Thanks to all the reviewers for the detailed comments and suggestions. Please check below the point-by-point response
to the comments listed in the referee report, the relevant changes made to the manuscript, and a mark-up version of

the manuscript with change-tracking.

REVIEWER 1

Comment 1. A possible major problem

Not sure if I am missing something here, but the authors claim that current spatiotemporal GWR models ignore
the difference in the value change of observed points during a period of time. They suggest the introduction of
the rate of change in the model. They go on with the example that the faster the house price of a point changes,
the stronger the temporal effect is to the house at its nearby points. To me, this makes more sense if all observed
points are measured at the same location throughout time. But in house price modeling, points are rarely
measured at the same place throughout time.

- Accordingly, and following Equation (4), that distance between yi(t) and yj(t-q) will not reflect a changing rate
between two houses over time because those houses are not the same. The authors should address this concern.
- The situation is different when for the four case studies used to test the algorithm because locations of observed
points are the same over time. So the author may suggest the use of this new algorithm for this type of data
collection.

Reply 1.

In our current STWR algorithm, as seen in Equation (4), we use the y;) — ¥j—q) (the difference between the
regression point I at time t and the observed point j at time ¢t — q ) rather than the Ay;_,) (value variation of
the observed point j in At ). The main reason we use ;) instead of y;( to reflect the rate of change of y;
during the time interval (from t — q to t), is that the y value of the location j at t is often unavailable or may not
exist at all, while the y value of the regression point i at t is known (i.e. y;()).Within the local spatiotemporal
bandwidth, the value of y; ) is close to yj(;) because both values tend to be homogeneous. As shown in the
following figure, the dotted line from y;_q) t0 ¥j() can be approximated by the solid line from y;_q) t0 ¥t
within the local spatiotemporal bandwidth. When the observation point j is outside the local spatiotemporal
bandwidth, there will be no such approximation. Although the value y; is not actual y;, this substitution is also
valid. The reason is that both formulations can reflect the consistent temporal effect of the past observation point j
on the regression point i at time t. In our STWR algorithm, we need to measure the degree of influence of the
observed points at t — q (i.e. ¥j(;—q)) On the regression point i at t (i.e. ¥;)). The value of the difference between
Yiry and Yj—q) divided by y;_q), which represents the numerical difference rate, can reflect the degree of
temporal influence of the past observation point j (yj(;-4)) on the current regression point i (¥;()). Besides, we

also have some ideas and suggestions about using Ay;_qy in Equation (4), which is discussed in Section 6.

Revisions made. To give a better explanation of the STWR model and the associated parameters, we updated the text
in the second half of section 1 Introduction and the text between Equations 3 and 4. Also, we added several new
paragraphs in the first half of section 6 Discussion and Conclusions to further justify the characteristics of STWR and

the difference between it and other models.
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Comment 2. Minor problems

-I think this study does not need four case studies to test the algorithm. It could be reduced to only one case
study, the one with the real-world data. - The name of the journal is missing in line 79, page 31. - Reduce the
number of decimals in tables - Considering that GWR provides R-square for each regression point, how should
readers interpret the single the R-square shown in the tables? - Provide a possible explanation for the significant
difference in the R-square values for OLS and the other methods. Something that helps readers to understand
why such a big difference occurs.

Reply 2.

We use three simulation cases and a real-world case for the reasons listing below:

(1) It can verify that this new method can be applied to different situations and is more robust than GTWR. In case 1,
two independent variables x; and x, only changed slightly over time, and the observed time interval is short. In
case 2, the x; and x, changed faster over time, and their observed time interval gets longer. These two cases verify
that the performance of GTWR is unstable, which is sometimes better than GWR (case 1), and sometimes worse than
GWR (case 2). The model performance of STWR is the best, in both case 1 and case 2, indicating that STWR is more
robust than GTWR.

(2) Both case 1 and 2 assumes that three coefficient surfaces keep the same over time, but in case 3, the coefficient
surfaces is assumed to vary over time. Results of the case 3 show our new algorithm STWR still outperforms GWR
and GTWR models when the coefficient surfaces change over time.

(3) Through the three simulation case studies, we can draw that when the observed data changes faster over time, the
outperformance of the STWR model will be more prominent than GWR and GTWR.

(4) Through the real-world case, we verified the effectiveness of our new algorithm STWR, making it more convincing.

Revisions Made. We added the name of the journal as pointed out by the reviewer. We reduced the decimal numbers
of AICc of GTWR in Table 2 to keep three decimal places (because some R-squares are close, keeping three digits is
more convenient for comparison). Also, we added more clear explanations and descriptions on the R-square in tables
because there are many R-squares for each regression point in GWR, GTWR, and STWR. For the significant

difference in the R-Square values, we added new text to facilitate the reader's understanding.



REVIEWER 2

Comment 1. The main innovation of STWR is using the rate of value variation of the nearby observed point
during the time interval to represent the time distance. However, the value variation between the estimated
point and the observed points is not only influenced by the time variation but also the difference of geographical
locations. How to distinguish whether this effect is caused by time or space? Further, the value variation not

only occurs during the time but also occurs across space. Why not also consider the value variation across space?

Reply 1.

OWe can use ¥;+) — Yj(t—q) to represent the value variation between the regression point and the observation point
that have time difference of At ( q). Suppose that the variation contains two parts caused by time and space, and they
are fi(AYjt-q)) and f(Viey — Vi) respectively. fi(Ayj—qy) is not affected by spatial effects, because the
location of point j does not change during At. f,(Vi) — Yjr)) 1s not affected by temporal effects, because y; ()
and yj«) are observed at the same time. In theory, if we get the value y;(;), we may determine if the variation caused
by time or space, because both f; and f; need the value y;«. The y value of the location j at ¢ (i.e. yj)) is
often unavailable or may not exist, we use the Y — Yj-q) to approximate Ay;;_qy within the local
spatiotemporal bandwidth when employing the k; to calculate the temporal weights. (Please see relevant
explanations in the reply 1 of the first reviewer). This may introduce some errors because of the different locations of
i and j, but the errors are limited. Consequently, the value variation between the estimated point and the observed
point in different times is mainly temporal effect, the spatial effect is limited and ignored here.

@ The STWR algorithm is based on the assumptions and framework of the GWR model. When calculating the spatial
weights, we use the same k; employed in GWR, whose spatial impacts is calculated by the spatial distance dg;;
between i and j. We introduce the value variation to better identify or capture the heterogeneities caused by the same
time interval but different temporal effects, that is, the temporal heterogeneity of the rate of value change. The
heterogeneities of this part were not considered in the previous GTWR. As for the calculation of spatial weights, the
main reason that we did not consider the value variation across space is to be consistent with the GWR model, i.e.
following the assumption that as long as the spatial distances between observation points to the regression point are
equal, their spatial weights are the same. There may be other factors, such as anisotropy or value variation across
space, that may have some additional spatial impacts on the regression point. The reasons we follow GWR’s
assumptions are: (a) In the optimization procedure, the model will adaptively adjust its spatial bandwidth according
to the density of sampling points, and to the value variations in the space. If the value variations across the space are
small, the adaptive spatial bandwidth will be large. It means that the optimization procedure already uses the
information about value variation across the space. (b) If the variation y;) — ¥ Was used to build a new spatial
distance, which will violate the aforementioned assumption of GWR, the prediction and calibration process should be
changed. Because y;(;) value thatis required in the calculation of the new distance does not exist in prediction, spatial
weights from surrounding observed points should be estimated by interpolation or other methods (just like the
interpolation of temporal weights) that may bring other uncertainties or errors. Evaluating and comparing these
uncertainties is not the scope of this paper in our plan. (¢) If the |y;) — ¥jr)|/dsij Was used as a new spatial distance

for calculating the spatial weights, we have to deal with the special case when y;) equal to y;(), because the spatial



kernels (such as bi-square and Gaussian) are different form the temporal kernel of STWR. In other words, if y;(;_q)
is close or equal to y;;, when employing our temporal kernel k7, the output temporal weight is close or equal to 0.
The underly meaning is explainable, because when the value variation gets close or equal to 0, the influence from
observed point to the regression point gets weak or disappear. If y; is close or equal to y;) when employing the
bi-square or Gaussian kernel, the meaning may be difficult to understand, because when the new spatial distance
[Yicry — Yo l/dsij 1s close to 0, the output spatial weights will be large, which is inconsistent with the fact that the
weaker influences it should have when the smaller value variation across space. Besides, the bi-square or Gaussian
kernel have no solutions when y;q) is equal to Y. If the numerator and denominator are swapped (i.e.
dsii/1Yiey = Vil )»the Yy cannotbe equalto y;, while it is normal that y;(,) may be equalto y;(. Therefore,
if we consider combing the ;) — ¥j) With dg;; to build a new spatial distance, we may probably need to design
a new appropriate spatial kernel, which requires more difficult theoretical knowledge on describing the local spatial
effects.

