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Abstract. A new diagram is proposed for the verification of vector quantities generated by multiple models against a set

of observations. It has been designed with the idea of extending the Taylor diagram to two dimensional quantities such as

currents, wind, or horizontal fluxes of water vapour, salinity, energy and other geophysical variables. The diagram is based on

the analysis of the two-dimensional structure of the mean squared error matrix between model and observations. This matrix is

separated in a part corresponding to the bias and the relative rotation of the empirical orthogonal functions of the data. We test5

the performance of this new diagram to identify the differences amongst the reference dataset and the different model outputs

by using examples with wind, current, vertically integrated moisture transport and wave energy flux time series. An alternative

setup is shown in the last examples, where the spatial average of surface wind in the Northern and Southern Hemispheres

according to different reanalyses and realizations of CMIP5 models are compared. The examples of use of the Sailor diagram

presented show that it is a tool which helps in identifying errors due to the bias or the orientation of the simulated vector10

time series or fields. The R implementation of the diagram presented together with this paper allows also to easily retrieve the

individual diagnostics of the different components of the mean squared error.
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1 Introduction

It has long ago been recognized that visual tools allow an easy analysis of different properties of datasets, and this appre-15

ciation is at the root of simple and effective visualizations for exploratory data analysis such as the well-known Hovmöller

diagram (Hovmöller, 1949) and the Box Plot (McGill et al., 1978). A visual tool for presenting temperature anomalies has

also been recently recognized as a very effective way of presenting information regarding the evolution of climate to general

audiences (Hawkins et al., 2019). Visual tools are very helpful in the scientific inquiry, see, for instance Peircean diagram-

matic thinking (Dörfler, 2005). Furthermore, the visualization via diagrammatic representations does not constitute only a way20

of interpretation. Peircean theory of signs and other studies on scientific creative thinking show that diagrams, together with

analogy or extreme thinking, also constitute a way of reasoning and knowledge generation (Dörfler, 2005; Ulazia, 2016).

Visual representation of data allows a fast and intuitive interpretation of many of their characteristics. This has led to the

development of many special types of diagrams, particularly in the field of model verification. These diagrams present different

measures of forecast quality as in the case of the well known Relative Operating Characteristic curve (Wilks, 2006) or a25

combination of Success Ratio and Probability of Detection (Roebber, 2009) to name a few.

Boer and Lambert (2001) designed a diagram based on second-order space-time differences between model simulations and

observations as a tool to diagnose the performance of climate models. Their diagram was based on simple quantities such as

mean square differences, variances and Pearson’s correlation coefficient between observations and model runs. They used the

analytical relationship between the standard deviation of the datasets, their common correlation coefficient and the squared30

difference between the datasets. They also showed that the diagram could be used for the evaluation of model ensembles.

Following a similar reasoning, Taylor (2001) presented a diagram which has become a well known and popular tool for the

evaluation of model simulations against observed data (in general, a reference dataset). In the so-called Taylor diagram, the

horizontal axis represents the standard deviation of the reference dataset, the radial distance represents the standard deviation

ratio of the forecast against the reference and the angular distance from the X axis is related to the correlation coefficient35

between the reference dataset (also referred to as observations) and every model run. The distance from the point assigned

to a model in the diagram to the point representing the reference dataset is related to the centered root mean squared error.

In the Taylor diagram, every model tested is represented by a point in the diagram and visual inspection allows to easily

determine which points are closer (i.e. present lower error) to observations. This approach works for any number of models

and, therefore, comparing models using the Taylor diagram is in general faster and easier than using an equivalent table listing40

the different error measures. This explains the success of the diagram, as shown by the fact that the paper describing it has

been cited more than 2300 times at the time of writing this contribution. This diagram is a tool that helps in the fast diagnose

of the relative merits of the models. Aspects such as under or overestimated variance, incorrect phasing of the seasonal cycle

and many others are reflected in the relative position of the points characterizing a model in the diagram. The diagram is

flexible enough so that it can be extended to ensembles of models. More specific developments such as incorporating bootstrap45

techniques for the estimation of confidence intervals can be easily done (González-Rojí et al., 2018; Ulazia et al., 2017) and

stress the idea of flexibility associated to the Taylor diagram. Finally, since observational data also suffer from errors, an
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estimation of the relevance of these observational errors in different observational datasets can also be achieved by cheking

alternative observational datasets against the same reference dataset as if they were models too (Fernández et al., 2007). Thus,

the dispersion amongst observational datasets yields an estimate of the uncertainty of the observations.50

Pearson’s correlation coefficient between two scalars plays a fundamental role in the design of Taylor’s diagram, and this

imposes a limit to our ability to extend Taylor’s diagram to vector quantities, since there does not exist a single universally

accepted definition of the correlation coefficient in two dimensions.

Jupp and Mardia (1980) recognized that any multivariate definition of a correlation coefficient equivalent to Pearson’s one

must be invariant to rotation, be close to zero for independent datasets, smaller or equal than a constant and equal to the constant55

only if the datasets are related to each other by means of a function. Since they based their definition on these properties, they

found that the sum of the squared canonical correlations was a potential definition of the squared correlation coefficient that met

the previous requisites. In a previous paper, Cramer (1974) had already defined the two-dimensional correlation coefficient by

means of the product of the canonical correlations. In this case, a low canonical correlation yields a low correlation coefficient

because of the use of the product.60

Stephens (1979) defined two versions of correlation between vectors by means of functions which satisfy the requirement

that two vector sets which are perfectly correlated can be related by means of an orthogonal transformations. The vectors in

this case are assumed to share a common center and to be unit vectors, so that this measure cannot be used to identify biases

between datasets or different standard deviations. In any case, the author correctly asserted that invariance to rotation does not

lead to a unique definition of correlation coefficient for multivariate datasets.65

Robert et al. (1985) presented an interesting review of different alternatives to compute the correlation coefficient for vector

quantities. They recognized that two approaches to the problem exist. The first one is based on the use of canonical correlations

between multivariate datasets. The definitions of a two-dimensional correlation coefficient for vector datasets in the second

approach are based on functions which satisfy some desirable properties, such as, for instance, the invariance of the correlation

to the rotation of the original datasets, the existence of a limit constant for linearly related vectors, as earlier suggested by Jupp70

and Mardia (1980).

Despite these many previous studies, it is a fact that up to day, several alternative versions of correlation coefficients between

vectors exist. The fact that the definition of a two-dimensional correlation coefficient must satisfy the properties mentioned

before was also followed by Crosby et al. (1993), who presented an in-depth review of previous definitions in oceanography

and meteorology such as Kundu (1976) and different possible definitions of the correlation coefficient. Amongst them, they75

proposed a definition similar to the one used by Jupp and Mardia (1980). This definition was later applied to real marine and

atmospheric data sets by Breaker et al. (1994) and Cosoli et al. (2008), for instance.

