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to the comments listed in the referee report, the relevant changes made to the manuscript, and a mark-up version of 
the manuscript with change-tracking. 
 
============================== 
REVIEWER 1 
============================== 
Comment 1. A possible major problem  
Not sure if I am missing something here, but the authors claim that current spatiotemporal GWR models ignore 
the difference in the value change of observed points during a period of time. They suggest the introduction of 
the rate of change in the model. They go on with the example that the faster the house price of a point changes, 
the stronger the temporal effect is to the house at its nearby points. To me, this makes more sense if all observed 
points are measured at the same location throughout time. But in house price modeling, points are rarely 
measured at the same place throughout time.  
- Accordingly, and following Equation (4), that distance between yi(t) and yj(t-q) will not reflect a changing rate 
between two houses over time because those houses are not the same. The authors should address this concern.  
- The situation is different when for the four case studies used to test the algorithm because locations of observed 
points are the same over time. So the author may suggest the use of this new algorithm for this type of data 
collection.  
 
Reply 1.  
In our current STWR algorithm, as seen in Equation (4), we use the 𝑦!(#) − 𝑦%(#&') (the difference between the 
regression point 𝑖 at time 𝑡 and the observed point 𝑗 at time 𝑡 − 𝑞 ) rather than the 𝛥𝑦%(#&') (value variation of 
the observed point 𝑗 in 𝛥𝑡 ). The main reason we use 𝑦!(#) instead of 𝑦%(#) to reflect the rate of change of 𝑦% 
during the time interval (from 𝑡 − 𝑞 to 𝑡), is that the 𝑦 value of the location 𝑗 at 𝑡 is often unavailable or may not 
exist at all, while the 𝑦 value of the regression point 𝑖 at 𝑡 is known (i.e. 𝑦!(#)).Within the local spatiotemporal 
bandwidth, the value of 𝑦!(#) is close to 𝑦%(#) because both values tend to be homogeneous. As shown in the 
following figure, the dotted line from 𝑦%(#&') to 𝑦%(#)	can be approximated by the solid line from 𝑦%(#&') to 𝑦!(#)  
within the local spatiotemporal bandwidth. When the observation point 𝑗 is outside the local spatiotemporal 
bandwidth, there will be no such approximation. Although the value 𝑦!(#) is not actual 𝑦%(#), this substitution is also 
valid. The reason is that both formulations can reflect the consistent temporal effect of the past observation point 𝑗 
on the regression point 𝑖 at time 𝑡. In our STWR algorithm, we need to measure the degree of influence of the 
observed points at 𝑡 − 𝑞 (i.e. 𝑦%(#&')) on the regression point 𝑖 at 𝑡 (i.e. 𝑦!(#)). The value of the difference between 
𝑦!(#) and 𝑦%(#&') divided by 𝑦%(#&'), which represents the numerical difference rate, can reflect the degree of 
temporal influence of the past observation point 𝑗 (𝑦%(#&')) on the current regression point 𝑖 (𝑦!(#)). Besides, we 
also have some ideas and suggestions about using 𝛥𝑦%(#&') in Equation (4), which is discussed in Section 6. 
 
Revisions made. To give a better explanation of the STWR model and the associated parameters, we updated the text 
in the second half of section 1 Introduction and the text between Equations 3 and 4. Also, we added several new 
paragraphs in the first half of section 6 Discussion and Conclusions to further justify the characteristics of STWR and 
the difference between it and other models.  



 
Fig.1  

 
Comment 2. Minor problems  
-I think this study does not need four case studies to test the algorithm. It could be reduced to only one case 
study, the one with the real-world data. - The name of the journal is missing in line 79, page 31. - Reduce the 
number of decimals in tables - Considering that GWR provides R-square for each regression point, how should 
readers interpret the single the R-square shown in the tables? - Provide a possible explanation for the significant 
difference in the R-square values for OLS and the other methods. Something that helps readers to understand 
why such a big difference occurs.  
 
Reply 2.  
We use three simulation cases and a real-world case for the reasons listing below:  
(1) It can verify that this new method can be applied to different situations and is more robust than GTWR. In case 1, 
two independent variables 𝑥( and 𝑥) only changed slightly over time, and the observed time interval is short. In 
case 2, the 𝑥( and 𝑥) changed faster over time, and their observed time interval gets longer. These two cases verify 
that the performance of GTWR is unstable, which is sometimes better than GWR (case 1), and sometimes worse than 
GWR (case 2). The model performance of STWR is the best, in both case 1 and case 2, indicating that STWR is more 
robust than GTWR.  
(2) Both case 1 and 2 assumes that three coefficient surfaces keep the same over time, but in case 3, the coefficient 
surfaces is assumed to vary over time. Results of the case 3 show our new algorithm STWR still outperforms GWR 
and GTWR models when the coefficient surfaces change over time.  
(3) Through the three simulation case studies, we can draw that when the observed data changes faster over time, the 
outperformance of the STWR model will be more prominent than GWR and GTWR. 
(4) Through the real-world case, we verified the effectiveness of our new algorithm STWR, making it more convincing. 
 
Revisions Made. We added the name of the journal as pointed out by the reviewer. We reduced the decimal numbers 
of AICc of GTWR in Table 2 to keep three decimal places (because some R-squares are close, keeping three digits is 
more convenient for comparison). Also, we added more clear explanations and descriptions on the R-square in tables 
because there are many R-squares for each regression point in GWR, GTWR, and STWR. For the significant 
difference in the R-Square values, we added new text to facilitate the reader's understanding. 



 
============================== 
REVIEWER 2 
============================== 
Comment 1. The main innovation of STWR is using the rate of value variation of the nearby observed point 
during the time interval to represent the time distance. However, the value variation between the estimated 
point and the observed points is not only influenced by the time variation but also the difference of geographical 
locations. How to distinguish whether this effect is caused by time or space? Further, the value variation not 
only occurs during the time but also occurs across space. Why not also consider the value variation across space?  
 
Reply 1.  
1We can use 𝑦!(#) − 𝑦%(#&') to represent the value variation between the regression point and the observation point 
that have time difference of 𝛥𝑡 (	𝑞). Suppose that the variation contains two parts caused by time and space, and they 
are 𝑓#(Δ𝑦%(#&'))  and 𝑓*(𝑦!(#) − 𝑦%(#))  respectively. 𝑓#(Δ𝑦%(#&'))  is not affected by spatial effects, because the 
location of point 𝑗 does not change during 𝛥𝑡. 𝑓*(𝑦!(#) − 𝑦%(#)) is not affected by temporal effects, because	𝑦!(#) 
and 𝑦%(#) are observed at the same time. In theory, if we get the value 𝑦%(#), we may determine if the variation caused 
by time or space, because both 𝑓# and 𝑓* need the value 𝑦%(#). The 𝑦 value of the location 𝑗 at 𝑡 (i.e. 𝑦%(#)) is 
often unavailable or may not exist, we use the 𝑦!(#) − 𝑦%(#&')  to approximate Δ𝑦%(#&')  within the local 
spatiotemporal bandwidth when employing the 𝑘+  to calculate the temporal weights. (Please see relevant 
explanations in the reply 1 of the first reviewer). This may introduce some errors because of the different locations of 
𝑖 and 𝑗, but the errors are limited. Consequently, the value variation between the estimated point and the observed 
point in different times is mainly temporal effect, the spatial effect is limited and ignored here. 
2 The STWR algorithm is based on the assumptions and framework of the GWR model. When calculating the spatial 
weights, we use the same 𝑘* employed in GWR, whose spatial impacts is calculated by the spatial distance 𝑑*!% 
between 𝑖 and 𝑗. We introduce the value variation to better identify or capture the heterogeneities caused by the same 
time interval but different temporal effects, that is, the temporal heterogeneity of the rate of value change. The 
heterogeneities of this part were not considered in the previous GTWR. As for the calculation of spatial weights, the 
main reason that we did not consider the value variation across space is to be consistent with the GWR model, i.e. 
following the assumption that as long as the spatial distances between observation points to the regression point are 
equal, their spatial weights are the same. There may be other factors, such as anisotropy or value variation across 
space, that may have some additional spatial impacts on the regression point. The reasons we follow GWR’s 
assumptions are: (a) In the optimization procedure, the model will adaptively adjust its spatial bandwidth according 
to the density of sampling points, and to the value variations in the space. If the value variations across the space are 
small, the adaptive spatial bandwidth will be large. It means that the optimization procedure already uses the 
information about value variation across the space. (b) If the variation 𝑦!(#) − 𝑦%(#) was used to build a new spatial 
distance, which will violate the aforementioned assumption of GWR, the prediction and calibration process should be 
changed. Because 𝑦!(#) value that is required in the calculation of the new distance does not exist in prediction, spatial 
weights from surrounding observed points should be estimated by interpolation or other methods (just like the 
interpolation of temporal weights) that may bring other uncertainties or errors. Evaluating and comparing these 
uncertainties is not the scope of this paper in our plan. (c) If the |𝑦!(#) − 𝑦%(#)|/𝑑*!% was used as a new spatial distance 
for calculating the spatial weights, we have to deal with the special case when 𝑦!(#) equal to 𝑦%(#), because the spatial 



kernels (such as bi-square and Gaussian) are different form the temporal kernel of STWR. In other words, if 𝑦%(#&') 
is close or equal to 𝑦!(#) when employing our temporal kernel 𝑘+, the output temporal weight is close or equal to 0. 
The underly meaning is explainable, because when the value variation gets close or equal to 0, the influence from 
observed point to the regression point gets weak or disappear. If 𝑦!(#) is close or equal to 𝑦%(#) when employing the 
bi-square or Gaussian kernel, the meaning may be difficult to understand, because when the new spatial distance 
|𝑦!(#) − 𝑦%(#)|/𝑑*!% is close to 0, the output spatial weights will be large, which is inconsistent with the fact that the 
weaker influences it should have when the smaller value variation across space. Besides, the bi-square or Gaussian 
kernel have no solutions when 𝑦!(#)  is equal to 𝑦%(#) . If the numerator and denominator are swapped (i.e. 
𝑑*!%/|𝑦!(#) − 𝑦%(#)| ), the 𝑦!(#) can not be equal to 𝑦%(#), while it is normal that 𝑦%(#) may be equal to 𝑦!(#). Therefore, 
if we consider combing the 𝑦!(#) − 𝑦%(#) with 𝑑*!% to build a new spatial distance, we may probably need to design 
a new appropriate spatial kernel, which requires more difficult theoretical knowledge on describing the local spatial 
effects. 
 
