)

where s is the fractional gap area available for seedlings. The definition of s is assumed to differ by PFT to reflect an underlying

tree-shrub-grass dominance hierarchy, as shown schematically in Figure 1. Therefore, the rate of recruitment F0 is the ratio of20

a fraction of the carbon assimilate allocated to reproduction, αP , and m0, multiplied by the gap area s.

The space available to the seedlings of the kth PFT is calculated from the area fractions of the PFTs to which it is subdominant:

sk = 1−
∑

l

ckl νl (7)

where νl is the area fraction of the lth PFT, and ckl is the competition coefficient for the impact of PFT l on PFT k. If PFT l is25

within the same plant functional group (trees, shrubs or grasses) as PFT k, or dominant over it, ckl = 1. If PFT k is dominant

over PFT l, ckl = 0 (Figure 1). This ‘gap’ boundary condition results in there being no equilibrium solution where the amount

of coverage exceeds 1. Doing so would halt the recruitment flux such that mortality processes would bring the fractional cov-

erage back below unity. This is a similar competition regime to the Lotka-inspired TRIFFID model (Cox, 2001), and allows
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Figure 1. Schematic depicting the hierarchical PFT functional group regime within RED. Trees shade trees, shrubs and grasses. Shrubs shade

shrubs and grasses, while grasses only shade grasses.

for the co-existence between inter-functional groups (trees, shrubs and grasses) of PFTs. For instance, a PFT such as Broadleaf

Deciduous Tree can co-exist with a Deciduous Shrub and C3 Grass. The hierarchy also enables the simulation of succession

during regrowth. Faster growing species of grasses will not be able to expand into space occupied by trees and shrubs, unless

there is space created by disturbance. A summary of the competition coefficients is given in table 2.

5

Table 2. Competition coefficients assumed for different plant functional groups. A more detailed example of this is given for specific PFTs

in table 3.

l

ckl Trees Shrubs Grasses

Trees 1 0 0

k Shrubs 1 1 0

Grasses 1 1 1

2.4 Coupling to Earth System Models

RED updates plant size distributions, biomass, and fractional areal coverage for an arbitrary number of PFTs at each spatial

location, and can be driven by variables provided by a land carbon cycle model, an Earth System Model, or observations (see

Figure 2). For each PFT, the minimum required input is a time-series of net carbon assimilate (P ), defined as the difference
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between Net Primary Productivity (ΠN), and local litter production due to turnover of leaves, stems and roots (Λl):

P = ΠN−Λl (8)

Where available, additional mortality due to disturbance events such as droughts, fires and anthropogenic deforestation (γd)

can be added to the baseline mortality rates (γb), for each PFT:

γ = γb + γd (9)5

Disturbance rates γd can in principle be both PFT-dependent and mass-dependent (e.g. to capture forestry practices).

Carbon
Assimilate Input:

P

Ps = αP
Recruitment

Gtot = (1 − α)P
Structural

g0 g2 . . . gI

N0 N2
. . . NI

γ0 γ1 . . . γI




(1 − νshade)
Competition

γ = γd + γb
Mortality

Disturbance Input:
γd

RED

Outputs: Biomass,
Litterfall, Coverage,

etc.

ESM

Seeds

Application

Population Flow

Figure 2. Schematic of RED coupled to an ESM or land carbon cycle model. RED is driven by a time-series of net carbon assimilate, P ,

which is then split between seedling production, αP , and the growth of existing plants, G= (1−α)P . The seedling flux is limited by the

available free space, s. Additional mortality rates diagnosed from disturbance models, γd, can be added on to an assumed baseline mortality,

γb, as a function of both PFT and mass class.

The input values of net assimilate for each PFT (P ), define the total structural growth rate, G= (1−α)P , and the seedling

flux F0 (via Eq. (6)), using PFT-specific values of the parameter α (see table 3). The definition of the total structural growth

rate at a given time-step is:10

G=
∑

i

Ni gi (10)

can be combined with the growth-scaling given by Eq. (2), to derive the reference growth rate, g0, from the net assimilate, P ,

which is a driving input:

g0 =
(1−α)P

∑
iNi

(
mi
m0

)φg (11)
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This in turn enables the growth rate of each mass class to be calculated using Eq. (2). For each PFT, the number of plants in

mass class (Ni) is updated using a discretised form of Eq. (4):

N
(j+1)
i =N

(j)
i + ∆t

(
F

(j)
i−1−F

(j)
i − γ(j)N

(j)
i

)
(12)

where ∆t is the RED time-step (typically 1 month), and the superscript (j) denotes the jth time-step. The lower boundary

seedling flux is calculated from Eq. (6) using Eq. (7). We impose a zero-flux condition out of the upper mass class, under the5

assumption that there will be enough mass classes to ensure that this flux is negligible. However, to ensure carbon conservation

on the land we add any plants that grow out of the upper mass class into a demographic litterfall term for each PFT, which

is a RED output. This demographic litterfall term, Λd, keeps track of the carbon lost from the vegetation due to competition,

mortality and the carbon in any such plants that grow out of the largest resolved mass class (class I):

Λd = αP (1− s) +
∑

i

γiMi + gINI (13)10

The first term on the righthand-side of this equation represents carbon loss due to the shading of seedlings; the second term

represents mortality of the resolved mass classes (which may include disturbance events); and the third term, which is normally

very small, is the loss of vegetation carbon due to plants growing beyond the modelled mass classes. In order to initiate

regrowth from bare soil, RED also assumes a minimum effective fractional area of each PFT. Where the net assimilate would

be sufficiently negative to take the vegetation fraction below this minimum, the minimum value is maintained by subtraction15

from the demographic litter. The demographic litterfall term therefore represents the net addition litter production consistent

with the prescribed net assimilate flux, the disturbance rate, and the change in vegetation carbon modelled by RED. When

coupling to an ESM or land carbon model, the demographic litterfall term (Λd) should be added to the input local litterfall (Λl)

(as used in Eq. (8)), to calculate the total litterfall flux into the soil/litter system.