As shown before, there is not a universally accepted way of defining two-dimensional correlation coefficient. Thus, the

structure of the Taylor diagram cannot be directly extended to two dimensions following the same derivation used by Taylor

(2001) in his original paper.80

However, a diagram similar to the one by Taylor (2001) would be an interesting addition to the set of verification tools

available for modellers when comparing vectorial quantities of model output with observations. For instance, Lee et al. (2013)
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presented a comparison of CMIP3, CMIP5, reanalysis and satellite based estimations of wind stress and they used the mean of

the Taylor diagrams for the zonal and meridional components of the wind stress as a way to apply Taylor diagrams for vector

quantities. A different strategy is followed, for instance, in Jiménez et al. (2010). In this case, the behaviour of several models85

for the zonal and meridional components is not the same in terms of the identification of the model rankings. The best model

for the zonal component in terms of its Taylor diagram is not the best one for the meridional component (see their Figure 6).

This is a typical problem which arises when using the Taylor diagram with vector data, as also shown in a study about currents

measured by means of an HF-Radar (Lorente et al., 2015). It also appears in the evaluation of global climate models (Martin

et al., 2011) using zonal and meridional components of wind speed. This result was also noticed in an analysis of moisture90

fluxes (Ibarra-Berastegi et al., 2011). A last example appears when wind stress components are analyzed (Chaudhuri et al.,

2013), to name a few. A different alternative which allows the use of the Taylor diagram for verification of wind estimations

against observations is to use it as a tool to verify the magnitude of the wind (Ulazia et al., 2016, 2017; Rabanal et al., 2019).

However, even in this case, the results are limited, since the information regarding errors in the direction of the vectors is lost.

In a recent paper, Xu et al. (2016) proposed a new method to overcome the defficiencies of the Taylor diagram for vector95

datasets and produced a new type of diagram visually equal to the original Taylor diagram, but which can be used for vector

quantities. It is constructed on the basis of pattern similarities of vector observations and model runs and they call it Vector

Field Evaluation (VFE) diagram, constructed from both components of the vectors which appear in the vector datasets that are

used for the verification. In order to arrive to the same structure of the Taylor diagram commonly used for scalar variables, the

authors apply some approximations and normalizations to the original two-dimensional vector observations, thus leading to100

approximate estimations of errors.

However, in the original paper by Crosby et al. (1993), the authors show (their Figure 3) that two dimensional fields showing

a perfect correlation according to their definition do not have to be simple two-dimensional counterparts of what we expect in

the one-dimensional case. Thus, we have decided to follow a new approximation which does not lead to the common Taylor

diagram used for scalars, but gives more information about the structure of the two-dimensional errors between vector quantities105

involved in the verification of a vector quantity derived from a model with its observational counterpart (reference dataset).

This is the rationale which leads us to base our definition in a full use of the two-dimensional structure of the mean squared

error (MSE) between both vectorial datasets. This does not allow us to reduce our diagram to the well-known Taylor diagram

used for scalars, as the one produced by Xu et al. (2016). However, we hope that our diagram will be considered a valuable

contribution to the set of techniques used for the evaluation of models, as it is exact (no approximations are needed) and it fully110

visually explores other properties of the error between the vector datasets, such as the relative rotation of the major axes of

variability or the underestimation (or overestimation) along each principal axis of the covariance matrix. It is the authors’ need

to find a solution to problems found in the past when using the Taylor diagram for vector quantities that inspired this proposal.

We propose the name Sailor diagram as a joke due to the fact that it is a diagram which can be used for winds and currents

(properties of geophysical fluid dynamics that sailors need to know about) and because this name is very similar to the original115

Taylor diagram. Thus, it can be derived from the original Taylor just by changing two letters in the word (two letters equal the

number of dimensions used in the diagram) following the idea behind Lewis Carroll’s games with words.
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Section 2 presents the datasets that we have used as examples of application of our Sailor diagram. Section 3 explains

the methodology that we follow to build the two-dimensional diagram. Results are included in Section 4, followed by some

concluding remarks in Section 5.120

2 Data

In order to show that the diagram that we propose is of general interest and can be applied in different studies involving

vector magnitudes, we have selected some examples ranging from evident variabless (wind or ocean currents) to additional

postprocessed quantities such as vertically integrated moisture transports or wave energy fluxes.

2.1 Wind data125

The offshore wind data validation used as our first example of a Sailor diagram has been conducted from 01/01/2009 to

01/01/2015 using wind data (zonal and meridional components) from five sources (Ulazia et al., 2017):

1. A Weather Research and Forecasting Model (WRF) simulation around the Iberian Peninsula without data assimilation

(experiment N).

2. A WRF simulation in the same area using 6-hourly 3DVAR data assimilation (experiment D). These WRF N and D130

simulations are thoroughly described and compared with observations in the previous article about the wind energy

potential on the West Mediterranean by some of the authors (Ulazia et al., 2017).

3. The ERA-Interim reanalysis (ERAI henceforth). ERAI data (Dee et al., 2011) were downloaded from the European

Centre for Medium-Range Weather Forecasts (ECMWF) with 0.75◦ spatial and six hourly temporal resolutions. These

data were also used to nest the two N and D WRF runs.135

4. Wind analysis data from the second version of Cross-Calibrated Multi-Platform (CCMPv2). CCMPv2 processing com-

bines via variational methods radiometer data, QuikSCAT and ASCAT scatterometer wind fields, moored buoy wind

data, and reanalysis wind fields, to produce 6-hourly maps at a 0.25 degree grid (Hoffman et al., 2003; Atlas et al.,

2011). In this paper, CCMPv2 fully assimilated Level 3 wind fields are used.

5. The previous four sources will be validated against in-situ observations provided by the buoy in Dragonera, near the140

Balearic Islands. This buoy records wind speed at a height of three meters above the sea level and other data related

to the sea-state, and is operated by the Spanish State Ports Authority (Puertos del Estado) (P.P.E., 2015). This buoy is

located at longitude 2.10◦ E, latitude 39.56◦ N and the distance from this location to the closest gridpoint of both WRF

runs (D and N) is 8.9 km. It is located 24.7 km far away from the closest ERA Interim point.
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2.2 Ocean currents145

Three different data sources of ocean surface horizontal vectorial currents are also compared within the framework of the

proposed methodology. They cover the Bay of Biscay area and include in-situ observations from a deep-water buoy, remotely

sensed surface HF-Radar currents and an ocean modelling product. Observational products, both in-situ buoy (named DONOS-

TIA buoy) and remotely sensed radar currents, belong to the Basque Meteorological Agency (EUSKALMET) and were ob-

tained from https://www.euskoos.eus. These data follow Copernicus data standards and include data quality information. Both150

observational platforms provide hourly data that is punctual in the case of the buoy (approx. location 43.6º N and 2.0º W). In

the case of the HF Radar dataset, it consists of a gridded dataset which covers the corner of the Bay of Biscay (approx. location

43.5-44.7º N and 3.2-1.3º W) with 5 km spatial resolution. Technical details about these observational systems and the valida-

tion of the data can be found in additional references (Rubio et al., 2011, 2013; Solabarrieta et al., 2014). The ocean modelling

product used in this example is the global analysis and forecast product of the Copernicus Marine Environment Monitoring155

Service (CMEMS), available through their data portal (identifier GLOBAL_ANALYSIS_FORECAST_PHY_001_024). This

is a realization of the high resolution global analysis and forecasting system PSY4V3R1 that uses version 3.1 of the NEMO

ocean model (Madec and the NEMO team, 2008; Lellouche et al., 2018). Zonal and meridional components of the surface

level hourly mean currents (0.083◦ spatial resolution) of this product were extracted for the Bay of Biscay area (43◦− 45◦ N

and 5◦− 1◦ W).160

The processing chain of current data involved:

1. Filtering buoy observations using data-quality indicators and identifying latitude and longitude of buoy observations.

