
Thank you for the detailed comments and suggestions. Please check below the point-by-point response to the main 
concerns listed in the referee report. 
 
Comment 1. The main innovation of STWR is using the rate of value variation of the nearby observed point 
during the time interval to represent the time distance. However, the value variation between the estimated 
point and the observed points is not only influenced by the time variation but also the difference of geographical 
locations. How to distinguish whether this effect is caused by time or space? Further, the value variation not 
only occurs during the time but also occurs across space. Why not also consider the value variation across space?  
 
Reply 1.  
1We can use 𝑦!(#) − 𝑦%(#&') to represent the value variation between the regression point and the observation point 
that have time difference of 𝛥𝑡 (	𝑞). Suppose that the variation contains two parts caused by time and space, and they 
are 𝑓#(Δ𝑦%(#&'))  and 𝑓((𝑦!(#) − 𝑦%(#))  respectively. 𝑓#(Δ𝑦%(#&'))  is not affected by spatial effects, because the 
location of point 𝑗 does not change during 𝛥𝑡. 𝑓((𝑦!(#) − 𝑦%(#)) is not affected by temporal effects, because	𝑦!(#) 
and 𝑦%(#) are observed at the same time. In theory, if we get the value 𝑦%(#), we may determine if the variation caused 
by time or space, because both 𝑓# and 𝑓( need the value 𝑦%(#). The 𝑦 value of the location 𝑗 at 𝑡 (i.e. 𝑦%(#)) is 
often unavailable or may not exist, we use the 𝑦!(#) − 𝑦%(#&')  to approximate Δ𝑦%(#&')  within the local 
spatiotemporal bandwidth when employing the 𝑘)  to calculate the temporal weights. (Please see relevant 
explanations in the reply 1 of the first reviewer). This may introduce some errors because of the different locations of 
𝑖 and 𝑗, but the errors are limited. Consequently, the value variation between the estimated point and the observed 
point in different times is mainly temporal effect, the spatial effect is limited and ignored here. 
2 The STWR algorithm is based on the assumptions and framework of the GWR model. When calculating the spatial 
weights, we use the same 𝑘( employed in GWR, whose spatial impacts is calculated by the spatial distance 𝑑(!% 
between 𝑖 and 𝑗. We introduce the value variation to better identify or capture the heterogeneities caused by the same 
time interval but different temporal effects, that is, the temporal heterogeneity of the rate of value change. The 
heterogeneities of this part were not considered in the previous GTWR. As for the calculation of spatial weights, the 
main reason that we did not consider the value variation across space is to be consistent with the GWR model, i.e. 
following the assumption that as long as the spatial distances between observation points to the regression point are 
equal, their spatial weights are the same. There may be other factors, such as anisotropy or value variation across 
space, that may have some additional spatial impacts on the regression point. The reasons we follow GWR’s 
assumptions are: (a) In the optimization procedure, the model will adaptively adjust its spatial bandwidth according 
to the density of sampling points, and to the value variations in the space. If the value variations across the space are 
small, the adaptive spatial bandwidth will be large. It means that the optimization procedure already uses the 
information about value variation across the space. (b) If the variation 𝑦!(#) − 𝑦%(#) was used to build a new spatial 
distance, which will violate the aforementioned assumption of GWR, the prediction and calibration process should be 
changed. Because 𝑦!(#) value that is required in the calculation of the new distance does not exist in prediction, spatial 
weights from surrounding observed points should be estimated by interpolation or other methods (just like the 
interpolation of temporal weights) that may bring other uncertainties or errors. Evaluating and comparing these 
uncertainties is not the scope of this paper in our plan. (c) If the |𝑦!(#) − 𝑦%(#)|/𝑑(!% was used as a new spatial distance 
for calculating the spatial weights, we have to deal with the special case when 𝑦!(#) equal to 𝑦%(#), because the spatial 
kernels (such as bi-square and Gaussian) are different form the temporal kernel of STWR. In other words, if 𝑦%(#&') 