Revisions made. To give a better explanation of the STWR model and the associated parameters, we updated the text 
in the second half of section 1 Introduction and the text between Equations 3 and 4. Also, we added several new 
paragraphs in the first half of section 6 Discussion and Conclusions to further justify the characteristics of STWR and 
the difference between it and other models.  
 
 
Comment 2. The authors indicate that the current GTWR model directly calculates the integrated 
spatiotemporal weights by using a multiplication of the spatial and temporal weights, which may cause 
underestimation of weights. This is easily misunderstood. The GTWR model also uses a scale parameter to 
handle the difference between time and space, which is the same as the proposed STWR model. Please correct 
or give more explanation.  
 
Reply 2.  
The composite spatiotemporal weights might be underestimated in the current GTWR models by using the 
multiplication kernel. Because both outputs of the spatial kernel and the temporal kernel range from 0 to 1, and the 
multiplied value is never bigger than the smaller one of the spatial and temporal kernels, which means that the 
composite spatiotemporal impacts are never greater than the single spatial impacts and the single temporal impacts. 
However, the real combined spatiotemporal impacts, may be higher than the single spatial impacts or the temporal 
impacts, or at least may be higher than the smaller ones. Moreover, multiplication makes the weight decay faster. The 

role of the adjustable parameter a used in STWR is different from the scale parameter 𝜏 ( 𝜏 = ,
-
 ) in GTWR. The 

parameter a is used for adjusting the outputs of the spatial kernel 𝑘* and the temporal kernel 𝑘+, which means 
measuring the relative strength of the spatial and temporal impacts on the regression point. However, the scale 
parameter 𝜏 is used for linearly adjusting the inconsistency of the distance between time and space, because of the 
differences of their units, scales, or metrics, etc. Specifically, GTWR uses parameters 𝑢 and 𝑣 to generate the 
spatiotemporal distance 𝑑!%.+ (given in the following Equation 1). And then substituting the 𝑑!%.+ into the spatial 
kernel (Gaussian), its composited weights were obtained (Equation 2, we use 𝑤 to replace the α in the original 
formulation, which is easier to understand in symbol). This equation, after transformation, is equal to the multiplication 



form of two Gaussian kernels (i.e. the spatial kernel and temporal kernel). Therefore, the scale parameter 𝜏 in GTWR 
only adjusts the differences between time distances and space distances, which does not change the multiplication 
form of the spatiotemporal kernel. In contrast, the parameter a in STWR (Equation 3) is used to adjust the effects 
of the two kernels 𝑘*  and 𝑘+ , and the adjusted composite spatiotemporal weight 𝑤!%.+#  may be larger than the 
smaller one of the output values of 𝑘*(𝑑*!% , 𝑏.+) and 𝑘+(𝑑#!% , 𝑏+). 
 

𝒅𝒊𝒋𝑺𝑻 	= 	𝝀[(𝒖𝒊 	− 𝒖𝒋	)𝟐 +	(𝒗𝒊 	− 𝒗𝒋	)𝟐] + 	𝝁(𝒕𝒊 − 𝒕𝒋)𝟐   (1) 
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𝒘𝒊𝒋𝑺𝑻
𝒕 = (𝟏 − 𝜶)𝒌𝒔(𝒅𝒔𝒊𝒋, 𝒃𝑺𝑻) + 𝜶𝒌𝑻(𝒅𝒕𝒊𝒋, 𝒃𝑻), 𝟎 ≤ 𝜶 ≤ 𝟏 （3） 

 
Revisions Made. We gave more explanation in the revised manuscript, please see the second last paragraph in 
section 1 Introduction and the text between Equations 3 and 4.  
 
Comment 3. As new platforms and instruments have brought increasingly massive spatiotemporal data, 
deep learning and neural networks have also been integrated with geostatistical models to handle spatial 
and temporal non-stationary relationships, such as geographically neural network regression (GNNWR), 
geographically and temporally neural network regression (GTNNWR). These neural network-based 
models can even capture the complex non-linearity in the non-stationary relationship. Some discussion or 
comparison between STWR with these models should be added. 
 
Reply 3.  
With many successful applications of deep learning and neural network in many fields, its combinations with the 
traditional geospatial tools is becoming a promising research topic. Geographic neural network weighted regression 
(GNNWR) (Du et al., 2020) is a new attempt to combine the OLS and GWR with Artificial neural networks (ANNs). 
Geographic and temporal neural network regression (GTNNWR) (Wu et al., 2020) is based on the GNNWR with 



combing a new ANNs based method to calculate the spatiotemporal distance. Our STWR algorithm is based on the 
GWR with a new temporal distance and spatiotemporal kernel. There are four main differences between the 
GTNNWR/GNNWR and STWR: 1 The basic formulation of GNNWR is defined as Equation (4). The 𝑤6(𝑢! , 𝑣!) 
and 𝑤7(𝑢! , 𝑣!) denote the geographical weight of the constant coefficient 𝛽6 and coefficient 𝛽7, respectively. It 
assumed that the multiplication of 𝑤8(𝑢! , 𝑣!) and 𝛽8 is equal to 𝛽8(𝑢! , 𝑣!) (0 ≤ 𝑝 ≤ 	𝑘). The combined 𝛽8(𝑢! , 𝑣!) 
is thought as the same as the coefficients of GWR. But in STWR and GWR, the weights and the estimated coefficients 
are separated. The weights mainly reflect the degree of the influences from the observed points to the regression point, 
while the coefficient values reflect the relationships between the independent variable and dependent variable. 2 
GTNNWR and GNNWR use the proposed ANNs based method (Equation 5) to calculate the weighted matrix, which 
is quite different from the kernel functions used in GWR and STWR models. Although GTNNWR and GNNWR use 
the idea of pointwise regression, they do not consider how to "borrow points" from nearby neighbors and do not have 
the concept of bandwidth. Without spatial bandwidth, all observation points in the study area may have impacts on 
the regression point, which might violate the Tobler's first law of geography (Tobler, 1970). It may be difficult to 
understand the relationships between the influence weight and the spatial distances, especially when the study area 
and the data amounts are large. STWR has spatial bandwidths and follows the Tobler's first law of geography, which 
can help analyze the affected range of local regression points. 3 The data points will be divided into training set 
(including validation set) and test set for the GTNNWR and GNNWR, which might require more data points. Thus, it 
may not be appropriate for analyzing fewer amounts of data points (data acquisitions of many geoscience processes 
are difficult and costly). STWR and GWR do not need to divide data points into the training set (including validation 
set) and test set, which requires less data points than GNNWR and GTNNWR. 4 Although GTNNWR utilizing a 
method named spatiotemporal proximity neural network (STPNN) to calculate the spatiotemporal distance, the 
obtained integrated spatiotemporal distance is lack of explanation, and it is also impossible to tell apart which parts of 
the calculated weight is affected by time or space. Besides, there is no concept of temporal bandwidth in GTNNWR. 
Thus, it cannot tell us how old the historical observation points that will have impacts on the regression point. But 
STWR has temporal bandwidth, and it can distinguish the strength of temporal weight and spatial weight. Therefore, 
we can analyze the characteristics of the local interaction of time and space according to the temporal bandwidth, 
spatial bandwidth, and the adjustment parameter α, etc. 
 

𝒚𝒊 = 𝒘𝟎(𝒖𝒊, 𝒗𝒊)𝜷𝟎 +∑ 𝒘𝒌(𝒖𝒊, 𝒗𝒊)𝜷𝒌𝒙𝒊𝒌
𝒑
𝒌<𝟏 + 𝜺𝒊	, 𝒊 = 𝟏, 𝟐, . . . , 𝒏   (4) 

 
𝑾𝒊 = 𝑾(𝒖𝒊, 𝒗𝒊) 	= 	𝑺𝑾𝑵𝑵([𝒅𝒊𝟏𝒔 , 𝒅𝒊𝟐𝒔 , . . . , 𝒅𝒊𝒏𝒔 	]𝑻)     (5) 

 
Our STWR algorithm, especially the new concept of the time distance, may also be integrated with the machine 
learning methods, which is our future work. 
 
