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Abstract. In this study, we evaluate the performance of Nanjing University of Information Science and 10 

Technology Earth System Model, version 3 (hereafter NESM v3) in simulating the marine 

biogeochemical cycle and CO2 uptake. Compared with observations, NESM v3 reproduces reasonably 

well the large-scale patterns of upper ocean biogeochemical fields including nutrients, alkalinity, 

dissolved inorganic, chlorophyll, and net primary production. The model also reasonably reproduces 

current-day oceanic CO2 uptake, the total CO2 uptake is 149 PgC from 1850 to 2016. In the 1ptCO2 15 

experiment, the NESM v3 produced carbon-climate (𝛾=-7.9 PgC/K) and carbon-concentration sensitivity 

parameters (𝛽 =0.8 PgC/ppm) are comparable with CMIP5 model results. The nonlinearity of carbon 

uptake in the NESM v3 accounts for 10.3% of the total carbon uptake, which is within the range of CMIP5 

model results (3.6%~10.6%). Some regional discrepancies between model simulations and observations 

are identified and the possible causes are investigated. In the upper ocean, the simulated biases in 20 

biogeochemical fields are mainly associated with the shortcoming in simulated ocean circulation. Weak 

upwelling in the Indian Ocean suppresses the nutrient entrainment to the upper ocean, therefore reducing 

the biological activities and resulting in underestimation of net primary production and chlorophyll 

concentration. In the Pacific and the Southern Ocean, high-nutrient and low-chlorophyll result from the 

strong iron limitation. Alkalinity shows high biases in high-latitude oceans due to the strong convective 25 

mixing. The major discrepancy in biogeochemical fields is seen in the deep Northern Pacific. The 

simulated high concentration of nutrients, alkalinity and dissolved inorganic carbon water is too deep due 

to the excessive deep ocean remineralization. Despite these model-observation discrepancies, it is 
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expected that the NESM v3 can be employed as a useful modeling tool to investigate large scale 

interactions between the ocean carbon cycle and climate change.  

1 Introduction  

The global carbon cycle plays an important role in the climate system. The increase in atmospheric carbon 

dioxide (CO2) is responsible for a large part of the observed increase in global mean surface temperature 5 

(Ciais et al., 2013). From 1750 to 2016, about 645±80 PgC (1 PgC =1015 gram carbon) of anthropogenic 

carbon has been emitted to the atmosphere, including 420±20 PgC from fossil fuels and industry and 

225±75 PgC from land-use-change (Le Quéré et al., 2018). This CO2 emission caused atmospheric CO2 

concentration to increase by 45% from an annual mean pre-industrial value of ~277 parts per million 

(ppm) (Joos and Spahni, 2008) to 406.8 ppm in 2017 (NOAA ESRL Global Monitoring Division, 2017). 10 

As a large carbon reservoir, the global ocean contains more than 50 times the amount of carbon than the 

atmosphere (Denman et al., 2007) and plays a key role in anthropogenic CO2 uptake (Ballantyne et al., 

2012; Wanninkhof et al., 2013). Since the year 1870 to 2016, about 25% of anthropogenic CO2 (about 

150±20 PgC) has been absorbed by the ocean (Le Quéré et al., 2018).  

An increase in atmospheric CO2 perturbs the atmospheric radiative balance and leads to climate change. 15 

Changes in atmospheric temperature, precipitation, evaporation, and wind, induce changes in ocean 

physical properties such as temperature, salinity, and ocean circulation (Gregory et al., 2005; Pierce et al., 

2012). These changes in ocean physical properties, in turn, affect the ocean carbon cycle (Sarmiento and 

Gruber, 2006). For example, increasing sea surface temperature decreases the CO2 solubility and results 

in a reduction of oceanic CO2 uptake (Najjar, 1992; Teng et al., 1996; Cox et al., 2000; Zickfeld et al., 20 

2008). Meanwhile, global warming would lead to a weakening of the global thermohaline circulation and 

an increase in ocean stratification (Gregory et al., 2005; Goris et al. 2015), which would reduce the 

exchange of carbon and nutrients between the upper ocean and the ocean interior. Global warming would 

also increase the amount of light in the mixed-layer, and then affect phytoplankton growth and 

biologically-mediated CO2 uptake (Polovina et al., 2008; Luo et al., 2009; Steinacher et al., 2010; 25 

Capotondi et al., 2012).  

Friedlingstein et al., (2006) proposed that the response of oceanic uptake of atmospheric CO2 can be 
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represented by the linear sum of two components: 1) carbon-concentration sensitivity, which refers to the 

response of oceanic CO2 uptake to increasing atmospheric CO2; 2) carbon-climate sensitivity, which 

refers to the response of oceanic CO2 uptake to global warming. Adopting this conceptual framework, a 

number of studies have analyzed the effect of CO2 concentration and global warming on the carbon cycle 

in terms of the carbon-concentration and carbon-climate sensitivity parameters under different CO2 5 

emission and concentration scenarios (Gregory et al., 2009; Boer and Arora, 2009; Tjiputra et al., 2010; 

Roy et al., 2011; Arora et al., 2013).  

Given the importance of carbon cycle feedback in current and future global climate change, it is necessary 

to include the representation of the global carbon cycle in climate system models. Recently, the third 

version of the NUIST earth system model was developed as a registered model of CMIP6 (Cao et al., 10 

2018). NESM v3 consists of three main model components, including European Centre Hamburg 

Atmospheric Model (ECHAM v6.3) (Stevens et al., 2012; Giorgetta et al., 2013), Nucleus for European 

Modeling of the Ocean version 3.4 (NEMO v3.4-revision 3814) (Madec and NEMO team, 2012) and Los 

Alamos sea-ice model version 4.1 (CICE v4.1) (Hunke et al., 2010). NESM v3 has good skills in 

simulating internal modes, such as El Niño–Southern Oscillation (ENSO), Madden–Julian oscillation 15 

(MJO), and monsoon (Li et al., 2018; Yang and Wang, 2018a; Yang et al., 2018b).  