is close or equal to 𝑦!(#) when employing our temporal kernel 𝑘), the output temporal weight is close or equal to 0. 
The underly meaning is explainable, because when the value variation gets close or equal to 0, the influence from 
observed point to the regression point gets weak or disappear. If 𝑦!(#) is close or equal to 𝑦%(#) when employing the 
bi-square or Gaussian kernel, the meaning may be difficult to understand, because when the new spatial distance 
|𝑦!(#) − 𝑦%(#)|/𝑑(!% is close to 0, the output spatial weights will be large, which is inconsistent with the fact that the 
weaker influences it should have when the smaller value variation across space. Besides, the bi-square or Gaussian 
kernel have no solutions when 𝑦!(#)  is equal to 𝑦%(#) . If the numerator and denominator are swapped (i.e. 
𝑑(!%/|𝑦!(#) − 𝑦%(#)| ), the 𝑦!(#) can not be equal to 𝑦%(#), while it is normal that 𝑦%(#) may be equal to 𝑦!(#). Therefore, 
if we consider combing the 𝑦!(#) − 𝑦%(#) with 𝑑(!% to build a new spatial distance, we may probably need to design 
a new appropriate spatial kernel, which requires more difficult theoretical knowledge on describing the local spatial 
effects. 
 
 
Comment 2. The authors indicate that the current GTWR model directly calculates the integrated 
spatiotemporal weights by using a multiplication of the spatial and temporal weights, which may cause 
underestimation of weights. This is easily misunderstood. The GTWR model also uses a scale parameter to 
handle the difference between time and space, which is the same as the proposed STWR model. Please correct 
or give more explanation.  
 
Reply 2. The composite spatiotemporal weights might be underestimated in the current GTWR models by using the 
multiplication kernel. Because both outputs of the spatial kernel and the temporal kernel range from 0 to 1, and the 
multiplied value is never bigger than the smaller one of the spatial and temporal kernels, which means that the 
composite spatiotemporal impacts are never greater than the single spatial impacts and the single temporal impacts. 
However, the real combined spatiotemporal impacts, may be higher than the single spatial impacts or the temporal 
impacts, or at least may be higher than the smaller ones. Moreover, multiplication makes the weight decay faster. The 

role of the adjustable parameter a used in STWR is different from the scale parameter 𝜏 ( 𝜏 = *
+
 ) in GTWR. The 

parameter a is used for adjusting the outputs of the spatial kernel 𝑘( and the temporal kernel 𝑘), which means 
measuring the relative strength of the spatial and temporal impacts on the regression point. However, the scale 
parameter 𝜏 is used for linearly adjusting the inconsistency of the distance between time and space, because of the 
differences of their units, scales, or metrics, etc. Specifically, GTWR uses parameters 𝑢 and 𝑣 to generate the 
spatiotemporal distance 𝑑!%,) (given in the following Equation 1). And then substituting the 𝑑!%,) into the spatial 
kernel (Gaussian), its composited weights were obtained (Equation 2, we use 𝑤 to replace the α in the original 
formulation, which is easier to understand in symbol). This equation, after transformation, is equal to the multiplication 
form of two Gaussian kernels (i.e. the spatial kernel and temporal kernel). Therefore, the scale parameter 𝜏 in GTWR 
only adjusts the differences between time distances and space distances, which does not change the multiplication 
form of the spatiotemporal kernel. In contrast, the parameter a in STWR (Equation 3) is used to adjust the effects 
of the two kernels 𝑘(  and 𝑘) , and the adjusted composite spatiotemporal weight 𝑤!%,)#  may be larger than the 
smaller one of the output values of 𝑘((𝑑(!% , 𝑏,)) and 𝑘)(𝑑#!% , 𝑏)). 
 

𝒅𝒊𝒋𝑺𝑻 	= 	𝝀[(𝒖𝒊 	− 𝒖𝒋	)𝟐 +	(𝒗𝒊 	− 𝒗𝒋	)𝟐] + 	𝝁(𝒕𝒊 − 𝒕𝒋)𝟐   (1) 
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𝒘𝒊𝒋𝑺𝑻
𝒕 = (𝟏 − 𝜶)𝒌𝒔(𝒅𝒔𝒊𝒋, 𝒃𝑺𝑻) + 𝜶𝒌𝑻(𝒅𝒕𝒊𝒋, 𝒃𝑻), 𝟎 ≤ 𝜶 ≤ 𝟏 （3） 

 We give more explanation in the revised manuscript, please see lines 99-105 (Page 4,5) and lines 174-179 
(Page 8).  
 
Comment 3. As new platforms and instruments have brought increasingly massive spatiotemporal data, 
deep learning and neural networks have also been integrated with geostatistical models to handle spatial 
and temporal non-stationary relationships, such as geographically neural network regression (GNNWR), 
geographically and temporally neural network regression (GTNNWR). These neural network-based 
models can even capture the complex non-linearity in the non-stationary relationship. Some discussion or 
comparison between STWR with these models should be added. 
 
