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The mathematics of the paper is based on an EOF decomposition of time series of vectors. The
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Abstract. A new diagram is proposed for the verification of vector quantities generated by multiple models against a set of
observations. It has been designed with the idea behind the Taylor diagram of providing a diagram which allows an easy
comparison of simulations by multiple models against a reference dataset. However, the Sailor diagram extends this ability
to two dimensional quantities such as currents, wind, horizontal fluxes of water vapour or other geophysical variables by
adding features which allow to evaluate directional properties of the data as well. The diagram is based on the analysis of
the two-dimensional structure of the mean squared error matrix between model and observations. This matrix is separated
in a part corresponding to the bias and the relative rotation of the two orthogonal directions (empirical orthogonal functions,
EOFs) which best describe the vector data. Since there is no truncation of the retained EOFs, these orthogonal directions
explain the total variability of the original dataset. We test the performance of this new diagram to identify the differences
amongst the reference dataset and a series of model outputs by using some synthetic datasets and real-world examples with
time-series of variablestuch as wind, current and vertically integrated moisture transport. An alternative setup for spatially
varying time-fixed fields is shown in the last examples, where the spatial average of surface wind in the Northern and Southern
Hemispheres according to different reanalyses and realizations from ensembles of CMIP5 models are compared. The Sailor
diagrams presented here show that it is a tool which helps in identifying errors due to the bias or the orientation of the
simulated vector time series or fields. The R implementation of the diagram presented together with this paper allows also
to easily retrieve the individua?diagnostics of the different components of the mean squared error and additional diagnostics

which can be presented in tabular form.
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1 Introduction

It has been long time since visual tools were recognized as an easy way to analyse different properties of datasets. This
appreciation is at the root of simple and effective visualizations for exploratory data analysis such as the well-known Hovmoéller
diagram (Hovmoller, 1949) and the Box Plot (McGill et al., 1978). A visual tool for presenting temperature anomalies has
also been recently recognized as a very effective way of presenting information regarding the evolution of climate to general
audiences (Hawkins et al., 2019). Visual tools are very helpful in the scientific inquiry, see, for instance Peircean diagrammatic
thinking (Dérfler, 2005). Furthermore, the visualization via diagrammatic representations does not constitute only a way of
interpretation. Peircean theory of signs and other studies on scientific creative thinking show that diagrams, together with
analogy or extreme thinking, also constitute a way of reasoning and knowledge generation (Dorfler, 2005; Ulazia, 2016).

Visual representation of data allows a fast and intuitive interpretation of many of their characteristics. This has led to the
development of many special types of diagrams, particularly in the field of model verification. These diagrams present different
measures of forecast quality as in the case of the well known Relative Operating Characteristic curve (Wilks, 2006) or a
combination of Success Ratio and Probability of Detection (Roebber, 2009) to name a few.

Boer and Lambert (2001) designed a diagram based on second-order space-time differences between model simulations and
observations as a tool to diagnose the performance of climate models. Their diagram was based on simple quantities such as
mean square differences, variances and Pearson’s correlation coefficient between observations and model runs. They used the
analytical relationship between the standard deviation of the datasets, their common correlation coefficient and the squared
difference between the datasets. They also showed that the diagram could be used for the evaluation of model ensembles.

Following a similar reasoning, Taylor (2001) presented a diagram which has become a well known and popular tool for the
evaluation of model simulations against observed data (in general, a reference dataset). In the so-called Taylor diagram, the
horizontal axis represents the standard deviation of the reference dataset, the radial distance represents the standard deviation
ratio of the forecast against the reference and the angular distance from the X axis is related to the correlation coefficient
between the reference dataset (also referred to as observations) and every model run. The distance from the point assigned to a
model in the diagram to the point representing the reference dataset is related to the centered root mean squared error. In the
Taylor diagram, every model tested is represented by a point in the diagram and visual inspection allows to easily determine
which points are closer (i.e. present lower error) to observations. This approach works for any number of models and, therefore,
comparing models using the Taylor diagram is in general faster and easier than using an equivalent table listing the different
error measures. This explains the success of the diagram, as shown by the fact that the paper describing it has been cited more
than 2300 times at the time of writing this contribution. This diagram is a tool that helps in the fast diagnose of the relative
merits of the models. Aspects such as under or overestimated variance, incorrect phasing of the seasonal cycle and many others
are reflected in the relative position of the points characterizing a model in the diagram. The diagram is flexible enough so

that it can be extended to ensembles of models. More specific developments such as incorporating bootstrap techniques for the
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estimation of confidence intervals can be easily done (Gonzélez-Roji et al., 2018; Ulazia et al., 2017) and stress the idea of
flexibility associated to the Taylor diagram. Finally, since observed data also suffer from errors, an estimation of the relevance
of these observational errors in different datasets can also be achieved by cheking alternative measured datasets against the
same reference as if they were models too (Fernandez et al., 2007). Thus, the dispersion amongst observational datasets yields
an estimate of the uncertainty of the observations (Gonzalez-Roji et al., 2019).

Pearson’s correlation coefficient between two scalars plays a fundamental role in the design of Taylor’s diagram, but there
does not exist a single universally accepted definition of the correlation coefficient in two dimensions. Jupp and Mardia (1980)
recognized that any multivariate definition of a correlation coefficient equivalent to Pearson’s one must be invariant to rotation,
be close to zero for independent datasets, smaller or equal than a constant and equal to that constant only if the datasets are
related to each other by means of a function. Since they based their definition on these properties, they found that the sum
of the squared canonical correlations was a potential definition of the squared correlation coefficient that met the previous
requisites. In a previous paper, Cramer (1974) defined the two-dimensional correlation coefficient by means of the product of
the canonical correlations. In this case, a low canonical correlation yields a low correlation coefficient because of the use of the
product.

Stephens (1979) defined two versions of correlation between vectors by means of functions which satisfy the requirement
that two perfectly correlated vector sets can be related by means of an orthogonal transformation. In this case, the vectors
are assumed to share a common center and to be unit vectors, so that this measure cannot be used to identify biases between
datasets or different standard deviations. In any case, the author correctly asserted that invariance to rotation does not lead to a
unique definition of correlation coefficient for multivariate datasets.

Robert et al. (1985) presented an interesting review of different alternatives to compute the correlation coefficient for vector
quantities. They recognized that two approaches to the problem exist. The first one is based on the use of canonical correlations
between multivariate datasets. In the second approach, the definition of a two-dimensional correlation coefficient for vector
datasets is based on functions which satisfy some desirable properties, such as the invariance of the correlation to the rotation
of the original datasets or the existence of a limit constant for linearly related vectors as earlier suggested by Jupp and Mardia
(1980).

Despite these many previous studies, it is a fact that up to day, several alternative versions of correlation coefficients between
vectors exist. The fact that the definition of a two-dimensional correlation coefficient must satisfy the properties mentioned
before was also followed by Crosby et al. (1993), who presented an in-depth review of previous definitions in oceanography and
meteorology such as Kundu (1976). Crosby et al. (1993) also stated different possible definitions of the correlation coefficient.
Amongst them, they proposed a definition similar to the one used by Jupp and Mardia (1980). This definition was later applied
to real marine and atmospheric data sets by Breaker et al. (1994) and Cosoli et al. (2008), for instance.