Revisions made. To give a better explanation of the STWR model and the associated parameters, we updated the text
in the second half of section 1 Introduction and the text between Equations 3 and 4. Also, we added several new
paragraphs in the first half of section 6 Discussion and Conclusions to further justify the characteristics of STWR and

the difference between it and other models.

Comment 2. The authors indicate that the current GTWR model directly calculates the integrated
spatiotemporal weights by using a multiplication of the spatial and temporal weights, which may cause
underestimation of weights. This is easily misunderstood. The GTWR model also uses a scale parameter to
handle the difference between time and space, which is the same as the proposed STWR model. Please correct

or give more explanation.

Reply 2.

The composite spatiotemporal weights might be underestimated in the current GTWR models by using the
multiplication kernel. Because both outputs of the spatial kernel and the temporal kernel range from 0 to 1, and the
multiplied value is never bigger than the smaller one of the spatial and temporal kernels, which means that the
composite spatiotemporal impacts are never greater than the single spatial impacts and the single temporal impacts.
However, the real combined spatiotemporal impacts, may be higher than the single spatial impacts or the temporal

impacts, or at least may be higher than the smaller ones. Moreover, multiplication makes the weight decay faster. The

role of the adjustable parameter « used in STWR is different from the scale parameter 7 ( 7 = % ) in GTWR. The

parameter ¢ is used for adjusting the outputs of the spatial kernel k; and the temporal kernel k;, which means
measuring the relative strength of the spatial and temporal impacts on the regression point. However, the scale
parameter T is used for linearly adjusting the inconsistency of the distance between time and space, because of the
differences of their units, scales, or metrics, etc. Specifically, GTWR uses parameters u and v to generate the
spatiotemporal distance disz (given in the following Equation 1). And then substituting the diSjT into the spatial
kernel (Gaussian), its composited weights were obtained (Equation 2, we use w to replace the a in the original

formulation, which is easier to understand in symbol). This equation, after transformation, is equal to the multiplication



form of two Gaussian kernels (i.e. the spatial kernel and temporal kernel). Therefore, the scale parameter T in GTWR
only adjusts the differences between time distances and space distances, which does not change the multiplication
form of the spatiotemporal kernel. In contrast, the parameter « in STWR (Equation 3) is used to adjust the effects
of the two kernels k; and k;, and the adjusted composite spatiotemporal weight WithT may be larger than the

smaller one of the output values of k(dg;j, bsy) and kr(d;j, br).
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Revisions Made. We gave more explanation in the revised manuscript, please see the second last paragraph in

section 1 Introduction and the text between Equations 3 and 4.

Comment 3. As new platforms and instruments have brought increasingly massive spatiotemporal data,
deep learning and neural networks have also been integrated with geostatistical models to handle spatial
and temporal non-stationary relationships, such as geographically neural network regression (GNNWR),
geographically and temporally neural network regression (GTNNWR). These neural network-based
models can even capture the complex non-linearity in the non-stationary relationship. Some discussion or
comparison between STWR with these models should be added.

Reply 3.

With many successful applications of deep learning and neural network in many fields, its combinations with the
traditional geospatial tools is becoming a promising research topic. Geographic neural network weighted regression
(GNNWR) (Du et al., 2020) is a new attempt to combine the OLS and GWR with Artificial neural networks (ANNSs).
Geographic and temporal neural network regression (GTNNWR) (Wu et al., 2020) is based on the GNNWR with



combing a new ANNs based method to calculate the spatiotemporal distance. Our STWR algorithm is based on the
GWR with a new temporal distance and spatiotemporal kernel. There are four main differences between the
GTNNWR/GNNWR and STWR: @ The basic formulation of GNNWR is defined as Equation (4). The w,(u;, v;)
and wy(u;, v;) denote the geographical weight of the constant coefficient 5, and coefficient [, respectively. It
assumed that the multiplication of wy, (u;, v;) and B, isequalto B,(w;,v;) (0 <p < k). The combined fB,(w;, v;)
is thought as the same as the coefficients of GWR. But in STWR and GWR, the weights and the estimated coefficients
are separated. The weights mainly reflect the degree of the influences from the observed points to the regression point,
while the coefficient values reflect the relationships between the independent variable and dependent variable. @
GTNNWR and GNNWR use the proposed ANNs based method (Equation 5) to calculate the weighted matrix, which
is quite different from the kernel functions used in GWR and STWR models. Although GTNNWR and GNNWR use
the idea of pointwise regression, they do not consider how to "borrow points" from nearby neighbors and do not have
the concept of bandwidth. Without spatial bandwidth, all observation points in the study area may have impacts on
the regression point, which might violate the Tobler's first law of geography (Tobler, 1970). It may be difficult to
understand the relationships between the influence weight and the spatial distances, especially when the study area
and the data amounts are large. STWR has spatial bandwidths and follows the Tobler's first law of geography, which
can help analyze the affected range of local regression points. @ The data points will be divided into training set
(including validation set) and test set for the GTNNWR and GNNWR, which might require more data points. Thus, it
may not be appropriate for analyzing fewer amounts of data points (data acquisitions of many geoscience processes
are difficult and costly). STWR and GWR do not need to divide data points into the training set (including validation
set) and test set, which requires less data points than GNNWR and GTNNWR. @ Although GTNNWR utilizing a
method named spatiotemporal proximity neural network (STPNN) to calculate the spatiotemporal distance, the
obtained integrated spatiotemporal distance is lack of explanation, and it is also impossible to tell apart which parts of
the calculated weight is affected by time or space. Besides, there is no concept of temporal bandwidth in GTNNWR.
Thus, it cannot tell us how old the historical observation points that will have impacts on the regression point. But
STWR has temporal bandwidth, and it can distinguish the strength of temporal weight and spatial weight. Therefore,
we can analyze the characteristics of the local interaction of time and space according to the temporal bandwidth,

spatial bandwidth, and the adjustment parameter a, etc.
Yi = wo(u;, v)Bo + Xj_y Wi (W, V) BiXu + &, =1,2,...,n  (4)
W;=W(u,v;) = SWNN(d};, d,...,d, ") )

Our STWR algorithm, especially the new concept of the time distance, may also be integrated with the machine

learning methods, which is our future work.

Revisions Made. We added the discussions on the differences between STWR and GTNNWR/GNNWR to the Section

6 Discussion and Conclusions. Please see the several new paragraphs added at the first half of section 6.

References:
Du, Z., Wang, Z., Wu, S., Zhang, F. and Liu, R. Geographically neural network weighted regression for the accurate

estimation of spatial non-stationarity. International Journal of Geographical Information Science, 34:7, 1353-



1377, 2020. DOI: 10.1080/13658816.2019.1707834
Wu, S., Wang, Z., Du, Z., Huang, B., Zhang, F. and Liu, R. Geographically and temporally neural network weighted

regression for modeling spatiotemporal non-stationary relationships. International Journal of Geographical

Information Science, 1-27. 2020. DOI: 10.1080/13658816.2020.1775836
Tobler, W. R.: A computer movie simulating urban growth in the Detroit region, Economic geography, 46, 234-240,

1970.



10

11

15

16

17

18

19

20

21

22

23

24

A Spatiotemporal Weighted Regression Model (STWR v1.0) for

Analyzing Local Non-stationarity in Space and Time

Xiang Que '?, Xiaogang Ma>", Chao Ma>", Qiyu Chen?

