Supplementary material to:
An inter-comparison of tropospheric ozone reanalysis products from CAMS, CAMS-Interim, TCR-1 and TCR-2

Vincent Huijnen1, Kazuyuki Miyazaki2, Johannes Flemming3, Antje Inness3, Takashi Sekiya4, Martin G. Schultz5

1 Royal Netherlands Meteorological Institute, De Bilt, the Netherlands
2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
3 ECMWF, Shinfield Park, Reading, RG2 9AX, UK
4 Research Institute for Global Change (RIGC), Japan Agency for Marine–Earth Science and Technology (JAMSTEC), Yokohama 2360001, Japan
5 Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany

Correspondence to: V. Huijnen (Vincent.Huijnen@knmi.nl)
Figure S1. Time series of regionally and monthly aggregated ozone concentrations at different altitudes (850, 650 and 350 hPa), sampled at ozone sonde locations, against ozone sonde observations (black).
Figure S2: Multi-annual (2005-2012) mean surface ozone from TOAR for three regions, (top figures), along with corresponding relative mean bias for the reanalyses CAMS-iREAN, CAMS-REAN, TCR1 and TCR2, respectively.

Figure S3: Time series of regional, monthly mean surface ozone against TOAR observations. The dashed line indicates the number of TOAR 2°×2° grid boxes contributing to the statistics (see also right axis). Also the temporal correlation for the 2005-2014 time series is given in the figure legends.
Figure S4: Anomalies in monthly mean O₃ partial columns (surface to 300 hPa) in four reanalyses, averaged for six regions: Arctic (>60°N), Eastern US (90°W – 70°W; 30°N - 43°N) Europe (10°W-30°E; 35°N-60°N), East Asia (108°E-160°E, 20°N-50°N), Tropics (30°S-30°N) and Antarctic (>60°S). Standard deviations for monthly mean anomalies are given, computed for the 2005-2016 time period.