However, the diagram designed by Taylor (2001) for scalar variables, is being used by modellers when comparing vectorial
quantities of model output with observations. For example, Lee et al. (2013) presented a comparison of CMIP3, CMIPS5,
reanalysis and satellite-based estimations of wind stress by means of the average of the Taylor diagrams for the zonal and

meridional components of the wind stress as a way to apply Taylor diagrams for vector quantities. A different strategy is
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followed, for instance, in Jiménez et al. (2010). In this case, the behaviour of several models for the zonal and meridional
components is not the same in terms of the identification of the model rankings. The best model for the zonal component in
terms of its Taylor diagram is not the best one for the meridional component (see their Figure 6). This is a typical problem
which arises when using the Taylor diagram with vector data, as also shown in a study about currents measured by means
of an HF-Radar (Lorente et al., 2015). It also appears in the evaluation of global climate models using zonal and meridional
components of wind speed (Martin et al., 2011) or in an analysis of moisture fluxes (Ibarra-Berastegi et al., 2011). A last
example appears when wind stress components are analyzed (Chaudhuri et al., 2013). A different alternative which allows the
use of the Taylor diagram for verification of wind estimations against observations is to use it as a tool to verify the magnitude
of the wind (Ulazia et al., 2016, 2017; Rabanal et al., 2019). However, even in this case, the results are limited, since the
information regarding errors in the direction of the vectors is lost.

In a recent paper, Xu et al. (2016) proposed a new method to overcome the defficiencies of the Taylor diagram for vector
datasets and produced a new type of diagram visually equal to the original Taylor diagram, but which can be used for vector
quantities. It is constructed on the basis of pattern similarities of vector observations and model runs and they call it Vector Field
Evaluation (VFE) diagram. It is constructed from both components of the vectors which appear in the vector datasets that are
used for the verification. In order to arrive to the same structure of the Taylor diagram, the authors apply some normalizations
to the original two-dimensional vector quantities.

However, in the original paper by Crosby et al. (1993), the authors show that two dimensional fields showing a perfect
correlation according to their definition do not have to be simple two-dimensional counterparts of what we expect in the one-
dimensional case (see their Figure 3). Thus, we have decided to follow a new approximation which does not lead to the common
Taylor diagram used for scalars, but gives more information about the structure of the two-dimensional errors between vector
quantities involved in the verification of a vector quantity derived from a model with its observational counterpart (reference
dataset). This is the rationale which leads us to base our definition in a full use of the two-dimensional structure of the mean
squared error (MSE) between both vectorial datasets. This does not allow us to reduce our diagram to the well-known Taylor
diagram used for scalars, as the one produced by Xu et al. (2016). However, we hope that our diagram will be considered
a valuable contribution to the set of techniques used for the evaluation of models, as it visually explores other properties of
the error between the vector datasets, such as the relative rotation of the major axes of variability and the underestimation (or
overestimation) along each principal axis of the covariance matrix.

Empirical orthogonal functions are commonly used in the literature for the decomposition of geophysical fields in their
temporal and spatial variability (Hannachi et al.,; 2007). The use of an EOF-based decomposition of a geophysical field is
particularly relevant because it produces linear combinations of the original variables (principal components) which are un-
correlated, thus leading to better basis for subsequent stages of the analysis. These uncorrelated principal components are
important bricks in the development of statistical analyses based in canonical correlation or multiple regression models, for
instance (Barnett and Preisendorfer, 1987; Bretherton et al., 1992). Besides that, these linear combinations are also able to
explain decreasing fractions of variance, so that the EOFs form an interesting orthogonal basis for data compression and di-

mensionality reduction (Monahan et al.; 2009). However, the reduction in variance is achieved by truncating the amount of
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EOFs that are kept for the analysis to a number of EOFs lower than the rank of the corresponding covariance matrix. In the
case of our paper, as will be discussed later, the original 2 X 2 covariance matrix is expressed by two EOFs, so that there is no
truncation in the process, as discussed in detail in Subsection 3.1.

It is the authors’ need to find a solution to problems found in the past when using the Taylor diagram for vector quantities that
inspired this proposal. The Sailor diagram provides a full analysis of the two-dimensional covariance matrix of the observed
and simulated vector fields and, at the same time, it yields exact numerical estimations of the RMSE between those vector
fields. Additional diagnostics presented in this contributioanuch as the relative rotation of the principal axes can be obtained
following our methodology. Thus, this contribution provides a useful tool for the verification of simulated vector fields.

We propose the name Sailor diagram as a joke due to the fact that it is a diagram which can be used for winds and currents
(properties of geophysical fluid dynamics that sailors need to know about) and because this name is very similar to the original
Taylor diagram. Thus, the name can be derived from the original Taylor just by changing two letters in the word (two letters
equal the number of dimensions used in the diagram) following the idea behind Lewis Carroll’s games with words.

Section 2 presents the datasets that we have used as examples of application of our Sailor diagram. Section 3 explains
the methodology that we follow to build the two-dimensional diagram. Results are included in Section 4, followed by some

concluding remarks in Section 5.

2 Data

9

In order to show that the diagram that we propose is of general interest and can be applied in different studies involving
vector magnitudes, we have selected some examples ranging from evident variables (wind or ocean currents) to additional

postprocessed quantities such as vertically integrated moisture transports.
21 QWind data

The first wind dataset that will be used in this paper corresponds to a one-year long dataset of hourly wind (zonal and meridional
components) from ERAS reanalysis at the point 38° N, 12° W, in front of Los Angeles and we will refer to it as reference (Ref)
onwards. In order to produce synthetic models which are affected by individual sources of error, we have prepared a perturbed
version of this dataset which we refer to as MODI in which we have just added a constant bias of (4.8, —6.8) m s-1. In order
to address a second source of error, a change in the simulated direction, we have applied a rotation of 30° counterclockwise to
the original dataset in order to produce MOD?2. The rotation produces a change in the principal axes of the distribution of zonal
and meridional wind and a new bias too, since it rotates the original averaged wind. A third source of error (lack of temporal
correlation) is addressed by resampling (without repetition) the original Ref dataset to produce MOD3, which is characterized
by perfect mean wind (no bias) and direction of major and minor axes of the distribution of wind but no correlation of wind
events. A final synthetic dataset (MOD4) is produced by scaling the wind distribution with a constant factor (2) so that both

the mean and the standard deviations of wind are affected.