2.5 Steady-State20

The steady-state of the continuum model defined by Eq. (1) and Eq. (2) can be solved analytical for each PFT (Moore et al.,

2018, 2020). The continuum analytical solutions for the equilibrium mass distribution (neq(m)), the total plant number (Neq),

biomass (Meq), growth rate (Geq) and fractional area (νeq) are summarised in Appendix B. The shape of the mass distribution

and each of these parameters depend on the ratio of plant mortality to growth, which we choose to define for the reference

mass class m0:25

µ0 =
γm0

g0
(14)

In order to initialise the numerical RED model in a drift-free initial state, we also derive the steady-state of the discrete model

(of equation (12)), which will differ slightly from the continuum model for a finite number of mass classes. The equilibrium

solution of Eq. (12) is derived in Appendix B2, based on the balance between seedling recruitment and total cohort mortality

that defines the equilibrium state. The discretised version of RED thus yields formulae for the coverage (equation (B.28))30
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and biomass densities (equation (B.30)) which depend on the lowest mass class through the value of µ0. Similarly, analytical

expressions can be derived for total plant number and total growth rate of each PFT at equilibrium:

1. Neq, the total equilibrium stand density:

Neq =N0XN (15)

2. The total equilibrium structural growth, Geq:5

Geq =

I∑

i=0

Ni gi =N0 g0XG (16)

3. The total equilibrium coverage, νeq:

νeq =

I∑

i=0

Ni ai =N0 a0Xν (17)

4. The total equilibrium carbon mass:

Meq =

I∑

i=0

Nimi =N0m0XM (18)10

HereXN ,XG,Xν andXM , are functions of µ0 (see Appendix B2). This equilibrium state is derived by settingN (j+1)
i =N

(j)
i

in equation (B.17), such that the flux entering into a mass class is equal to the flux leaving that class plus the loss of plants due

to mortality.

The equations above therefore define the equilibrium state of the discrete system for given values of N0 and µ0. The value

of µ0 can be estimated from forest demographic data where this is available (Moore et al., 2018, 2020). However, for global15

applications we rarely have more observations than the fractional coverage of each PFT. Starting from the derived forms for

Neq (equation (15)) and Geq (equation (16)), and requiring that the recruitment flux (α/(1−α)Geqs) is equal to that of the

total population dying (γNeq), we can derive an equation for the total equilibrium coverage (full details in Appendix B2):

νeq,k = 1−
(

1−α
α

)
µ0
XN

XG
−
∑

l 6=k

cklνl (19)

As the lefthand-side of this equation depends only on prescribed constants and µ0, Eq. (19) can be inverted (by numerical20

iteration) to estimate µ0 for observed values of the PFT fractions (νk, νl) and an assumed value of α (see Table 3). Once the

value of µ0 has been derived in this manner, it can be used to calculate Xν , and therefore N0 by inversion of Eq. (B.28):

N0 =
νeq
a0Xν

(20)

Equations (19) and (20) therefore allow us to define an initial equilibrium state (Ni) which is consistent with observed area

fractions of each PFT. Furthermore, when paired with an estimate of the net carbon assimilate (from a model or observations),25

the µ0 estimate can be converted into a map of the implied mortality (γ) by PFT. We demonstrate this capability globally in

the next section.
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3 Modelling Results

For these runs, the numerical RED model is set up to use the 9 PFTs which are currently used in JULES (Harper et al., 2018).

This enables us to directly use driving data - time series of the rate of net assimilation (P ) - from a previous UKESM model

simulation that includes JULES (Sellar et al., 2019). RED is integrated forward using a one month time-step and successive

mass classes that differ by a multiplicative constant ξ, so that mi = ξmi−1. The value of ξ was chosen to optimally fit the5

analytical equilibrium solutions assuming 10 mass classes for trees, 8 mass classes for shrubs and 1 mass class for grasses,

assuming µ0 = 0.25 (see Appendix B3). Other PFT-specific parameters are assumed as summarised in Table 3.

Table 3. List of PFT names and assumed allometric scaling parameters (m0,a0,h0), seedling fraction (α) and competition coefficient (cpft,j).

The growth allometry of trees and shrubs across size is assumed to follow Niklas and Spatz (2004) (φg = 0.75, φa = 0.5, φh = 0.25). The

competition coefficients given describe which PFT functional group shades the current PFT, if cpft,j = 1, the PFT is shaded, otherwise it is

not (Table 2).

Long name Abbrev Classes Scaling (ξ) α m0(kgC) a0(m2)
cpft,j

Tree

Shrub

G
rass

Broadleaf Evergreen Tree Tropical BET-Tr 10 2.32 0.10 1.00 0.50 1 0 0

Broadleaf Evergreen Tree Temperate BET-Te 10 2.32 0.10 1.00 0.50 1 0 0

Broadleaf Deciduous Tree BDT 10 2.35 0.10 1.00 0.50 1 0 0

Needleleaf Evergreen Tree NET 10 2.35 0.10 1.00 0.50 1 0 0

Needleleaf Deciduous Tree NDT 10 2.32 0.10 1.00 0.50 1 0 0

Cool Season Grasses C3 1 1.50 0.60 0.10 0.25 1 1 1

Tropical Grasses C4 1 1.50 0.60 0.15 0.25 1 1 1

Evergreen Shrub ESh 8 2.80 0.35 0.15 0.25 1 1 0

Deciduous Shrub DSh 8 2.80 0.35 0.50 0.25 1 1 0

3.1 Global: Diagnosed Plant Mortality Rates

Here we use the analytical forms for the equilibrium state (Section 2.5) and observations of global vegetation cover, to diagnose

the corresponding map of PFT-specific mortality rates. These mortality rates are therefore consistent with the current observed10

vegetation state, and rates of net assimilation (P ) provided from UKESM (Sellar et al., 2019). The UKESM simulation provides

NPP and local litterfall per unit area of each PFT. We multiply by PFT fraction to get the grid-box mean values required to

drive RED (using ESA landcover data, as explained below). The observed maps of PFTs are provided by the ESA LC_CCI

dataset for 2008-2012 (Poulter et al., 2015), projected onto the 9 JULES PFTs (Figure 3). Maps of the prescribed annual mean

values of the rate of net assimilation (P ) are shown in Figure 4.15
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Figure 3. Observation-based dataset of the PFT area fractions for the nine JULES PFTs (Harper et al., 2016) as listed in Table 3.