! Computer and Information College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China

2 Department of Computer Science, University of Idaho, 875 Perimeter Drive MS 1010, Moscow, ID 83844-1010, USA

3School of Computer Science, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China

«Corresponding author. Email: max(@uidaho.edu (Xiaogang Ma); chao@uidaho.edu (Chao Ma Deleted: *Correspondence to: Xiaogang Ma

(max@uidaho.edu); Chao Ma (chao@uidaho.edu)

Abstract; Local spatiotemporal non-stationarity occurs in various natural and socioeconomic processes. Many studies have

kDel eted: .

attempted to introduce time as a new dimension into the geographically weighted regression model (GWR), but the actual
results are sometimes not satisfied or even worse than the original GWR model. The core issue here is a mechanism for
weighting effects of both temporal variation and spatial variation. In many geographical and temporal weighted regression
models (GTWR), the concept of time distance has been inappropriately treated as time interval. Consequently, the combined
effect of temporal and spatial variation is often inaccurate in the resulting spatiotemporal kernel function. This limitation
restricts the configuration and performance of spatiotemporal weights in many existing GTWR models. To address this
issue, we propose a new spatiotemporal weighted regression (STWR) model and the calibration method for it. A highlight of
STWR is a new temporal kernel function, in which the method for temporal weighting is based on the degree of impact from
each observed point to a regression point. The degree of impact, in turn, is based on the rate of value variation of the nearby
observed point during the time interval. The updated spatiotemporal kernel function is based on a weighted combination of
the temporal kernel with a commonly used spatial kernel (Gaussian or bi-square) by specifying a linear function of spatial
bandwidth versus time. Three simulated datasets of spatiotemporal processes were used to test the performance of GWR,
GTWR and STWR. Results show that STWR significantly improves the quality of fit and accuracy. Similar results were
obtained by using real-world data for the precipitation hydrogen isotopes (5*H) in Northeastern United States. The Leave-

one-out cross-validation (LOOCV) test demonstrates that, comparing with GWR, the total prediction error of STWR is
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reduced by using recent observed points. Prediction surfaces of models in this case study show that STWR is more localized
than GWR. Our research validates the ability of STWR to take full advantage of all the value variation of past observed
points. We hope STWR can bring fresh ideas and new capabilities for analyzing and interpreting local spatiotemporal non-

stationarity in many disciplines.

Key words: Geographical and temporal weighted regression; Geographically weighted regression; Temporal non-

stationarity; Spatial analysis; Spatiotemporal variations; Spatiotemporal weighted regression.

1. Introduction

Time, space and attributes are three essential characteristics in geographic entities, and they are recorded to reflect the state
and evolution of various real-world phenomena and processes. Because space and time frame all aspects of the discipline of
geography (Goodchild, 2013), it is important to observe the spatiotemporal variations and explore appropriate analytical
methods to study and reason the internal mechanisms and evolutionary laws. In recent years, new platforms and instruments
have brought increasingly massive spatiotemporal data, such as the time- and geo-tagged sensor monitoring records and
remote sensing images. Those big data create great opportunities for studying human and environmental dynamics from
different perspectives, such as the patterns of human behavior (Chen et al., 2011), environmental risk assessment (Sun et al.,
2015), and disease outbreaks (Takahashi et al., 2008). Nevertheless, although spatiotemporal modeling has been a long-term
research focus in the field of geographical information science (GIScience) (Cressie, 1991; Cressie and Wikle, 2015), the
models are not mature yet and challenges still exist (Fotheringham et al., 2015), which call for further work.

In this paper, the technological development and discussion focus on modeling local spatiotemporal variations within
the framework of geographically weighted regression (GWR). GWR is a method for modeling spatially heterogeneous
processes (Brunsdon et al., 1996, 1998; Fotheringham et al., 2003). It has been applied in a variety of areas, such as climate
science (Brown et al., 2012), geology (Atkinson et al., 2003), mineral exploration (Wang et al., 2015), transportation analysis
(Cardozo et al., 2012), crime studies (Cahill and Mulligan, 2007; Wheeler and Waller, 2009), environmental science (Mennis

and Jordan, 2005), and house price modeling (Fotheringham et al., 2015). GWR calibrates a separate regression model at
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each location through a data-borrowing scheme, in which distance-weights can be calculated by drawing on data from
neighboring observations of each regression point (Fraser et al., 2012). This operation complies with Tobler’s first law of
geography - “Everything is related to everything else, but near things are more related than distant things” (Tobler, 1970).

Numerous studies have been devoted to incorporating the temporal dimension into spatial regression (Pace et al., 2000;
Gelfand et al., 2004; Crespo et al., 2007; Cressie and Wikle, 2015). However, most of these studies assume that temporal
effects are constant over space from a global perspective of modeling (Fotheringham et al., 2015). To address that issue,
Crespo et al. (2007) extended GWR by developing spatiotemporal bandwidths that account for varying local spatial effects
across time. Huang and Wu (2010, 2014) proposed a geographical and temporal weighted regression model (GTWR) with a
method of measuring the spatiotemporal ‘closeness’ and a parameter ratio 7 to deal with different measured units in time
and space. Although the approach can address the issue to some extent, Fotheringham et al. (2015) pointed out that a sole
measurement of integrated spatial and temporal distances can be misleading as location and time are usually measured at
different scales, and he stated that the calculation of distance in three dimensions (time and two-dimensional space) remains
a challenge.

A spatiotemporal kernel function, which consists of mixed spatial and time-decay bandwidths, was proposed by
Fotheringham et al. (2015). Nevertheless, the stepwise strategy applied in this function for bandwidth optimization does not
always seem reasonable. In practice, this function needs to first find and fix an optimized spatial bandwidth, then it will find
the optimized temporal bandwidth. After that, the spatiotemporal weight will be calculated. This stepwise search process
means that the function is not able to optimize both temporal and spatial bandwidths at the same time. However, a more
reasonable thought is that the spatiotemporal bandwidth and its weight are simultaneously affected by both spatial and
temporal effects of a process. There should be ways to further improve the spatiotemporal kernel function in Fotheringham
etal. (2015).

The aim of this paper to develop a better methodology for the spatiotemporal kernel function. Following Tobler’s first
law, we propose an algorithm, the spatiotemporal weighted regression (STWR). In STWR, the velocity of value change is
higher related if they were in near time and space. Therefore, STWR can borrow data not only from nearby locations, but

also from nearby value variation through time. The latter is what we call as “time distance” in STWR. The time distance is
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not the concept of time interval, but the rate of value variation through time. It is a kind of value change that reflects the
temporal effect of nearby points to the regression point. Accordingly, our local spatiotemporal regression analysis model can
take advantage of the variation in data to identify temporal non-stationarity, which is an advantage comparing with GWR
and GTWR.

Before giving more details about STWR, we can further clarify the meaning of a few concepts. A common issue in the
existing GTWR models is that they use the concept of time interval, instead of the above-mentioned “time distance”, to
calculate temporal and spatiotemporal weights. A time interval is the period between two observed time stages. A time
distance, in the context of STWR, is the rate of value variation between an observed point and a regression point through a
time interval. We can think about the following scenario for a group of points. The values of some points do not change or
change slightly from time A to time B, while a few other points may change greatly in that period. However, many GTWR
models ignore the difference in the value changes of observed points during a period of time, and regard that all these points
have the same temporal effect to their neighbor regression point. It is hard to believe that some unchanged observations
constantly affect their nearby regression points during the observed time interval. Intuitively, different variations of the
observed points have different temporal effects. For example, the faster the house price of a point change, the stronger the
temporal effect is to the house price at its nearby point. Moreover, the rate of value changes at different observed points
(time non-stationary) may also have spatial heterogeneity. The data values observed at different points are results of mixed
spatiotemporal effects and some other unknown factors (including errors). Therefore, using only time interval in the
calculation of temporal and spatiotemporal weights might interpret local spatiotemporal effect imprecisely.