Text Replaced�
Text
[Old]: "the covariance matrix. It is the authors’ need to find a solution to problems found in the past when using the Taylor diagram for vector quantities that" 
[New]: "EOFs that are kept for the analysis toa number of EOFs lower than the rank of the corresponding covariance matrix. In the case of our paper, as will be discussed later,the original 2 × 2 covariance matrix is expressed by two EOFs, so that there is no truncation in the process, as discussed in detail in Subsection 3.1. Itisthe authors’ need to find a solution to problems found inthepast when using theTaylor diagram forvector quantities that 125"

Text Deleted�
Text
"115"

Text Inserted�
Text
"130"

Text Replaced�
Text
[Old]: "justby" 
[New]: "just by"

Text Deleted�
Text
"120"

Text Inserted�
Text
"135"

Text Deleted�
Text
"125"

Text Inserted�
Text
"140 2.1"

Text Deleted�
Text
"2.1"

Text Deleted�
Text
"130"

Text Inserted�
Text
"145"

Text Deleted�
Text
"135"

Text Inserted�
Text
"150"


155

160

165

170

175

180

N

dataset (zonal and meridional components) extends from 01/01/2009 to 01/01/2015 and includes five sources (Ulazia et al.,

ext, offshore wind data are also used as our first example of a Sailor diagram constructed with realistic data. The wind

2017). Two Weather Research and Forecasting Model (WRF) simulations around the Iberian Peninsula are used, one with
3DVAR data assimilation every six hours (experiment D) and the second one without data assimilation (experiment N). ERA
Interim (ERAI) data (Dee et al., 2011) were also used to nest the two (N and D) WREF runs and these data are also compared
with observations. Fully assimilated Level 3 wind analysis data from the second version of Cross-Calibrated Multi-Platform
(CCMPv2) are also used (Hoffman et al., 2003; Atlas et al., 2011) for the evaluation. The previous sources will be validated
against in-situ observations provided by the buoy in Dragonera, near the Balearic Islands, a buoy managed by Spanish State

Ports Authority (Puertos del Estado) (P.P.E., 2015).

2.2 Ocean currents

©

Three different data sources of ocean surface horizontal vectorial currents are also compared with in-situ data. They cover the
Bay of Biscay area and include in-situ observations from a deep-water buoy, remotely sensed surface HF-Radar currents and
an ocean modelling product. Observational products, both in-situ buoy (named DONOSTIA buoy) and remotely sensed radar
currents, belong to the Basque Meteorological Agency (EUSKALMET) and were obtained from https://www.euskoos.eus.
They provide hourly data that is punctual in the case of the buoy (approx. location 43.6° N and 2.0° W). In the case of the HF
Radar dataset, it consists of a gridded dataset which covers the corner of the Bay of Biscay (approx. location 43.5-44.7° N and
3.2-1.3° W) with 5 km spatial resolution (Rubio et al., 2011, 2013; Solabarrieta et al., 2014). The ocean modelling product
used in this example is the global analysis and forecast product of the Copernicus Marine Environment Monitoring Service
(CMEMS), available through their data portal (identifier GLOBAL_ANALYSIS_FORECAST_PHY_001_024) (Madec and
the NEMO team, 2008; Lellouche et al., 2018).

2.3 Vertically integrated water vapour transports

Zonal and meridional components of vertically integrated water vapour transport have been calculated or downloaded from dif-
ferent sources. First, observations were obtained from the sounding data for A Coruia (Station ID 08001, longitude —8.41° E
and latitude 43.36° N) with a temporal resolution of 12 hours for the period 2010-2014. Both components of vertically inte-
grated moisture transport from ERAI in the original vertical levels of the ECMWF model were downloaded by means of the
Meteorological Archival and Retrieval System (MARS) repository at ECMWF at the nearest point to A Corufia.

Both moisture transport components were also calculated using the moisture and wind data from the previously mentioned
N and D simulations created with the WRF model over the Iberian Peninsula as described by Gonzélez-Roji et al. (2018). The
components of the moisture transport were calculated at the nearest point in WRF’s grid by means of the vertical integration of

the specific humidity (Sdenz et al., 2019) and the zonal and meridional winds over the original 51 7 levels of the WRF model.
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2.4 Verification of spatial vector fields

An important application of the Taylor diagram is the verification of climate models and, as such, it is often used to verify
the spatial structure of climate model outputs. In order to show that the Sailor diagram proposed in this paper can also be
applied for this purpose, some reanalyses are compared. The original NCEP/NCAR first generation reanalysis (Kalnay et al.,
1996) is compared to more modern reanalyses such as MERRA2 (Gelaro et al., 2017), CFSv2 (Saha et al., 2014), ERAI
and ERAS (Hersbach et al., 2018). In all those cases, we have analyzed the January average of the monthly values covering
a common period (2011-2018), regridded by means of bilinear interpolation to the grid corresponding to the NCEP/NCAR
reanalysis case (2.5° x 2.5°).

Finally, in terms of the application of the diagram to a typical case in the analysis of climate models, we use time-averaged
wind speed over the Southern Hemisphere (1979-2015). This case example uses the time average of surface wind obtained from
ERAS as the reference dataset. In order to check the behaviour of the diagram when analyzing ensembles of multimodels, we
have also downloaded surface wind fields of the historical forcing experiment from the CMIP5 repository for the same period.
The first model ensemble (four realizations) is the IPSL model, developed at the Institute Pierre-Simon Laplace (Dufresne
et al., 2013), whilst the second one (three realizations) is the MIROC model (Watanabe et al., 2010). All the models and ERAS
reanalysis gridded fields have been bilinearly interpolated to a common 1.25° x 1° regular longitude-latitude grid. This example

is selected to illustrate the way the diagram can be applied for the analysis of ensemble data.

3 Methodology

In this section, we present the derivation of the 2 x 2 squared-error matrix that is on the basis of the definition of the diagram
that is proposed later. The two dimensional squared error matrix is decomposed in the Empirical Orthogonal Functions (EOFs)
corresponding to the covariance matrix defined by the zonal and meridional components of observations (and similarly for
the covariance matrix defined by each model). Subsection 3.1 describes the decomposition of the matrix U corresponding to
the reference dataset (observations) in its EOFs. A similar notation will be used later for the decomposition of the matrix V
corresponding to the zonal and meridional components of every model which is being compared to observations. Later, the
expansion of the V matrix corresponding to the model is expressed as a rotation from the the EOFs derived from observations

(Subsection 3.2).