The Pelagic Interactions Scheme for Carbon and Ecosystem Studies (PISCES v2) is coupled to the ocean 

circulation component to represent the ocean biogeochemical processes (Aumont et al., 2015). Séférian 

et al. (2013) assessed the ability of PISCES from three earth system modes: IPSL-CM4-LOOP, IPSL-

CM5A-LR, and CNRM-CM5.1. The results show that differences in terms of atmospheric component, 20 

ocean subgrid-scale physics and resolution would largely influence the marine biogeochemical cycle. Due 

to the different physical components and multiple non-trivial modifications of physical processes, it is 

essential to evaluate the performance of the ocean biogeochemical cycle in the NESM v3, i.e. the 

agreement between simulated and observed fields (Randall et al., 2007). 

The outline of the paper is the following. In Section 2, we describe the NESM v3 with a focus on the 25 

ocean carbon cycle component, as well as the setup of model simulations. We evaluate the modeled 

biogeochemical fields against available observations in Section 3.1. In Section 3.2, we evaluate modeled 

oceanic uptake of anthropogenic CO2 during the historical period against data-based estimates. In Section 
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3.3, we analyze modeled carbon-concentration sensitivity parameters and carbon-climate sensitivity 

parameters under different CO2 concentration scenarios and compare our results with CMIP5 model 

results. Conclusions and discussions are presented in Section 4. We also provide a supplementary material 

includes comparisons of some biogeochemical fields in the NESM v3 and IPSL-CM5A-LR. 

2 Method 5 

2.1 Model 

2.1.1 Framework of NUIST-CSM-2.0.1 

Detailed model descriptions, major improvements, and tuning are documented in Cao et al. (2018). Here 

we give a brief introduction.  

In this study, we use the low-resolution version of NESM v3. The atmospheric resolution is T31L31 which 10 

has a horizontal resolution of ~ 3.75° latitude by 3.75° longitude and 31 layers. The atmospheric model 

and land surface model are originally adopted from ECHAM v6.3. The detailed information is shown in 

Stevens et al. (2012) and Giorgetta et al. (2013). The sea-ice component includes four ice layers and one 

snow layer with a multi-layer thermodynamic scheme (Hunke et al., 2010; Cao et al., 2018). Ocean model 

runs with the ORCA2 global ocean configuration, which is a type of tripole grid. It is based on a 2 degree 15 

Mercator mesh and has 31 layers with the thickness of the ocean layer increasing from 10m in the upper 

ocean to 500m at 5000m depth. A local transformation is applied in the tropics to refine the resolution to 

up to 0.5 degree at the equator. In the ocean model, the incoming solar radiation can penetrate to the upper 

ocean layers as deep as 391m, and a bio-model penetration parameterization scheme is used to calculate 

the distribution of solar radiation (Lengaigne et al., 2009). In the NESM v3, we modify the ocean 20 

background vertical diffusivity to replace the constant value with latitude-dependent values (Jochum et 

al., 2009, Cao et al., 2018). The parameterization scheme of the vertical diffusivity is detailed in the 

supplementary and the global distribution of vertical diffusivity is also shown (Fig. S0). Compared to the 

original vertical diffusivity coefficient constant of 0.12 cm2/s, the coefficients of the tropical ocean are 

reduced and that of the middle and high latitude oceans are increased, especially in the middle latitude 25 

oceans (24°N~33°N and 24°S~33°S). Also, we incorporate the parameterization of brine rejection in the 
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ocean model based on Smith et al (2010). In the NESM v3, the reference sea-ice salinity is 4 PSU, which 

means additional salt flux would inject into the ocean during the processes of ice melting.  

2.1.2 Ocean biogeochemical component 

NESM v3 employs the standard PISCES v2 to represent the ocean biogeochemical cycle. The PISCES 

model is developed from a simple Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) model 5 

(Aumont et al., 2002). It can be used for both regional and global simulations of lower trophic levels of 

the marine ecosystem and ocean carbon cycle (Bopp et al., 2005; Resplandy et al., 2012; Séférian et al., 

2013).  

In the current version, there are 24 prognostic tracers in total, including dissolved inorganic and organic 

carbon, alkalinity, chlorophyll, and nutrients. We use the same biogeochemical parameters as that used in 10 

Aumont et al. (2015). The only exception is the advection scheme for passive tracers. Here we use the 

Total Variance Dissipation (TVD) formulation instead of the Monotone Upstream Scheme for 

Conservative Laws (MUSCL) formulation to keep the advection scheme to be consistent with the one 

used in the physical ocean model. Both TVD and MUSCL schemes have good performance in 

biogeochemical modeling. The MUSCL scheme has better performance in resolving the small scales, 15 

while TVD scheme minimizes systematic error through numerical diffusion, and is a better option for 

coarse-resolution models (Lévy et al., 2001a). 