11



60°S

0°

60°N

BET-Tr BET-Te BDT

60°S

0°

60°N

NET NDT C3

120°W 60°W 0° 60°E 120°E
60°S

0°

60°N

C4

120°W 60°W 0° 60°E 120°E

ESh

120°W 60°W 0° 60°E 120°E

DSh

0.00

0.05

0.10

0.20

0.40

0.60

0.80

1.00

1.20

As
sim

ila
te

 (
kg

C
m

2
yr

1 )

Figure 4. Mean net assimilate P assimilate (equation (8)) from UKESM between 2000-2010. The mean is constructed by setting any negative

growth rates to zero.

We use the procedure outlined in Section 2.5 to estimate spatially-varying values of µ0 for each PFT, using Eq. (B.32), and then

Eq. (B.34) to estimate N0. This method successfully reproduces the ESA map of dominant PFT to good accuracy, as shown in

Figure 5 and Table 4.
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Figure 5. Maps of dominant PFT for (a) ESA LC_CCI dataset and (b) RED model equilibrium fractions. Sparse area is defined as where the

total vegetation coverage is less than 10%.

Table 4. Goodness of fits for the RED equilibrium coverages to the coverages from ESA LC_CCI dataset across PFTs. r represents the

Pearson Correlation Coefficient, after weighting by the grid-box area to account for latitudinal variation of grid-box areas.

PFT r RMSE

BET-Tr 0.990 0.030

BET-Te 0.935 0.030

BDT 0.783 0.053

NET 0.905 0.051

NDT 0.928 0.033

C3 0.895 0.129

C4 0.818 0.088

ESh 0.854 0.051

DSh 0.525 0.049

The fit of the RED equilibrium vegetation coverage to the ESA observations is generally very good (Table 4). However, it is

imperfect in some areas (e.g. Central Asia, Sahel) where the driving net assimilate from UKESM is zero or negative. Also,
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areas where the observational dataset indicates co-existing PFTs within the same vegetation class (e.g. broadleaf trees and

needleleaf trees) are not well simulated by this first version of RED, which leads to competitive exclusion in the equilibrium

state (see Discussion). Since we now have diagnosed values of µ0 and N0, along with prescribed values of P , we can also

diagnose the mean plant mortality rate γ, for each location and for each PFT, from Eq. (14) :

γ =
µ0 g0
m0

(21)5

where g0 is given by Eq. (11) combined with Eq. (B.18) and Eq. (B.20). Maps of γ values, derived in this way, are shown in

Figure 6.
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Figure 6. Diagnosed maps of mortality rates γ for each PFT, as required for consistency with the ESA observations and the UKESM growth

rates. White areas correspond with zero coverage and/or zero growth.

The mortality rate derived is dependent on the assumed areal coverage and the total assimilate. A high coverage with a low

growth rate will result in a compensating low diagnosed mortality rate (and vice-versa). Furthermore, the choice of α (equation

(11)) and m0 also influence the diagnosed value of γ. An analysis of the sensitivity of the inferred value of γ to these factors10

is presented in Appendix C. Assuming ±20% uncertainty on assimilate, α, m0 and ±5% on the coverage gives an uncertainty

bound of ±35% on γ. Under the assumption that high coverages are indicative of the baseline mortality for a given PFT, we

take a sub-sample of the grid-boxes that are within the top quartile of non-zero coverages (νeq > 0.01) (Table 5). The median

µ0 value diagnosed from the top quartile of BET-Tr of 0.232+0.008
−0.007 (Table 5), is very close to the value calculated in our

previous paper (Moore et al., 2020) of approximately 0.235 for all of South America using the RAINFOR sites.15
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Figure 7. Diagnosed mortality rates for (a) trees, (b) grasses and (c) shrubs in the top quartile of coverage. Notches within the box represent

the confidence bounds of the median. The confidence bounds are estimated using a bootstrap method. Bracketed numbers represent the

number of grid-points.

Table 5. The area-weighted median values of observed coverage and driving net assimilate against µ0 and γ for the upper quartile of

grid-boxes for each PFT.

PFT
Area weighted median

νobs P (kgC m−2 yr−1) µ0 γ (yr−1)

BET-Tr 0.793+0.019
−0.023 0.731+0.054

−0.041 0.232+0.008
−0.007 0.032+0.002

−0.001

BET-Te 0.402+0.020
−0.030 0.349+0.022

−0.028 0.340+0.006
−0.004 0.059+0.003

−0.003

BDT 0.238+0.011
−0.011 0.143+0.018

−0.014 0.377+0.013
−0.011 0.052+0.003

−0.003

NET 0.471+0.009
−0.011 0.281+0.005

−0.013 0.328+0.008
−0.009 0.036+0.002

−0.002

NDT 0.597+0.010
−0.015 0.112+0.009

−0.008 0.298+0.008
−0.007 0.011+0.001

−0.001

C3 0.566+0.011
−0.007 0.124+0.008

−0.006 0.163+0.017
−0.013 0.023+0.002

−0.003

C4 0.545+0.043
−0.053 0.123+0.084

−0.040 0.189+0.044
−0.027 0.029+0.006

−0.010

ESh 0.142+0.009
−0.007 0.028+0.002

−0.001 0.744+0.019
−0.021 0.094+0.010

−0.004

DSh 0.116+0.010
−0.015 0.024+0.006

−0.004 0.713+0.046
−0.027 0.036+0.005

−0.007

Site-level assessments of the rates of stand mortality within pan-tropical forests conclude a range of background rates (Lugo

and Scatena, 1996; Phillips, 1996; Phillips et al., 2004). Phillips (1996) estimates mortality rates collected across 40 pan-

tropical sites for tree sizes greater than 10− 25 cm dbh. Later work by Phillips et al. (2004) used the demographic data from

15



the RAINFOR dataset of trees ≥ 10cm dbh. Using these site assessments, we can make a comparison to BET-Tr equilibrium

mortality rates by looking at the values of γ in areas where we would expect to see old growth forests. We use the top 25%

of coverages of the BET-Tr PFT to represent plausible areas of undisturbed forest. Figure 7 shows that the diagnosed baseline

mortality rates are in reasonable agreement with these observational estimates for Amazonia.
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Figure 8. Comparison of observation-based estimates of tropical tree mortality (Phillips, 1996; Phillips et al., 2004) to γ values diagnosed

from RED for the BET-Tr PFT (for the top 25% of fractions for this PFT). (a) location of observational sites (blue and green crosses)

versus the chosen RED grid-points (red circles); (b) distribution of mortality across grid-boxes; (c) mortality distribution across the BET-Tr

grid-points. Bracketed numbers in panel (b) represent the number of measurements, and in panel (c) the number of gridpoints.