2. Determining the closest spatial grid-point in HF-Radar and model spatial grids using the geolocation information.

3. Extraction of the corresponding current information whenever it is concurrently available in all three data sources.

The result of this processing is a set of six hourly variables (u buoy,v buoy,u radar,v radar,u model,v model) that covers parts165

of years 2017 and 2018, with as many as 8319 hourly observations (47.5 % of total).

2.3 Vertically integrated water vapour transports

The vertically integrated water vapour transport is a vectorial variable that represents the overall transport of water vapour when

this quantity is integrated accross the whole vertical dimension of the atmosphere. It must be calculated once the moisture and

both components of the wind are determined at different vertical levels of the atmosphere. In order to test the performance170

of the methodology presented in this article, both components of the vertically integrated moisture flux have been calculated

or downloaded from different sources. The sounding data for A Coruña (Station ID 08001, longitude −8.41◦ E and latitude

43.36◦ N) were downloaded from the server at the University of Wyoming with a temporal resolution of 12 hours for the period

2010-2014. Both components of moisture transport were calculated from radiosonde data taking into account the pressure,

temperature and mixing ratio measured at those locations. The components were obtained after the calculation of the vertical175
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integration of wind and specific humidity measured at several pressure levels. In this case, the specific humidity was obtained

from the reported mixing ratio in the soundings using the R package aiRthermo (Sáenz et al., 2019).

Both components of vertically integrated moisture transport from the ERA-Interim (ERAI) were downloaded by means of

the Meteorological Archival and Retrieval System (MARS) repository at ECMWF with a spatial resolution of 0.75◦, while

vertically integrated in the original vertical levels of the ECMWF model. Then, the nearest point to A Coruña was taken from180

the ERA-Interim grid.

Both moisture transport components were also calculated using the moisture and wind data from two simulations created

with the WRF model over the Iberian Peninsula at a spatial resolution of 15 km with 51 vertical η levels up to 20 hPa. One

of them (WRF D experiment) includes the 6-hourly 3DVAR data assimilation (experiment D described before). The second

one (WRF N) has been run without data assimilation (experiment N). The analysis of the moisture balance over the Iberian185

Peninsula simulated by those experiments has been already carried out in González-Rojí et al. (2018). The components of the

moisture transport were calculated by means of the vertical integration of the specific humidity and the zonal and meridional

winds over the original 51 η levels of the WRF model. The nearest neighbour point in WRF’s grid was compared with the

sounding data.

2.4 Wave energy fluxes190

Wave energy flux (WEF) represents -in general terms- the hydraulic energy held by waves. The wave energy flux is a vectorial

magnitude with a direction corresponding to that of the incident waves at a given location. Having accurate estimations of WEF

is a key aspect for the development of wave energy converters (WEC), intended to transform WEF into electric power. WEF is

stated in kW per metre of wave front and its values are typically provided at reanalyses or buoy data repositories as a magnitude

plus a direction. In spite of being an oceanic variable, atmospheric notation is usually employed and the direction given usually195

corresponds to the direction waves come from. Some papers by the authors have focused on developing short-term forecasting

models using different techniques, like ERAI physics-based forecasts, linear regression or random forests (Ibarra-Berastegi

et al., 2015, 2016). From the data presented in those papers, the results corresponding to the buoy placed at Estaca de Bares

(−7.67◦ E and 44.12◦ N) are used as an application example of the diagram proposed in this paper.

2.5 Verification of spatial vector fields200

An important application of the Taylor diagram is the verification of climate models and, as such, it is often used to verify

the spatial structure of climate model outputs. In order to show that the diagram proposed in this paper can also be applied

in this case, some reanalyses datasets are compared. The original NCEP/NCAR first generation reanalysis (Kalnay et al.,

1996) is compared to more modern reanalyses such as MERRA2 (Gelaro et al., 2017), CFSv2 (Saha et al., 2014), ERAI

and ERA5 (Hersbach et al., 2018). In all those cases, we have analyzed the January average of the monthly values covering205

a common period (2011-2018), regridded by means of bilinear interpolation to the grid corresponding to the NCEP/NCAR

reanalysis case (2.5◦× 2.5◦).
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Finally, in terms of the application of the diagram to a typical case in the analysis of climate models, we use time-averaged

wind speed over the Southern Hemisphere. This case example uses the time average of surface wind obtained from ERA5

covering the period 1979-2015 over the Southern Hemisphere as the reference dataset. In order to check the behaviour of the210

diagram when analyzing ensembles of multimodels, we have also downloaded surface wind fields from the CMIP5 repository,

historical forcing experiment. The first model ensemble (four realizations) is the IPSL model, developed at the Institute Pierre-

Simon Laplace (Dufresne et al., 2013), whilst the second one (three realizations) is the MIROC model (Watanabe et al., 2010).

All the models and ERA5 reanalysis gridded fields have been bilinearly interpolated to a common 1.25◦×1◦ regular longitude-

latitude grid. CMIP data also cover the period 1979-2015.215

3 Methodology

In this section, we present the derivation of the 2× 2 squared-error matrix that is on the basis of the definition of the diagram

that is proposed later. The two dimensional squared error matrix is decomposed in the Empirical Orthogonal Functions (EOFs)

corresponding to the observations and model results. Thus, these decompositions will be presented using the same notation so

that the theoretical basis of the diagram is completely described and the paper is self-contained. Subsection 3.1 describes the220

decomposition of the matrix U corresponding to the reference dataset (observations) in its EOFs. Subsection 3.2 represents

the decomposition of the matrix V corresponding to one of the models which are being compared to observations. Later, the

expansion of the V matrix corresponding to the model is expressed as a rotation from the the EOFs derived from observations

(Subsection 3.3).

3.1 Decomposition of U in its EOFs225

We consider a time series or spatial field of a two-dimensional vectorial variable such as horizontal wind, vertically integrated

moisture transport or horizontal currents, for instance. It has been measured at an observatory or buoy (time series) or it is a

time-average over a grid (the case of the evaluation of climate models). By now, we will consider that we are evaluating a time-

series of N samples, but later we will present results where the N represents the number of grid points where a time-averaged

field is defined. The observational dataset is formed by the two-dimensional measurements ui, with i= 1 . . .N arranged as230

rows in an N × 2 matrix U. The average ū of the ui time series will be repeated as constant rows in an N × 2 matrix Ū. The

U matrix can be expressed by means of the empirical orthogonal functions of the original vector data by using the expression

U = Ū + P∗uΣuET
u = Ū + PuET

u , (1)

with P∗u (an N × 2 matrix) the standardized principal components of the U data, Σu (2× 2 matrix) the standard deviations

(σ1u and σ2u) of the leading and second EOFs of the U field, Eu (2× 2 matrix) the matrix holding the orthogonal rotation-235

matrix leading to the empirical orthogonal functions of the U field arranged as columns and Pu = P∗uΣu (N × 2 matrix) the

variance-holding principal components. Thus, the anomalies of wind are computed as

U− Ū = P∗uΣuET
u = PuET

u (2)
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and the corresponding principal components