Two different types of phytoplankton: nanophytoplankton and diatoms, and two size classes of 

zooplankton: mesozooplankton and microzooplankton, are presented in the model. The life cycle of 

phytoplankton is regulated by several processes, including growth, mortality, aggregation, and grazing by 20 

zooplankton (Aumont et al., 2015). The growth rate of phytoplankton is determined by temperature, 

photosynthetic active radiation, and availability of nutrients, including phosphate, nitrate, silicate, iron, 

and ammonium. The mortality rate of phytoplankton is set as a constant and is identical for 

nanophytoplankton and diatoms. The aggregations of nanophytoplankton, which transform the dissolved 

organic carbon (DOC) to the particular organic matter (POM), only depend on the shear rate, which is set 25 

to 1 s-1 in the mixed layer and 0.01 s-1 below. The same is assumed for diatoms, while the aggregations of 

diatoms are further enhanced by the nutrients co-limitation. For all species, the phosphate, nitrate, and 
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carbon are linked by a constant Redfield ratio. In NESM v3, the Redfield ratio of C: N: P is set to be 

122:16:1 (Takahashi et al., 1985) and the –O/C ratio is set to 1.34 (Kortzinger et al., 2001). In contrast, 

the Fe / C, chlorophyll / C, and silicon / C ratio are prognostically simulated by the model predicted based 

on the external concentrations of the limiting nutrients as in the quota-approach (McCarthy, 1980; Droop, 

1983; Aumont et al., 2015).  5 

The remineralization of semi-labile dissolved organic carbon (DOC) can occur in either oxic water or 

anoxic water depending on the local oxygen concentration, and their degradation rates are specified and 

identical for oxic respiration and denitrification. Detritus is represented by different types, including 

particulate organic matter (POM), calcite, iron particles, and diatoms silicate. The POM is described by a 

simple two-compartment scheme, which uses two tracers corresponding to two size classes: a smaller 10 

class (POC: 1-100μm) and a larger class (GOC: 100-500μm). The sinking speed of GOC (50-200 m d-1) 

increases with depth and is much faster than POC (3 m d-1). A fraction of phytoplankton would be turned 

to the POM through the processes of mortality and aggregation. The fate of mortality and aggregation of 

nanophytoplankton depends on the proportion of the calcifying organisms. For nanophytoplankton, it is 

assumed that half of the calcifying organisms are associated with the calcifying organisms. Because the 15 

density of the calcite is larger than that of organic matter, 50% of the dying calcifiers are routed to the 

fast-sinking particles. The same is assumed for the mortality of diatoms, and 50% of the dying diatoms 

are turned to the POM due to the larger density of biogenic silica compared to that of organic matter. The 

degradation rate of the POM depends on the local temperature with a Q10 of about 1.9.  

The geochemical boundary condition accounts for the external nutrient supply from five different sources, 20 

including atmospheric dust deposition of iron and silicon, river recharge of nutrients, dissolved carbon, 

and alkalinity, atmospheric deposition of nitrogen, and sediment mobilization of sedimentary iron. At the 

bottom of the ocean, different sediment parameterization schemes are applied to biogenic silica, POM, 

and particulate iron. The amount of permanently buried biogenic silica is assumed to balance the external 

source, the burial efficiency of POM is determined by the organic carbon sinking rate at the bottom 25 

follows the algorithm proposed by Dunne et al. (2007), and all the particulate iron would be buried into 

the sediment once they reach the ocean bottom. The amount of the unburied calcite and biogenic silica 

would dissolve back into the ocean water instantaneously.  
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Carbonate chemistry including air-sea CO2 exchange is formulated based on the Ocean Carbon-Cycle 

Model Intercomparison Project (OCMIP-2) protocol (more information can be accessed at 

http://ocmip5.ipsl.jussieu.fr/OCMIP/). The quadratic wind-speed formulation proposed by Wanninkhof 

(1992) is used to compute the air-sea exchange of carbon and oxygen.  

2.2 Simulations 5 

First, NESM v3 was spun up for 2000 years with all related parameters set to pre-industrial values (the 

year 1850), including orbital parameters, land use, aerosol, and greenhouse gas (GHGs) concentration 

(284 ppm for CO2, 790 ppb for CH4, 275 ppb for N2O, and 0 ppt for both CFC11 and CFC12). The 

atmosphere and sea-ice components use the end of a 550-year offline simulation as its initial conditions 

and the ocean component uses the end of a 4000-year offline simulation as its initial state. Averaged over 10 

the last 100 years of the spin-up simulation, linear drift of globally integrated sea-air CO2 flux is 0.0006 

PgC yr-1 per year, indicating that a quasi-equilibrium state has been reached for the global ocean carbon 

cycle. Global mean SST averaged over the last 100 years of spin-up simulation is 13.1 Celsius (°C) with 

the linear drift of -0.0001°C per year, and ocean mean temperature is 3.5 ℃ with the linear drift of 

0.00016 ℃ per year, indicating that the dynamic ocean component has also reached a quasi-equilibrium 15 

state. 

Following the protocol of CMIP6 historical and the shared socio-economic pathway scenarios 

experiments design (Eyring et al., 2016; Jones et al., 2016), the model is further integrated with changing 

conditions, including ozone, aerosol, land use, and solar forcing from 1850 to 2100. From the year 1850 

to 2014, GHGs concentration and forcing conditions are consistent with observations, and from the year 20 

2015 to 2100, GHGs concentration and forcing conditions are produced based on SSP5-8.5. In addition, 

following the protocol of CMIP5 (Taylor et al., 2012), we performed an idealized 1%/yr CO2 run (core 

6.1 in CMIP5 experiment design, hereafter 1ptCO2), in which atmospheric CO2 concentration increases 

at a rate of 1% per year starting from the end state of the pre-industrial simulation with other GHGs 

concentration remaining at pre-industrial level. The simulation lasted for 140 years until atmospheric CO2 25 

concentration has quadrupled. Also, we conducted a 251-year PI-control simulation. 

To separate the effect of atmospheric CO2 and global warming on the ocean carbon cycle, we performed 
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three types of experiments (biogeochemically coupled, radiatively coupled, and fully coupled). These 

types of simulations were also performed by previous studies that investigated the effect of CO2 and 

global warming on the global carbon cycle (Friedlingstein et al., 2006; Arora et al., 2013; Schwinger et 

al., 2014).  