There are other issues in the temporal kernel functions and the multiplication form of spatial and temporal kernels used
by the existing GTWR models (Huang et al., 2010; Wu et al., 2014; Fotheringham et al., 2015). When calculating the
spatiotemporal effect, these models generally use time intervals and the common kernel functions to calculate temporal
weights, such as Gaussian kernel or bi-square kernel. However, an appropriate temporal kernel function should not be the
same as the spatial kernel function, because space is in two or three dimensions while time is in one dimension and one
direction. Each regression point can borrow observed points from any directions in space but only use points from the past

rather than from the future. Moreover, the integrated spatiotemporal weights might be underestimated in these GTWR

(Deleted: these models directly calculate
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models by using a multiplication of the spatial and temporal weights. Because both the spatial weights and the temporal

weights range from Qyto 1, and themultiplied weight value ispever bigger than the smaller one before multiplying, which

means that the composite spatiotemporal jmpacts are never greater than the single spatial impacts and the single temporal

impacts. However, the real combined spatiotemporal impacts, may be higher than the single spatial impacts or the temporal

impacts, or at least may be higher than the smaller ones. The multiplication formulation of spatiotemporal kernel in GTWR

also makes the calculated weight decay faster.

The above-mentioned limitations and issues in GWR and GTWR are the driving force behind our development of
STWR. The remainder of this article is organized as follows. Section 2 introduces the STWR model formulation, including
temporal kernel and spatiotemporal kernel functions. Section 3 describes the methods for bandwidth selection and calibration
when STWR is in operation. Section 4 presents results of applying GWR, GTWR and STWR to three sets of simulated data.
Section 5 presents experiment results with real-world precipitation hydrogen isotope data. In Section 6, we close the article

with a summary of the key findings and a few thoughts for future research.

2. The Core Model of STWR
2.1 The strategy of time distance decay
Since GWR is the background of our work, it is helpful to first give a brief overview of the GWR framework. The basic
formulation of GWR can be described in two equations below (Fotheringham et al., 2003).
Vi = Bo(ui vi) + s Bie (U, Vi) xupe + & (O]
Bie(uivi) = (X™W (uy, v)X) T XTW (w;, v))y (2
In Equation 1, y; is a response variable of regression point i at a location with the coordinates (u;, v;). Xy is the k*

independent variable, and &; denotes the error term for the it observed point. A key difference between GWR and the

traditional global regression method, such as Ordinary Least Squares (OLS), is that GWR allows the coefficient £ (u;, v;)
vary spatially to identify spatial heterogeneity. Equation 2 represents the GWR calibration in a matrix form. W (u;, v;) isa

diagonal weighting matrix specific to location i, which is calibrated by a specified kernel function with a given bandwidth.
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Every element w; in the weighting matrix reflects the impact from another observed point to the regression point. A bigger
w; value means a higher impact.

GWR has a strategy of spatial distance decay impact on a regression point (Brunsdon et al., 1998; Fotheringham et al.,
2003). A similar “time distance decay” strategy was also discussed in several recent GTWR models (Crespo et al., 2007;
Huang et al., 2010; Wu et al., 2014; Fotheringham et al., 2015). Yet, those models did not fully reflect the effect of time
distance decay. Sample points are observed at different time stages, and those data points closer in time distance to a
regression point have more impact on the regression point than those farther away. The time distance refers to the value
variation rate between an observed point and a regression point during a certain time interval. For example, in Fig. 1, there
are four time stages from old to new: T-s, T-q, T-p and T. Through a fitting and calibration process, the spatiotemporal

bandwidth will be fitted, and the spatiotemporal effects (wejghts) from observed points to a regression points at time stage T

will be calculated by a specific spatiotemporal kernel function. Then, in prediction, the value of a regression point at time
stage T can be estimated. Thus, the observed points at time stage T only have spatial effect on the regression point (Fig. 1).
There is temporal effect from data points at time stages T-p and T-q (shown as stars, pentagons and triangles in the planes of
T-p and T-q in Fig. 1), within a certain spatial bandwidth bg; at each time stage, to the regression point. The time distance
decay should reflect that different variations of the observed points have different temporal effects. However, as mentioned
in the previous section, many existing GTWR models have applied a strategy of time interval decay instead of time distance
decay. Consequently, they regard that all the observed points have the same temporal effect to their neighbor regression

point.
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Fig. 1. Spatiotemporal impacts of observed points with different rates of value change on a regression point at time stage T.
Temporal bandwidth is the length of time from the intersection point A of the spatiotemporal bandwidth and the time line to

the regression point. Spatial bandwidth and spatiotemporal bandwidth are illustrated in the figure legend.

Compared to existing GTWR models, the time distance decay strategy of STWR considers the effect of different
variations of observed points through time. For example, some data points may have higher impact on the regression point,
though their spatial distance is farther than other points. Fig. 1 illustrates that the locations of some star-shape points are
farther away from the regression point than some pentagon-shape points at time stage T-p, which denotes that there exist
mixed impacts (spatial impact and temporal impact) on the regression point. The temporal impacts depend on the rate of
value variation, which is the value difference between the observed point and the regression point divided by a time interval
(e.g., [T-p, T] and [T-q, T-p] each is a time interval). If the observed time stage is too long ago or the rate of value variation
is too small, and exceeds the limit of optimized temporal bandwidth for the regression point (as shown by observations at
time stage T-s), the data points at this time stage may have no impact on the regression point. Even though some of those

data points may have huge difference in value and are close to the regression point in space, they are not within the range of
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the optimized temporal bandwidth. Spatial bandwidths also vary along the time line, and usually the bandwidth gets larger
when the observation time is closer to the time stage of the regression point (Fig. 1).

2.2 The spatiotemporal kernel function of STWR

We assume that a set of observed points 04, = {Oy,,Oy,_,,--- ONt_q |At :A[t —q,t]} are collected during a certain time CFurmatted: Font color: Text 1

interval At in a study area, where ¢ represents the current time stage and N,_;,i € ¢0,1,2,...,q (N, = N,_,) denotes the (Furmatted: Font color: Text 1

number of observed points at each recorded time. As the idea described above, we can borrow neighbor points in space and
their value variation during certain recent time intervals, so we can still use Equation 1 to generate local estimates. The
weight matrix W in GWR usually depends on the spatial kernel (Fotheringham et al., 2015). In STWR, we need to consider
the temporal effect, so the form of W is different from that in GWR. Correspondingly, we should have a spatiotemporal
kernel, which can be understood as a temporal extension based on the spatial kernel. However, if we use a multiplication
form to combine the temporal kernel and the spatial kernel (Huang et al., 2010; Wu et al., 2014; Fotheringham et al., 2015),
we will face the problem of time and space interaction as mentioned above in the Introduction section. To address that issue,
we design a weighted average form for the spatiotemporal kernel.

Wi[jST =(1- a)ks(dsijﬂbST) + akT(dtij'bT)ﬂ 0<sac<1 3)
In Equation 3, Wf,ST is the weight at time t and at the observed location j. k; and k; are the spatial and temporal kernel,

respectively, and they both have a value range of 0 to 1. « is an adjustable parameter to scale the temporal and spatial

effects, which can be optimized with the bandwidth selections. ;The role of parameter « is different from the scale parameter [Deleted' do:
. Msty

T(t= % ) in GTWR (Huang et al., 2010). « is introduced here for adjusting the outputs of the spatial kernel k¢_and the

temporal kernel k;, which means measuring the relative strength of the spatial and temporal impacts on the regression point.

But the scale parameter 7_is used for adjusting the inconsistency of the time distance and space distance, which cannot

adjust the relative strength of k,_and k;. dg;; and d;; are the spatial (Euclidean) and temporal distance between the

regression point i and an observed data point j, respectively. bg; is the spatial bandwidth bg at a certain time stage T, and

b denotes the temporal bandwidth.
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The time distance, as mentioned above, is not the time interval but the rate of value variation between an observed point
and a regression point through a time interval. Following the time distance decay strategy in STWR, we can further derive

the temporal kernel k; as shown below.

2
t - - -
Wijar = J 1exp(—| 2O YJA(\;g;)/Mt—q))

k , otherwise

1|, if0<A4t<br @
In Equation 4, ¥;sy — Yj(¢—q) 1S the subtraction of the regression point i’s observed value at ¢ from the point j’s observed
value at t — g, which denotes the value change during the time interval At. The internal part of the exponential function is
negative, in order to make the weight wfj ¢ range from O to 1. The faster the value change rate is, the bigger the weight is,
which means that the time impact is larger. When the time interval At is out of the range (0, b;), the weight will be set to
zero, which denotes that there is no impact because the observed variation is too far to affect the current moment. For
example, if the price of a nearby house has changed a long time ago, it may have little or no impact on the present house
price. But if the house price had a sharp change recently, it will have a big impact on the present house price. Therefore, the
faster the rate of observed value changes and the shorter the time interval is, the greater the impact on the regression point
will be. Compared with GTWR models, the advantage of STWR is that the temporal kernel function k; can better leverage
the variation data.