Reply 3. With many successful applications of deep learning and neural network in many fields, its combinations with 
the traditional geospatial tools is becoming a promising research topic. Geographic neural network weighted 
regression (GNNWR) (Du et al., 2020) is a new attempt to combine the OLS and GWR with Artificial neural networks 
(ANNs). Geographic and temporal neural network regression (GTNNWR) (Wu et al., 2020) is based on the GNNWR 
with combing a new ANNs based method to calculate the spatiotemporal distance. Our STWR algorithm is based on 
the GWR with a new temporal distance and spatiotemporal kernel. There are four main differences between the 
GTNNWR/GNNWR and STWR: 1 The basic formulation of GNNWR is defined as Equation (4). The 𝑤4(𝑢! , 𝑣!) 
and 𝑤5(𝑢! , 𝑣!) denote the geographical weight of the constant coefficient 𝛽4 and coefficient 𝛽5, respectively. It 
assumed that the multiplication of 𝑤6(𝑢! , 𝑣!) and 𝛽6 is equal to 𝛽6(𝑢! , 𝑣!) (0 ≤ 𝑝 ≤ 	𝑘). The combined 𝛽6(𝑢! , 𝑣!) 
is thought as the same as the coefficients of GWR. But in STWR and GWR, the weights and the estimated coefficients 
are separated. The weights mainly reflect the degree of the influences from the observed points to the regression point, 
while the coefficient values reflect the relationships between the independent variable and dependent variable. 2 
GTNNWR and GNNWR use the proposed ANNs based method (Equation 5) to calculate the weighted matrix, which 



is quite different from the kernel functions used in GWR and STWR models. Although GTNNWR and GNNWR use 
the idea of pointwise regression, they do not consider how to "borrow points" from nearby neighbors and do not have 
the concept of bandwidth. Without spatial bandwidth, all observation points in the study area may have impacts on 
the regression point, which might violate the Tobler's first law of geography (Tobler, 1970). It may be difficult to 
understand the relationships between the influence weight and the spatial distances, especially when the study area 
and the data amounts are large. STWR has spatial bandwidths and follows the Tobler's first law of geography, which 
can help analyze the affected range of local regression points. 3 The data points will be divided into training set 
(including validation set) and test set for the GTNNWR and GNNWR, which might require more data points. Thus, it 
may not be appropriate for analyzing fewer amounts of data points (data acquisitions of many geoscience processes 
are difficult and costly). STWR and GWR do not need to divide data points into the training set (including validation 
set) and test set, which requires less data points than GNNWR and GTNNWR. 4 Although GTNNWR utilizing a 
method named spatiotemporal proximity neural network (STPNN) to calculate the spatiotemporal distance, the 
obtained integrated spatiotemporal distance is lack of explanation, and it is also impossible to tell apart which parts of 
the calculated weight is affected by time or space. Besides, there is no concept of temporal bandwidth in GTNNWR. 
Thus, it cannot tell us how old the historical observation points that will have impacts on the regression point. But 
STWR has temporal bandwidth, and it can distinguish the strength of temporal weight and spatial weight. Therefore, 
we can analyze the characteristics of the local interaction of time and space according to the temporal bandwidth, 
spatial bandwidth, and the adjustment parameter α, etc. 
 

𝒚𝒊 = 𝒘𝟎(𝒖𝒊, 𝒗𝒊)𝜷𝟎 +∑ 𝒘𝒌(𝒖𝒊, 𝒗𝒊)𝜷𝒌𝒙𝒊𝒌
𝒑
𝒌:𝟏 + 𝜺𝒊	, 𝒊 = 𝟏, 𝟐, . . . , 𝒏   (4) 

 
𝑾𝒊 = 𝑾(𝒖𝒊, 𝒗𝒊) 	= 	𝑺𝑾𝑵𝑵([𝒅𝒊𝟏𝒔 , 𝒅𝒊𝟐𝒔 , . . . , 𝒅𝒊𝒏𝒔 	]𝑻)     (5) 

 
Our STWR algorithm, especially the new concept of the time distance, may also be integrated with the machine 
learning methods, which is our future work. 
 
We add the discussions on the differences between STWR and GTNNWR/GNNWR to the Section 6, please see lines 
489-523 (Page 28,29) 
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Thanks again for your comments. 