1) Biogeochemically coupled (BC) simulations in which the code of the ocean carbon cycle sees changing 5 

atmospheric CO2, but the code of atmospheric radiation sees a constant pre-industrial concentration of 

CO2. In this way, the ocean carbon cycle is only affected by changing atmospheric CO2, but no direct 

effect of CO2-induced warming;  

2) Radiatively coupled (RC) simulations in which the code of the ocean carbon cycle sees pre-industrial 

atmospheric CO2, but the code of atmospheric radiation sees the changing concentrations of atmospheric 10 

CO2. In this way, the ocean carbon cycle is only affected by CO2-induced warming, but no direct effect 

of changing atmospheric CO2.  

3) Fully-coupled (FC) simulations in which both the codes of the ocean carbon cycle and atmospheric 

radiation see the changing concentrations of atmospheric CO2. In this way, the ocean carbon cycle is 

affected by changes in both atmospheric CO2 and CO2-induced warming. 15 

In total, there are eight different simulations in this study, including one fully coupled spin-up simulation 

for 2000 years, one PI-control run (CTRL) for 251 years, three historical+SSP5-8.5 runs (FC, BC, and 

RC) from 1800 to 2100, and three idealized 1%/yr CO2 runs (FC-1%, BC-1%, and RC-1%) for 140 years.  

2.3 Validation data 

In this study, we compare the NESM v3 simulated ocean biogeochemical fields, including nutrients, 20 

chlorophyll, marine net primary production (NPP), alkalinity, dissolved inorganic carbon (DIC), and 

oceanic anthropogenic CO2 inventory with available observations and data-based estimates. 

Data of global ocean distributions of nutrients concentrations, including nitrate, phosphate, and silicate, 

are from the World Ocean Atlas 2018 (WOA18, Garcia, et al., 2018). Geographic distributions of DIC, 

alkalinity, and anthropogenic carbon is taken from the Global Ocean Data Analysis Project v2 (GLODAP) 25 

(Key et al., 2015; Lauvset et al., 2016). Both WOA18 and GLODAP v2 data have a horizontal resolution 

of 1°×1° with 33 levels and represent the climatology in recent decades. We compare modeled chlorophyll 
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in recent decades with the SeaWiFS dataset (NASA Goddard Space Flight Center, 2014), GlobColour 

merged data (Maritorena, et al., 2010), and Ocean Colour Climate Change Initiative (OCCCI) merged 

data (http://www.oceancolour.org/). 

Moderate Resolution Imaging Spectroradiometer (MODIS) estimated marine net primary production 

(NPP) based on three different algorithms are compared with model simulation in this study, including 5 

the Standard Vertically Generalized Production Model (VGPM), Eppley-VGPM, and the carbon-based 

Production Model (CbPM). The datasets can be accessed at 

http://www.science.oregonstate.edu/ocean.productivity/index.php. In the VGPM and Epply-VGPM, NPP 

is described as the product of chlorophyll and photosynthetic efficiencies (Behrenfeld and Falkowski, 

1997a, 1997b), while the Eppley-VGPM emphasizes the photoacclimation effect at high SSTs (Morel, 10 

1991). In the CbPM, NPP is described as the product of carbon biomass and growth rate (Behrenfeld et 

al. 2005; Westberry et al. 2008). All three datasets have a horizontal resolution of 1/12°×1/12° from 2003 

to 2014. The distribution of observed surface ocean sea-air CO2 flux for the reference year of 2000 is 

taken from Takahashi et al (2009) and has a spatial resolution of 4° latitude by 5° longitude. 

To have a direct comparison between NESM v3 results and observations, we interpolated all modeled 15 

results and observations to a 1°×1° grid using the distance-weighted average remapping method, except 

for the sea-air CO2 flux. Due to the low resolution of observational sea-air flux, we interpolated the 

modeled result to a 4° × 5° grid. 

3 Results 

3. 1 Nutrients 20 

In this section, we compare model-simulated ocean biogeochemical fields, including nutrients, 

chlorophyll, alkalinity, dissolved inorganic carbon (DIC), and net primary production (NPP), against 

available observations and data-based estimates. 

Nutrients play vital roles in the ocean biogeochemical cycle. A lack of nutrients would limit the growth 

of phytoplankton. Figure 1 compares the model simulated annual mean spatial distributions of average 25 

nutrients concentrations (nitrate, phosphate, and silicate) in the top 100m depth from 1985 to 2014 with 

the WOA18 observations. The model reproduces reasonably well the large-scale pattern of upper ocean 
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mean nutrients concentrations. The pattern correlation coefficients (PCCs) of nitrate, phosphate, and 

silicate are 0.93, 0.91, and 0.83, respectively. The standard deviations (SDs) of nitrate, phosphate, and 

silicate are 1.05, 1.06, and 1.22, respectively (Fig. 11). Phosphate, nitrate, and silicate in the Southern 

Ocean have the highest nutrient concentrations of ~1.8, ~25 and ~60 mmol/m3, respectively. Strong 

vertical mixing and upwelling bring nutrient-rich deep water to the surface (Whitney, 2011). The relative 5 

high nutrients concentration, about 50% of the values in the Southern Ocean, are found in the subarctic 

Pacific Ocean, and the mid-eastern Pacific Ocean, Relatively low concentrations of nutrients, less than 

20% of the values in the Southern Ocean, are found in subtropical regions where the vertical mixing 

between the surface and the deep ocean is weak.  

Some noticeable discrepancies between model simulations and observations are found. Phosphate and 10 

nitrate are overestimated in the Southern Ocean and the Pacific Ocean but are underestimated in the Indian 

Ocean, Subarctic Pacific, and Middle-low latitude Atlantic. Silicate is overestimated nearly over the 

global ocean, except the Indian Ocean and Subarctic Ocean.  