Q3.1 Decomposition of U in its EOFs

We consider a time series or spatial field of a two-dimensional vectorial variable such as horizontal wind, vertically integrated
moisture transport or horizontal currents, for instance. It has been measured at an observatory or buoy (time series) or it is a
time-average over a grid (the case of the evaluation of a climatology derived from climate models). By now, we will consider
that we are evaluating a time-series of N samples, but later we will present results where the N represents the number of

grid points where a time-averaged field is defined. Note that in the following presentation, U includes the zonal and meridional
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components of observations and so does V for a simulated dataset. The observational dataset is formed by the two-dimensional

(zonal and meridional) components of vector measurements u;, with ¢ = 1... N arranged as rows in an N x 2 matrix U. The

average i of the u; time series will be repeated as constant rows in an N x 2 matrix U. The 2 x 2 covariance matrix from the

zonal and meridional components of velocity anomalies in the observations is given by

Su= - (U=0)" (U=10) = i iy . M
zy  Pyy

According to the traditional use of the EOF decomposition of geophysical fields, the eigenvalues and eigenvectors of the

covariance matrix from observations U can be computed by means of the expression
Sueui = )\uieui, (2)

with S,, the covariance matrix in Eq. (1), e,; the i—eth eigenvector of the observational vector field and \,,; the corresponding

i—eth eigenvalue, so that
)\ui

Z;;l /\ui

represents the fraction of variance in observations explained by the linear combination of the original variables defined by the

Jui = 3

i—eth eigenvector of the covariance matrix (Monahan et al., 2009). In the general case of the EOF analysis in climatological
analyses, the rank of the covariance matrix r in Eq. (3) extends to (at most) the minimum between the number of grid points
(IVg) and the number of samples in the dataset (V). In the general case, in order to achieve a truncation of the original dataset, a
number ¢ of EOFs lower than the rank of the covariance matrix (¢ < r) is selected, so that the signal in the subspace that can not
be spanned by eigenvectors e,,; with j =¢+1...r becomes the part of the original dataset which is truncated. However, in our
use of EOFs below, the original covariance matrix as defined in Eq. (1) is of rank two or full rank for any realistic non-linear
flow. Since two EOFs (¢ = r = 2) will be used in the expansion of the datasets, no truncation is applied and the full variance in
the original dataset will be analyzed in the equations that follow.

Thus, the U matrix can be expressed by means of the two empirical orthogonal functions of the original vector data (which

constitute a complete basis of the horizontal plane) by using the expression
U=U+P:Z,El =U+P,EL, 4)

with P}, (an N X 2 matrix) the standardized principal components of the U data, 3,, (2 x 2 matrix) the standard deviations
(014 and o9,,) of the leading and second EOFs of the U field, E,, (2 x 2 matrix) the matrix holding the orthogonal rotation-
matrix leading to the empirical orthogonal functions of the U field arranged as columns and P,, = P} 3, (/N X 2 matrix) the
variance-holding principal components. Please, note that when the standardized principal components P}, are used, this matrix
is always multiplied by the corresponding standard deviations, so that no variance is lost in the process. Thus, the anomalies of

wind are computed without any loss of variance as

U-U=PZ,El =P,E” (5)
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and the corresponding principal components§)

P,=P;%,=(U-U)E,, (6)

u

and their standardized counterparts
P, =(U-0)E,X" @)

Unless the wind (current) time series is completely arranged across a straight line (something which is very unlikely in observed

vector variables unless the flow is stationary and laminar), 3, is a full-rank diagonal matrix:
Y= . ®)

with 01, > 02,. Due to the fact that the rotation matrix is always full rank (in the two-dimensional space spanned by the zonal
and meridional components, given enough samples), the E,, matrix can also be interpreted geometrically as a rotation matrix
expressed as a function of the angle 6,, formed by the leading (second) EOF with the zonal (meridional) axis as:
cosf, —sinb,
E,={ | ; €))
sinf,  cosf,
The first column of the E,, matrix is the first eigenvector of observations in the horizontal plane, e, ;. Similarly, the second
column of E,, corresponds to e, s, the second eigenvector of the observational covariance matrix.

The principal components and EOF rotation matrices fulfill the well-known orthogonality properties
PP, =X, (10)
so do the standardized principal components
PPl =1 (11
and eigenvectors (EOFs) in the horizontal plane
E.E'=E'E, =1 (12)

Figure 1 (panel a) illustrates in a scatterplot the distribution of measurements of zonal and meridional wind components in the
Reference dataset. Panel b in Figure 1 shows the definition of the ellipses centered in the mean of the reference dataset used in
the Sailor diagrams by using the semi-major and semi-minor axes as defined by the EOF decomposition of the two-dimensional
covariance matrix of the zonal and meridional components of the original vector field, the directions of the principal axegy
(matPHE,,) and the standard deviations corresponding to the principal components P,,. From equations (7) and (I'l), the

quadratic form leading to the ellipses in the diagram can be obtained by applying the Frobenius norm to equation (1T) as

IP:P:T||r = || (U-D)E,S2EL (U-10) ||p=1. (13)
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Figure 1. Scatterplot of wind in dataset Ref (panel a) and its decomposition in terms of the principal axes corresponding to the covariance

matrix of the zonal and meridional components (panel b) as defined in Equation (4).

The principal components are combined according to the quadratic form in Equation (13). This shows that the ellipse
produced from the EOF decomposition of the two-dimensional covariance matrix is a good way to make a simple and clear

representation of the original scatterplot. The eccentricity of the ellipse

£, = /T 22u (14)

is an interesting indicator for additional diagnostics designed for testing the reliability of rotation angles due to the degeneracy
of the eigenvalues.

Following similar notation to the one used for the observations (U matrix), the time series (or time-averaged constant field
over N points in a grid) of simulated wind (current, wave energy flux, vertically integrated moisture transport ...) at the same
observatory (or the closest grid point) formed by the two-dimensional (zonal and meridional components) simulations v;, with
1 =1...N will be arranged as rows in an N x 2 matrix V. The average vector from model data Vv is arranged as constant rows
in an NV x 2 matrix V. The V matrix (and its anomalies) can be expressed as done for observations as in Equations (4) and (5)
above by means of the empirical orthogonal functions of the two-dimensional covariance matrix from simulated zonal and

meridional components of wind (current, moisture transport ...) data

V=V+P:X,E'=V+P,El &« V-V=P:Z,El'=P,E’ (15)

v

*

with equivalent interpretations and equal ranks for P}, 3, E, and P, = P} X, as presented before for observations.

10
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Figure 2. Scatterplot of wind in datasets Ref (panel a, black circles) and MODI1 (panel a, grey crosses) and their decomposition in terms of
the principal axes corresponding to the covariance matrix of the zonal and meridional components of each dataset as defined in Equations (12)

and (15). The comparison of the reference dataset (black circles) with model MOD2 (grey crosses) is shown in panel b.

3.2 Expansion of the matrix V in the EOFs defined by observations

In general, the mean values and EOFs derived from observations (U) and simulations (V) will not be the same. This is shown
in Figure 2, with panel a clearly showing a change in the bias between both datasets and a counter-clockwise rotation for the
case of panel b, as expected from the way these synthetic datasets were produced. It is clearly seen that in the case of MOD1
the structure of the covariance matrix has not changed, whilst a different orientation (but no scaling of the semi-major and
semi-minor axes) appears in the case of MOD?2.

In order to identify these kind of errors (derived from rotations of the axes), the orthonormal EOFs in the E,, matrix can be
expressed as the result of a rotation applied to the EOFs derived from the observations (accepting these as frue EOFs). Thus,

the rotation matrix R, is defined by an angle 6, = 6, — 0,, as

Ry, = cosfuu  —sinbuy ) (16)
sinf,,  cosb,,

so that

Ev = Rquua (17)
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V=V+P,E[R], (18)
and the corresponding principal components can be expanded as
P,=(V-V)R,E, =VE,, (19)

with V = (V — V) R, representing the model-based V anomalies rotated to the basis given by the EOFs corresponding to
observations.