To calibrate the weight value wf}-ST, we need a spatial kernel function. The most widely used kernel functions are bi-

square and Gaussian (Fotheringham et al., 2003), which are given in Equations 5 and 6, respectively.

2

e p
Bi— square: w5 = [1 (bs) l Jif dsij < bs ®
0, otherwise
i 1 dsyj 2
Gaussian: wgjs = exp [_E(b_gj) ] ©

In Equations 5 and 6, bg is the spatial bandwidth. Derived from bg and bgy, b, is the initial spatial bandwidth at the given
time stage t of the regression point (i.e., t is the initial time for searching observed points in the past). Many functions can

be specified for the change of spatial bandwidth during the time intervals. Because in most cases it will have smooth change



28 during a certain short time interval, we assume that the spatial bandwidth changes linearly along with time, as defined

29 bellow.
30 bgr = bsy — tanf * At, ~2< 0 <= ©)

31 In Equation 7, tan@ denotes the slope of spatial bandwidth change in correspondence to At, and bg, denotes the initial

32 spatial bandwidth at t. Importing Equations 4 to 7, the calibration of Equation 3 can be further derived into Equations 8 and
33 9, which are our spatiotemporal kernel functions in STWR. Equations 8 and 9 are based on the bi-square and Gaussian

34 kernel, respectively. With the STWR spatiotemporal kernel, we only need to optimize the parameters a and 6 instead of the
35 spatial bandwidth bg;. However, we shall traverse all the observed points at the initial time stage t to find the optimized

36 spatial bandwidth bg,. Moreover, we shall also traverse all the time stages to find the optimized temporal bandwidth b.
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40 3. STWR in Operation
41 3.1 Bandwidth selection and parameter estimation
42 Some goodness-of-fit diagnostics (Loader, 1999) are widely used in general GWR-based models, such as the cross-

43 validation (CV) score (Cleveland, 1979; Bowman, 1984) and the Akaike Information Criterion (AIC) (Akaike, 1973;
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Akaike, 1998). For STWR, we use cross-validation (CV) as the default searching criteria and we also calculate the value of a

corrected version of AIC (Hurvich et al., 1998), the AICc, which is defined bellow.

n+tr(S)

AIC, = 2nin(6) + nin(2m) +n {n—Z—tT(S)} aw

In Equation 10, n is the sample size, & is the estimated standard deviation of the error term, and tr(S) denotes the trace of
the hat matrix S (Hoaglin and Welsch, 1978).

Although there is no need to optimize spatial bandwidth bg; of the past time stages in STWR, other parameters such as
a and 6 need to be optimized. Also, we should give the by and initial bg, through trials. For more potential combinations
of these parameters for different spatiotemporal processes, a more reasonable limit and optimization procedure is hence
needed.
3.2 Calibration of STWR
Calibration of the STWR models can be conducted by using weighted least squares. The estimator for the coefficients at
location (u;, v;) is shown below.

Be(uyvy) = [(X(T;MWAt(uiv vi)XnAt)_lxanAt(ui: v) 1Yo, (11)

In Equation 11, X,,, and y,,, are observed independent and dependent variables of 0y, respectively, Xz 4 i the
transpose of Xo,.. Wy (u;, v;) denotes the spatiotemporal weight matrix for observed points at different locations to the
regression point (u;, v;) at different time stages during At. For a better illustration, we show the weight matrix W, during
the time interval At in Fig. 2. The matrix W), here is a bit different form the W (u;, v;) in Equation 2. The records in the

th row of W,, are the diagonal elements in W (w;, v;), and only no zero values are used to calibrate the coefficients £ for

i
each regression point. Thus, each row 7 of this hat matrix is shown below.
Ty = Xie (XA WiaeXae) " XaeWiar 12)

In Equation 12, X;, is the i row of the matrix of independent variables at t. X, is the matrix of independent variables

during a time interval At, and AXATt‘ is its transpose. Although the X, in Equation 12 is equal to the X, in Equation 11 in

the fitting and calibration of STWR, we distinguish X, from X, here. Because X, is a specific matrix of independent

variables of an observed point set 0,, during At, while X, is a general matrix of independent variables of points during

11
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At. Xo,,, is only used for fitting and calibration of STWR, while X, can also be used for prediction in STWR. In other

words, we can understand X, as a subclass of X,.. Wy, is the it" row of the weighted matrix Wye,

3.3 Reasonable searching range and procedure of optimization

In order to obtain the optimized @ and 6 for STWR (Equations 8 and 9), the search range should be limited. Here we use
the distance from each regression point p([) to its M®" nearest neighbor as the initial spatial bandwidth b, at t. The range
of b, is within a finite set of discrete values, because the maximum number of nearest neighbor is limited to N;_;,i €

{1,2,...,q} for the regression point pi([) (N,_; is the total number of observed points at t — i). We denote that value set for

bg as BSyy = {Dy41, Disas - - 1o

Dy,}, in which the element Dy, U € {k + 1,k + 2,..., N;} denotes the distance from p;
the U nearest neighbor, and k equals to the number of independent variables. Moreover, the searching range of the
temporal bandwidth by is also limited to a finite discrete set BT, = {At,, At,,...At;}, in which the element At is the time
interval from t to t — A.

The optimization procedure is to traverse the set BTj, and for each step we further traverse the set BSy, to get the
optimized a and 6 through trials. Some trials of 8 may lead to no solution to Equation 11, because there might be less than
(k + 1)t neighbors within the radius of b, — 8At, from the regression point. Therefore, if it occurs at time stage t — A,
the spatial bandwidth bs, — 6At; needs to be extended to the distance from its (k + 1)® nearest neighbor to the regression

point, to guarantee the matrix in Equation 11 to be nonsingular.
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Fig. 2. Weight matrix W,,. The symbol p,((tfi),i €{0,1,...q}, k € {1,2,... N._;} denotes the k*" observed point at t — i.
The symbol W::_;(t’p(“”’i €{0,1,...q},m€e{1,2,...N,},n € {1,2,...,N,_;} denotes the weight of the n*" point pit—i) at
Fm Fn

t — i to the m* point p,g? at t.The symbol Oy, i € {0,1,...q} denotes a set of points observed at t —i. At denotes all

the time intervals of the weight matrix. In the central and right parts of the figure, the records with background shading

indicate weight values affected by temporal effects.

3.4 Steps of using STWR for prediction

In this paper, STWR is used to predicate the current values of regression points with known coordinates. The prediction
formulas of STWR are more complicated than GWR because the spatial distance is calculated directly from the regression
point to each observed data point, while the time distance between the regression point and the data points observed in the
past cannot be calculated directly. Therefore, we specify a few steps for the prediction in STWR. First, we need to have the
optimized initial spatial bandwidth bg,, the optimized a and 6, the optimized number of time stages model used and the
fitted weight matrix. Second, all data points within the limited distance of spatial bandwidth at the latest time stage should be
found for the regression point. Third, all the temporal weights of these data points need to be retrieved from the established
weight matrix (Fig. 2). Fourth, we use these retrieved weights to calculate (e.g., use mean value or inverse distance
weighting value) the temporal weight on the regression point. Fifth, by combining with the calculated spatial weight and the
optimized a and 6, we can calculate the spatiotemporal weight on the regression point. Then the value of the regression

point can be calculated.