There is a need to better understand the influence of mortality arising from disturbance events such as droughts and fire in order5

to constrain model projections (Pugh et al., 2020). Here we investigate if the equilibrium mortality rates implicitly capture areas

of disturbances, by comparing the mean tree mortality rate to fire and land-use surveys (the mean mortality is defined here by

weighting grid-box γ values by grid-box fractional coverages). There are a number of surveys relating stand mortality in

regions prone to wildfires (Swaine, 1992; Kinnaird and O’Brien, 1998; Peterson and Reich, 2001; Van Nieuwstadt and Sheil,

2005; Prior et al., 2009; Staver et al., 2009; Brando et al., 2014). In a broad sense, post-fire mortality rates can range from10

0.06 yr−1 to catastrophic rates around 0.8 yr−1 and can vary quite considerably depending on tree species, fire frequency and

drought severity. The drought-fire interaction is responsible for significantly increasing mortality post-fire and can be a driving

cause of regional die-back (Allen et al., 2010; Brando et al., 2014). Using the ESA FIRE_CCI dataset (Chuvieco et al., 2019)

we can estimate the burnt vegetation fraction per year. Taking the average burnt vegetation fraction for the months between

2000 and 2010, and converting into annual burn rate we gain an estimate of fire severity.15
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Another key issue is anthropogenic land-use and land-use change (Nepstad et al., 2008; Haddad et al., 2015). Fragmentation of

natural forests is understood to raise the mortality of the remaining forest and to decrease the overall resilience of the ecosystem

(Esseen, 1994; Laurance et al., 1998; Jönsson et al., 2007). In order to maintain a near-constant agricultural fraction, regular

disruption such as grazing is needed to prevent re-colonisation and secondary succession (Dorrough and Moxham, 2005;

Van Uytvanck et al., 2008; Chaturvedi et al., 2012). We carry out a comparison with land-use using the 2000 ESA LC_CCI5

inferred crop coverages (Li et al., 2019).

In Figure 9, we see the derived observations for burn area (a) and crop fraction (b), along with the derived mean γ for the

tree PFTs (c). From Figure 9 (d), we see that there are areas of large mortality (γ > 0.075 yr−1) that do correspond to areas

where we see large fire activity (burn rate > 0.1 yr−1) and increased crop fraction (> 0.25). However, large burn rates are seen

to overlap in parts of central Brazil around the Cernado region, Southern Africa and North Western Australia where fires are10

understood to play a significant part within the ecosystem (Coutinho, 1990; Medeiros and Miranda, 2008; Prior et al., 2009;

Staver et al., 2009). There are also some areas of agriculture which correspond to deforestation, such as in the Atlantic forests

of Brazil and in Indonesia (Higuchi et al., 2008; Curran et al., 2004). Areas of increased disturbances result in grasses and

shrubs dominating (Figure 3).

Analysis of the RED equilibrium is an indirect approach to estimating tree mortality based on simple yet mechanistic principles15

of demography, and relying on few inputs (vegetation cover and assimilate). It is however conditional on the assumed estimates

of vegetation coverage and net rates of assimilation.
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Figure 9. Comparison of diagnosed mortality rates, with observation-based maps of fire and land-use. (a) annual burnt area fraction from

the ESA FIRE_CCI dataset; (b) crop fraction from the ESA LC_CCI 2000 dataset; (c) diagnosed mortality rate γ for the tree PFTs (BET-Tr,

BET-Te, BDT, NET, NDT); (d) overlap of areas of higher tree mortality rates (γ > 0.075 yr−1) with areas of fire (Burnt Area > 0.1 yr−1)

and agriculture (Crop Fraction ≥ 30%).
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3.2 Dynamical Simulations

3.2.1 Local: Simulating Succession

In this subsection we demonstrate the vegetation successional dynamics simulated by RED in an idealised spin-up from bare-

soil, for a grid-box at the edge of the Amazonian rainforest (Figure 10). Under these circumstances, the diagnosed initial state

is indeed the long-term equilibrium state, as evidenced by the horizontal dashed lines in panels a and b of Figure 10.5
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Figure 10. Dynamical runs of RED for a grid-box at the edge of the Amazonian rainforest, starting from bare soil (solid lines) and the

diagnosed equilibrium state (dashed lines). (a) PFT fractions versus time; (b) biomass versus time; (c), (d) and (e) snapshots of the number

density distribution of the PFTs across mass classes at different times. Lines marked as + are the equilibrium runs while X indicates the

spin-up run. The ultimate steady-state is determined by the balance between recruitment and mortality (equation (6)). Intra- and inter-PFT

occurs here through the shading of seedlings, which implies that just a fraction of the gridbox (s, ‘space’ or ‘gap’ fraction) is available to

grow seedlings (equation (7)).
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Faster growing grass PFTs dominate the grid-box within the first twelve years, before being replaced by evergreen shrubs

which shade the grass seedlings. Eventually, Broad-leaf Evergreen Tropical Trees replace much of the shrub and grass, on a

timescale determined in large part by the parameter α and the reference mass class m0. With the parameters used here, the

vegetation fraction reaches close to its equilibrium value after about 20 years (panel (a)), but full spin-up of the biomass takes

around 150 years (panel (b)).5

The modelled evolution of number density versus mass distribution for each PFT is shown in panel (c) (after 6 years), panel

(d) (after 13 years) and panel (e) (after 100 years), with the eventual demographic equilibrium profiles shown by the dashed

lines. It is clear that grass PFTs are close to their demographic equilibrium after only 6 years, but tree PFTs need more than

100 years to reach equilibrium.

The dashed lines in Figure 10 represent a dynamical RED simulation from the diagnosed demographic equilibrium state. This10

state is derived using the methodology described in Section 2.5, with one significant change. The competition rules given by

Eq. (7) and Table 2 result ultimately in equilibria which have a single dominate PFT in each class of co-competing types (trees,

shrubs, grasses). To avoid drifts associated with the competitive exclusion of the subdominant PFTs in each vegetation class,

we choose to initialise the dominant PFT to have the total area fraction of all the PFTs in that vegetation class.