Pu = P∗uΣu =
(
U− Ū

)
Eu. (3)240

Unless the wind (current) time series is completely arranged across a straight line (something which is very unlikely in observed

vector variables), Σu is a full-rank diagonal matrix:

Σu =


 σ1u 0

0 σ2u


 . (4)

Due to the fact that the rotation matrix is always full rank (in a two-dimensional space, given enough samples), the Eu matrix

can also be interpreted geometrically as a rotation matrix expressed as a function of the angle θu formed by the leading (second)245

EOF with the zonal (meridional) axis as:

Eu =


 cosθu −sinθu

sinθu cosθu


 . (5)

The principal components and EOF rotation matrices fulfill the well-known orthogonality properties

PuPT
u = Σ2

u, (6)

250

P∗uP∗Tu = 1 (7)

and

EuET
u = ET

u Eu = 1. (8)

3.2 Decomposition of V in its EOFs

Following the previous notation, we also consider a time series (or time-averaged constant field over N points in a grid) of255

simulated wind (current, wave energy flux...) at the same observatory (or the closest grid point) formed by the two-dimensional

measurements vi, with i= 1 . . .N arranged as rows in an N × 2 matrix V. As in Subsection 3.1, its average v̄ is arranged as

constant rows in an N × 2 matrix V̄. The V matrix can be expressed as already shown in subsection 3.1 for observations by

means of the empirical orthogonal functions of the simulated wind data

V = V̄ + P∗vΣvET
v = V̄ + PvET

v , (9)260

with equivalent interpretations and equal ranks as before for P∗v , Σv , Ev and Pv = P∗vΣv . Similarly, the corresponding anoma-

lies can be computed as

V− V̄ = P∗vΣvET
v = PvET

v (10)
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and the corresponding principal components

Pv = P∗vΣv =
(
V− V̄

)
Ev. (11)265

Again, Σv is a full-rank diagonal matrix for non-degenerate cases (any realistic geophysical vector quantity with enough

sampling):

Σv =


 σ1v 0

0 σ2v


 . (12)

The Ev matrix can also be interpreted as a rotation matrix given by the angle θv formed by the leading EOF with the zonal axis

as:270

Ev =


 cosθv −sinθv

sinθv cosθv


 . (13)

Finally, the same orthogonality properties as before also hold

PvPT
v = Σ2

v, (14)

P∗vP∗Tv = 1 (15)275

and

EvET
v = ET

v Ev = 1. (16)

Up to this point, we are just repeating the results for the matrix V from the ones used in section 3.1 for completeness.

3.3 Expansion of the matrix V in the EOFs defined by observations

However, since in general the EOFs derived from observations (U) and simulations (V) will not be the same, the orthonormal280

EOFs in the Ev matrix can be expressed as the result of a rotation applied to the EOFs derived from the observations (accepting

these as true EOFs). Thus, the rotation matrix Rvu is defined by an angle θvu = θv − θu as

Rvu =


 cosθvu −sinθvu

sinθvu cosθvu


 , (17)

so that

Ev = RvuEu, (18)285

V = V̄ + PvET
u RT

vu (19)
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and the corresponding principal components can be expanded as

Pv =
(
V− V̄

)
RvuEu = ṼEu, (20)

with Ṽ =
(
V− V̄

)
Rvu representing the model-based V anomalies rotated to the basis given by the EOFs corresponding to290

observations.

3.4 Expansion of the mean-squared error

The (2× 2) matrix that represents the mean squared error between the U and V datasets is given by

∆2
uv =

1
N

(V−U)T (V−U) (21)

and the aggregated scalar mean squared error of both components of the vector dataset is given by its Frobenius norm295

ε2 = ||∆2
uv||F . (22)

Substituting Eq. (1) and Eq. (9) into Eq. (21), it can be shown that

∆2
uv =

1
N

B2
uv +

1
N

(
ST

uv + Suv

)
+

1
N

Duv =
1
N

B2
uv +

1
N

Cuv +
1
N

Duv (23)

with

B2
uv =

(
V̄− Ū

)T (
V̄− Ū

)
, (24)300

Suv =
(
EvΣvP∗Tv −EuΣuP∗Tu

)(
V̄− Ū

)
=
(
EvPT

v −EuPT
u

)(
V̄− Ū

)
(25)

and

Duv = EuΣ2
uET

u + EvΣ2
vET

v −
(
EuΣuP∗Tu P∗vΣvET

v + EvΣvP∗Tv P∗uΣuET
u

)
(26)

which can also be written using non-standardized Pu and Pv principal components as305

Duv = EuΣ2
uET

u + EvΣ2
vET

v −
(
EuPT

u PvET
v + EvPT

v PuET
u

)
. (27)

B2
uv represents the part of the squared error due to the magnitude of the bias vector (difference of both means) between both

vector datasets.

The (symmetric) matrix Cuv = ST
uv + Suv reflects the error due to the projection of the bias into the differences of vector

anomalies. Since the bias matrices are constant, the sum of the projections become the sum of anomalies and, as such, they310
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become zero. This interpretation is clear if Eq. (2) and Eq. (10) are substituted into the definition of the matrix Suv in Eq. (25),

yielding

Suv =
((

V− V̄
)
−
(
U− Ū

))T (
V̄− Ū

)
= (V−U)T (V̄− Ū

)
−
(
V̄− Ū

)T (
V̄− Ū

)
= 0. (28)

Since this matrix is zero, Cuv will also be zero.

Finally, the matrix Duv is related to the covariance matrix of anomalies, as also clearly seen if Eq. (2) and Eq. (10) are315

substituted into Eq. (27).

In order to improve the graphical interpretation of the components of the error, the expression of the empirical orthogonal

functions of V as a rotation of the true ones (derived from observations U) in Eq. (13) is used. Thus, considering the expression

Ev = RvuEu Eq. (17), the matrix Duv above can be rewritten in terms of the EOFs corresponding to observations as

Duv = EuΣ2
uET

u + RvuEuΣ2
vET

u RT
vu−

(
EuPT

u PvET
u RT

vu + RvuEuPT
v PuET

u

)
. (29)320

If Γvu = PT
u Pv is proportional to the covariance between both datasets’ principal components, the above expression can be

written as:

Duv = EuΣ2
uET

u + RvuEuΣ2
vET

u RT
vu−

(
EuΓvuET

u RT
vu + RvuEuΓT

vuET
u

)
. (30)

The interpretation of this expression is that all the matrices involved in the mean squared error can be expressed in the axes de-

fined by the leading and second EOFs of the U (observational) dataset. Thus, using the axes corresponding to the observational325

dataset U we can produce a diagram which gives us a fast visual impression of the structure of the error in two-dimensional

variables the same way the Taylor diagram performs for univariate datasets. Thus, the diagram presented in this contribu-

tion includes not only scalar information in the estimation of the error, but also information regarding the main directions of

variability of the vectors and their differences.