4. Experiments with Simulated Data

4.1 Simulation design

To verify the performance of STWR and compare with the results of GWR and GTWR, several groups of simulated data
were used in this study to represent different types of heterogeneity in space and time. All the data and code used in the

experiments are shared on GitHub. Web links are provided at the end of this manuscript.
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For GTWR, we only compared with the results generated by algorithms in Huang et al. (2010) and Wu et al. (2014),
because we did not find the software package of Fotheringham et al. (2015). The data generating process (DGP) and the
spatial heterogeneity are introduced here. The basic DGP is a linear model shown in Equation 1 and the study area is a
regular 25x25 lattice. We defined three initial surfaces to represent the spatial heterogeneity of parameters (Fig. 3), which
were generated by Equations 13, 14 and 15, respectively (Fotheringham et al., 2017). Through Equation 1, the two
independent variables x; and x, were initially generated randomly from the normal distribution x{"*i4%~N(100,8) and
ximitial LN (50,6), respectively. They can be set as any other values, and the mean values of both distributions may change

over time. The error term was generated from a normal distribution é~N(0,0.5).

By =3 13)
Bian =1+ wv) (14)
B = 1+ 57136 — (6 —w/2)?][36 — (6 — D)7 (5)
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Fig. 3. Three simulated initial surfaces for representing spatial heterogeneity of parameters.

Several trends were designed to simulate the value change. For a better simulation, we assumed that value variation can

also be spatial heterogeneity. To distinguish from the heterogeneity of the coefficient surface, three other heterogeneity trend

functions were defined by Equations 16, 17 and 18.
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T, VAt =Vt + @ = sin(v/4)At™Pover (16)
TVt = Yt + @ x sin[ 1/10mu]Ac™Power a7
T,V At = Yt + @ = sin[ 1/6m(u + v)]AtmPower (18)
In the above equations, V¢ denotes the value at time stage t, ¢ is used for adjusting the magnitude of change, At™P°ver
denotes value change with the nt* power of time interval, and T;V**4¢,i € {1,2,3} denotes the V value at time stage ¢ +
At, which is the result of the i*" trend function from the V. Fig. 4 shows these trends when ¢, V¢, and At™P°"eT are set to

one.

it

At B t+At C .
TV Heterogencity trend 1 TV Heterogeneity trend 2 TV Heterogeneity trend 3 Formatted: Left

%

Fig. 4. Three heterogeneity trend surfaces.

Our goal of this experiment was to test model performance by using sample data from the simulation process at
different time. Three case studies were designed for different situations. Besides the spatial heterogeneity trends, in our
simulation design we assumed that the mean values of two independent variables x; and x, also changed over time, which

were generated by Equations 19 and 20, respectively.

TyxbHat = x,,t £y % At (19)
Toxbat = x,,t £, * At (20)

In the above two equations, x,,,¢ denotes the mean of an independent variable x at time stage t, T;x5 %, i € {1,2} denotes
the mean of x at time stage t + At, and 1, and 7, are two parameters for adjusting the rate of change. At each time stage
during the simulations, the independent variables x; and x, are generated by a normal distribution with new means of

T xbHAt and T,x5H4t, respectively.

15



51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

4.2 Results with simulated data

We compared the results of OLS, GWR, GTWR, and STWR. A total of 333 random sample points for five time stages

(to, ty, ty, t3, t, from old to new) were collected from the 25%25 lattice generated in the above-mentioned DGP. To simplify
the calculation process, we set 6 of Equation 7 to zero. Due to the limitation of paper length, in the comparison below the
STWR results only include those generated by the spatiotemporal kernel in Equation 8. The objective is to compare the
predicted results with the true value at the latest time stage.

4.2.1 Case study 1

The time interval of observations in case study 1 was one unit, such as one second or one day. The value change of x; and
x, were generated by 7, = 0.5 and 1, = 0.1, and were affected by T;V with ¢ =0.5 and npower = 1. This means that
x; and x, only changed slightly over time. Table 1 presents the results of the global OLS, GWR, GTWR and STWR at the
latest time stage, i.e., stage 5. It shows that the sum of squared errors (SSE) of prediction in STWR is much lower than the
other models in at least one magnitude. In addition, the AICc scores (Equation 10) also shows that STWR outperforms

GTWR and GWR. As shown in Table 1, the R2 (average R-squared of all regression points ) value increases from 13.8% in

OLS to 94.2% in GWR, 94.9% in GTWR, and 99.3% in STWR. The estimated standard error, Sigma, reduces to 4.292 in
STWR from 23.331 in GTWR. Also, Fig. 5 shows that both the prediction surface (Y_pred) and the prediction error surface
(Pred_Error) of STWR are more accurate than those in GWR. Due to the limitation of the software package in Huang et al.
(2010) and Wu et al. (2014), we did not generate images for GTWR in Fig. 5, but the result can be seen from the Sigma

value in Table 1.

Table 1. Results of case study 1 at time stage t,.

Time stage t, SSE AlCe R2 Sigma
OLS 676366.268 805.455 0.138

GWR 45674.420 705.529 0.942 33.277

GTWR 40056.823 616.641 0.949 23.331
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STWR 5761.109 528.860 0.993 4.293

(a)Y_true (b1)Y_pred of STWR (c1)Y_pred of GWR
25 25

600

500

10 15 20 r-3 ° 20 r-3 0 0 s 10 15 20 25
(a2)Pred_Error 2S(b2)Pred_Error of STWR

10 15

Fig. 5. Comparing prediction results of STWR and GWR in case study 1. Images al, bl, and c1 are the simulation surfaces
of true Y, the predicted surface of Y by STWR, and the predicted surface of Y by GWR, respectively. Images a2, b2, and c2
are the surface of simulation error, the surface of prediction error of STWR, and the surface of prediction error of GWR,

respectively.

4.2.2 Case study 2

The time interval of observations in case study 2 was 10 units. The value change of x; was generated by n; = 0.5 and
affected by T5V with ¢ = 0.5 and npower=2. x, was generated by 7,=2 and affected by T,V with ¢ =1 and npower
=1, which denotes that x; and x, changed fast over time. Table 2 shows the results of the global OLS, GWR, GTWR and

STWR at the time stage 5. The SSE value in STWR is much lower than other models, and STWR has the highest R2 value
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0.995. The Sigma value of STWR is 13.299, which is the lowest and less than one-fifth of the Sigma in GWR and less than
one-sixth of the Sigma in GTWR. Besides, the AICc scores show that STWR significantly outperforms GTWR and GWR.
STWR utilized data from the latest three time stages to calibrate the model. The initial spatial bandwidth bs, of STWR
was three nearest neighbors, which was smaller than the one in GWR with 15 nearest neighbors. The optimized a of STWR
was 0.08, which shows that the effect of used observed points to their local regression points was mainly determined by their
spatial distance. In this case, the GWR outperforms GTWR, which may due to the higher ratio of value change. Compared
with the y_true surface, the predict surface of STWR is much better than GWR (Fig. 6). For the same reason as mentioned in

case study 1, we did not generate images for GTWR in Fig. 6.

Table 2. Results of case study 2 at time stage t,.

Time stage t, SSE AlICe R2 Sigma
OLS 5085961.816 938.610 0.494
GWR 300088.969 840.178 0.970 87.201
GTWR 627011.021 895062 0.938 127.821
STWR 52688.545 709.573 0.995 13.299
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Fig. 6. Comparing prediction results of STWR and GWR in case study 2. Images al, bl, and c1 are the simulation surfaces

of true Y, predicted surface of Y by STWR, and predicted surface of Y by GWR, respectively. Images a2, b2, and c2 are the

surface of simulation error, the surface of prediction error of STWR, and the surface of prediction error of GWR,

respectively.

4.2.3 Case study 3

The time interval of observations in case study 3 was 200 units. In both case studies 1 and 2, the coefficients in Equation 1

were unchanged. In contrast, in case study 3, three surfaces of coefficients changed over time, which were generated by the

trends T,V, T,V, and T;V, respectively. The variations of coefficients were assumed to be slow. The ¢ and npower in

each trend were set to be 0.2 and 1, respectively. Both 1, and 1, were set to be 0.5. The dynamic process of the three

surfaces of coefficients and the y_true surface at each time stage are shown in Fig. 7. The process in case study 3 is more

complicated than a general process, but it may be closer to reality.
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Fig. 7. Dynamic process of three surfaces of coefficients and the y_true surface at five different time stages.

model and effectiveness of simulation process (Fig. 8a). Along with the change of the coefficients and the increase of
x; and x,, the R2 values of both GWR and GTWR are consistent in the five time stages, showing an overall downward
trend. But the R2 of STWR is stable and is at a high level among the five time stages. At the beginning stage t,, the R2

values of the three models are similar because there are no previous observations that can be used by STWR and GTWR.
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The small difference among these models at t, may be caused by their different searching range of spatial bandwidth.
Starting from time stage t;, STWR and GTWR can borrow points from previous observations. At time stage t;, STWR
outperforms both GWR and GTWR, and the advantage of STWR becomes more obvious in the later stages.