3.2.2 Global: Spin-up from Bare Soil15

Transient simulations of global vegetation will be the subject of a future paper, but in the final subsection of this paper we

wish to demonstrate the utility of the semi-analytical equilibrium for initialisation of global model runs. Figure 11 shows the

time-evolution of global mean PFT fractions and biomass from a global run driven by net assimilation rates from the UKESM

model. Once again, two RED simulations are shown, one started from bare soil (solid lines) and the other from the semi-

analytical equilibrium state (dashed lines). Using a constant assimilate rate (Figure 4) and the mortality distribution (Figure20

7), we see convergence of these two runs, but only after more than 1000 years of simulated time. The ability to diagnose the

equilibrium state therefore has the potential to reduce model spin-up time hugely, especially for Earth System Models (ESMs)

applications.
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Figure 11. Global model spin-up from bare soil. As for figure 10, solid lines are spin-up from bare soil, dashed lines are the equilibrium

instillation run. Panel (a) represents the fractional global coverage relative to the total land area; panel (b) represents the total biomass of the

vegetation.

4 Discussion

The response of the land surface to climate change is a key uncertainty in climate projections. Ambitious climate targets also

rely on land management practices such as reforestation and afforestation to increase the storage of carbon on land. First-

generation Dynamic Global Vegetation Models (DGVMs) attempted to model the the land surface in terms of bulk properties

such as mean vegetation cover, vegetation carbon and leaf area index. These models lack information about the plant size-5

distribution, which compromised their ability to represent recovery from disturbance and the impact of land management.

Providing useful guidance on these issues requires improved DGVMs which can represent changes in tree size distributions

within forests (so called ‘demography’). A number of much more sophisticated second-generation DGVMs are now under

development. These models often explicitly simulate the number of plants within different size or mass classes, and on dif-

ferent patches of land, which are defined by the time since a disturbance event. Such second generation models are therefore10

in principle able to simulate variations in plant number density as both a function of patch age and plant size. However, this

completeness is at the expense of much computational and parameter complexity.

Our previous work in evaluating demographic equilibrium theory for regional forest inventory datasets in North America

(Moore et al., 2018) and using RAINFOR sites for South America (Moore et al., 2020), has provided the theoretical basis for

the development of RED. In those studies we found that tree-size distributions within observed forests can be satisfactorily un-15
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derstood in terms of demographic equilibrium in the size dimension alone. This is a reduction in complexity compared to other

cohort models which are based on patch age, and yet an improvement in ecological fidelity compared to older phenomenolog-

ical DGVMs such as TRIFFID (Cox, 2001). The modular design of RED allows for easy coupling to land-surface schemes,

merely requiring the per unit grid-box total carbon assimilate rate and any additional mortality disturbance rates as inputs for

each grid-box (Figure 2). In principle, RED allows scope for more complex tree size-dependent processes, although in this first5

study we chose to assume size-independent (but spatially varying) mortality rates for each PFT. Our previous work suggests

that this is a good first-order assumption (Moore et al., 2018, 2020).

Internally within the model we make a number of simplifications. Firstly, the number density for each PFT is treated as a

function of plant mass alone. This immediately eliminates the need to explicitly represent patches, and therefore removes age

as an independent dimension. This is a distinct approach relative to cohort DGVMs which are based on patches defined by time10

since disturbance, such as the POP or ORCHIDEE-MICT models (Haverd et al., 2014; Yue et al., 2018). Secondly, we assume

that plant growth rates vary as a power of plant mass. By default we assume a power of φg = 3/4, which is consistent with

Metabolic Scaling Theory (Enquist et al., 1998) and the empirically determined allometric relationships of Niklas and Spatz

(2004).

Finally, we assume that competition is only significant for the lowest ‘seedling’ mass class. This enables us to represent gap15

dynamics among plants and resultant stages in succession. This represents a significant simplication compared to other ap-

proaches involving the Perfect Plasticity Assumption (PPA), as used within DGVMs such as LM3-PPA or CLM(ED) (Fisher

et al., 2015; Weng et al., 2015), where canopies are assumed to perfectly fill gaps through photomorphism (Strigul et al., 2008).

In LM3-PPA the radiative flux is limited by the available gap fraction in a given crown layer. PPA parallels our gap boundary

condition at the lowest mass class (equation (6)), but in RED the growth of a cohort is purely dictated by the the disaggregation20

of total growth assimilate assuming metabolic scaling (equation (11)).

These simplifications allow RED to be solved analytically for the steady-state vegetation cover given information on the mor-

tality and growth rates per unit area for each PFT. Such analytical steady-state solutions mean that RED can be easily initialised

in drift-free pre-industrial states, which is vital to avoid spurious sources and sinks in climate-carbon cycle projections. The

analytical solutions also enable RED to be calibrated to the observed vegetation cover, via a single parameter (µ0) which25

represents the ratio of mortality to growth for a tree of an arbitrary reference mass. The existence of analytical steady-state

solutions for RED also opens up other promising research avenues. For example, these solutions imply relationships between

the fractional coverage of each PFT, total plant biomass, and the ratio of mortality-to-growth. This in turn allows RED to be

calibrated using observations of any two of these quantities. The analytical solutions also allow optimality hypotheses to be

explored (e.g. the hypothesis that the fraction of net assimilate allocated to seed production maximises stand-density and/or30

biomass).

Aside from the existence of analytical steady-state solutions, RED is attractive for large-scale applications because it is both

parameter sparse (‘parsimonious’) and requires very few driving variables. The main driving variable is the time-varying net

plant growth rate for each PFT, which is defined as net primary production minus the local litterfall. These driving data can be

provided by a land-surface scheme, as we do in this study, or from observations. The only other driving variable for RED is35
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the mortality rate, which we treat in this study as a geographically-varying PFT-specific constant that is independent of mass.

However, in principle RED could utilise mortality rates that depend on plant mass and time to represent individual disturbance

events (e.g. forest fires, disease outbreaks). Despite its simplicity, the RED model is able to fit the global distribution of vege-

tation types (Figure 5), and simulate successional dynamics, including changes in forest demography (Figure 10).