Since both e,; and —e,,; are solutions of the eigenvalue equation when the diagonalization of the two-dimensional covari-
ance matrix is performed (the same happens with e,; and —e,; for model data), 0,,, may take difficult to understand values
even for eigenvectors which span similar subspaces. This is due to the fact that both 6,,, = 0 and 6,,, = 7 refer to eigenvec-
tors that point in perfect directions. In order to provide an easier to interpret diagnostic of the adequacy of the EOFs from

observations and model, the absolute value of the congruence coefficient (Cheng et al., 1995) can also be used. It is defined as
Gii = \em‘ 'evi| (20)

and measures the agreement between the pairs of EOFs from observations (e,,;) and models (e,;). Since this coefficient equals
the cosine of the angle between both directions, and since the absolute value is used, the closest its value is to one, the best
agreement exists between e,,; and e,,;. Due to the orthogonality relationship between the EOFs, only the congruence coefficient

for EOF1 is computed, since it is equal to the one computed using EOF2 (matrices E,, and E,, are orthonormal).
3.3 Expansion of the mean-squared error

The (2 x 2) matrix that represents the mean squared error between the U and V datasets is given by

1
Az =SV -0 (v-U) e
and the aggregated scalar mean squared error of both components of the vector dataset is given by its Frobenius norm

et =|ALllF. 22)

Substituting Eq§4) and Eq. (15) into Eq. (21), it can be shown that

> _lps  1gr lp _lp 1o 1
Auv - NBuv + N (Suv + Suv) + NDHU - NBuv + NCUU + NDUU (23)
with
B2,99(V-0)" (V-10), 24)
Suo = (E,Z, P} -E, 2, P;") (V=0) = (E,P, —-E,P,) (V-10) (25)

12


Text Replaced�
Text
[Old]: "(15)" 
[New]: "(18)"

Text Replaced�
Text
[Old]: "(16)" 
[New]: "(19)"

Text Replaced�
Text
[Old]: "270" 
[New]: "300"

Text Replaced�
Text
[Old]: "eigenvec275" 
[New]: "eigenvec305"

Text Replaced�
Text
[Old]: "(17)" 
[New]: "(20)"

Text Replaced�
Text
[Old]: "280" 
[New]: "310"

Text Inserted�
Text
"Δ"

Text Inserted�
Text
"2 uv = N"

Text Attributes Changed�
Text
Font-style changed.

Graphic Element Deleted�
Graphic Element
 

Text Replaced�
Text
[Old]: "(18) N 285" 
[New]: "(21) 315"

Text Inserted�
Text
"(22)"

Text Deleted�
Text
"(19)"

Annotation Attributes Changed�
Annotation
 

Text Replaced�
Text
[Old]: "(1)" 
[New]: "(4)"

Text Replaced�
Text
[Old]: "(12)" 
[New]: "(15)"

Text Replaced�
Text
[Old]: "(18)," 
[New]: "(21),"

Text Replaced�
Text
[Old]: "(20)" 
[New]: "(23)"

Text Replaced�
Text
[Old]: "290 , (21)" 
[New]: "320 , (24)"

Text Deleted�
Text
"Δ"

Text Deleted�
Text
"2 uv ="

Text Replaced�
Text
[Old]: "11" 
[New]: "12"

Text Inserted�
Text
"V ¯ − U ¯ V ¯ U ¯"

Text Inserted�
Text
"(25)"

Text Replaced�
Text
[Old]: "V ¯ − U ¯ U ¯ V ¯ (22) − S uv =" 
[New]: "S uv = −"


and

D,, =E,22E] +E,X2E] — (E,2.,P; " P;5,E] +E, 2, P} P;%,E]) (26)

QOOOHRN can also be written using non-standardized P, and P, principal components as

330

335

340

345

350

D,, =E,»2E! +E,»’E! - (E,P!P,E! +E,P/P,E]). R27)

B2, represents the part of the squared error due to the magnitude of the bias vector (difference of both means) between both
vector datasets.

The (symmetric) matrix C,, = va + S, reflects the error due to the projection of the bias into the differences of vector
anomalies. Since the bias matrices are constant, the sum of the projections become the sum of anomalies and, as such, they
become zero. This interpretation is clear if Eq. (5) and the corresponding one for the model anomalies are substituted into the

definition of the matrix S, in Eq. (25), yielding

Su=((V-V) = (U-0) (V-0)=(V-U)" (V-T) - (V-0)" (V-T) =0. %as)
Since this matrix is zero, C,,,, will also be zero.

Finally, the matrix D,,,, is related to the covariance matrix of anomalies, as also clearly seen if Eq. (5) and the corresponding
one for simulated data are substituted into Eq. (27).

In order to improve the graphical interpretation of the components of the error, the expression of the empirical orthogonal
functions of V as a rotation of the true ones (derived from observations U) is used. Thus, considering Eq. (17), the matrix D,,,,

above can be rewritten in terms of the EOFs corresponding to observations as
D,, =E,>QE! +R,,E,2’E_R], — (E,P,P,E R}, + R,,E,P[P,E]). 299

If T, = PIP, is proportional to the covariance between both datasets’ principal components, the above expression can be

written as:

D., = E,Z.E] +R,,E,.Z E[R], — (E.T,.E R[], + R, E.I'[ ,E})© (30)

vU u

The interpretation of this expression is that all the matrices involved in the mean squared error can be expressed in the axes de-
fined by the leading and second EOFs of the U (observational) dataset. Thus, using the axes corresponding to the observational
dataset U, we can produce a diagram which gives us a fast visual impression of the structure of the error in two-dimensional
variables the same way the Taylor diagram performs for univariate datasets. Therefore, the diagram presented in this contri-
bution includes not only scalar information in the estimation of the error, but also information regarding the main directions
of variability of the vectors and their differences by means of the characteristics of the ellipses defined by Eq. (19) from the

different datasets.

13
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Figure 3. Scatterplot of wind in datasets Ref (panel a, black circles) and MOD?3 (panel a, grey crosses) and their decomposition in terms of
the principal axes corresponding to the covariance matrix of the zonal and meridional components of each dataset. The comparison of the

reference dataset (black circles) with model MOD4 (grey crosses) is shown in panel b.

Figure 3 presents two interesting cases. The first case, MOD3, is implausible from the point of view of a real model, but it
constitutes an interesting case study to analyze the properties of the diagram. In MOD3, a simple random permutation of the
original observations has been performed. Thus, there are neither bias nor rotations of the principal axes. From the point of
view of the graphical example shown, it seems that the model is perfect, but it is not, due to the lack of temporal correlation
between model and observations. This is only apparent if the full RMSE is taken into account, as shown by Table 1. Thus, a
legend with the RMSE as defined in Eq. (22) must be added to the plot in order to arrive to precise comparison of datasets. The
comparison of columns o2 and Y, o7 in Table 1 shows that the full variance of the datasets is taken into account in the EOF
decomposition, as both columns present the same values.