3.5 Extension of the methodology to spatial fields330

In the case of the analysis of the ability of models to represent the spatial distribution of an averaged field (a typical use of the

Taylor diagram in climatology, for instance), there is no change needed to the diagram defined so far. Instead of using the T-

mode of principal components (covariance matrix defined by temporal covariances), we can just use the S-mode, in traditional

terminology of principal components (Compagnucci and Richman, 2008). Thus, in the previous description, N will run along

the grid points, and the two-dimensional biases and covariances are computed in the spatial domain, but the error analysis is335

still being performed onto two-dimensional vectors. As an example of this very common case in the application of Taylor’s

diagram to climatology, we present an example including the comparison of multi-year averages of Northern Hemisphere

surface wind vectors. For the case of spatial grids, an external standard area-weighting by means of factors given by
√

cosφ

with φ latitude (North et al., 1982) is applied to the data in order to avoid an excessive weight in the results of points in polar

latitudes which represent much a lower area in a regular longitude-latitude grid.340
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3.6 Use of the diagram with ensembles of models

As a final example, the use of the diagram with a multimodel ensemble is shown. In this case, the climatologies of surface wind

from two models with a different number of realizations are compared with the corresponding climatology from ERA5. As

described above, since this is also a comparison of data on a regular longitude-latitude grid, the covariance matrix is also built

over the spatial points and the external weights are also applied to avoid an overrepresentation of polar regions in the results.345

3.7 R package implementing the methodology

The authors have created an R package called SailoR which is freely available in the Comprehensive R Archive Network

(CRAN). The package has been used to produce the plots presented in section 4, and the code to prepare some of these plots

are provided as examples in the manual of the package. Besides producing the diagrams shown as an example in this paper, the

package also computes all the individual terms used in the analysis of the MSE error as described in Section 3. Thus, different350

aspects of the main principal axes, their relative rotation, the two-dimensional correlation coefficient and the combined RMSE

can be readily analyzed for different vector datasets and exported to tables which can be presented in publications.

4 Use of the elements in the error matrix in the diagram

4.1 Wind over a Mediterranean location

The first example of a Sailor diagram is shown in Figure 1 (left). In it, the X axis represents the zonal component of wind and355

the Y axis its meridional component. The mean 2D vector corresponding to each of the datasets is represented by a colored

circle, except for the reference dataset, which uses a grey square. The leading EOF of every dataset is represented as the

semi-major axis of the ellipse that is plotted centered at every model mean value (same colour as the one used to represent

the model mean). The grey ellipse centered at each model mean represents the EOF from the reference dataset (observations).

Thus, the angle between the colored and grey semi-major axes represents the relative rotation between EOFs from observations360

and simulations. The lengths of the semi-major and semi-minor axes (colour and grey) show the variances explained by each

EOF (model and reference). The comparison of these lengths between coloured and grey ellipses allows to address the question

whether the model underestimates or overestimates each EOF. In this particular example, since the model vs observation biases

are much lower than the variance explained by the principal axes defined by the EOFs, the interpretation of this diagram is not

very easy. However, it is already showing the main directions of the error matrices, their biases and the position of the reference365

dataset. The bottom right legend shows the total RMSE error given by Eq. (22) in subsection 3, which takes into account both

the contribution from the bias (distance of the points to the reference dataset’s mean) and the different orientation and lengths

of the major and minor axes (EOFs).

In order to show that different designs optimize the information transmitted by the diagram, in the second diagram prepared

using the data from the same example, the ranges of both axes are limited and the ellipses corresponding to the main directions370

of the error matrix are accordingly scaled by means of a small scale factor (0.025). In the scaled version of the diagram
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Figure 1. Sailor diagram with default parameters (left) and ellipses scaled to improve visibility of the directional error (right) for the wind

observed and simulated in Dragonera (buoy in the Mediterranean).

(Figure 1, right) it can be seen that the distance between every coloured point corresponding to a given model to the grey

square represents the bias amongst the datasets and they can effectively be visually compared. On the other hand, the grey

ellipse and its major semiaxis show the main structure of the variability of the reference dataset. This grey ellipse is plotted

centered on the point representing the mean of every model, where the EOFs corresponding to that model are also shown for375

comparison. Both ellipses (the one corresponding to the model being analyzed and the one corresponding to the reference

dataset) are scaled by the same scale factor so that they are not deformed during the scaling process. The use of ellipses and

their major axes easily allows to compare the main directions of variability of the observed wind (grey) and modelled one, with

the ones corresponding to the WRF model the closest ones to observations. It can be seen that both WRF simulations show a

lower rotation of their major axes with respect to the one from observations. The model EOFs are almost orthogonal from the380

ones in observations for the case of ERAI or CCMPv2. The bottom right legend, in any case, presents the real RMSE error

without scaling its value.

4.2 Surface current in the Bay of Biscay

Figure 2 (left) shows an alternative version of the Sailor diagram. In this particular case, the bias is relatively low. Thus, in order

to ease the interpretation of the structure of the errors, the ellipses representing the first and second EOFs are drawn on top of385

the point corresponding to observations. The fact that the bias is small is only affecting the part of the RMSE derived from term
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Figure 2. Sailor diagram representing the structure of errors between HF radar estimations of currents (rad) and model results (mod) with

variances corresponding to EOFs scaled with scale factor 4 (left). Sailor diagram derived from vertically integrated water vapour transport

(right).

B2
uv in Eq. (23). As in the previous case, they are scaled (four times larger) in order to improve their visibility. It is clear that

the relevant part in terms of the errors of models versus observations is not the bias, but the way the variability is represented,

instead. The HF-Radar data’s leading EOF (observational data, actually) is closer to the one from in-situ observations, as could

be expected, since both cases represent observational (in-situ versus remote) estimations of currents. As in the previous case,390

the legend at the bottom right shows unscaled total RMSE errors. In this case, the ellipses clearly show not only the difference

in the orientation of the EOFs, but also the underestimation of the variability present both in radar data, but especially in the

case of model data.

4.3 Vertically integrated water vapour transport

The Sailor diagram for the vertically integrated water vapour transport can be seen in Figure 2 (right). In this case, the errors395

associated to the bias are smaller than the error associated to the covariance. However, since the errors in the anomalies are not

very large, the visibility of the diagram has been increased by plotting all of the ellipses on top of the observational point. This

way, the errors in direction can be easily identified. For clarity, the ellipses are scaled with a scale factor of 0.1, again. It can

be seen that the estimation of the EOFs is closer for the case of the simulation with data assimilation, both in direction and,
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particularly, in the case of the amount of variance represented, since WRF N and ERAI slightly overestimate the water vapour400

fluxes.

A selection of the tabular results corresponding to the MSE between observed and modelled vertically integrated wa-

ter vapour transport are presented in Table 1. Different aspects of the main principal axes, their relative rotation, the two-

dimensional correlation coefficient and the combined RMSE can be readily analyzed for the water vapour transport vectors.

Model σx σy θuv R2 |Ū− V̄| RMSE

1 OBS 154.72 146.09 0.00 2.00 0.00 0.00

2 WRF N 173.05 149.19 -5.86 1.57 15.41 261.98

3 WRF D 149.52 133.31 -3.23 1.94 5.65 257.53

4 ERAI 171.00 148.00 -4.66 1.92 4.69 272.94

Table 1. Agreement of simulations by different models with observed vertically integrated water vapour transport from soundings. σx and σy

represent the semi-major and semi-minor axes of the ellipses representing the standard deviation around the average values for every model

(kg m−1 s−1) and θuv (degrees) represents the relative rotation of model ellipses with respect to the observational one (Section 3.3). The

R2 column represents the value of the two-dimensional correlation coefficient following Crosby et al. (1993) (R2 = 2 for a perfect model,

instead of 1 for the one-dimensional counterpart). Finally, the differences between the datasets described by the bias (|Ū− V̄| kg m−1 s−1)

and total root mean squared error are also shown.