Revisions Made. We added the discussions on the differences between STWR and GTNNWR/GNNWR to the Section 
6 Discussion and Conclusions. Please see the several new paragraphs added at the first half of section 6. 
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 8 

Abstract: Local spatiotemporal non-stationarity occurs in various natural and socioeconomic processes. Many studies have 9 

attempted to introduce time as a new dimension into the geographically weighted regression model (GWR), but the actual 10 

results are sometimes not satisfied or even worse than the original GWR model. The core issue here is a mechanism for 11 

weighting effects of both temporal variation and spatial variation. In many geographical and temporal weighted regression 12 

models (GTWR), the concept of time distance has been inappropriately treated as time interval. Consequently, the combined 13 

effect of temporal and spatial variation is often inaccurate in the resulting spatiotemporal kernel function. This limitation 14 

restricts the configuration and performance of spatiotemporal weights in many existing GTWR models. To address this 15 

issue, we propose a new spatiotemporal weighted regression (STWR) model and the calibration method for it. A highlight of 16 

STWR is a new temporal kernel function, in which the method for temporal weighting is based on the degree of impact from 17 

each observed point to a regression point. The degree of impact, in turn, is based on the rate of value variation of the nearby 18 

observed point during the time interval. The updated spatiotemporal kernel function is based on a weighted combination of 19 

the temporal kernel with a commonly used spatial kernel (Gaussian or bi-square) by specifying a linear function of spatial 20 

bandwidth versus time. Three simulated datasets of spatiotemporal processes were used to test the performance of GWR, 21 

GTWR and STWR. Results show that STWR significantly improves the quality of fit and accuracy. Similar results were 22 

obtained by using real-world data for the precipitation hydrogen isotopes (δ2H) in Northeastern United States. The Leave-23 

one-out cross-validation (LOOCV) test demonstrates that, comparing with GWR, the total prediction error of STWR is 24 
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2 

reduced by using recent observed points. Prediction surfaces of models in this case study show that STWR is more localized 29 

than GWR. Our research validates the ability of STWR to take full advantage of all the value variation of past observed 30 

points. We hope STWR can bring fresh ideas and new capabilities for analyzing and interpreting local spatiotemporal non-31 

stationarity in many disciplines. 32 

 33 

Key words: Geographical and temporal weighted regression; Geographically weighted regression; Temporal non-34 

stationarity; Spatial analysis; Spatiotemporal variations; Spatiotemporal weighted regression. 35 

 36 

1. Introduction 37 

Time, space and attributes are three essential characteristics in geographic entities, and they are recorded to reflect the state 38 

and evolution of various real-world phenomena and processes. Because space and time frame all aspects of the discipline of 39 

geography (Goodchild, 2013), it is important to observe the spatiotemporal variations and explore appropriate analytical 40 

methods to study and reason the internal mechanisms and evolutionary laws. In recent years, new platforms and instruments 41 

have brought increasingly massive spatiotemporal data, such as the time- and geo-tagged sensor monitoring records and 42 

remote sensing images. Those big data create great opportunities for studying human and environmental dynamics from 43 

different perspectives, such as the patterns of human behavior (Chen et al., 2011), environmental risk assessment (Sun et al., 44 

2015), and disease outbreaks (Takahashi et al., 2008). Nevertheless, although spatiotemporal modeling has been a long-term 45 

research focus in the field of geographical information science (GIScience) (Cressie, 1991; Cressie and Wikle, 2015), the 46 

models are not mature yet and challenges still exist (Fotheringham et al., 2015), which call for further work.  47 

In this paper, the technological development and discussion focus on modeling local spatiotemporal variations within 48 

the framework of geographically weighted regression (GWR). GWR is a method for modeling spatially heterogeneous 49 

processes (Brunsdon et al., 1996, 1998; Fotheringham et al., 2003). It has been applied in a variety of areas, such as climate 50 

science (Brown et al., 2012), geology (Atkinson et al., 2003), mineral exploration (Wang et al., 2015), transportation analysis 51 

(Cardozo et al., 2012), crime studies (Cahill and Mulligan, 2007; Wheeler and Waller, 2009), environmental science (Mennis 52 

and Jordan, 2005), and house price modeling (Fotheringham et al., 2015). GWR calibrates a separate regression model at 53 
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each location through a data-borrowing scheme, in which distance-weights can be calculated by drawing on data from 54 

neighboring observations of each regression point (Fraser et al., 2012). This operation complies with Tobler’s first law of 55 

geography - “Everything is related to everything else, but near things are more related than distant things” (Tobler, 1970). 56 

Numerous studies have been devoted to incorporating the temporal dimension into spatial regression (Pace et al., 2000; 57 

Gelfand et al., 2004; Crespo et al., 2007; Cressie and Wikle, 2015). However, most of these studies assume that temporal 58 

effects are constant over space from a global perspective of modeling (Fotheringham et al., 2015). To address that issue, 59 

Crespo et al. (2007) extended GWR by developing spatiotemporal bandwidths that account for varying local spatial effects 60 

across time. Huang and Wu (2010, 2014) proposed a geographical and temporal weighted regression model (GTWR) with a 61 

method of measuring the spatiotemporal ‘closeness’ and a parameter ratio 𝜏 to deal with different measured units in time 62 

and space. Although the approach can address the issue to some extent, Fotheringham et al. (2015) pointed out that a sole 63 

measurement of integrated spatial and temporal distances can be misleading as location and time are usually measured at 64 

different scales, and he stated that the calculation of distance in three dimensions (time and two-dimensional space) remains 65 

a challenge. 66 

A spatiotemporal kernel function, which consists of mixed spatial and time-decay bandwidths, was proposed by 67 

Fotheringham et al. (2015). Nevertheless, the stepwise strategy applied in this function for bandwidth optimization does not 68 

always seem reasonable. In practice, this function needs to first find and fix an optimized spatial bandwidth, then it will find 69 

the optimized temporal bandwidth. After that, the spatiotemporal weight will be calculated. This stepwise search process 70 

means that the function is not able to optimize both temporal and spatial bandwidths at the same time. However, a more 71 

reasonable thought is that the spatiotemporal bandwidth and its weight are simultaneously affected by both spatial and 72 

temporal effects of a process. There should be ways to further improve the spatiotemporal kernel function in Fotheringham 73 

et al. (2015).  74 

The aim of this paper to develop a better methodology for the spatiotemporal kernel function. Following Tobler’s first 75 

law, we propose an algorithm, the spatiotemporal weighted regression (STWR). In STWR, the velocity of value change is 76 

higher related if they were in near time and space. Therefore, STWR can borrow data not only from nearby locations, but 77 

also from nearby value variation through time. The latter is what we call as “time distance” in STWR. The time distance is 78 
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not the concept of time interval, but the rate of value variation through time. It is a kind of value change that reflects the 79 

temporal effect of nearby points to the regression point. Accordingly, our local spatiotemporal regression analysis model can 80 

take advantage of the variation in data to identify temporal non-stationarity, which is an advantage comparing with GWR 81 

and GTWR.  82 

Before giving more details about STWR, we can further clarify the meaning of a few concepts. A common issue in the 83 

existing GTWR models is that they use the concept of time interval, instead of the above-mentioned “time distance”, to 84 

calculate temporal and spatiotemporal weights. A time interval is the period between two observed time stages. A time 85 

distance, in the context of STWR, is the rate of value variation between an observed point and a regression point through a 86 

time interval. We can think about the following scenario for a group of points. The values of some points do not change or 87 

change slightly from time A to time B, while a few other points may change greatly in that period. However, many GTWR 88 

models ignore the difference in the value changes of observed points during a period of time, and regard that all these points 89 

have the same temporal effect to their neighbor regression point. It is hard to believe that some unchanged observations 90 

constantly affect their nearby regression points during the observed time interval. Intuitively, different variations of the 91 

observed points have different temporal effects. For example, the faster the house price of a point change, the stronger the 92 

temporal effect is to the house price at its nearby point. Moreover, the rate of value changes at different observed points 93 

(time non-stationary) may also have spatial heterogeneity. The data values observed at different points are results of mixed 94 

spatiotemporal effects and some other unknown factors (including errors). Therefore, using only time interval in the 95 

calculation of temporal and spatiotemporal weights might interpret local spatiotemporal effect imprecisely. 96 

There are other issues in the temporal kernel functions and the multiplication form of spatial and temporal kernels used 97 

by the existing GTWR models (Huang et al., 2010; Wu et al., 2014; Fotheringham et al., 2015). When calculating the 98 

spatiotemporal effect, these models generally use time intervals and the common kernel functions to calculate temporal 99 

weights, such as Gaussian kernel or bi-square kernel. However, an appropriate temporal kernel function should not be the 100 

same as the spatial kernel function, because space is in two or three dimensions while time is in one dimension and one 101 

direction. Each regression point can borrow observed points from any directions in space but only use points from the past 102 

rather than from the future. Moreover, the integrated spatiotemporal weights might be underestimated in these GTWR 103 Deleted: these models directly calculate 104 
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models by using a multiplication of the spatial and temporal weights. Because both the spatial weights and the temporal 105 

weights range from 0 to 1, and the multiplied weight value is never bigger than the smaller one before multiplying, which 106 

means that the composite spatiotemporal impacts are never greater than the single spatial impacts and the single temporal 107 

impacts. However, the real combined spatiotemporal impacts, may be higher than the single spatial impacts or the temporal 108 

impacts, or at least may be higher than the smaller ones. The multiplication formulation of spatiotemporal kernel in GTWR 109 

also makes the calculated weight decay faster. 110 

 The above-mentioned limitations and issues in GWR and GTWR are the driving force behind our development of 111 

STWR. The remainder of this article is organized as follows. Section 2 introduces the STWR model formulation, including 112 

temporal kernel and spatiotemporal kernel functions. Section 3 describes the methods for bandwidth selection and calibration 113 

when STWR is in operation. Section 4 presents results of applying GWR, GTWR and STWR to three sets of simulated data. 114 

Section 5 presents experiment results with real-world precipitation hydrogen isotope data. In Section 6, we close the article 115 

with a summary of the key findings and a few thoughts for future research. 116 

  117 

2. The Core Model of STWR 118 

2.1 The strategy of time distance decay  119 

Since GWR is the background of our work, it is helpful to first give a brief overview of the GWR framework. The basic 120 

formulation of GWR can be described in two equations below (Fotheringham et al., 2003). 121 