It may seem strange that GWR can outperform GTWR (Fig. 8), but that is reasonable for the process in case study 3.
The change of this process is faster; and the time interval of observations is bigger than the previous case studies. STWR is
not only able to deal with time intervals, but also to make full use of the value variation of observed points for calibration. In
contrast, GTWR only uses the time interval information and all the observed points to calibrate, which may cause problems
when the observed values are significantly different in spatial distribution or the time intervals are long. GTWR makes use of
points from previous time stages without considering their variation, but if the actual values are quite different from previous
observations at the current time stage, all the point values for the calibration of GTWR will become smooth. Thus, GWR
outperforms GTWR in this situation because GWR only uses the current data points for model calibration.

STWR is better for estimation than GWR and GTWR because its Sigma value is much smaller. As shown in Fig. 8b,
the Sigma of STWR was half of GWR at time stage t;, and even less than a third of GWR at time stage t,. The results show

that the advantage of STWR is obvious comparing with GWR and GTWR.

—_ e, -m-GWR -
-&- GTWR AT
0.95
700 e STWR ,/
A /!
)\ 7/
0.90 N 600 /
3, & /
\ 2 /
N B /
N o ’
085 ] 500 /
= ) /
£ E / T -
E] g 400 / J
g os0 > A %
I 2 Ve S
g 300 . S
£ ~ /
075 =] - e
2 L Y
200 A )
070 S
-m- GWR 100 el
-&- GTWR A
0.65 { —8— STWR
0
o [ [:3 t t t o t 6 &
Time Stages Time Stages
a

21



33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Fig. 8. Comparing and evaluating the performance of GWR, GTWR and STWR at five time stages. (a) Comparing the R2

value of different models; (b) Comparing the Sigma value of different models.

At t,, STWR used data from all the past time stages to calibrate the model, and its optimized (initial) spatial bandwidth
bg; was derived from four nearest neighbors, which was smaller than the one in GWR with 25 nearest neighbors. The
optimized a of STWR was 0, which means that STWR only borrowed points from past time stages without considering
their temporal weights to each regression point at t,. The predict surfaces at time stage t, is shown in Fig. 9. The Y_pred
surface of STWR is much better than GWR, especially in the middle and bottom left parts of the surface. The Pred_Error of
STWR is also much lower than GWR at almost every location. In this case, the @ of STWR at each time stage was 0, 0.96,
0, 0.07, and 0, respectively. These values indicate that the temporal effects are different at each stage. They also show that
the value of @ can be adaptive to scale the temporal and spatial effects (see Equation 3).

As Fig. 10 shows, the optimized bandwidths are quite different among these models, and the bandwidths of GWR and
GTWR are larger than the initial bandwidth of STWR at each time stage. The optimized bandwidth for each time stage refers
to an optimized number of the nearest neighbors (see Section 3.3). As GTWR considers all the nearest neighbors from
different time stages, the optimized numbers of the nearest neighbors (bandwidth) grow fast, and exceed the GWR model at
time stage t,. However, the actual distance from the observed points to the regression points is not necessarily farther. The
initial optimized numbers of the nearest neighbor of STWR are smaller than those in GWR and GTWR, which means that
the initial spatial bandwidth is narrower than the bandwidth of GWR and GTWR. Nevertheless, due to the strategy of
borrowing points from nearby neighbors of past observations, the total points for model calibration in STWR may still be
more than GWR and GTWR. Therefore, the initial optimized numbers of the nearest neighbors in STWR are kept at a lower

level, which means it is more localized than GWR in this sense.
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Fig. 10. Optimized bandwidths (or initial bandwidths) of GWR, GTWR and STWR for the five time stages in case study 3.

5. Experiments with Real-world Data
To further test the performance of STWR, we used data of precipitation 3°H isotopes in Northeastern United States in
another case study. We chose 3°H data in three days from October 29 to 31, 2012, which have enough spatiotemporal data
for the test. Here in the comparison the STWR results only include those generated by the spatiotemporal kernel in Equation
8. Data and code used here are shared on Zenodo (See DOI and web links in the ‘Code and data availability’ section at the
end of the main text of this article).

In the experiments, we collected a total of 782 measurements from 116 sites located in Northeastern United States
during the three-day period, and prepared the data on a daily average. The daily precipitation, mean temperature, and
elevation were used as explanatory variables. The model derived from Equation 1 is represented below.

¥; = Bo + Bippt + Botmean + Liheight + ¢; (#2))

In Equation 21, ppt denotes the daily total precipitation (rain + melted snow), tmean denotes daily mean temperature, and

height is the elevation value. After data preprocessing, there were 272 points for model calibration and 73 points values on
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October 31, 2012. For the first day, both GTWR and STWR took no information from the past. Therefore, we only show the
results of SSE, R2 and the optimized initial neighbor (bandwidth) in the model comparisons for the second and third day (D2
and D3) in Tables 3. The SSE of STWR is the lowest at both days. GWR shows a slightly higher SSE than GTWR at D2 and
D3. The R2 of STWR is the highest at both days among these models. GWR has lower R2 than GTWR at D2, and almost the
same R2 as GTWR at D3.

Similar to the experiments on three simulation datasets, the result here shows that STWR outperforms GTWR and
GWR. In the experiment, the number of optimized initial neighbors of STWR was smaller than that of GWR and GTWR.
The optimized a of STWR was 0 at both D2 and D3. The optimized temporal bandwidths of STWR (number of time stages
model used) in both D2 and D3 were 2, which means that the STWR in this case only borrowed data points from the latest 2
time stages for D2 and D3. In the result (Table 3), an interesting part to see is that the numbers of optimized initial neighbors
of STWR are smaller than the spatial bandwidths of GWR for D2 and D3. The reason is that STWR borrowed points from

past time stages in the calculation, which led to narrower bandwidths to some extent.

Table 3. Results of model performance with real-world data.

Neighbor Neighbor
Model SSE-D2 SSE-D3 R2-D2 R2-D3
-D2 -D3
OLS 58711.528 52669.399 0.595 0.502
GWR 33576.400 33043.921 0.769 0.688 52 43
GTWR 32659.808 31967.850 0.775 0.698 37 31
STWR 24022.226 25118.096 0.834 0.763 16 16

We adopted Leave-one-out cross-validation (LOOCYV) at D3 for the comparison between STWR and GWR. The
squared errors (SE) of prediction are shown in Fig. 11. The prediction results of STWR are better than GWR for most points.

The mean SE of STWR is smaller than GWR. Moreover, the SE of STWR shows a narrower regional trend, which indicates

25



96 that STWR is more robust than GWR. In addition, the total SSE of GWR and STWR are 50216.510 and 39724.995,

97 respectively. Therefore, the result further validates that the quality of predication in STWR is better than GWR.

98
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00 Fig. 11. LOOCYV results of STWR and GWR. (a) Squared error of prediction at each point (leave out); (b) Box plot of the
01 LOOCYV results of GWR and STWR.

02

03 In Fig. 12, the predicted §°H surface at D3 is broadly similar between the GWR and STWR calibrations. The

04 percentages of explanation of variance in GWR and STWR are similar, which are 68.8% and 76.3%, respectively. However,
05 like the experiment results with simulated data (Fig. 10), STWR has narrower initial bandwidth, which generates more

06 localization in the predicted 6°H surface than GWR. For instance, the lower (light yellow and blue parts) or higher (orange
07 parts) predicted values of °H are more concentrated in the 5°H surface of STWR than that of GWR (Fig. 12).