There are inevitably weaknesses with any particular modelling approach. For RED, a current limitation is for competition to5

lead to a single PFT at each location within each co-competing vegetation class (i.e. tree, shrub, grass). The PFT with the

highest equilibrium fraction will end up excluding sub-dominant PFTs within the same vegetation class. It was necessary for

us to account for this eventual competitive exclusion to derive zero-drift steady-states for the global runs presented in Section

3.2.1. Such competitive exclusion is a common problem in DGVMs (Fisher et al., 2018). Currently, RED would therefore not

be the most appropriate DGVM to answer important questions regarding the role of biodiversity in ecosystem function (Pavlick10

et al., 2013; Levine et al., 2016). More sophisticated DGVMs are required to simulate plant diversity, such as individual-based

models (Fischer et al., 2016), and DGVMs specifically-designed to capture sub-gridscale patch dynamics (Longo et al., 2019a,

b). Adapting our ‘gap’ boundary condition (equation (7)) appears to be a promising way to allow greater PFT diversity in RED,

without unduly increasing model complexity. We see this as a key priority for future research.

RED is currently being coupled to the JULES Land Surface Model, replacing TRIFFID as the default DGVM within that15

framework. In parallel, significant improvements are being made to the representation of physiological processes in JULES,

most notably through the representation of non-structural carbohydrate (‘SUGAR’, Jones et al. (2019)), and through the inclu-

sion of a coupled model of stomatal conductance and hydraulic failure under drought stress (‘SOX’, Eller et al. (2018, 2020)).

Plans are also being made to derive the mortality rates for RED from the INFERNO forest-fire model (Burton et al., 2019).

These developments will allow us to simulate the effects of size-dependent tree mortality rates within the near future.20

5 Conclusions

In this paper we have presented a new intermediate complexity second generation Dynamic Global Vegetation Model (DGVM),

which captures important changes in forest demography. The Robust Ecosystem Demography (RED) model makes a number of

important simplifications to achieve this. These simplifications are based on theoretical concepts (e.g. metabolic scaling theory

to estimate how plant growth rate varies with plant mass, and minimum crown overlap) and also comparison to observed25

forest demography (Moore et al., 2018, 2020). As a result, RED is parameter sparse, and can be driven with time-series of net

plant growth rate (and optionally disturbance rates) for each Plant Functional Type (PFT). We have demonstrated that RED

can be calibrated effectively to observed global vegetation maps, using a single fitting parameter (representing the ratio of

mortality to growth for a plant of an arbitrary reference mass). The next stage will be to use RED in coupled climate-carbon

cycle projections so to assess how changes in vegetation demography impact future CO2 and climate. We have made the30

prototype RED code publically available, and we hope that Earth System and land-surface modellers will make good use of

this framework to further their own research.

23



Code availability. The RED model Python Code is archived at https://doi.org/10.5281/zenodo.3548678. Furthermore, RED is currently

being coupled into JULES, where a basic integration currently exists as branch (vn5.4_veg3_ctrl) - this requires registration for the JULES

repository (https://code.metoffice.gov.uk/trac).

Appendix A: Functional Form of Flux Fi in Discretised RED

For large-scale application in ESMs a primary concern is to ensure that the total vegetation carbon obeys carbon balance (i.e.5

only changes due to the net impact of total growth minus total mortality). Here we use that requirement to derive the functional

form for Fi as given in equation (5).

The total vegetation carbon in each mass class is Mi =miNi. The update equation for Mi is therefore Eq. (4) multiplied by

mi:

∂Mi

∂t
+mi (Fi−Fi−1) =−γMi. (A1)10

The total carbon in the vegetation, M , is the sum of the carbon in each of the mass classes:

M =
∑

i

Mi. (A2)

Thus the update equation for the total carbon is:

∂M

∂t
+
∑

i

mi (Fi−Fi−1) =−γM, (A3)

which can be rewritten as:15

∂M

∂t
+
∑

i

Fi (mi−mi+1) =−γM. (A4)

Now substituting Eq. (5) into Eq. (A4) gives:

∂M

∂t
=
∑

i

Nigi− γM. (A5)

The first term on the righthand-side of this equation is the total carbon uptake due to growth, and the second term represents

the total carbon loss due to mortality, which is the required carbon conservation equation.20

Appendix B: Continuum Solutions and Demographic Equilibrium Theory

Equation (1), can be solved for the steady-state if we assume metabolic scaling of growth using Eq. (2) and a size-independent

mortality (Moore et al., 2018, 2020):

n= n0

(
m

m0

)−φg
exp

{
µ0

(1−φg)

[
1−

(
m

m0

)1−φg
]}

, µ0 =
γm0

g0
. (B.1)
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Figure B1. The quasi-Weibull number density solution to DET (equation (B.1)), assuming the same initial n0 and growth scaling φg = 0.75

but different µ0 values.

where n0 is a boundary condition that describes the number density at the mass m0. The parameter µ0 is the ratio of the rate

biomass loss due to mortality to the rate of biomass gain due to growth, for the reference mass class m0. Similar analytical

solutions can be derived for other measures of tree-size, such as basal diameter or height (Moore et al., 2018, 2020).

Integrating Eq. (B.1) from m0 to∞ gives the total number density:

Neq =
n0g0
γ

=
n0m0

µ0
. (B.2)5

Other cohort integrals can be derived by integrating over the number density distribution, such as total growth rate (
∫
gndm):

Geq = g0Neq

(
µ0

1−φg

) φg
φg−1

exp

{
µ0

1−φg

}
Γ

(
1

1−φg
,

µ0

1−φg

)
(B.3)

total biomass (
∫
mndm):

Meq =m0Neq

(
µ0

1−φg

) 1
φg−1

exp

{
µ0

1−φg

}
Γ

(
1

1−φg
+ 1,

µ0

1−φg

)
(B.4)

and total vegetation cover (
∫
andm):10

νeq = a0Neq

(
µ0

1−φg

) φa
φg−1

exp

{
µ0

1−φg

}
Γ

(
φa

1−φg
+ 1,

µ0

1−φg

)
(B.5)

where Γ(a,b) is the incomplete upper gamma function.