                               𝑦! = 𝛽"(𝑢! , 𝑣!) + ∑ 𝛽#(𝑢! , 𝑣!)𝑥!# + 𝜀!#                          (1) 122 

                            𝛽.#(𝑢! , 𝑣!) = (𝑋$𝑊(𝑢! , 𝑣!)𝑋)%&𝑋$𝑊(𝑢! , 𝑣!)𝑦               (2) 123 

In Equation 1, 𝑦! is a response variable of regression point 𝑖 at a location with the coordinates (𝑢! , 𝑣!). 𝑥!# is the 𝑘'ℎ 124 

independent variable, and 𝜀! denotes the error term for the 𝑖'ℎ observed point. A key difference between GWR and the 125 

traditional global regression method, such as Ordinary Least Squares (OLS), is that GWR allows the coefficient 𝛽#(𝑢! , 𝑣!) 126 

vary spatially to identify spatial heterogeneity. Equation 2 represents the GWR calibration in a matrix form. 𝑊(𝑢! , 𝑣!) is a 127 

diagonal weighting matrix specific to location 𝑖, which is calibrated by a specified kernel function with a given bandwidth. 128 
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Every element 𝑤! in the weighting matrix reflects the impact from another observed point to the regression point. A bigger 148 

𝑤! value means a higher impact.  149 

GWR has a strategy of spatial distance decay impact on a regression point (Brunsdon et al., 1998; Fotheringham et al., 150 

2003). A similar “time distance decay” strategy was also discussed in several recent GTWR models (Crespo et al., 2007; 151 

Huang et al., 2010; Wu et al., 2014; Fotheringham et al., 2015). Yet, those models did not fully reflect the effect of time 152 

distance decay. Sample points are observed at different time stages, and those data points closer in time distance to a 153 

regression point have more impact on the regression point than those farther away. The time distance refers to the value 154 

variation rate between an observed point and a regression point during a certain time interval. For example, in Fig. 1, there 155 

are four time stages from old to new: T-s, T-q, T-p and T. Through a fitting and calibration process, the spatiotemporal 156 

bandwidth will be fitted, and the spatiotemporal effects (weights) from observed points to a regression points at time stage T 157 

will be calculated by a specific spatiotemporal kernel function. Then, in prediction, the value of a regression point at time 158 

stage T can be estimated. Thus, the observed points at time stage T only have spatial effect on the regression point (Fig. 1). 159 

There is temporal effect from data points at time stages T-p and T-q (shown as stars, pentagons and triangles in the planes of 160 

T-p and T-q in Fig. 1), within a certain spatial bandwidth 𝑏($ at each time stage, to the regression point. The time distance 161 

decay should reflect that different variations of the observed points have different temporal effects. However, as mentioned 162 

in the previous section, many existing GTWR models have applied a strategy of time interval decay instead of time distance 163 

decay. Consequently, they regard that all the observed points have the same temporal effect to their neighbor regression 164 

point.  165 

 166 
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 167 

Fig. 1. Spatiotemporal impacts of observed points with different rates of value change on a regression point at time stage T. 168 

Temporal bandwidth is the length of time from the intersection point A of the spatiotemporal bandwidth and the time line to 169 

the regression point. Spatial bandwidth and spatiotemporal bandwidth are illustrated in the figure legend.  170 

 171 

Compared to existing GTWR models, the time distance decay strategy of STWR considers the effect of different 172 

variations of observed points through time. For example, some data points may have higher impact on the regression point, 173 

though their spatial distance is farther than other points. Fig. 1 illustrates that the locations of some star-shape points are 174 

farther away from the regression point than some pentagon-shape points at time stage T-p, which denotes that there exist 175 

mixed impacts (spatial impact and temporal impact) on the regression point. The temporal impacts depend on the rate of 176 

value variation, which is the value difference between the observed point and the regression point divided by a time interval 177 

(e.g., [T-p, T] and [T-q, T-p] each is a time interval). If the observed time stage is too long ago or the rate of value variation 178 

is too small, and exceeds the limit of optimized temporal bandwidth for the regression point (as shown by observations at 179 

time stage T-s), the data points at this time stage may have no impact on the regression point. Even though some of those 180 

data points may have huge difference in value and are close to the regression point in space, they are not within the range of 181 
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the optimized temporal bandwidth. Spatial bandwidths also vary along the time line, and usually the bandwidth gets larger 182 

when the observation time is closer to the time stage of the regression point (Fig. 1). 183 

2.2 The spatiotemporal kernel function of STWR 184 

We assume that a set of observed points 𝑂)' = {𝑂*! , 𝑂*!"# , . . . 𝑂*!"$|𝛥𝑡 = [𝑡 − 𝑞, 𝑡]} are collected during a certain time 185 

interval 𝛥𝑡 in a study area, where 𝑡 represents the current time stage and 𝑁'%! , 𝑖 ∈ {0,1,2, . . . , 𝑞}(𝑁' = 𝑁'%") denotes the 186 

number of observed points at each recorded time. As the idea described above, we can borrow neighbor points in space and 187 

their value variation during certain recent time intervals, so we can still use Equation 1 to generate local estimates. The 188 

weight matrix 𝑊 in GWR usually depends on the spatial kernel (Fotheringham et al., 2015). In STWR, we need to consider 189 

the temporal effect, so the form of 𝑊 is different from that in GWR. Correspondingly, we should have a spatiotemporal 190 

kernel, which can be understood as a temporal extension based on the spatial kernel. However, if we use a multiplication 191 

form to combine the temporal kernel and the spatial kernel (Huang et al., 2010; Wu et al., 2014; Fotheringham et al., 2015), 192 

we will face the problem of time and space interaction as mentioned above in the Introduction section. To address that issue, 193 

we design a weighted average form for the spatiotemporal kernel. 194 

                   𝑤!+($' = (1 − 𝛼)𝑘,(𝑑,!+ , 𝑏($) + 𝛼𝑘$(𝑑'!+ , 𝑏$), 0 ≤ 𝛼 ≤ 1              (3) 195 

In Equation 3, 𝑤!+($'  is the weight at time 𝑡 and at the observed location 𝑗. 𝑘, and 𝑘$ are the spatial and temporal kernel, 196 

respectively, and they both have a value range of 0 to 1. 𝛼 is an adjustable parameter to scale the temporal and spatial 197 

effects, which can be optimized with the bandwidth selections. The role of parameter a is different from the scale parameter 198 

𝜏 ( 𝜏 = -
.
 ) in GTWR (Huang et al., 2010). a is introduced here for adjusting the outputs of the spatial kernel 𝑘, and the 199 

temporal kernel 𝑘$, which means measuring the relative strength of the spatial and temporal impacts on the regression point. 200 

But the scale parameter 𝜏 is used for adjusting the inconsistency of the time distance and space distance, which cannot 201 

adjust the relative strength of 𝑘, and 𝑘$. 𝑑,!+ and 𝑑'!+ are the spatial (Euclidean) and temporal distance between the 202 

regression point 𝑖 and an observed data point 𝑗, respectively. 𝑏($ is the spatial bandwidth 𝑏( at a certain time stage 𝑇, and 203 

𝑏$ denotes the temporal bandwidth.  204 
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The time distance, as mentioned above, is not the time interval but the rate of value variation between an observed point 206 

and a regression point through a time interval. Following the time distance decay strategy in STWR, we can further derive 207 

the temporal kernel 𝑘$ as shown below.   208 

               𝑤!+)'' =

⎩
⎨

⎧
M

/

&0123(%%
('((!)"'*(!"$))/'*(!"$)%

,!/-.
)
− 1

N
, 𝑖𝑓	0 < 𝛥𝑡 < 𝑏$

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

             (4) 209 

In Equation 4, 𝑦!(') − 𝑦+('%6) is the subtraction of the regression point 𝑖’s observed value at 𝑡 from the point 𝑗’s observed 210 

value at 𝑡 − 𝑞, which denotes the value change during the time interval 𝛥𝑡. The internal part of the exponential function is 211 

negative, in order to make the weight 𝑤!+)''  range from 0 to 1. The faster the value change rate is, the bigger the weight is, 212 

which means that the time impact is larger. When the time interval 𝛥𝑡 is out of the range (0, 	𝑏$), the weight will be set to 213 

zero, which denotes that there is no impact because the observed variation is too far to affect the current moment. For 214 

example, if the price of a nearby house has changed a long time ago, it may have little or no impact on the present house 215 

price. But if the house price had a sharp change recently, it will have a big impact on the present house price. Therefore, the 216 

faster the rate of observed value changes and the shorter the time interval is, the greater the impact on the regression point 217 

will be. Compared with GTWR models, the advantage of STWR is that the temporal kernel function 𝑘$ can better leverage 218 

the variation data.  219 

To calibrate the weight value 𝑤!+($' , we need a spatial kernel function. The most widely used kernel functions are bi-220 

square and Gaussian (Fotheringham et al., 2003), which are given in Equations 5 and 6, respectively.  221 

               𝐵𝑖 − 𝑠𝑞𝑢𝑎𝑟𝑒:						𝑤!+( = Y
Z1 − (

7/(*
80
)/[

/
, 𝑖𝑓	𝑑,!+ < 𝑏,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (5) 222 

 223 

                              𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛:				𝑤!+( = 𝑒𝑥𝑝 `−
&
/ a

7/(*
80 b

/

c                   (6) 224 

In Equations 5 and 6, 𝑏( is the spatial bandwidth. Derived from 𝑏( and 𝑏($, 𝑏(' is the initial spatial bandwidth at the given 225 

time stage 𝑡 of the regression point (i.e., 𝑡 is the initial time for searching observed points in the past). Many functions can 226 

be specified for the change of spatial bandwidth during the time intervals. Because in most cases it will have smooth change 227 
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during a certain short time interval, we assume that the spatial bandwidth changes linearly along with time, as defined 228 

bellow. 229 

                  𝑏($ = 𝑏(' − 𝑡𝑎𝑛𝜃 ∗ 𝛥𝑡, −
9
/
< 𝜃 < 9

/
                              (7) 230 

In Equation 7, 𝑡𝑎𝑛𝜃 denotes the slope of spatial bandwidth change in correspondence to 𝛥𝑡, and 𝑏(' denotes the initial 231 

spatial bandwidth at 𝑡. Importing Equations 4 to 7, the calibration of Equation 3 can be further derived into Equations 8 and 232 