Figure 2 shows the recent 30 years zonal mean latitudinal-depth distributions of nutrients from the FC 

simulation and WOA18 observations in the Pacific, the Atlantic, and the global ocean. Nutrients 15 

distributions are reproduced well in the Atlantic. The deepest penetration of low-nutrients water to a 

1000m depth is simulated in the middle latitude regions. The high concentration of nutrients is found in 

the Atlantic south of 45°S, and phosphate and nitrate are equator-ward transported by the Antarctic 

Intermediate Water at near 1000m depth. In the Pacific, the spatial patterns of nutrients broadly agree with 

observations, but with noticeable positive biases in the deep Northern Pacific. The simulated centers of 20 

phosphate and nitrate-rich water are too deep. 

To further analyze the possible reasons for discrepancies in nutrients distribution, we decompose 

phosphate to its preformed and regenerated components (Weiss et al., 1970; Duteil et al., 2010) and 

compare the results with the WOA18 observations (Fig. 3). The regenerated phosphate is released through 

the remineralization processes of organic matter, and the preformed phosphate is the remaining biotically 25 

unutilized surface phosphate, which is transported into the ocean interior by ocean circulation. The 

regenerated and preformed phosphate are computed as: 

𝑃𝑟𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑  = 𝑅𝑃:−𝑜2
× 𝐴𝑂𝑈                                                                                                                                      (1) 
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𝑃𝑝𝑟𝑒𝑓𝑜𝑟𝑚𝑒𝑑 = 𝑃 −  𝑃𝑟𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑                                                                                                                                   (2) 

Where AOU is the apparent oxygen utilization, which represents the biological consumption of oxygen. 

It is computed as the difference between oxygen saturation and simulated oxygen concentration. 𝑅𝑃:−𝑜2
 

represents the oxidation ratio of phosphate and oxygen, which is set to 1/163 in the NESM v3. P represents 

the simulated phosphate concentration. 5 

For the global, Atlantic, and Pacific Ocean, the preformed phosphate diagnosed from the model accounts 

for 51%, 47%, and 57% of the total phosphate inventory, and the result diagnosed from the WOA18 is 

57%, 55%, and 64%, respectively. A relatively small percentage of the preformed phosphate indicates 

stronger biological activities in the model. Compared to observations, the model simulates a larger 

depletion of preformed phosphate (bias is about 0.2 mmol /m3) in the North Atlantic, which indicates too 10 

active biological processes in the upper ocean. In the Pacific Ocean, the preformed phosphate 

concentrations are between 1.3 to 1.5 mmol/m3 from both model simulation and observations. 

The regenerated phosphate concentrations have larger variations than preformed phosphate concentration. 

The noticeable positive biases of regenerated phosphate are found in the deep Northern Pacific. The high 

regenerated phosphate water in the North Pacific is simulated too deep, and the biases resemble the 15 

difference found in latitudinal-depth distributions of nutrients. 

In the deep ocean, preformed phosphate is only affected by ocean circulation, while regenerated phosphate 

is affected by both circulation and remineralization. The NESM v3 simulates the preformed phosphate 

well but overestimates the regenerated phosphate in the deep ocean, suggesting that the overestimated 

nutrients in the North Pacific deep ocean are mainly caused by biological processes. Another evidence is 20 

that overestimation of nutrients has also been found in other PISCES models, such as IPSL-CM5A-LR 

(Séférian et al., 2013), while the simulated ocean circulations in IPSL and NESM are different. 

We next present the model-simulated pattern of nutrient limitation. In the model, the nutrients limitation 

coefficient (0~1) is computed from the Michaelis-Menten equation as follow: 

MM=N / (K+N)                                                                                                                                                                   (3) 25 

Where MM is the Michaelis-Menten coefficient, N is the nutrient concentration, and K is the half- 

saturation constant. 

We calculated the annual mean nutrient limitation coefficient of each nutrient (phosphate, nitrate, silicate, 
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and iron) and then considered the nutrient with the lowest limitation coefficient as the most limiting factor. 

Temperature and light are assumed to be the most limiting factor when all nutrients are sufficient for 

phytoplankton growth and all nutrient limitation coefficients are greater than 0.9. As shown in figure 4, 

the limiting patterns of nanophytoplankton and diatoms are similar in the mid-low latitude oceans. Iron 

is the most limiting nutrient for both nanophytoplankton and diatoms in the equatorial Pacific Ocean and 5 

the Southern Ocean. Nitrate is the most limiting factor in the subtropical Pacific Ocean, and phosphate is 

the most limiting factor in the Indian Ocean and middle-low latitude of the Atlantic Ocean. At high latitude 

oceans, nanophytoplankton is mostly limited by the available light and temperature, while diatoms are 

mostly limited by silicate. The NESM v3 simulated limiting pattern is generally consistent with the results 

diagnosed from IPSL-CM4A-LOOP (Schneider et al., 2008), except that the iron limitation diagnosed 10 

from the NESM v3 is stronger in the Pacific and Southern Ocean. 

3. 2 Biological Production 

Figure 5 shows the modeled spatial distribution of annual mean surface chlorophyll concentration from 

1998 to 2014 compared with Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) observational data 

(Behrenfeld and Falkowski, 1997a, 1997b), GlobColour merged data, and Ocean Colour Climate Change 15 

Initiative (OCCCI) merged data.  