As we assume the allometric exponents presented in Niklas and Spatz (2004) (φg = 3/4,φa = 1/3), these functional forms
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simplify to:

Geq = g0Neq

(
1 +

3

4µ0
+

3

8µ2
0

+
3

32µ3
0

)
(B.6)

Meq =m0Neq

(
1 +

1

µ0
+

3

4µ2
0

+
3

8µ3
0

+
3

32µ4
0

)
(B.7)

5

νeq = a0Neq

(
1 +

1

2µ0
+

1

8µ2
0

)
(B.8)

Finally, to convert a µ0 found using biomass (µ0,tdm) to one based on carbon mass, we use the formula:

µ0 = 21−φgµ0,tdm (B.9)

assuming that biomass is twice the carbon mass.

B1 Closed Continuous Form10

The lowest population flux, n0g0, is equal to the seedling boundary condition, F0, in equation (6):

n0g0 =
α

1−α
G

m0
s (B.10)

Substituting the total number density, Neq, equation (B.2), into the lefthand-side, and total growth, Geq, Eq. (B.6), into the

righthand-side, yields a solution for the equilibrium coverage, assuming s= 1− νeq:

γNeq =

(
α

1−α

)
g0
m0

Neq(1− νeq)

(
1 +

3

4µ0
+

3

8µ2
0

+
3

32µ3
0

)
(B.11)15

which simplifies:

νeq = 1−
(

1−α
α

)
µ0

1 + 3
4µ0

+ 3
8µ2

0
+ 3

32µ3
0

(B.12)

Using equation (B.8) we can write the total number density at equilibrium in terms of νeq:

Neq =
νeq
a0

(
1

1 + 1
2µ0

+ 1
8µ2

0

)
(B.13)

This enables equation (B.6) to be rewritten:20

Geq =
νeqg0
a0

(
1 + 3

4µ0
+ 3

8µ2
0

+ 3
32µ3

0

1 + 1
2µ0

+ 1
8µ2

0

)
(B.14)

This equation in turn defines the total assimilate:

Peq =

(
1

1−α

)
Geq (B.15)

Finally the total biomass can be written in closed form as:

Meq =
νeqm0

a0

(
1 + 1

µ0
+ 3

4µ2
0

+ 3
8µ3

0
+ 3

32µ4
0

1 + 1
2µ0

+ 1
8µ2

0

)
(B.16)25
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B2 Discrete Steady-State

To solve for the discrete model equilibrium, we start from the flow equation from Eq.(4) with the term ∂N/∂t→ 0:

γNi +Fi = Fi−1 (B.17)

considering the population flux - equation (5), we find Ni in relation to the lower mass class, Ni−1:

Ni =Ni−1

[
gi−1/(mi−mi−1)

gi/(mi+1−mi) + γ

]
=Ni−1λi (B.18)5

Assuming no population grows out of the top class, λI is given as:

λI =
gi−1

(mi−mi−1)γ
(B.19)

λi can be simplified to depend only on µ0, by using µ0 = (γm0/g0) (equation (14)) and applying the mass scaling of growth

rates gi = g0(mi/m0)φg . We can show that λi and λI are:

λi =
(mi−1/m0)

φg m0/(mi−mi−1)

(mi/m0)
φg m0/(mi+1−mi) +µ0

, λI =
(mi−1/mi)

φgm0

(mi−mi−1)µ0
(B.20)10

An expression for the total stand density at equilibrium, Neq, can be derived. Using equation (B.18), we can represent any

population of mass class i in terms of the lowest mass class N0:

Ni =N0

i∏

j=1

λj (B.21)

Therefore, when finding the total number of stands relative to N0 we get:15

Neq =N0


1 +

I∑

i=1

i∏

j=1

λj


=N0XN (B.22)

where XN describes the sum of the all mass classes as a proportion of N0. We can describe the total class growth rate in

relation to N0 as:

Gi =N0gi

i∏

j=1

λi (B.23)

By using the allometric relationship (equation (2)):20

Gi =N0g0

(
mi

m0

)φg i∏

j=1

λj (B.24)

we describe the total class growth rate in relation to the lowest class growth rate, N0g0. Like Neq, we can show the total

growths across all classes is therefore:

Geq =N0g0


1 +

I∑

i=1

(
mi

m0

)φg i∏

j=1

λj


=N0g0XG (B.25)
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We can repeat the same process for coverage:

νi =N0ai

i∏

j=1

λj (B.26)

and using allometric relationship (equation (3)):

νi =N0a0

(
mi

m0

)φa i∏

j=1

λj (B.27)

This gives the total coverage, νeq as:5

νeq =N0a0


1 +

I∑

i=1

(
mi

m0

)φa i∏

j=1

λj


=N0a0Xν (B.28)

Finally, for the total carbon mass within the class:

Mi =N0mi

i∏

j=1

λi (B.29)

with the total carbon density equalling:

Meq =N0m0


1 +

I∑

i=1

mi

m0

i∏

j=1

λj


=N0m0XM (B.30)10

In equilibrium, the rate of the recruitment of seedlings (equation (6)) must balance the rate of loss of plants due to total mortality

(γNeq):

γNeq =
α

(1−α)

Geq

m0
s (B.31)

Substituting in equation (B.22), Eq. (B.25) yields a balance equation for the kth PFT:15

(
α

1−α

)(
1−

∑

l

ckl νl

)
= µ0

XN

XG
(B.32)

We can get the equilibrium fraction of a PFT, k, by rearranging the above equation, assuming ckk = 1:

νeq,k = 1−
(

1−α
α

)
µ0
XN

XG
−
∑

l 6=k

cklνl (B.33)

Once the value of µ0 has been derived in this manner, we can find N0 by inversion of equation (B.28):

N0 =
νeq
a0Xν

(B.34)20

Substituting equation (B.33) into Eq.(B.34) allows us to determine N0 and hence most other total densities in terms of purely

µ0 and prescribed constants.
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B3 Continuous-Discrete Convergence

Inevitably discretised models will not exactly reproduce exact continuum analytical solutions, as a result of numerical inaccu-

racies that arise from using a finite number of mass classes. However, where exact analytical solutions exist they can be used to

benchmark numerical models and optimise discretisation schemes, which is what we set out to do in this appendix. We compare

the continuum analytical solution for the equilibrium coverage (equation B.12) to results from RED with differing numbers of5

mass classes mi and a geometric mass class scaling,mi+1 = ξmi. Figure B2(a) shows how the relationship between νeq varies

with µ0 for the exact continuum solution (black line) and variants of the numerical version of RED with different numbers of

mass classes (coloured lines). As hoped, results from the discretised model converge on the exact solution as the number of

mass classes increases.
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Figure B2. Comparison of the discretised model to the continuum analytical solution, showing convergence for higher numbers of mass

classes. This example uses parameters for Broadleaf Evergreen Tropical trees (BET-Tr PFT) with α= 0.1: (a) equilibrium coverage νeq

versus µ0 for the exact continuum solution (black line) and discretisations of the mass dimension with varying numbers of mass classes and

mass class width scaling (ξ); (b) absolute error in the modelled value of νeq against the number of mass classes using the optimum value of

ξ for each case; (c) optimum ξ versus number of mass classes, with contours showing the absolute error in νeq . Panels (b) and (c) assume

µ0 = 0.25. The white dots in (c) have the same number of classes and scaling as the discrete lines in (a).