9, which are our spatiotemporal kernel functions in STWR. Equations 8 and 9 are based on the bi-square and Gaussian 233 

kernel, respectively. With the STWR spatiotemporal kernel, we only need to optimize the parameters 𝛼 and 𝜃 instead of the 234 

spatial bandwidth 𝑏($. However, we shall traverse all the observed points at the initial time stage 𝑡 to find the optimized 235 

spatial bandwidth 𝑏('. Moreover, we shall also traverse all the time stages to find the optimized temporal bandwidth 𝑏$.  236 

      (8) 237 

         (9) 238 

 239 

3. STWR in Operation  240 

3.1 Bandwidth selection and parameter estimation 241 

Some goodness-of-fit diagnostics (Loader, 1999) are widely used in general GWR-based models, such as the cross-242 

validation (CV) score (Cleveland, 1979; Bowman, 1984) and the Akaike Information Criterion (AIC) (Akaike, 1973; 243 
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Akaike, 1998). For STWR, we use cross-validation (CV) as the default searching criteria and we also calculate the value of a 246 

corrected version of AIC (Hurvich et al., 1998), the AICc, which is defined bellow.  247 

         𝐴𝐼𝐶: = 2𝑛 𝑙𝑛( 𝜎k) + 𝑛 𝑙𝑛( 2𝜋) + 𝑛 m
;0'<(()
;%/%'<(()n                       (10) 248 

In Equation 10, n is the sample size, 𝜎k is the estimated standard deviation of the error term, and 𝑡𝑟(𝑆) denotes the trace of 249 

the hat matrix 𝑆 (Hoaglin and Welsch, 1978).  250 

Although there is no need to optimize spatial bandwidth 𝑏($ of the past time stages in STWR, other parameters such as 251 

𝛼 and 𝜃 need to be optimized. Also, we should give the 𝑏$ and initial 𝑏(' through trials. For more potential combinations 252 

of these parameters for different spatiotemporal processes, a more reasonable limit and optimization procedure is hence 253 

needed.  254 

3.2 Calibration of STWR  255 

Calibration of the STWR models can be conducted by using weighted least squares. The estimator for the coefficients at 256 

location (𝑢! , 𝑣!) is shown below. 257 

                   𝛽.'(𝑢! , 𝑣!) = [(𝑋=,!
$ 𝑊)'(𝑢! , 𝑣!)𝑋=,!)

%&𝑋=,!𝑊)'(𝑢! , 𝑣!)]𝑦=,!                      (11) 258 

In Equation 11, 𝑋=,! 	and	𝑦=,! are observed independent and dependent variables of 𝑂)' respectively. 𝑋=,!
$  is the 259 

transpose of 𝑋=,!. 𝑊)'(𝑢! , 𝑣!) denotes the spatiotemporal weight matrix for observed points at different locations to the 260 

regression point (𝑢! , 𝑣!) at different time stages during 𝛥𝑡. For a better illustration, we show the weight matrix 𝑊)' during 261 

the time interval 𝛥𝑡 in Fig. 2. The matrix 𝑊)' here is a bit different form the 𝑊(𝑢! , 𝑣!) in Equation 2. The records in the 262 

𝑖'ℎ row of 𝑊)' are the diagonal elements in 𝑊(𝑢! , 𝑣!), and only no zero values are used to calibrate the coefficients 𝛽.# for 263 

each regression point. Thus, each row r of this hat matrix is shown below.  264 

                           𝑟!' = 𝑋!'(𝑋)'$𝑊!)'𝑋)')%&𝑋)'𝑊!)'                                  (12) 265 

In Equation 12, 𝑋!' is the 𝑖'ℎ row of the matrix of independent variables at 𝑡. 𝑋)' is the matrix of independent variables 266 

during a time interval 𝛥𝑡, and 𝑋)'$  is its transpose. Although the 𝑋)' in Equation 12 is equal to the 𝑋=,! in Equation 11 in 267 

the fitting and calibration of STWR, we distinguish 𝑋=,! from 𝑋)' here. Because 𝑋=,! is a specific matrix of independent 268 

variables of an observed point set 𝑂)' during 𝛥𝑡, while 𝑋)' is a general matrix of independent variables of points during 269 
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𝛥𝑡. 𝑋=,! is only used for fitting and calibration of STWR, while 𝑋)' can also be used for prediction in STWR. In other 270 

words, we can understand 𝑋=,! as a subclass of 𝑋)'. 𝑊!)' is the 𝑖'ℎ row of the weighted matrix 𝑊)'. 271 

3.3 Reasonable searching range and procedure of optimization  272 

In order to obtain the optimized 𝛼 and 𝜃 for STWR (Equations 8 and 9), the search range should be limited. Here we use 273 

the distance from each regression point 𝑝!
(') to its 𝑀'ℎ nearest neighbor as the initial spatial bandwidth 𝑏(' at 𝑡. The range 274 

of 𝑏(' is within a finite set of discrete values, because the maximum number of nearest neighbor is limited to 𝑁'%! , 𝑖 ∈275 

{1,2, . . . , 𝑞} for the regression point 𝑝!
(') (𝑁'%! is the total number of observed points at 𝑡 − 𝑖). We denote that value set for 276 

𝑏(' as 𝐵𝑆*' = {𝐷#0&, 𝐷#0/, . . . 𝐷*!}, in which the element 𝐷> , 𝑈 ∈ {𝑘 + 1, 𝑘 + 2, . . . , 𝑁'} denotes the distance from 𝑝!
(') to 277 

the 𝑈'ℎ nearest neighbor, and 𝑘 equals to the number of independent variables. Moreover, the searching range of the 278 

temporal bandwidth 𝑏$ is also limited to a finite discrete set 𝐵𝑇. = {𝛥𝑡&, 𝛥𝑡/, . . . 𝛥𝑡.}, in which the element 𝛥𝑡. is the time 279 

interval from 𝑡 to 𝑡 − 𝜆.  280 

The optimization procedure is to traverse the set 𝐵𝑇., and for each step we further traverse the set 𝐵𝑆*' to get the 281 

optimized 𝛼 and 𝜃 through trials. Some trials of 𝜃 may lead to no solution to Equation 11, because there might be less than 282 

(𝑘 + 1)'ℎ neighbors within the radius of 𝑏(' − 𝜃𝛥𝑡. from the regression point. Therefore, if it occurs at time stage 𝑡 − 𝜆, 283 

the spatial bandwidth 𝑏(' − 𝜃𝛥𝑡. needs to be extended to the distance from its (𝑘 + 1)'ℎ nearest neighbor to the regression 284 

point, to guarantee the matrix in Equation 11 to be nonsingular. 285 

 286 

 287 
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Fig. 2. Weight matrix 𝑊)'. The symbol 𝑝#
('%!), 𝑖 ∈ {0,1, . . . 𝑞}, 𝑘 ∈ {1,2, . . . 𝑁'%!} denotes the 𝑘'ℎ observed point at 𝑡 − 𝑖. 289 

The symbol 𝑤
)',31

(!)32
(!"()

'%! , 𝑖 ∈ {0,1, . . . 𝑞},𝑚 ∈ {1,2, . . . 𝑁'}, 𝑛 ∈ {1,2, . . . , 𝑁'%!} denotes the weight of the 𝑛'ℎ point 𝑝;
('%!) at 290 

𝑡 − 𝑖 to the 𝑚'ℎ point 𝑝@
(') at 𝑡.The symbol 𝑂*!"( , 𝑖 ∈ {0,1, . . . 𝑞} denotes a set of points observed at 𝑡 − 𝑖. 𝛥𝑡 denotes all 291 

the time intervals of the weight matrix. In the central and right parts of the figure, the records with background shading 292 

indicate weight values affected by temporal effects. 293 

 294 

3.4 Steps of using STWR for prediction 295 

In this paper, STWR is used to predicate the current values of regression points with known coordinates. The prediction 296 

formulas of STWR are more complicated than GWR because the spatial distance is calculated directly from the regression 297 

point to each observed data point, while the time distance between the regression point and the data points observed in the 298 

past cannot be calculated directly. Therefore, we specify a few steps for the prediction in STWR. First, we need to have the 299 

optimized initial spatial bandwidth 𝑏(', the optimized 𝛼 and 𝜃, the optimized number of time stages model used and the 300 

fitted weight matrix. Second, all data points within the limited distance of spatial bandwidth at the latest time stage should be 301 

found for the regression point. Third, all the temporal weights of these data points need to be retrieved from the established 302 

weight matrix (Fig. 2). Fourth, we use these retrieved weights to calculate (e.g., use mean value or inverse distance 303 

weighting value) the temporal weight on the regression point. Fifth, by combining with the calculated spatial weight and the 304 

optimized 𝛼 and 𝜃, we can calculate the spatiotemporal weight on the regression point. Then the value of the regression 305 

point can be calculated. 306 

 307 

4. Experiments with Simulated Data 308 

4.1 Simulation design 309 

To verify the performance of STWR and compare with the results of GWR and GTWR, several groups of simulated data 310 

were used in this study to represent different types of heterogeneity in space and time. All the data and code used in the 311 

experiments are shared on GitHub. Web links are provided at the end of this manuscript.   312 
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For GTWR, we only compared with the results generated by algorithms in Huang et al. (2010) and Wu et al. (2014), 313 

because we did not find the software package of Fotheringham et al. (2015). The data generating process (DGP) and the 314 

spatial heterogeneity are introduced here. The basic DGP is a linear model shown in Equation 1 and the study area is a 315 

regular 25×25 lattice. We defined three initial surfaces to represent the spatial heterogeneity of parameters (Fig. 3), which 316 

were generated by Equations 13, 14 and 15, respectively (Fotheringham et al., 2017). Through Equation 1, the two 317 

independent variables 𝑥& and 𝑥/ were initially generated randomly from the normal distribution 𝑥&!;!'!AB~𝑁(100, 8) and 318 