On the other side, panel b in Figure 3 shows that for the scaled dataset (MOD4), the sizes of the major and minor axes of
the ellipses allow a fast visual detection of the scaling present in the dataset. The individual components of the error for all
the synthetic datasets used in the description of the methodology are also presented in Table 1. The last column shows the full
RMSE between vector fields. It is apparent from this aggregated estimation of error that it properly evaluates the differences
due to the lack of correlation that have been mentioned in the case of MOD?3 (no bias and perfect orientation and axes of the
ellipses) too. The rotation angle (column 6,,, in radians) correctly identifies the way the errors have been introduced in the
different synthetic models. Despite the rotation of the ellipses apparent in columns 6,, and 6, (the case of MOD?2), the fact

that the semiaxes are of the same relative length is clearly seen by the value of the eccentricity €, which also supports the way
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Model o Y07 O 0, 6,., R® |bias| RMSE e gn

Ref 4756 4756 1.93 2.00 0.00 0.00 092 1.00
MOD1 47.56  47.56 193 0.00 2.00 8.34 556 092 1.00
MOD2 4756  47.56 246 052 2.00 2.88 8.69 092 0.87
MOD3 4756  47.56 -1.21  0.72  0.00 0.00 1.52 092 1.00
MOD4 190.24 190.24 1.93 0.00 2.00 5.56 11.76 092 1 .O(‘o

Table 1. Individual components of the error for the synthetic datasets used for illustration of the methodology. o2 represents the total variance
(m? s2) of every dataset as computed from the original zonal and meridional components. > i o2 represents the variance (m? s~2) of wind
for every dataset (reference or model) as computed from the EOF decomposition (axes of the ellipses in the diagrams). 6,, and 6,, represent
the angles (radians) of the semi-major axes of the ellipses calculated from reference and model. 6,,,, (radians) represents the relative rotation
of the semi-major axis of the modelled dataset with respect to the observations. R? represents the two-dimensional squared correlation
coefficient (sum of the squared canonical correlations). |bias| represents the magnitude of the bias (m s~*). RMSE holds the root mean
squared error (m s~ ). The eccentricity of the ellipses (€) is the same for all the synthetic datasets because of the way they have been built.

Finally, g1:1 represents the congruence coefficient (Eq. 20) for EOF1 of all datasets with respect to the first EOF as derived from observations.

the ellipses are presented in Figures 1 to 3. On the other side, the interpretation of the angles is complicated by the fact that
both e,; and —e,; are a right solution of the eigenvalue problem in Eq. (2). This is apparent in the case of MOD?3, in which
the eigenvalue problem yields eigenvectors pointing in the same direction with different sign, so that 6, = —1.21 + 7 yields
the same value as 6,,. The orientation of both eigenvectors is the same for all models except MOD?2, as effectively shown by
column g;; in Table I, which holds the absolute value of the congruence coefficient.

The different properties of the synthetic datasets presented so far can be abbreviated in Figure 4, which presents in panels

a (left) and b (right) uncentered and centered (respectively) versions of the Sailor diagram. In the uncentered version of the
Sailor diagram, each ellipse, as defined by Eq. (13), is centered in its own average. This allows an easy interpretation of the
bias term. In order to improve the interpretability of the rotation/scaling parameters of the ellipses (semi-major and semi-minor
axes and standard deviations), the ellipse corresponding to observations is also drawn in gray centered at the same average of
every model. This way, the rotations and scalings of the vectors produced by models can easily be compared against the ones
drawn from observations. However, in some cases (depending on the relative values of the bias and the standard deviations), it
might be more interesting to plot all the ellipses centered at the mean corresponding to the observations and identify the bias
by means of coloured dots, as shown in the centered version of the diagram (right panel in Figure 4).

An additional reason which supports that the Sailor diagram introduces powerful diagnostics for vector data is properly
Qshown in Table 1. According to the column which shows the squared correlation coefficient, all models show a perfect match
(R? = 2) for the two-dimensional correlation coefficient except the one built by randomly resampling the data (MOD3). How-
ever, Figures 2 and 4 clearly show that the wind data in MOD?2 is rotated with respect to the reference dataset. This is

not detected by R? because it yields perfect results by construction when there is a linear relationship between both vector
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Figure 4. Uncentered (left) and centered (right) versions of the Sailor diagram after placing the ellipses from all the synthetic datasets in the

same plot.

datasets (Crosby et al., 1993). However, an analysis based on the full components of the RMSE as the one performed in the
Sailor diagram (Figure 4 and Table 1) clearly highlights these directional problems.

3.4 Extension of the methodology to spatial fields

In the case of the analysis of the ability of models to represent the spatial distribution of an averaged field (a typical use of the

390 Taylor diagram in climatology, for instance), there is no change needed to the diagram defined so far. Instead of using the 7-
mode of principal components (covariance matrix defined by temporal covariances), we can just use the S-mode, in traditional
terminology of principal components (Compagnucci and Richman, 2008). Thus, in the previous description, N will run along
Qg*he grid points, and the two-dimensional biases and covariances are computed in the spatial domain, but the error analysis is
still being performed onto two-dimensional vectors. As an example of this very common case in the application of Taylor’s

895 diagram to climatology, we present an example including the comparison of multi-year averages of Northern Hemisphere
qurface wind vectors. For the case of spatial grids, an external standard area-weighting by means of factors given by \/cos¢

with ¢ latitude (North et al., 1982) is commonly applied to the data in order to avoid an excessive weight in the results of points

in polar latitudes which represent much a lower area in a regular longitude-latitude grid.
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3.5 Use of the diagram with ensembles of models

As a final example, the use of the diagram with a multimodel ensemble is shown. In this case, the climatologies of surface wind
from two models with a different number of realizations are compared with the corresponding climatology from ERAS. As
described above, since this is also a comparison of data on a regular longitude-latitude grid, the covariance matrix is also built

over the spatial points and the external weights are also applied to avoid an overrepresentation of polar regions in the results.
3.6 R package implementing the methodology

The authors have created an R package called SailoR which is freely available in the Comprehensive R Archive Network
(CRAN). The package has been used to produce the plots presented in section 4, and the code to prepare some of these plots
are provided as examples in the manual of the package. Besides producing the diagrams shown as an example in this paper, the
package also computes all the individual terms used in the analysis of the MSE error as described in Section 3. Thus, different
aspects of the main principal axes, their relative rotation, the two-dimensional correlation coefficient and the combined RMSE

can be readily analyzed for different vector datasets and exported to tables which can be presented in publications.