In the NESM v3, chlorophyll in both nanophytoplankton and diatoms are parameterized based on the 

photo-adaptive model (Geider et al., 1997) in which chlorophyll is regulated by the chlorophyll-to-carbon 

ratio, growth of plankton biomass, mortality, aggregation, and the grazing by zooplankton. The large-

scale pattern of simulated ocean chlorophyll concentration broadly agrees with observations with high 20 

levels of chlorophyll in the subarctic Pacific Ocean, North Atlantic, equatorial Pacific, and the Southern 

Ocean and low levels of chlorophyll in the subtropical oceans. The relatively high chlorophyll 

concentrations along the extratropical coastal regions are reproduced, but the model generally 

underestimates chlorophyll concentration in the tropical coastal regions, especially in the tropical Indian 

Ocean, maritime continent, and the tropical Atlantic Ocean. This underestimation is partly associated with 25 

the deficiencies in modeled coastal dynamics, which is usually not represented well by the relatively 

coarse global ocean models (Aumont et al., 2015). It is reported that the observed chlorophyll distribution 
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is better reproduced when PISCES is coupled to a higher resolution ocean circulation model (Lee et al., 

2000; Hood et al., 2003; Kone et al., 2009). Also, we can see an underestimation of chlorophyll over the 

entire Northern Indian Ocean. This is associated with the underestimation of nutrients over the Indian 

Ocean (Fig. 1) that increase nutrients limitation and inhibit growth. 

In the Southern Ocean where the seawater is typically characterized by high nutrients and low chlorophyll 5 

(Lin et al., 2016), noticeable discrepancies are seen among different observational datasets that are 

associated with different algorithms used for different products. For example, in the intermediate 

concentration regions such as the Southern Ocean, chlorophyll derived from reflectance by standard 

algorithms tend to be underestimated by a factor of about 2 to 2.5 (Kahru and Mitchell, 2010). In the 

Southern Ocean, the NESM v3 overestimates the chlorophyll concentration in the east of 150°E and 10 

underestimates it near the International Date Line. In the Atlantic part of the Southern Ocean, the modeled 

chlorophyll concentration is within the range of observational estimates, higher than SeaWiFS but lower 

than GlobColour and OCCCI. 

Figure 6 shows the annual mean climatology of vertically integrated NPP from 1998 to 2014. Three 

different algorithms, including VGPM, Epply-VGPM, and CbPM, are used to estimate the NPP based on 15 

the MODIS observation data. Both VGPM and Epply-VGPM are chlorophyll-based algorithms in which 

NPP is calculated as a function of chlorophyll, available light, and the photosynthetic efficiency. The only 

difference between VGPM and Epply-VGPM is the description of photosynthetic efficiency (Behrenfeld 

and Falkowski, 1997a, 1997b). The Eppley-VGPM emphasizes the effect of SST, i.e. growth rate is higher 

at high temperature regions (Eppley, 1972). Therefore, compared to the VGPM, the Eppley-VGPM 20 

estimates more NPP in low latitude oceans and less at high latitude oceans (Fig. 6b and 6d). NPP in the 

CbPM is described as the product of carbon biomass and growth rate (Behrenfeld et al. 2005; Westberry 

et al. 2008). In the NESM v3, the NPP is also described as the product of phytoplankton biomass and 

growth rate, although the calculation of growth rate in the NESM v3 is more complex, which involves 

chlorophyll, nutrients availability, temperature, respiration, and the photosynthetically active radiation 25 

(PAR). Compared to the three products, the climatology of the NESM v3 simulated vertically integrated 

NPP resembles Epply-VGPM and CbPM estimates. High level of NPP (more than 250 g C/m2/year) in 

the eastern equatorial Pacific and middle-latitude oceans around 40°S and 40°N and the low level of NPP 
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(less than 100 g C/m2/year) in the middle-low latitude oceans, the Southern Ocean, and high latitude 

oceans is reproduced. Also, the high level of NPP (more than 325 g C/m2/year) in low latitude coastal 

regions is reproduced to some extent.  

Although the global pattern of NPP broadly agrees with the observational estimates, PCC between model 

simulation and Epply-VGPM is only 0.5, indicating that some local features are not well described in the 5 

NESM v3. Compared to CbPM and Epply-VGPM, the NESM v3 significantly underestimates the NPP 

in the Indian Ocean. The NESM v3 also underestimates the NPP in the eastern coastal areas of the United 

States and the Arctic coastal areas. 

Averaged from 2003 to 2014, the globally integrated ocean NPP from the NESM v3 simulation is 45.1 

PgC yr-1, compared with the data-based estimates of 37 to 67 PgC yr-1. The large range of data-based 10 

estimates of global NPP is a result of different satellite observations and different algorithms for the NPP 

estimation (Longhurst et al., 1995; Antoine et al., 1996; Behrenfeld and Falkowski, 1997b; Behrenfeld et 

al., 2005). Global NPP simulated by CMIP5 models also shows a wide range of values from 30.9 to 78.7 

PgC yr-1 (Bopp et al., 2013). NESM v3 simulated global NPP is within the range of data-based estimates 

and current CMIP5 model estimates. Of the NESM v3 simulated global ocean NPP, 20% is contributed 15 

by diatoms, and 80% is contributed by nanophytoplankton. For comparison, from the data-based estimate, 

7% to 32% of the total NPP is associated with diatoms (Uitz et al.,2010; Hirata et al., 2011), while ocean 

biogeochemical models estimate that 15% to 30% global NPP is from diatoms (Aumont et al., 2003; 

Dutkiewicz et al., 2005; Yool et al., 2011).  

3. 3 Dissolved inorganic carbon and alkalinity  20 

Figures 7 and 8 display the modeled and observed alkalinity and DIC averaged over the upper ocean (0-

100m) and along zonally averaged section in the Pacific Ocean, Atlantic Ocean, and the global ocean. 

The model’s skills in simulating alkalinityare moderate (PCC = 0.56). The observed high alkalinity in the 

subtropical surface oceans and low alkalinity near the maritime continent are simulated and the modeled 

global upper ocean mean alkalinity only has a minor negative bias of 0.45%. The major discrepancies are 25 

seen in the Southern Ocean and the subarctic Pacific with a positive bias of more than 80 mmol/m3. In 

high-latitude oceans, convective mixing of alkalinity-rich deep water is an important factor of changing 
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upper ocean alkalinity, and SST can be used as a proxy of the convective mixing change (Lee et al., 2006). 