𝑥/!;!'!AB~𝑁(50,6), respectively. They can be set as any other values, and the mean values of both distributions may change 319 

over time. The error term was generated from a normal distribution 𝜀~𝑁(0,0.5). 320 

𝛽"(Cℎ)' = 3                                       (13) 321 

𝛽&(Bℎ)' = 1 + &
&/
(𝑢, 𝑣)                       (14) 322 

           𝛽/(ℎℎ)' = 1 + &
D/E

[36 − (6 − 𝑢/2)/][36 − (6 − F
/
)/]          (15) 323 

 324 

 325 

Fig. 3. Three simulated initial surfaces for representing spatial heterogeneity of parameters. 326 

 327 

Several trends were designed to simulate the value change. For a better simulation, we assumed that value variation can 328 

also be spatial heterogeneity. To distinguish from the heterogeneity of the coefficient surface, three other heterogeneity trend 329 

functions were defined by Equations 16, 17 and 18. 330 
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                       𝑇&𝑉'0)' = 𝑉' + 𝜑 ∗ 𝑠𝑖𝑛( 𝑣/4)𝛥𝑡;3GH1<              (16) 331 

                   𝑇/𝑉'0)' = 𝑉' + 𝜑 ∗ 𝑠𝑖𝑛[ 1/10𝜋𝑢]𝛥𝑡;3GH1<         (17) 332 

                   𝑇D𝑉'0)' = 𝑉' + 𝜑 ∗ 𝑠𝑖𝑛[ 1/6𝜋(𝑢 + 𝑣)]𝛥𝑡;3GH1<      (18) 333 

In the above equations, 𝑉' denotes the value at time stage t, 𝜑 is used for adjusting the magnitude of change, 𝛥𝑡;3GH1< 334 

denotes value change with the 𝑛'I power of time interval, and 𝑇!𝑉'0)' , 𝑖 ∈ {1,2,3} denotes the 𝑉 value at time stage 𝑡 +335 

𝛥𝑡, which is the result of the 𝑖'I trend function from the 𝑉'. Fig. 4 shows these trends when 𝜑, 𝑉', and 𝛥𝑡;3GH1<are set to 336 

one. 337 

 338 

Fig. 4. Three heterogeneity trend surfaces. 339 

 340 

Our goal of this experiment was to test model performance by using sample data from the simulation process at 341 

different time. Three case studies were designed for different situations. Besides the spatial heterogeneity trends, in our 342 

simulation design we assumed that the mean values of two independent variables 𝑥& and 𝑥/ also changed over time, which 343 

were generated by Equations 19 and 20, respectively. 344 

       𝑇&𝑥@'0)' = 𝑥@' ± 𝜂& ∗ 𝛥𝑡                            (19) 345 

             𝑇/𝑥@'0)' = 𝑥@' ± 𝜂/ ∗ 𝛥𝑡                 (20) 346 

In the above two equations, 𝑥@' denotes the mean of an independent variable 𝑥 at time stage 𝑡, 𝑇!𝑥@'0)' , 𝑖 ∈ {1,2} denotes 347 

the mean of 𝑥 at time stage 𝑡 + 𝛥𝑡, and 𝜂& and 𝜂/ are two parameters for adjusting the rate of change. At each time stage 348 

during the simulations, the independent variables 𝑥& and 𝑥/ are generated by a normal distribution with new means of 349 

𝑇&𝑥@'0)' and 𝑇/𝑥@'0)', respectively. 350 
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4.2 Results with simulated data 351 

We compared the results of OLS, GWR, GTWR, and STWR. A total of 333 random sample points for five time stages 352 

(𝑡", 𝑡&, 𝑡/, 𝑡D, 𝑡E from old to new) were collected from the 25×25 lattice generated in the above-mentioned DGP. To simplify 353 

the calculation process, we set 𝜃 of Equation 7 to zero. Due to the limitation of paper length, in the comparison below the 354 

STWR results only include those generated by the spatiotemporal kernel in Equation 8. The objective is to compare the 355 

predicted results with the true value at the latest time stage. 356 

4.2.1 Case study 1  357 

The time interval of observations in case study 1 was one unit, such as one second or one day. The value change of 𝑥& and 358 

𝑥/ were generated by 𝜂& = 0.5 and 𝜂/ = 0.1, and were affected by 𝑇&𝑉 with 𝜑 = 0.5 and 𝑛𝑝𝑜𝑤𝑒𝑟 = 1. This means that 359 

𝑥& and 𝑥/ only changed slightly over time. Table 1 presents the results of the global OLS, GWR, GTWR and STWR at the 360 

latest time stage, i.e., stage 5. It shows that the sum of squared errors (SSE) of prediction in STWR is much lower than the 361 

other models in at least one magnitude. In addition, the AICc scores (Equation 10) also shows that STWR outperforms 362 

GTWR and GWR. As shown in Table 1, the R2 (average R-squared of all regression points ) value increases from 13.8% in 363 

OLS to 94.2% in GWR, 94.9% in GTWR, and 99.3% in STWR. The estimated standard error, Sigma, reduces to 4.292 in 364 

STWR from 23.331 in GTWR. Also, Fig. 5 shows that both the prediction surface (Y_pred) and the prediction error surface 365 

(Pred_Error) of STWR are more accurate than those in GWR. Due to the limitation of the software package in Huang et al. 366 

(2010) and Wu et al. (2014), we did not generate images for GTWR in Fig. 5, but the result can be seen from the Sigma 367 

value in Table 1.  368 

 369 

Table 1. Results of case study 1 at time stage 𝑡E. 370 

Time stage 𝒕𝟒 SSE AICc R2 Sigma 

OLS 676366.268 805.455 0.138  

GWR 45674.420 705.529 0.942 33.277 

GTWR 40056.823 616.641 0.949 23.331 
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STWR 5761.109 528.860 0.993 4.293 

 371 

 372 
Fig. 5. Comparing prediction results of STWR and GWR in case study 1. Images a1, b1, and c1 are the simulation surfaces 373 

of true Y, the predicted surface of Y by STWR, and the predicted surface of Y by GWR, respectively. Images a2, b2, and c2 374 

are the surface of simulation error, the surface of prediction error of STWR, and the surface of prediction error of GWR, 375 

respectively. 376 

 377 

4.2.2 Case study 2 378 

The time interval of observations in case study 2 was 10 units. The value change of 𝑥& was generated by 𝜂& = 0.5 and 379 

affected by 𝑇D𝑉 with 𝜑 = 0.5 and 𝑛𝑝𝑜𝑤𝑒𝑟=2. 𝑥/ was generated by 𝜂/=2 and affected by 𝑇/𝑉 with 𝜑 = 1 and 𝑛𝑝𝑜𝑤𝑒𝑟 380 

= 1, which denotes that 𝑥& and 𝑥/ changed fast over time. Table 2 shows the results of the global OLS, GWR, GTWR and 381 

STWR at the time stage 5. The SSE value in STWR is much lower than other models, and STWR has the highest R2 value 382 
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0.995. The Sigma value of STWR is 13.299, which is the lowest and less than one-fifth of the Sigma in GWR and less than 383 

one-sixth of the Sigma in GTWR. Besides, the AICc scores show that STWR significantly outperforms GTWR and GWR.  384 

STWR utilized data from the latest three time stages to calibrate the model. The initial spatial bandwidth 𝑏(' of STWR 385 

was three nearest neighbors, which was smaller than the one in GWR with 15 nearest neighbors. The optimized 𝛼 of STWR 386 

was 0.08, which shows that the effect of used observed points to their local regression points was mainly determined by their 387 

spatial distance. In this case, the GWR outperforms GTWR, which may due to the higher ratio of value change. Compared 388 

with the y_true surface, the predict surface of STWR is much better than GWR (Fig. 6). For the same reason as mentioned in 389 

case study 1, we did not generate images for GTWR in Fig. 6.  390 

 391 

Table 2. Results of case study 2 at time stage 𝑡E. 392 

Time stage 𝒕𝟒 SSE AICc R2 Sigma 

OLS 5085961.816 938.610 0.494  

GWR 300088.969 840.178 0.970 87.201 

GTWR 627011.021 895.662 0.938 127.821 

STWR 52688.545 709.573 0.995 13.299 

 393 
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 395 

Fig. 6. Comparing prediction results of STWR and GWR in case study 2. Images a1, b1, and c1 are the simulation surfaces 396 

of true Y, predicted surface of Y by STWR, and predicted surface of Y by GWR, respectively. Images a2, b2, and c2 are the 397 

surface of simulation error, the surface of prediction error of STWR, and the surface of prediction error of GWR, 398 

respectively. 399 

 400 

4.2.3 Case study 3 401 

The time interval of observations in case study 3 was 200 units. In both case studies 1 and 2, the coefficients in Equation 1 402 

were unchanged. In contrast, in case study 3, three surfaces of coefficients changed over time, which were generated by the 403 

trends 𝑇&𝑉, 𝑇/𝑉, and 𝑇D𝑉, respectively. The variations of coefficients were assumed to be slow. The 𝜑 and 𝑛𝑝𝑜𝑤𝑒𝑟 in 404 

each trend were set to be 0.2 and 1, respectively. Both 𝜂& and 𝜂/ were set to be 0.5. The dynamic process of the three 405 

surfaces of coefficients and the y_true surface at each time stage are shown in Fig. 7. The process in case study 3 is more 406 

complicated than a general process, but it may be closer to reality.  407 

 408 
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 409 

Fig. 7. Dynamic process of three surfaces of coefficients and the y_true surface at five different time stages. 410 