08
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6. Discussion and Conclusions

Spatiotemporal data analysis is important in many scientific studies. Due to the complexity of spatiotemporal models,
spatiotemporal effect may not be fully taken into account when the temporal and spatial information is manipulated
simultaneously. In particular, the models for the effect of spatial dynamics should not be simply adapted for modeling the
effect of temporal dynamics. Although the GTWR model can borrow points from the near recent, without careful
consideration of temporal effect, the performance of GTWR may even be worse than GWR. Increasingly, many scientific

issues are not just about spatial non-stationary but involve many spatiotemporal processes. It is necessary to review the
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limitation of the current spatiotemporal models and make new extensions. The aim of the STWR model developed in this
study is to advance the work and discussion in that direction.

With increasing combined applications of deep learning and neural network in geospatial non-stationary processes. We

first discuss the main differences between STWR and the recently proposed geographic neural network weighted regression

(GNNWR) (Du et al., 2020) and geographic and temporal neural network regression (GTNNWR) (Wu et al., 2020).

GNNWR is a new attempt to combine the OLS and GWR with Artificial neural networks (ANNs). GTNNWR is based on

the GNNWR with combing a new ANNs based method to calculate the spatiotemporal distance. Four main differences

between the GTNNWR/GNNWR and STWR are listed below:

(1) The basic formulation of GNNWR is defined as Equation 22 (Du et al., 2020), which is different from Equation 1

(Fotheringham et al., 2003). The w,(u;, v;)_and w; (u;, v;)_denote the geographical weight of the constant coefficient f,_

and coefficient f3;, respectively. It assumed that the multiplication of w, (u;, v;)_and f,_is equal to B, (u;, v;) (0 <p <

k). The combined f,,(w;, v;)_is thought as the same as the coefficients of GWR. But in STWR and GWR, the weights and

the estimated coefficients are separated. The weights mainly reflect the degree of the influences from the observed points to

the regression point, while the coefficient values reflect the relationships between the independent variable and dependent
variable.

Vi = wo(w, vi)Bo + Yoy Wi (Wi, v)Bixue + &0 = 1,2,...,n__(22)

(2) GTNNWR and GNNWR use the proposed ANNs based method (Equation 23) (Du et al., 2020) to calculate the

weighted matrix, which is quite different from the kernel functions used in GWR and STWR models. Although GTNNWR

and GNNWR use the idea of pointwise regression, they do not consider how to "borrow points" from nearby neighbors and

do not have the concept of bandwidth. Without spatial bandwidth, all observation points in the study area may have impacts

on the regression point, which might violate the Tobler's first law of geography (Tobler, 1970). It may be difficult to

understand the relationships between the influence weight and the spatial distances, especially when the study area and the

data amounts are large. STWR has spatial bandwidths and follows the Tobler's first law of geography, which can help

analyze the affected range of local regression points.
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Wy =W(u,v) = SWNN([diy, d, ... din 1) (23)

(3) The data points will be divided into training set (including validation set) and test set for the GTNNWR and

GNNWR, which might require more data points. Thus, it may not be appropriate for analyzing fewer amounts of data points

(data acquisitions of many geoscience processes are difficult and costly). STWR and GWR do not need to divide data points

into the training set (including validation set) and test set, which requires less data points than GNNWR and GTNNWR.

(4) Although GTNNWR utilizing a method named spatiotemporal proximity neural network (STPNN) (Wu et al., 2020)

to calculate the spatiotemporal distance, the obtained integrated spatiotemporal distance is lack of explanation, and it is also

impossible to tell apart which parts of the calculated weight is affected by time or space. Besides, there is no concept of

temporal bandwidth in GTNNWR. Thus, it cannot tell us how old the historical observation points that will have impacts on

the regression point. But STWR has temporal bandwidth, and it can distinguish the strength of temporal weight and spatial

weight. Therefore, we can analyze the characteristics of the local interaction of time and space according to the temporal

bandwidth, spatial bandwidth, and the adjustment parameter a, etc.

The temporal kernel and the spatiotemporal kernel functions are two important contributions of STWR. The temporal
kernel in STWR applies an improved sigmoid form (see Equation 4), which is different from the methods for temporal effect
analysis in previous GTWR models. The temporal weight generated by the STWR temporal kernel is limited as a value
between 0 and 1. The spatial weight in STWR is also limited as a value between 0 and 1. The STWR spatiotemporal kernel
function has a weight adjustment parameter « to scale the temporal and spatial weights (Equation 3). In practice, @ can be
obtained through optimization. This form of weighted average between temporal and spatial effects in the STWR
spatiotemporal kernel is a big improvement comparing with the multiplication form in previous GTWR models. The
advantage of the STWR spatiotemporal kernel has been proven in four case studies with both simulated and real-world

datasets.

Though the performance of STWR is outstanding, the models can still be further extended. A big topic is about the time
distance. In the current STWR, the time distance represents the rate of value variation between an observed point and a
regression point through a time interval. Nevertheless, we can also use time distance to represent the rate of value variation

at each observed point object through time. Note that, from an object-oriented perspective, here we differentiate the point
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94

objects from locations, although the point objects have geospatial coordinates as part of their attributes. Following that new
definition of time distance, the y;) — ¥; =) in the STWR temporal kernel (Equation 4) can be replaced by Ay;;_q)

(value variation of an observed point object during A4t). A scenario of interest is that, the observed point objects in the past

time stages (such as those shown in Fig. 1) may move to new locations, have no value for a few time stages, or even
disappear, so the Ayj,_q) may not exist. We can use object-based methods to address issues caused by that scenario. For
example, each point object can be assigned with a unique ID, and then the observed value of the point object at each time
stage can be retrieved by using its ID. With this new definition of time distance, the temporal weight on a regression point
object is determined by the rate of value variation of its nearby point objects. Several different scenarios for a regression
point object at current time stage t are discussed here.

(1) The location of an observed point object j is fixed through time (e.g., a fixed sensor). If the value of j is observed
at both time stages t and t — q, then Ay;,_q) can be calculated directly. If the value of j is observed at ¢ but not
observed at t — q, we can use interpolation to generate a value for j at t — q. If the value of j is not observed at t, but
the variation in the past is observed, we can use prediction methods to generate a value for j at t.

(2) The location of j is not fixed through time (i.e., j moves). The moving point objects can still have temporal
effects to the regression point, then the Ay;(,_q) can be calculated. The spatial effect, however, depends on whether j
moves out of the spatial bandwidth from the regression point or not.

(3) j disappears or appears at a certain time stage. If j does not appear until the current time stage t, the Ay;,_q can
be set to be 0. If j appears in a past time stage (e.g., t — q) but it disappears before or at t, we can ignore the impact of j
for the regression point object.

There are other possibilities for the further improvement of STWR. The first is about the optimization of 6 in the
spatiotemporal kernel (Equations 8 and 9). The slope € indicates that the variation of the spatial bandwidth is in a linear
form, but it may not be a perfect solution. In many situations, the change of the spatial bandwidth over time may not be
linear. The second is about making predications for future time stages. In this paper, we only predict values for points at the
current time stage t. Extensions can be made in STWR to predict values for points in future time stages beyond t. The third

future work is about exploring multiple spatial and temporal bandwidths of models. Different variables may have different
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spatial and temporal bandwidths due to their unique characteristics. Correspondingly, we may need more bandwidths to
capture the different non-stationarities of those independent variables, to better represent the spatiotemporal heterogeneity.

In short, the core contribution of STWR is the clarification of the ‘time distance” concept and the new temporal kernel
and spatiotemporal kernel functions based on this concept. Our experiments show that STWR outperforms GWR and GTWR
in analyzing and interpreting local spatiotemporal non-stationarity. We hope STWR can bring fresh ideas and new

capabilities for spatiotemporal data analysis in many disciplines.

Code and data availability

The Python source code of STWR v1.0, the data used in the experiments and all the case studies (written in Jupyter

Notebook) were archived on Zenodo and made freely accessible via http://doi.org/10.5281/zenodo.3637689, Data source of

water isotopes 62H is on the website;, http://wateriso.utah.edu/waterisotopes/pages/spatial db/SPATIAL DB.html. The data

of daily precipitation and mean temperature were collected from the PRISM Climate Group

(http://www.prism.oregonstate.edu), and the elevation data were collected from the GMTED2010

(https://topotools.cr.usgs.gov/gmted viewer/viewer.htm) at U.S. Geological Survey (USGS).
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