An underestimation of SST of 1oC is simulated at high latitude oceans (figures not shown), indicating a 

stronger convective mixing, which may explain the overestimated alkalinity at high latitude oceans. The 

alkalinity has a negative bias of more than 60 mmol/m3 near the maritime continent, where the alkalinity 

concentration is usually related to salinity (Lee et al., 2006). Cao et al. (2018) found that the 5 

underestimation of surface salinity of 2 PSU is caused by excessive precipitation in this region.  

NESM v3 simulates well the large-scale pattern of the observed DIC (PCC = 0.78) with high DIC 

concentrations in the middle-high latitude Atlantic and low DIC concentrations in the middle-low latitude 

Pacific and the entire Indian Ocean. The model simulated global upper oceanmeans DIC only has a minor 

positive deviation of 0.27%. Although the global pattern of DIC is different from alkalinity, their deviation 10 

patterns are similar. A positive DIC bias of more than 80 mmol C/m3
 is seen in the Southern Ocean and 

negative bias of more than 40 mmol C/m3 is seen in the maritime continent. 

The large-scale patterns of the zonal averaged latitudinal-depth distribution of both DIC and alkalinity 

are simulated well in the Atlantic Ocean. Apparent biases of DIC and alkalinity are seen in the deep 

Northern Pacific. One noticeable pattern of observed DIC and alkalinity distributions is that their 15 

maximum concentrations are around 2000-3000m of the North Pacific Ocean, which the model fails to 

reproduce. The model also overestimates DIC storage in the deep Pacific Ocean. The mismatches between 

model simulation and observations, i.e. underestimation of DIC and alkalinity concentrations in the upper 

1000m depth and overestimation of their concentrations in the deep ocean, resemble those of nitrate and 

phosphate. It indicates that model-data discrepancies of alkalinity and DIC may also be attributed to 20 

excessive deep and active remineralization processes, which would release a large amount of dissolved 

carbon in the deep ocean. 

3.4 Oceanic CO2 uptake 

In this section, we compare the NESM v3 simulated anthropogenic carbon uptake during the historical 

period (FC) against available observations.  25 

First, we compare the NESM v3 simulated sea-air CO2 flux against available observations for the 

reference year of 2000 (Takahashi et al., 2009). As shown in Fig. 9, the NESM v3 realistically reproduces 
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the large-scale pattern of observed sea-air CO2 flux with CO2 outgassing in the equatorial oceans and 

uptake in the mid-to-high latitude oceans (PCC=0.71 and SD=1.04). For both observation and model 

results, strong CO2 uptake is found in the North Atlantic where sea surface temperature is low and the 

formation of deep water is active. Compared to the data-based estimates, there are overestimates of 

modeled sea-air CO2 flux in the tropical Pacific, near 45°S oceans, and near 30°N oceans, and the 5 

strongest underestimates of modeled sea-air CO2 flux are seen in the high-latitude oceans (Fig. 9c and 

9d). The globally integrated ocean uptake flux from observation is 2.0 ± 0.7 PgC in the year 2000 

(Takahashi et al., 2009), while the value is 2.8 Pg C from the model simulation. The deviation is mainly 

originated from positive bias in the pre-industrial steady-state oceanic CO2 uptake due to the 3-

dimensional correction of nutrient and alkalinity in the PISCES model (Séférian et al., 2015; Aumont et 10 

al., 2015), In the NESM v3, the pre-industrial steady-state of total oceanic CO2 uptake is 1.0 Pg C per 

year, compared with the observation value of 0.4 ± 0.2 Pg C per year. 

We compared the NESM v3 simulated anthropogenic CO2 budget with the data-based estimate provided 

by the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5) (Table 1). The 

model-simulated ocean uptake of anthropogenic CO2 is slightly lower than that from the IPCC AR5 but 15 

within the estimated uncertainty range. From the pre-industrial time to the year 2011, NESM v3 simulated 

cumulative oceanic CO2 uptake is 137.2 PgC, compared with data-based estimates of 155 ± 30 PgC. The 

decade average oceanic anthropogenic CO2 uptake diagnosed from the FC run increases from 1.7 to 2.3 

PgC yr-1
 from 1980 to 2009, while the observation ranges from 2.0±0.7 to 2.4±0.7 PgC yr-1. Also, 

compared to recent results (Le Quéré et al., 2018), from the year 1870 to 2016, the modeled cumulative 20 

CO2 uptake of 149 PgC is within the range of 150 ± 20 PgC. 

The vertically integrated column inventory of modeled ocean storage of anthropogenic DIC (i.e. FC minus 

CTRL simulation) from 2000 to 2004 (Fig. 10a) and from 1992 to 1996 (Fig. 10c) are compared with 

GLODAP v2 (Fig. 10b) and GLODAP v1 (Fig. 10d), receptively. NESM v3 reasonably captures the large-

scale data-based distribution of anthropogenic DIC. The largest inventory in the 2000s of more than 100 25 

mol C m-2 is simulated in the Northern Atlantic where SST is low and deep water formation is active. In 

the model simulation, the North Atlantic stores 20.8% of the global oceanic anthropogenic carbon, while 

it is 17.6% in the observation (Fig. 11a and 11b). In other oceans, the large inventory is mainly found in 
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the middle-latitude areas near 30°N and 30°S. In the Southern Hemisphere Oceans, 58.9% of the global 

oceanic anthropogenic DIC inventory is simulated, compared to the value of 62.6% in the observation.  