 411 

Results of these comparisons in case study 3 show that STWR outperforms both GWR and GTWR in accuracy of 412 

model and effectiveness of simulation process (Fig. 8a). Along with the change of the coefficients and the increase of 413 

𝑥&	and	𝑥/, the R2 values of both GWR and GTWR are consistent in the five time stages, showing an overall downward 414 

trend. But the R2 of STWR is stable and is at a high level among the five time stages. At the beginning stage 𝑡", the R2 415 

values of the three models are similar because there are no previous observations that can be used by STWR and GTWR. 416 
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The small difference among these models at 𝑡" may be caused by their different searching range of spatial bandwidth. 417 

Starting from time stage 𝑡&, STWR and GTWR can borrow points from previous observations. At time stage 𝑡&, STWR 418 

outperforms both GWR and GTWR, and the advantage of STWR becomes more obvious in the later stages.  419 

It may seem strange that GWR can outperform GTWR (Fig. 8), but that is reasonable for the process in case study 3. 420 

The change of this process is faster; and the time interval of observations is bigger than the previous case studies. STWR is 421 

not only able to deal with time intervals, but also to make full use of the value variation of observed points for calibration. In 422 

contrast, GTWR only uses the time interval information and all the observed points to calibrate, which may cause problems 423 

when the observed values are significantly different in spatial distribution or the time intervals are long. GTWR makes use of 424 

points from previous time stages without considering their variation, but if the actual values are quite different from previous 425 

observations at the current time stage, all the point values for the calibration of GTWR will become smooth. Thus, GWR 426 

outperforms GTWR in this situation because GWR only uses the current data points for model calibration.  427 

STWR is better for estimation than GWR and GTWR because its Sigma value is much smaller. As shown in Fig. 8b, 428 

the Sigma of STWR was half of GWR at time stage 𝑡&, and even less than a third of GWR at time stage 𝑡E. The results show 429 

that the advantage of STWR is obvious comparing with GWR and GTWR. 430 

 431 

 432 
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Fig. 8. Comparing and evaluating the performance of GWR, GTWR and STWR at five time stages. (a) Comparing the R2 433 

value of different models; (b) Comparing the Sigma value of different models. 434 

 435 

At 𝑡E, STWR used data from all the past time stages to calibrate the model, and its optimized (initial) spatial bandwidth 436 

𝑏(' was derived from four nearest neighbors, which was smaller than the one in GWR with 25 nearest neighbors. The 437 

optimized 𝛼 of STWR was 0, which means that STWR only borrowed points from past time stages without considering 438 

their temporal weights to each regression point at 𝑡E. The predict surfaces at time stage 𝑡E is shown in Fig. 9. The Y_pred 439 

surface of STWR is much better than GWR, especially in the middle and bottom left parts of the surface. The Pred_Error of 440 

STWR is also much lower than GWR at almost every location. In this case, the 𝛼 of STWR at each time stage was 0, 0.96, 441 

0, 0.07, and 0, respectively. These values indicate that the temporal effects are different at each stage. They also show that 442 

the value of 𝛼 can be adaptive to scale the temporal and spatial effects (see Equation 3). 443 

As Fig. 10 shows, the optimized bandwidths are quite different among these models, and the bandwidths of GWR and 444 

GTWR are larger than the initial bandwidth of STWR at each time stage. The optimized bandwidth for each time stage refers 445 

to an optimized number of the nearest neighbors (see Section 3.3). As GTWR considers all the nearest neighbors from 446 

different time stages, the optimized numbers of the nearest neighbors (bandwidth) grow fast, and exceed the GWR model at 447 

time stage 𝑡/. However, the actual distance from the observed points to the regression points is not necessarily farther. The 448 

initial optimized numbers of the nearest neighbor of STWR are smaller than those in GWR and GTWR, which means that 449 

the initial spatial bandwidth is narrower than the bandwidth of GWR and GTWR. Nevertheless, due to the strategy of 450 

borrowing points from nearby neighbors of past observations, the total points for model calibration in STWR may still be 451 

more than GWR and GTWR. Therefore, the initial optimized numbers of the nearest neighbors in STWR are kept at a lower 452 

level, which means it is more localized than GWR in this sense.  453 

 454 
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 455 

Fig. 9. Comparing prediction results of STWR and GWR in case study 3. Images a1, b1, and c1 are the simulation surfaces 456 

of true Y, the predicted surface of Y by STWR, and the predicted surface of Y by GWR, respectively. Images a2, b2, c2 are 457 

the surface of simulation error, the surface of prediction error of STWR, and the surface of prediction error of GWR, 458 

respectively. 459 

 460 
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 461 

Fig. 10. Optimized bandwidths (or initial bandwidths) of GWR, GTWR and STWR for the five time stages in case study 3. 462 

 463 

5. Experiments with Real-world Data 464 

To further test the performance of STWR, we used data of precipitation δ2H isotopes in Northeastern United States in 465 

another case study. We chose δ2H data in three days from October 29 to 31, 2012, which have enough spatiotemporal data 466 

for the test. Here in the comparison the STWR results only include those generated by the spatiotemporal kernel in Equation 467 

8. Data and code used here are shared on Zenodo (See DOI and web links in the ‘Code and data availability’ section at the 468 

end of the main text of this article). 469 

In the experiments, we collected a total of 782 measurements from 116 sites located in Northeastern United States 470 

during the three-day period, and prepared the data on a daily average. The daily precipitation, mean temperature, and 471 

elevation were used as explanatory variables. The model derived from Equation 1 is represented below.  472 

                     𝑦! = 𝛽" + 𝛽&𝑝𝑝𝑡 + 𝛽/𝑡𝑚𝑒𝑎𝑛 + 𝛽Dℎ𝑒𝑖𝑔ℎ𝑡 + 𝜀!                       (21)       473 

In Equation 21, 𝑝𝑝𝑡 denotes the daily total precipitation (rain + melted snow), 𝑡𝑚𝑒𝑎𝑛 denotes daily mean temperature, and 474 

ℎ𝑒𝑖𝑔ℎ𝑡 is the elevation value. After data preprocessing, there were 272 points for model calibration and 73 points values on 475 

Deleted: 22476 

Deleted: 22477 



 

 

25 

October 31, 2012. For the first day, both GTWR and STWR took no information from the past. Therefore, we only show the 478 

results of SSE, R2 and the optimized initial neighbor (bandwidth) in the model comparisons for the second and third day (D2 479 

and D3) in Tables 3. The SSE of STWR is the lowest at both days. GWR shows a slightly higher SSE than GTWR at D2 and 480 

D3. The R2 of STWR is the highest at both days among these models. GWR has lower R2 than GTWR at D2, and almost the 481 

same R2 as GTWR at D3.  482 

Similar to the experiments on three simulation datasets, the result here shows that STWR outperforms GTWR and 483 

GWR. In the experiment, the number of optimized initial neighbors of STWR was smaller than that of GWR and GTWR. 484 

The optimized 𝛼 of STWR was 0 at both D2 and D3. The optimized temporal bandwidths of STWR (number of time stages 485 

model used) in both D2 and D3 were 2, which means that the STWR in this case only borrowed data points from the latest 2 486 

time stages for D2 and D3. In the result (Table 3), an interesting part to see is that the numbers of optimized initial neighbors 487 

of STWR are smaller than the spatial bandwidths of GWR for D2 and D3. The reason is that STWR borrowed points from 488 

past time stages in the calculation, which led to narrower bandwidths to some extent. 489 

 490 

Table 3. Results of model performance with real-world data. 491 

Model SSE-D2 SSE-D3 R2-D2 R2-D3 
Neighbor Neighbor 

-D2  -D3  

OLS 58711.528 52669.399 0.595 0.502 
  

GWR 33576.400 33043.921 0.769 0.688 52 43 

GTWR 32659.808 31967.850 0.775 0.698 37 31 

STWR 24022.226 25118.096 0.834 0.763 16 16 

 492 

We adopted Leave-one-out cross-validation (LOOCV) at D3 for the comparison between STWR and GWR. The 493 

squared errors (SE) of prediction are shown in Fig. 11. The prediction results of STWR are better than GWR for most points. 494 

The mean SE of STWR is smaller than GWR. Moreover, the SE of STWR shows a narrower regional trend, which indicates 495 
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that STWR is more robust than GWR. In addition, the total SSE of GWR and STWR are 50216.510 and 39724.995, 496 

respectively. Therefore, the result further validates that the quality of predication in STWR is better than GWR. 497 

 498 

 499 
Fig. 11. LOOCV results of STWR and GWR. (a) Squared error of prediction at each point (leave out); (b) Box plot of the 500 

LOOCV results of GWR and STWR. 501 

 502 

In Fig. 12, the predicted δ2H surface at D3 is broadly similar between the GWR and STWR calibrations. The 503 

percentages of explanation of variance in GWR and STWR are similar, which are 68.8% and 76.3%, respectively. However, 504 

like the experiment results with simulated data (Fig. 10), STWR has narrower initial bandwidth, which generates more 505 

localization in the predicted δ2H surface than GWR. For instance, the lower (light yellow and blue parts) or higher (orange 506 

parts) predicted values of δ2H are more concentrated in the δ2H surface of STWR than that of GWR (Fig. 12). 507 