405

4.4 Wave energy flux

Figure 3 (left) represents the Sailor diagram corresponding to the estimation of wave energy flux by different models against

observations from a buoy (Estaca de Bares). In order to avoid many duplicate ellipses in the diagram when many models

are diagnosed, it is better to center all their ellipses on top of the observational dataset’s mean point, as shown in this case

(compare it with Figure 1, left), using an scale factor of 0.25. The statistical models involving the selection of analogs (analo),410

the combination of analogs and Random Forests (analorf) and the use of Random Forests alone (rf) tend to cluster in the same

orientation of the covariance matrix, slightly rotated anticlockwise with respect to observations. Still, they present different

levels of estimation of variance, with random forests estimating the variance the best, and models based on analogs presenting

a worse estimation of the right variance. The WAM model is slightly rotated clockwise. It also presents an overestimation of

variance with respect to observations. On the other hand, since persistence (per) involves just a resampling of the original PDF415

of the observations, it leads to a perfect agreement in terms of the EOFs.

4.5 Spatial distribution of seasonally-averaged surface wind

As an example of the potential uses of the Sailor diagram, Figure 3 (right) shows the agreement of the January-averaged

northern Hemisphere surface wind from different reanalyses using an scale factor of 0.2. In this case, we are assuming that
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Figure 3. Sailor diagram representing the structure of errors between different physical and statistical models in the estimation of wave

energy flux (left) and surface wind in January over the Northern Hemisphere (right).

ERA5 corresponds to the "perfect" dataset (observations). This is quite arbitrary, but we are performing this comparison for the420

sake of showing the ability of the Sailor diagram to evaluate spatial fields, too. It is clearly shown that the reanalyses produced

by the ECMWF (ERA5 and ERA Interim) show the highest agreement both in terms of the smallest bias and better matching

of the corresponding EOFs. The other reanalyses (CFSRv2, MERRA2 and NNRA) group along the same semi-major axis, but

they overestimate the variability when compared with ERA5. In terms of the bias, too, it can be seen that the lowest bias is the

one corresponding to ERA Interim.425

4.6 Application to multimodel ensembles

In this case, we propose to define the average of all the M ensemble members of every model as the vector V̄ (Rougier,

2016). On the other side, the principal components, associated variances and eigenvectors associated with the model can be

estimated from an extended data matrix Ve (with dimensions NM ×2) built by joining all the realizations together in a single

dataset. This means that the observational matrix U must also be extended to an Ue matrix sized NM × 2. This can be done430

by repeating the observations M times to produce the Ue dataset and the results is shown in Figure 4 (left). This ensures that

the algorithm will work because the covariance matrices involved will still be of full rank. However, it has to be considered

that, in this case, the number of effective degrees of freedom (Bretherton et al., 1999) in both Ue and V datasets will not be

the same. This would also be a problem for different models Vi and Vj , if the number of members in their ensembles are not
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Figure 4. Sailor diagram representing the agreement between the Southern Hemisphere wind field as simulated by two models from the

CMIP5 repository with ERA5 data when the reference dataset is repeated (left) or when the individual realizations of the ensemble are takes

as independent datasets (right).

the same, such as in the CMIP set of runs, for instance. As shown in Figure 4 (left), prepared using as scale factor 0.2, the435

Sailor diagram shows interesting features. The two models studied agree quite well in the simulation of the spatial variability

of the field (the EOFs and major/minor axes in the ellipse represent the spatial variability of the field). Both models simulate an

underestimation of zonal average winds when compared with ERA5, whilst MIROC tends to overestimate the mean meridional

circulation, IPSL underestimates it.

The second option for ensembles (same scale factor) is shown in Figure 4 (right). It consists in the use of every single440

realization of the ensemble as a single model. The proposed diagram leads to a neat comparison of the relative performance

of the different members of the ensemble. This information might be interesting because of scientific reasons such as that the

initialization of the members of the ensemble uses different techniques which need testing, for instance. In the case shown, the

conclusion is quite clear. The averaged bias is relatively independent of the realization and the averages corresponding to every

model tend to cluster at the same position. The intra-ensemble variance of properties such as the spatial variability of the field445

is also quite low. Thus, in the analysis performed here, all the realizations of every model in the ensemble are very close to the

reference dataset.

18

https://doi.org/10.5194/gmd-2019-289
Preprint. Discussion started: 19 November 2019
c© Author(s) 2019. CC BY 4.0 License.



5 Conclusions

A new diagram for the fast evaluation of the quality of models forecasting two-dimensional vector fields or time series has been

presented. As Taylor (2001) properly stated in his seminal paper, a new diagram will only be accepted by users if it helps in the450

fast and efficient intercomparison of model results against observational datasets. The authors hope that the results presented so

far demonstrate that the Sailor diagram achieves that goal. First, the diagram relies on the partition of the two-dimensional MSE

in its bias and covariance parts. Those two terms are presented in the diagram separately. Thus, those two components of the

error can be easily identified for the different datasets. Second, the covariance part is decomposed in terms of the corresponding

principal components (empirical orthogonal functions). The structure of the covariance matrix of models and observations can455

also be effectively compared in the presented diagram, both in terms of the length of their semi-axes (fraction of variance) and

in the relative rotation of every model against the reference dataset. This allows to easily identify in the diagram if the models

under or overestimate the variance along any of the main axes and whether the main directions of variability in models and

observations are relatively rotated or not. Thus, both two-dimensional bias and covariance can be visually identified from the

diagram.460

The diagram is easily customizable in order to increase the ability to identify features of the datasets being verified by means

of the use of scale factors for the ellipses, by centering all of them in the reference dataset or on top of every model being used.

Thus, researchers can design a diagram that best suits their needs.

The analysis of ensembles can also be performed by means of the diagram. As shown in subsection 4.6, the diagram can

accommodate this case by using two different policies. In the first case, all the M members of the ensemble belonging to a465

single model can be mixed in a unique dataset, but this involves repeating the block of observations M times. This implies

that the analysis of the results presented in the diagram in this case must consider the different number of effective degrees

of freedom very carefully and further research should be performed to analyze the impact of this in the application of the

Sailor diagram to model ensembles. However, in the second case, all the members of the ensemble can also be analyzed as

independent realizations of the same dataset. This tends to clutter the diagram, but these results are not affected by problems470

related to the number of effective degrees of freedom in the different datasets used to build the diagram. However, every

member of the ensemble can also be treated individually, so that the diagram would represent the intraensemble spread.

As a conclusion, we hope that the diagram presented here, together with an R implementation of it freely available in CRAN

will ease the verification of vector fields derived from geoscientific models in the future.

Code and data availability. The code used to prepare the figures in this paper is described as examples in the manual of the R package475

sailoR, available from CRAN https://cran.r-project.org/package=SailoR. The data used to produce these figures are also distributed with the

package. Both elements (code and data) can also be accessed from ZENODO, DOI https://doi.org/10.5281/zenodo.3543717.
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Cosoli, S., Gac̆ić, M., and Mazzoldi, A.: Variability of currents in front of the Venice Lagoon, Northern Adriatic Sea, Ann. Geophys., 26,505

731–746, https://doi.org/10.5194/angeo-26-731-2008, 2008.