4 Use of the elements in the error matrix in the diagram
4.1 Wind over a Mediterranean location

The first example of a Sailor diagram built using real data is shown in Figure 5 (left). In it, the X axis represents the zonal
component of wind and the Y axis its meridional component. The mean 2D vector corresponding to each of the datasets is rep-
resented by a colored circle, except for the reference dataset, which uses a grey square. The leading EOF of the two-dimensional
covariance matrix of zonal and meridional components of every dataset is represented by the direction corresponding to the
semi-major axis of the ellipse that is plotted centered at every model’s mean value (same colour as the one used to represent
the model mean). The second EOF to each model is perpendicular to the previous direction by construction due to the or-
thonormality constraint in Equation (12). The grey ellipse centered at each model mean represents the EOF from the reference
dataset (observations). Thus, the angle between the colored and grey semi-major axes represents the relative rotation (6,,,)
between EOFs from observations and simulations. The lengths of the semi-major and semi-minor axes (colour and grey) show
the variances explained by each EOF (model and reference) at their principal axes. The comparison of these lengths between
coloured and grey ellipses allows to address the question whether the model underestimates or overestimates the variances at
each of the principal axes. In this particular example, since the model vs observation biases are much lower than the variance
explained by the principal axes defined by the EOFs, the interpretation of this diagram is not very easy. However, it is already
showing the main directions of the error matrices, their biases and the position of the reference dataset. The bottom right legend
shows thfg*otal RMSE error given by Eq. (22) in subsection 3, which takes into account both the contribution from the bias
(distance of the points to the reference dataset’s mean) and the different orientation and lengths of the major and minor axes
(EOFs).
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Figure 5. Sailor diagram with default parameters (left) and ellipses scaled by a factor 0.025 to improve visibility of the directional error

(right) for the wind observed and simulated in Dragonera (buoy in the Mediterranean).

430 In order to show that different designs optimize the information transmitted by the diagram, in the second diagram prepared
using the data from the same example, the ranges of both axes are limited and the ellipses corresponding to the main directions
of the error matrix are accordingly scaled by means of a small scale factor (0.025). The brown square in left panel shows the

Garea which is amplified in the right panel and it illustrates the role played by the scale factor, which reduces (or amplifies) the
size of the axes of the ellipses, thus making easier to appreciate the relative differences in biases while still making possible to

435 get access to the information relative to the rotation of the principal axes. In the scaled version of the diagram (Figure 5, right)
it can be seen that the distance between every coloured point corresponding to a given model to the grey square represents
the bias amongst the datasets and they can effectively be visually compared. On the other hand, the grey ellipses and their

Qsemiaxes show the main structure of the variability of the reference dataset. This grey ellipse is plotted centered on the point
representing the mean of every model, where the EOFs corresponding to that model are also shown for comparison. Both

440 ellipses (the one corresponding to the model being analyzed and the one corresponding to the reference dataset) are scaled by
the same scale factor so that they are not deformed during the scaling process. The use of ellipses and their major and minor
axes easily allows to compare the main directions of variability of the observed (grey) and modelled (colored) winds. It shows

%

show a smaller rotation of their major axes with respect to the one from observations. The model EOFs are almost orthogonal

hat the ones corresponding to the WRF model are the closest ones to observations. It can be seen that both WRF simulations
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from the ones in observations for the case of ERAI or CCMPv2 (CCMP_SAT in legend). The bottom right legend, in any case,
presents the real RMSE error without scaling its value.

In this particular case, it might seem sensible to think that the fact that the variances of the major and minor axes are very close
points to a weakness of the diagram since, in that case, the determination of the angle of the axes will be arbitrary. However,
it has to be considered that the final index of agreement would still be the RMSE, which does not depend on the eigenvectors
of the covariance matrix. Thus, the results in terms of direction might not be very reliable in case that the eigenvalues are
degenerated, but the RMSE is not affected by this problem. Thus, the use of the eccentricity of the ellipses (provided as an
output in our R package) can be useful to diagnose those cases (in which eccentricity is very low) that make estimations of
relative rotations difficult. For a more precise determination of the reliability of the rotation angle, a bootstrap analysis of the
rotation angles can also be conducted, if needed, since the evaluation of the angles is independent of the production of the

diagram.
Surface current in the Bay of Biscay

Figure 6 (left) shows an alternative version of the Sailor diagram. In this particular case, the bias is relatively low. Thus, in order
to ease the interpretation of the structure of the errors, the ellipses representing the first and second EOFs are drawn on top of
the point corresponding to observations. The fact that the bias is small is only affecting the part of the RMSE derived from term
B2, in Eq. (23). As in the previous case, they are scaled (four times larger) in order to improve their visibility. It is clear that
the relevant part in terms of the errors of models versus observations is not the bias, but the way the variability is represented,
instead. The HF-Radar data’s leading EOF (observational data, actually) is closer to the one from in-situ observations, as could
be expected, since both cases represent observational (in-situ versus remote) estimations of currents. As in the previous case,
the legend at the bottom right shows unscaled total RMSE errors. In this case, the ellipses clearly show not only the difference
in the orientation of the EOFs, but also the underestimation of the variability present both in radar data, but especially in the

case of model data.
4.3 Vertically integrated water vapour transport

The Sailor diagram for the vertically integrated water vapour transport can be seen in Figure 6 (right). In this case, the errors
associated to the bias are smaller than the error associated to the covariance. However, since the errors in the anomalies are not
very large, the visibility of the diagram has been increased by plotting all of the ellipses on top of the observational point. This
way, the errors in direction can be easily identified. For clarity, the ellipses are again scaled with a scale factor of 0.1. It can
be seen that the estimation of the EOFs is closer for the case of the simulation with data assimilation, both in direction and,
particularly, in the case of the amount of variance represented, since WRF N and ERAI slightly overestimate the water vapour
fluxes.

A selection of the tabular results corresponding to the RMSE between observed and modelled vertically integrated water

vapour transport are presented in Table 2. Different aspects of the main principal axes such as their semi-major and semi-minor
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axes, their relative rotation, the two-dimensional correlation coefficient and the combined RMSE can be readily analyzed for

the water vapour transport vectors.

Model Oz oy, R? % —V| RMSE e gn
1  OBS 183.45 107.83 2.00 0.00 0.00 0.81 1.00
2 WRFN 19553 11821 1.57 1541 26198 0.80 0.99
3 WRFD 17347 100.19 194 5.65 25753 0.82 1.00
4 ERAI 196.99 111.18 192 4.69 27294 0.83 1.00

Table 2. Agreement of simulations by different models with observed vertically integrated water vapour transport from soundings. o, and
o represent the semi-major and semi-minor axes of the ellipses (kg m~* s™). The R? column represents the value of the two-dimensional
correlation coefficient following Crosby et al. (1993) (R? = 2 for a perfect model, instead of 1 for the one-dimensional counterpart). The

1571y are also

differences between the datasets described by the bias [U=V| (kg m~" s~') and total root mean squared error (kg m~
shown. Finally, the eccentricity of the ellipses (¢) and the congruence coefficient g11 of the EOF1 of every model with the one derived from
observations are also shown. The congruence coefficient gi1 represents the absolute value of the cosine of the relative rotation of model

9

ellipses with respect to the observational one (Section 3.2)
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Figure 7. Sailor diagram representing the structure of errors in surface wind in January over the Northern Hemisphere for different reanalyses,

uncentered version (left, scale factor 0.15) and centered version (right, scale factor 0.15).