 508 
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 509 

Fig. 12. Predicted δ2H surfaces of STWR and GWR at D3. 510 

 511 

6. Discussion and Conclusions 512 

Spatiotemporal data analysis is important in many scientific studies. Due to the complexity of spatiotemporal models, 513 

spatiotemporal effect may not be fully taken into account when the temporal and spatial information is manipulated 514 

simultaneously. In particular, the models for the effect of spatial dynamics should not be simply adapted for modeling the 515 

effect of temporal dynamics. Although the GTWR model can borrow points from the near recent, without careful 516 

consideration of temporal effect, the performance of GTWR may even be worse than GWR. Increasingly, many scientific 517 

issues are not just about spatial non-stationary but involve many spatiotemporal processes. It is necessary to review the 518 
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limitation of the current spatiotemporal models and make new extensions. The aim of the STWR model developed in this 519 

study is to advance the work and discussion in that direction. 520 

With increasing combined applications of deep learning and neural network in geospatial non-stationary processes. We 521 

first discuss the main differences between STWR and the recently proposed geographic neural network weighted regression 522 

(GNNWR) (Du et al., 2020) and geographic and temporal neural network regression (GTNNWR) (Wu et al., 2020). 523 

GNNWR is a new attempt to combine the OLS and GWR with Artificial neural networks (ANNs). GTNNWR is based on 524 

the GNNWR with combing a new ANNs based method to calculate the spatiotemporal distance. Four main differences 525 

between the GTNNWR/GNNWR and STWR are listed below: 526 

(1) The basic formulation of GNNWR is defined as Equation 22 (Du et al., 2020), which is different from Equation 1 527 

(Fotheringham et al., 2003). The 𝑤"(𝑢! , 𝑣!) and 𝑤#(𝑢! , 𝑣!) denote the geographical weight of the constant coefficient 𝛽" 528 

and coefficient 𝛽#, respectively. It assumed that the multiplication of 𝑤3(𝑢! , 𝑣!) and 𝛽3 is equal to 𝛽3(𝑢! , 𝑣!) (0 ≤ 𝑝 ≤529 

	𝑘). The combined 𝛽3(𝑢! , 𝑣!) is thought as the same as the coefficients of GWR. But in STWR and GWR, the weights and 530 

the estimated coefficients are separated. The weights mainly reflect the degree of the influences from the observed points to 531 

the regression point, while the coefficient values reflect the relationships between the independent variable and dependent 532 

variable. 533 

𝑦! = 𝑤"(𝑢! , 𝑣!)𝛽" +∑ 𝑤#(𝑢! , 𝑣!)𝛽#𝑥!#
3
#K& + 𝜀!	, 𝑖 = 1,2, . . . , 𝑛   (22) 534 

 535 

(2) GTNNWR and GNNWR use the proposed ANNs based method (Equation 23) (Du et al., 2020) to calculate the 536 

weighted matrix, which is quite different from the kernel functions used in GWR and STWR models. Although GTNNWR 537 

and GNNWR use the idea of pointwise regression, they do not consider how to "borrow points" from nearby neighbors and 538 

do not have the concept of bandwidth. Without spatial bandwidth, all observation points in the study area may have impacts 539 

on the regression point, which might violate the Tobler's first law of geography (Tobler, 1970). It may be difficult to 540 

understand the relationships between the influence weight and the spatial distances, especially when the study area and the 541 

data amounts are large. STWR has spatial bandwidths and follows the Tobler's first law of geography, which can help 542 

analyze the affected range of local regression points.  543 



 

 

29 

𝑊! = 𝑊(𝑢! , 𝑣!) 	= 	𝑆𝑊𝑁𝑁([𝑑!&
, , 𝑑!/, , . . . , 𝑑!;, 	]$)     (23) 544 

(3) The data points will be divided into training set (including validation set) and test set for the GTNNWR and 545 

GNNWR, which might require more data points. Thus, it may not be appropriate for analyzing fewer amounts of data points 546 

(data acquisitions of many geoscience processes are difficult and costly). STWR and GWR do not need to divide data points 547 

into the training set (including validation set) and test set, which requires less data points than GNNWR and GTNNWR. 548 

(4) Although GTNNWR utilizing a method named spatiotemporal proximity neural network (STPNN) (Wu et al., 2020) 549 

to calculate the spatiotemporal distance, the obtained integrated spatiotemporal distance is lack of explanation, and it is also 550 

impossible to tell apart which parts of the calculated weight is affected by time or space. Besides, there is no concept of 551 

temporal bandwidth in GTNNWR. Thus, it cannot tell us how old the historical observation points that will have impacts on 552 

the regression point. But STWR has temporal bandwidth, and it can distinguish the strength of temporal weight and spatial 553 

weight. Therefore, we can analyze the characteristics of the local interaction of time and space according to the temporal 554 

bandwidth, spatial bandwidth, and the adjustment parameter α, etc. 555 

The temporal kernel and the spatiotemporal kernel functions are two important contributions of STWR. The temporal 556 

kernel in STWR applies an improved sigmoid form (see Equation 4), which is different from the methods for temporal effect 557 

analysis in previous GTWR models. The temporal weight generated by the STWR temporal kernel is limited as a value 558 

between 0 and 1. The spatial weight in STWR is also limited as a value between 0 and 1. The STWR spatiotemporal kernel 559 

function has a weight adjustment parameter 𝛼 to scale the temporal and spatial weights (Equation 3). In practice, 𝛼 can be 560 

obtained through optimization. This form of weighted average between temporal and spatial effects in the STWR 561 

spatiotemporal kernel is a big improvement comparing with the multiplication form in previous GTWR models. The 562 

advantage of the STWR spatiotemporal kernel has been proven in four case studies with both simulated and real-world 563 

datasets.  564 

 Though the performance of STWR is outstanding, the models can still be further extended. A big topic is about the time 565 

distance. In the current STWR, the time distance represents the rate of value variation between an observed point and a 566 

regression point through a time interval. Nevertheless, we can also use time distance to represent the rate of value variation 567 

at each observed point object through time. Note that, from an object-oriented perspective, here we differentiate the point 568 
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objects from locations, although the point objects have geospatial coordinates as part of their attributes. Following that new 570 

definition of time distance, the 𝑦!(') − 𝑦+('%6) in the STWR temporal kernel (Equation 4) can be replaced by Δ𝑦+('%6) 571 

(value variation of an observed point object during 𝛥𝑡). A scenario of interest is that, the observed point objects in the past 572 

time stages (such as those shown in Fig. 1) may move to new locations, have no value for a few time stages, or even 573 

disappear, so the Δ𝑦+('%6) may not exist. We can use object-based methods to address issues caused by that scenario. For 574 

example, each point object can be assigned with a unique ID, and then the observed value of the point object at each time 575 

stage can be retrieved by using its ID. With this new definition of time distance, the temporal weight on a regression point 576 

object is determined by the rate of value variation of its nearby point objects. Several different scenarios for a regression 577 

point object at current time stage 𝑡 are discussed here. 578 

(1) The location of an observed point object 𝑗 is fixed through time (e.g., a fixed sensor). If the value of 𝑗 is observed 579 

at both time stages 𝑡 and 𝑡 − 𝑞, then Δ𝑦+('%6)	can be calculated directly. If the value of 𝑗 is observed at 𝑡 but not 580 

observed at 𝑡 − 𝑞, we can use interpolation to generate a value for 𝑗 at 𝑡 − 𝑞. If the value of 𝑗 is not observed at 𝑡, but 581 

the variation in the past is observed, we can use prediction methods to generate a value for 𝑗 at 𝑡. 582 

(2) The location of 𝑗 is not fixed through time (i.e., 𝑗 moves). The moving point objects can still have temporal 583 

effects to the regression point, then the Δ𝑦+('%6)	can be calculated. The spatial effect, however, depends on whether 𝑗 584 

moves out of the spatial bandwidth from the regression point or not.  585 

(3) 𝑗 disappears or appears at a certain time stage. If 𝑗 does not appear until the current time stage 𝑡, the Δ𝑦+('%6)	can 586 

be set to be 0. If 𝑗 appears in a past time stage (e.g., 𝑡 − 𝑞) but it disappears before or at 𝑡, we can ignore the impact of 𝑗 587 

for the regression point object. 588 

There are other possibilities for the further improvement of STWR. The first is about the optimization of 𝜃 in the 589 

spatiotemporal kernel (Equations 8 and 9). The slope 𝜃 indicates that the variation of the spatial bandwidth is in a linear 590 

form, but it may not be a perfect solution. In many situations, the change of the spatial bandwidth over time may not be 591 

linear. The second is about making predications for future time stages. In this paper, we only predict values for points at the 592 

current time stage 𝑡. Extensions can be made in STWR to predict values for points in future time stages beyond 𝑡. The third 593 

future work is about exploring multiple spatial and temporal bandwidths of models. Different variables may have different 594 

Formatted: Font color: Text 1



 

 

31 

spatial and temporal bandwidths due to their unique characteristics. Correspondingly, we may need more bandwidths to 595 

capture the different non-stationarities of those independent variables, to better represent the spatiotemporal heterogeneity.  596 

In short, the core contribution of STWR is the clarification of the ‘time distance’ concept and the new temporal kernel 597 

and spatiotemporal kernel functions based on this concept. Our experiments show that STWR outperforms GWR and GTWR 598 

in analyzing and interpreting local spatiotemporal non-stationarity. We hope STWR can bring fresh ideas and new 599 

capabilities for spatiotemporal data analysis in many disciplines. 600 

 601 

Code and data availability 602 

The Python source code of STWR v1.0, the data used in the experiments and all the case studies (written in Jupyter 603 

Notebook) were archived on Zenodo and made freely accessible via http://doi.org/10.5281/zenodo.3637689. Data source of 604 

water isotopes δ2H is on the website: http://wateriso.utah.edu/waterisotopes/pages/spatial_db/SPATIAL_DB.html. The data 605 

of daily precipitation and mean temperature were collected from the PRISM Climate Group 606 

(http://www.prism.oregonstate.edu), and the elevation data were collected from the GMTED2010 607 

(https://topotools.cr.usgs.gov/gmted_viewer/viewer.htm) at U.S. Geological Survey (USGS). 608 
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