Cramer, E. M.: A generalization of vector correlation and its relation to canonical correlation, Multivariate Behavioural Research, 9, 347–351,

https://doi.org/10.1207/s15327906mbr0903_10, 1974.

Crosby, D. S., Beaker, L. C., and Gemill, W. H.: A proposed definition for vector correlation in Geophysics: Theory and Application, Journal

of Atmos. and Oceanic Technol., 10, 355–367, https://doi.org/10.1175/1520-0426(1993)010<0355:APDFVC>2.0.CO;2, 1993.510

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer,

P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haim-

berger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz,

B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:

configuration and performance of the data assimilation system, Quarterly Journal of the Royal Meteorological Society, 137, 553–597,515

https://doi.org/10.1002/qj.828, 2011.

Dörfler, W.: Diagrammatic thinking, in: Activity and sign, pp. 57–66, Springer, 2005.

Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony,

S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., de Noblet, N., Duvel, J.-P., Ethé, C.,

Fairhead, L., Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L., Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi,520

A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X.,

Lloyd, J., Lott, F., Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio,

C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.: Climate change projections using the

IPSL-CM5 Earth System Model: from CMIP3 to CMIP5, Climate Dynamics, 40, 2123–2165, https://doi.org/10.1007/s00382-012-1636-1,

2013.525

21

https://doi.org/10.5194/gmd-2019-289
Preprint. Discussion started: 19 November 2019
c© Author(s) 2019. CC BY 4.0 License.



Fernández, J., Montávez, J. P., Sáenz, J., González-Rouco, J. F., and Zorita, E.: Sensitivity of the MM5 mesoscale model to physical param-

eterizations for regional climate studies: Annual cycle, J. Geophys. Res., 112, D04 101, https://doi.org/10.1029/2005JD006649, 2007.

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R. d., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle,

R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Bucha rd, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G. K., Koster,

R., Lucchesi, R., Merkova, D., Nielsen, J. o. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M.,530

and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), Journal of Climate, 30,

5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.

González-Rojí, S. J., Sáenz, J., Ibarra-Berastegi, G., and Díaz de Argandoña, J.: Moisture Balance Over the Iberian Peninsula According

to a Regional Climate Model: The Impact of 3DVAR Data Assimilation, Journal of Geophysical Research: Atmospheres, 123, 708–729,

https://doi.org/10.1002/2017JD027511, 2018.535

Hawkins, E., Fæhn, T., and Fuglestvedt, J.: The climate spiral demonstrates the power of sharing creative ideas, Bull. of the Amer. Met. Soc.,

100, 753–756, https://doi.org/10.1175/BAMS-D-18-0228.1, 2019.

Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Alonso-Balmaseda, M., Balsamo, G., Bechtold, P.,

Berrisford, P., Bidlot, J.-R., de Boisséson, E., Bonavita, M., Browne, P., Buizza, R., Dahlgren, P., Dee, D., Dragani, R., Diamantakis, M.,

Flemming, J., Forbes, R., Geer, A. J., Haiden, T., Hólm, E., Haimberger, L., Hogan, R., Horányi, A., Janiskova, M., Laloyaux, P., Lopez,540

P., Munoz-Sabater, J., Peubey, C., Radu, R., Richardson, D., Thépaut, J.-N., Vitart, F., Yang, X., Zsótér, E., and Zuo, H.: Operational global

reanalysis: progress, future directions and synergies with NWP, Tech. Rep. 27, ECMWF, https://doi.org/10.21957/tkic6g3wm, 2018.

Hoffman, R. N., Leidner, S. M., Henderson, J. M., Atlas, R., Ardizzone, J. V., and Bloom, S. C.: A Two-Dimensional Variational Analysis

Method for NSCAT Ambiguity Removal: Methodology, Sensitivity, and Tuning, Journal of Atmospheric and Oceanic Technology, 20,

585–605, https://doi.org/10.1175/1520-0426(2003)20<585:ATDVAM>2.0.CO;2, 2003.545

Hovmöller, E.: The trough-and-ridge diagram, Tellus, 1, 62–66, https://doi.org/10.1111/j.2153-3490.1949.tb01260.x, 1949.

Ibarra-Berastegi, G., Saénz, J., Ezcurra, A., Elías, A., Diaz Argandoña, J., and Errasti, I.: Downscaling of surface moisture flux and precip-

itation in the Ebro Valley (Spain) using analogues and analogues followed by random forests and multiple linear regression, Hydrology

and Earth System Sciences, 15, 1895–1907, https://doi.org/10.5194/hess-15-1895-2011, 2011.

Ibarra-Berastegi, G., Sáenz, J., Esnaola, G., Ezcurra, A., and Ulazia, A.: Short-term forecasting of the wave energy flux: Analogues, random550

forests, and physics-based models, Ocean Engineering, 104, 530–539, https://doi.org/10.1016/j.oceaneng.2015.05.038, 2015.

Ibarra-Berastegi, G., Sáenz, J., Esnaola, G., Ezcurra, A., Ulazia, A., Rojo, N., and Gallastegui, G.: Wave Energy Forecasting at Three Coastal

Buoys in the Bay of Biscay, IEEE Journal of Oceanic Engineering, 41, 923–929, https://doi.org/10.1109/JOE.2016.2529400, 2016.

Jiménez, P. A., González-Rouco, J. F., García-Bustamante, E., Navarro, J., Montávez, J. P., de Arellano, J. V.-G., Dudhia, J., and Muñoz-

Roldán, A.: Surface wind regionalization over complex terrain: Evaluation and analysis of a high-resolution WRF simulation, J. Appl.555

Meteorol. and Climatol., 49, 268–287, https://doi.org/10.1175/2009JAMC2175.1, 2010.

Jupp, P. E. and Mardia, K. V.: A general correlation coefficient for directional data and related regression problems, Biometrika, 67, 163–173,

https://doi.org/10.2307/2335329, 1980.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y.,

Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R.,560

and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, Bull. Amer. Meteorol. Soc., 77, 437–470, https://doi.org/10.1175/1520-

0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.

22

https://doi.org/10.5194/gmd-2019-289
Preprint. Discussion started: 19 November 2019
c© Author(s) 2019. CC BY 4.0 License.



Kundu, P. K.: Ekman veering observed near the ocean bottom, J. Phys. Ocean., 6, 238–242, https://doi.org/10.1175/1520-

0485(1976)006<0238:EVONTO>2.0.CO;2, 1976.

Lee, T., Waliser, D. E., Li, J.-L. F., Landerer, F. W., and Gierach, M. M.: Evaluation of CMIP3 and CMIP5 wind stress climatology us-565

ing satellite measurements and atmospheric reanalysis products, J. Climate, 26, 5810–5826, https://doi.org/10.1175/JCLI-D-12-00591.1,

2013.

Lellouche, J. M., Greiner, E., Galloudec, O. L., Garric, G., Regnier, C., Drevillon, M., Benkiran, M., Testut, C.-E., Bourdalle-Badie, R.,

Gasparin, F., Hernandez, O., Levier, B., Drillet, Y., Remy, E., and Traon, P.-Y. L.: Recent updates to the Copernicus Marine Service global

ocean monitoring and forecasting real-time 1/12º high-resolution system, Ocean Sci., 14, 1093–1126, https://doi.org/10.5194/os-14-1093-570

2018, 2018.