4.4 Spatial distribution of seasonally-averaged surface wind

480 As an example of the potential uses of the Sailor diagram, Figure 7 (left, panel a) represents in an uncentered version of
the Sailor diagram the agreement of the January-averaged northern Hemisphere surface wind from different reanalyses using
an scale factor of 0.15. On the other side, Figure 7 (right, panel b) shows the agreement of the January-averaged northern
Hemisphere surface wind from different reanalyses using an scale factor of 0.15 in a centered version of the Sailor diagram. In
these cases, we are assuming that ERAS corresponds to the "perfect” dataset (observations). This is quite arbitrary, but we are

485 performing this comparison for the sake of showing the ability of the Sailor diagram to evaluate spatial fields, as was done in the
initial design of the Taylor diagram. It is clearly shown that the reanalyses produced by the ECMWF (ERAS5 and ERAI) show
the closest agreement both in terms of the smallest bias and better matching of the corresponding EOFs. The other reanalyses

0 Q(CFSRVZ, MERRA?2 and NNRA) group along the same semi-major axis, but they overestimate the variability when compared

with ERAS. In terms of the bias, too, it can be seen that the lowest bias is the one corresponding to ERAI The easiest way to

490 arrive to a numerically precise overall diagnostic is presented in the legend, where the aggregated RMSE error is shown.
4.5 Application to multimodel ensembles

In this case, we propose to define the average of all the M/ ensemble members of every model as the vector V (Rougier, 2016).

9990900

e other side, the principal components and the associated variances and eigenvectors can be estimated from an extended
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data matrix V. (with dimensions N M x 2), which is built by joining all the realizations together in a single dataset. This
means that the observational matrix U must also be extended to an U, matrix sized N M X 2. This can be done by repeating
the observations M times to produce the U, dataset. This ensures that the algorithm will work because the covariance matrices
involved will still be of full rank. However, it has to be considered that, in this case, the number of effective degrees of
freedom (Bretherton et al., 1999) in both U, and V datasets will not be the same. This would also be a problem for different
models V; and V, if the number of members in their ensembles are not the same, such as in the CMIP set of runs, for instance.

As shown in Figure 8 (left), prepared using as scale factor 0.2, the Sailor diagram shows interesting features. The two models
studied agree quite well in the simulation of the spatial variability of the field (the EOFs and major/minor axes in the ellipse
represent the spatial variability of the field). Both models simulate an underestimation of zonal average winds when compared
with ERAS. MIROC tends to overestimate the mean meridional circulation and IPSL underestimates it.

The second option for ensembles (same scale factor) is shown in Figure 8 (right). It consists in the use of every single
realization of the ensemble as a single model. The proposed diagram leads to a neat comparison of the relative performance
of the different members of the ensemble. This information might be interesting because of scientific reasons such as that the
initialization of the members of the ensemble uses different techniques which need testing, for instance. In the case shown,

%

every model tend to cluster at the same position. These biases are also very low. Besides that, the intra-ensemble variance of

he conclusion is quite clear: the averaged bias is relatively independent of the realization and the averages corresponding to

properties such as the spatial variability of the field is also quite low, so that the ellipses derived from different realizations in
the same model almost overlap. Thus, in the analysis performed here, all the realizations of every model in the ensemble are
very close to the reference dataset. The final decision on the use of one approach (Figure 8 left) or the other (Figure 8 right)
for the analysis of ensemble integrations is open to the reader, since they can answer different questions, such as whether the

intra-variability of the ensemble (in terms of bias and principal directions) is high or low.

5 Conclusions

A new diagram for the fast evaluation of the quality of models forecasting two-dimensional vector fields or time series has been
presented. As Taylor (2001) properly stated in his seminal paper, a new diagram will only be accepted by users if it helps in the
fast and efficient intercomparison of model results against observational datasets. The authors of this paper developed the Sailor
diagram in order to fill a gap that we detected when comparing two or more vector fields in our own work. In our previous
papers when we worked with with vector fields (Ibarra-Berastegi et al., 2015, 2016) we solved this problem by duplicationg
the Taylor diagram, one for each component. The Sailor diagram merges the same information and allows a straightforward
visual comparison while rigorously providing the numeric values of the RMSE. It provides additional diagnostics which allow
@ complete analysis of the errors in the simulated directions too.

The authors hope that the results presented so far demonstrate that the Sailor diagram achieves that goal. First, the diagram

relies on the partition of the two-dimensional MSE in its bias and covariance parts. Those two terms are presented in the diagram

separately. Thus, those two components of the error can be easily identified for the different datasets. Second, the covariance
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Figure 8. Sailor diagram representing the agreement between the Southern Hemisphere wind field as simulated by two models from the
CMIPS repository with ERAS data when the reference dataset is repeated in an extended matrix (left) or when the individual realizations of

the ensemble are taken as independent datasets (right).

part is decomposed in terms of the corresponding principal components (empirical orthogonal functions). The structure of the
covariance matrix of models and observations can also be effectively compared in the presented diagram, both in terms of the
length of their semi-axes (fraction of variance) and in the relative rotation of every model against the reference dataset. This
allows to easily identify in the diagram if the models under or overestimate the variance along any of the main axes and whether
the main directions of variability in models and observations are relatively rotated or not. Thus, both two-dimensional bias and
covariance can be visually identified from the diagram. Since the decomposition of the horizontal vector field is performed by
means of two EOFs, there is not loss in the variance of the observed or simulated datasets which are being compared.

The diagram might provide inaccurate estimations of the relative rotations of the principal axes of the distribution of vector
components in case both eigenvalues were degenerated and the eigenvectors were affected by substantial sampling uncertainty.
In any case, a diagnostic produced by the package we provide, the eccentricity of the ellipses, Eq. (13) can be used by the user
to detect this risk. In any case, even if the eigenvalues were degenerated, the final classification of models is performed in terms
of the RMSE, which is a measure of error which is not affected by this degeneracy.

%

of the use of scale factors for the ellipses, by centering all of them in the reference dataset or on top of every model being used.

he diagram is easily customizable in order to increase the ability to identify features of the datasets being verified by means

Thus, researchers can design a diagram that best suits their needs.
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The analysis of ensembles can also be performed by means of the diagram. As shown in subsection 4.5, the diagram can
accommodate this case by using two different policies. In the first case, all the M members of the ensemble belonging to a
single model can be mixed in a unique dataset, but this involves repeating the block of observations M times. This implies
that the analysis of the results presented in the diagram in this case must consider the different number of effective degrees
of freedom very carefully and further research should be performed to analyze the impact of this in the application of the
Sailor diagram to model ensembles. However, in the second case, all the members of the ensemble can also be analyzed as
independent realizations of the same dataset. This tends to clutter the diagram, but these results are not affected by problems
related to the number of effective degrees of freedom in the different datasets used to build the diagram. However, every
member of the ensemble can also be treated individually, so that the diagram would represent the intraensemble spread.

As a conclusion, we hope that the diagram presented here, together with an R implementation of it freely available in CRAN

will ease the verification of vector fields derived from geoscientific models in the future.

Code and data availability. The code used to prepare the figures in this paper is described as examples in the manual of the R package
SailoR, available from CRAN https://cran.r-project.org/package=SailoR. The data used to produce these figures are also distributed with
the package.
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