The numerical versions of RED shown in Figure B2(a) each use a value of ξ that is near optimum for the number of mass10

classes, as shown in panels (b) and (c) of Figure B2. Optimum ξ values reduce from about 2.3 for 10 mass classes to 1.1 for

100 mass classes. This variation results from a trade-off. For a given number of mass classes, small values of ξ give greater

numerical accuracy, but explicitly model less of the mass range, and the opposite is true of large ξ values. As a result, optimum

values of ξ an be defined for each number of mass classes as outlined below.

For geometric scaling any mass can be expressed in terms of m0, by writing mi =m0(ξ)i. Therefore, by using mi+1−mi =15

m0(ξ)i(ξ− 1), we find that our equilibrium form of λi is reduced to:

λi =
ξ(φg−1)(i−1)

ξi(φg−1) +µ0(ξ− 1)
, λI =

ξ(φg−1)(i−1)

µ0(ξ− 1)
(B.35)
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From figure B2 (c), we see that there is an optimum value for ξ, the geometric scaling for a given number of classes, which

minimises the difference between the continuous and discrete forms. This can be found by taking the difference of the contin-

uous and discrete coverages and differentiating with respect to ξ to find the minima. It should be noted that as the continuous

form is not dependent on ξ, we get:5

∂

∂ξ
[νeq,continuous− νeq] =− ∂

∂ξ
[νeq] (B.36)

where νeq corresponds with the discrete equilibrium (equation (B.32), with νeq = (1−s)). Setting Eq. (B.36) equal to zero we

reduce the relationship to only a dependence on XN and XG:

0 =
∂

∂ξ

[
XN

XG

]
=XGX

′
N −X ′GXN (B.37)

Finding the partial derivative of XN , using the geometric form of equation (B.18), we get:10

X ′N =

I∑

j=1

[(
j∏

i=1

λi

)(
j∑

i=1

λ′i
λi

)]
(B.38)

and for XG:

X ′G =

I∑

j=1

[
ξjφg

(
j∏

i=1

λi

)(
jφgξ

−1 +

j∑

i=1

λ′i
λi

)]
(B.39)

Finding λ′i we get:

λ′i = λi

[
(1− i)(φg − 1)ξ−1−λi

(
i(φg − 1)ξφg−2 +µ0ξ

(i−1)(1−φg)
)]

(B.40)15

and for the top class, λ′I :

λ′I =

(
(1− ξ−1)(I − 1)(φg − 1)− 1

ξ− 1

)
λI (B.41)

To numerically solve for the minimum, we must differentiate Eq. (B.37), with respect to ξ. Through the product rule we get:

∂2

∂ξ2

[
XN

XG

]
=XGX

′′
N −X ′′GXN (B.42)

Differentiating equation (B.38) and simplifying gives:20

X ′′N =

I∑

j=1

[(
j∏

i=1

λi

)(
j∑

i=1

λ′′i
λi

)]
(B.43)

and doing the same for Eq. (B.39) gives:

X ′′G =

I∑

j=1

[
ξjφg

(
j∏

i=1

λi

)(
jφgξ

−2(jφg − 1) +

j∑

i=1

2jφgξ
−1λ′i−λ′′i
λi

)]
(B.44)
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λ′′i is given by:

λ′′i = λi

[
−λ
′
i

λi

(
(i− 1)(φg − 1)ξ−1

)
− (i− 1)(φg − 1)ξ−2−λi(φg − 1)ξ−1

(
i(φg − 1)ξφg−2−µ0(i− 1)ξ(i−1)(1−φg)

)]

(B.45)

For the double differential of λi we get:

λ′′i =
λ′′2i
λi

+
λi
ξ− 1

×
(

(I − 1)(φ− 1)

ξ2
− λ′i
λi

)
(B.46)

We now possess the identities needed to numerically find the optimum bin scaling for a given number of classes. In figure B25

(c), the optimum scaling, ξ, is shown as the solid black line.
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Appendix C: Sensitivity of Diagnosed Mortality Rates to Model Parameters
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Figure C1. The sensitivity of the mortality rate to assumed input variables: coverage, νeq (a), and carbon assimilate rate, Peq (b), and model

parameters: reseed fraction, α (c) and boundary mass, m0 (d). The solid black line indicates the fixed values with corresponding ±20%

(b,c,d) or ±5% (a) variation (dotted black lines).

The diagnosed mortality rates in figure 6 are sensitive to variation in model inputs and parameters. The mortality rate, γ, can

be found for the continuous solutions by rearranging the boundary condition equation (6), and substituting in Eq.(B.2) and

Eq.(B.13):

γ =
αPeqa0
m0

(
1− νeq
νeq

)[
1 +

1

2µ0
+

1

8µ2
0

]
(C.1)5
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The key external inputs to this equation are the observed PFT fraction νeq and the net assimilate Peq . In addition, our estimates

of γ are dependent on the internal model parameters, α and m0.

The red lines in Figure C1 demonstrate how the estimate of γ depends on these four inputs. The black dashed lines in Figure

C1 indicate how uncertainties in each input relate to uncertainties in γ, for ‘true’ values typical of a tree PFT. We estimate

uncertainties in the observed PFT fraction (e.g. from remote-sensing) to be ±5%, and uncertainties in P (e.g. from JULES) to5

be ±20%, leading to errors of ±17% and ±20% respectively. Likewise, ±20% uncertainties in the internal parameters α and

m0 lead to ±12% and ±20% uncertainties in γ. Combining these sources of uncertainty leads to an overall uncertainty in our

inferred estimate of γ of about ±35%.
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