Lorente, P., Piedracoba, S., Soto-Navarro, J., and Alvarez-Fanjul, E.: Evaluating the surface circulation in the Ebro delta(northeastern Spain)

with quality-controlled high-frequency radar measurements, Ocean. Sci., 11, 921–935, https://doi.org/10.5194/os-11-921-2015, 2015.

Madec, G. and the NEMO team: NEMO ocean engine, Tech. rep., Institut Pierre-Simon Laplace (IPSL), France, 2008.

Martin, T. H. D. T. G. M., Bellouin, N., Collins, W. J., Culverwell, I. D., Halloran, P. R., Hardiman, S. C., Hinton, T. J., Jones, C. D.,575

McDonald, R. E., McLaren, A. J., O’Connor, F. M., Roberts, M. J., Rodriguez, J. M., Woodward, S., Best, M. J., Brooks, M. E., Brown,

A. R., Butchart, N., Dearden, C., Derbyshire, S. H., Dharssi, I., Doutriaux-Boucher, M., Edwards, J. M., Falloon, P. D., Gedney, N., Gray,

L. J., Hewitt, H. T., Hobson, M., Huddleston, M. R., Hughes, J., Ineson, S., Ingram, W. J., James, P. M., Johns, T. C., Johnson, C. E.,

Jones, A., Jones, C. P., Joshi, M. M., Keen, A. B., Liddicoat, S., Lock, A. P., Maidens, A. V., Manners, J. C., Milton, S. F., Rae, J. G. L.,

Ridley, J. K., Sellar, A., Senior, C. A., Totterdell, I. J., Verhoef, A., Vidale, P. L., and Wiltshire, A.: The HadGEM2 family of Met Office580

Unified Model climate configurations, Geoscientific Model Development, 4, 723–757, https://doi.org/10.5194/gmd-4-723-2011, 2011.

McGill, R., Tukey, J. W., and Larsen, W. A.: Variations of Box Plots, The American Statiscian, 32, 12–16, https://doi.org/10.2307/2683468,

1978.

North, G., Bell, T., Cahalan, R., and Moeng, F.: Sampling Errors in the Estimation of Empirical Orthogonal Functions, Monthly Weather

Review, 110, 699–706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2, 1982.585

P.P.E.: Puertos del Estado: Oceanography: Forecast, real time and climate, Spanish Government: Madrid. Updated 2015-10-11.

http://www.puertos.es/en-us/oceanografia/Pages/portus.aspx, 2015.

Rabanal, A., Ulazia, A., Ibarra-Berastegi, G., Sáenz, J., and Elosegui, U.: MIDAS: A Benchmarking Multi-Criteria Method for the Identifi-

cation of Defective Anemometers in Wind Farms, Energies, 12, 28, 2019.

Robert, P., Cléroux, R., and Ranger, N.: Some results on vector correlation, Computational Statistics & Data Analysis, 3, 25–32,590

https://doi.org/10.1016/0167-9473(85)90055-6, 1985.

Roebber, P. J.: Visualizing multiple measures of Forecast Quality, Wea. and Forecast., 24, 601–608,

https://doi.org/10.1175/2008WAF2222159.1, 2009.

Rougier, J.: Ensemble averaging and mean squared error, Journal of Climate, 29, 8865–8870, https://doi.org/10.1175/JCLI-D-16-0012.1,

2016.595

Rubio, A., Reverdin, G., Fontán, A., González, M., and Mader, J.: Mapping near-inertial variability in the SE Bay of Biscay from HF radar

data and two offshore moored buoys, Geophysical Research Letters, 38, L19 607, https://doi.org/10.1029/2011GL048783, 2011.

Rubio, A., Fontán, A., Lazure, P., González, M., Valencia, V., Ferrer, L., Mader, J., and Hernández, C.: Seasonal to tidal variability of

currents and temperature in waters of the continental slope, southeastern Bay of Biscay, Journal of Marine Systems, 109-110, S121 –

S133, https://doi.org/10.1016/j.jmarsys.2012.01.004, 2013.600

23

https://doi.org/10.5194/gmd-2019-289
Preprint. Discussion started: 19 November 2019
c© Author(s) 2019. CC BY 4.0 License.



Sáenz, J., González-Rojí, S. J., Carreno-Madinabeitia, S., and Ibarra-Berastegi, G.: Analysis of atmospheric thermodynamics using the R

package aiRthermo, Computers & Geosciences, 122, 113–119, https://doi.org/10.1016/j.cageo.2018.10.007, 2019.

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T., Chuang, H.-y., Iredell, M., Ek, M., Meng, J., Yang,

R., Mendez, M. P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: The NCEP Climate Forecast System Version 2,

Journal of Climate, 27, 2185–2208, https://doi.org/10.1175/JCLI-D-12-00823.1, 2014.605

Solabarrieta, L., Rubio, A., Castanedo, S., Medina, R., Charria, G., and Hernández, C.: Surface water circulation patterns in the southeastern

Bay of Biscay: New evidences from HF radar data, Continental Shelf Research, 74, 60–76, https://doi.org/10.1016/j.csr.2013.11.022,

2014.

Stephens, M. A.: Vector correlation, Biometrika, 66, 41–48, https://doi.org/10.2307/2335240, 1979.

Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., D7, 7183–7192,610

https://doi.org/10.1029/2000JD900719, 2001.

Ulazia, A.: Multiple roles for analogies in the genesis of fluid mechanics: How analogies can cooperate with other heuristic strategies,

Foundations of Science, 21, 543–565, 2016.

Ulazia, A., Sáenz, J., and Ibarra-Berastegi, G.: Sensitivity to the use of 3DVAR data assimilation in a mesoscale model for

estimating offshore wind energy potential. A case study of the Iberian northern coastline, Appl. Energy, 180, 617–627,615

https://doi.org/10.1016/j.apenergy.2016.08.033, 2016.

Ulazia, A., Sáenz, J., Ibarra-Berastegui, G., González-Rojí, S. J., and Carreno-Madinabeitia, S.: Using 3DVAR data assimilation to

measure offshore wind energy potential at different turbine heights in the West Mediterranean, Applied Energy, 208, 1232–1245,

https://doi.org/10.1016/j.apenergy.2017.09.030, 2017.

Watanabe, M., Suzuki, T., O’ishi, R., Komuro, Y., Watanabe, S., Emori, S., Takemura, T., Chikira, M., Ogura, T., Sekiguchi, M., Takata,620

K., Yamazaki, D., Yokohata, T., Nozawa, T., Hasumi, H., Tatebe, H., and Kimoto, M.: Improved Climate Simulation by MIROC5: Mean

States, Variability, and Climate Sensitivity, Journal of Climate, 23, 6312–6335, https://doi.org/10.1175/2010JCLI3679.1, 2010.

Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, Academic Press, Burlington, MA, 2 edn., 2006.

Xu, Z., Hou, Z., Han, Y., and Guo, W.: A diagram for evaluating multiple aspects of model performance in simulating vector fields, Geosci.

Mod. Dev., 9, 4365–4380, https://doi.org/10.5194/gmd-9-4365-2016, 2016.625

24

https://doi.org/10.5194/gmd-2019-289
Preprint. Discussion started: 19 November 2019
c© Author(s) 2019. CC BY 4.0 License.