The most noticeable discrepancy between the GLODAP v2 and model simulation around 2002 is found 

in the south of 50°S. Only 8.3% of the global oceanic anthropogenic DIC inventory is stimulated, while 

the value is 15.5% in the observation. However, we noticed that the vertically integrated anthropogenic 5 

DIC concentration is also low in the southern ocean south of 50°S in the GLODAP v1 and only 9.9% of 

the global inventory is stored in this region. The oceanic anthropogenic DIC storage is the cumulative 

result of the air-sea CO2 exchange. Takahashi et al. (2009) found the CO2 outgassing amount of about 1 

mol C m-2 yr-1 in the Southern Ocean south of 45°S. In this aspect, the storage in this region should be as 

small as that in the GLODAP v1 and the simulated results. It is noted that anthropogenic DIC in the 10 

GLODAP is diagnosed by a relative crude application of the transit time distribution method, and thus 

the results are subject to considerable uncertainties (Lauvset et al., 2016).  

Figure 11 shows the zonal mean latitudinal-depth distribution of anthropogenic DIC concentration in the 

Atlantic, Pacific, and the global Ocean from the NESM v3 FC simulation and GLODAP v2. The 

anthropogenic CO2 invades the ocean in the air-sea interface and then penetrates downward. The observed 15 

highest concentrations (more than 51 mmol C m-3) in near-surface waters and the observed low 

concentration (less than 3 mmol C m-3) in most of the deep ocean (the Pacific and the middle-low latitude 

Atlantic) are simulated. For both data-based estimates and model simulations, a substantial amount of 

anthropogenic CO2 has penetrated down to the ocean interior as deep as 1000 m depth with two 

penetration tongues near 30°N and 40°S and the deepest penetration of anthropogenic DIC is found in the 20 

Northern Atlantic. Deep penetration of anthropogenic DIC is typically associated with convergence zones 

at temperate latitudes and high latitude oceans where vertical mixing is strong (Sabine et al., 2004). 

Similar to the vertically integrated inventory, the major discrepancy in the latitudinal-depth distribution 

is also found in the Southern Atlantic south of 50°S.  

Figure 12 compares the spatial pattern of the NESM v3 simulated biogeochemistry-related fields with 25 

corresponding observations using a Taylor diagram (Taylor, 2001). In summary, model-simulated 

statistical patterns of the upper ocean nutrients compare well with observations, while the simulated 

spatial patterns of chlorophyll, primary production, and alkalinity show larger deviations from 
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observations. It is noted that chlorophyll and NPP are not directly observed but diagnosed from the 

observation-based data, and thus their estimations are subject to considerable uncertainties. 

3. 5 Response of the oceanic CO2 uptake to atmospheric CO2 and global warming 

Increasing atmospheric CO2 affects oceanic CO2 uptake directly. Meanwhile, global warming also affects 

the ocean carbon cycle via changes in climatic fields such as temperature and ocean circulation. In this 5 

section, we first presented the NESM v3 simulated physical climate change and oceanic CO2 uptake under 

the historical and SSP5-8.5 scenario. Then, we presented NESM v3 simulated oceanic CO2 uptake and 

carbon cycle sensitivity parameters in the 1ptCO2 runs and compared the simulated results with that from 

CMIP5 models. 

3. 5. 1 NESM v3 simulated physical climate change under historical and SSP5-8.5 scenario 10 

Figure 13 shows the NESM v3 simulated changes (minus control simulation) in global annual mean 

surface air temperature (SAT), mixed layer depth (MLD), and the intensity of Atlantic meridional 

overturning circulation (AMOC) at 30°N from 1850 to 2100 under the historical and SSP5-8.5 scenario. 

In the FC simulation, the annual global mean SAT anomaly averaged over the period of 2080 to 2100 

(relative to the period of 1986-2005) is 4.6 K, which is at the higher end of the CMIP5 model results (2.6 15 

~ 4.7 K) under the RCP 8.5 scenario (Collins and Knutti, 2013; Knutti and Sedláček, 2013). It is noted 

that the CMIP6 input forcing is used in this study and the atmospheric CO2 concentration at the end of 

the 21st
 century in SSP5-8.5 is about 10% higher than the concentration in the CMIP5 RCP 8.5 scenario. 

With the increasing atmospheric temperature, the global ocean also becomes warmer in FC and RC 

simulations, reducing CO2 solubility and acting to mitigate oceanic CO2 uptake.  20 

MLD is seen decreasing since the 1980s. The reduction of mixed layer depth, which is associated with a 

relatively faster warming of the surface ocean and a slower response of the deep ocean, indicates a more 

stratified upper ocean with global warming (Held et al., 2010). A substantial weakening of AMOC 

intensity in the RC and FC simulations is seen in the 21st century, which is associated with ocean surface 

warming and increased freshwater input into the North Atlantic (Gregory et al., 2005). In the pre-industrial 25 

period, the model-simulated AMOC index at 30°N is 17.5 Sv (1Sv =106 m3 s-1), within the range from 14 

https://doi.org/10.5194/gmd-2019-288
Preprint. Discussion started: 26 November 2019
c© Author(s) 2019. CC BY 4.0 License.



 19 

to 31 Sv from CMIP5 models (Weaver et al., 2012). The modeled annual mean of AMOC transport at 

30°N averaged from 2004 to 2011 is 17.1 Sv, while the observation record during the same period from 

RAPID/MOCHA (Rapid Climate Change programme / Meridional Ocean Circulation and Heatflux Array) 

is 17.5 ± 3.8 Sv (Rhein et al., 2013). By 2100, the simulated intensity of AMOC declines to 8.0 Sv. The 

simulated 54% weakening of AMOC by the end of this century is at the higher end of what is simulated 5 

by CMIP5 models that range from 15% to 60% under the RCP 8.5 scenario (Cheng et al., 2013). The 

higher atmospheric CO2 concentration at the end of 2100 in the SSP5-8.5 may partly explain the larger 

AMOC change in this study. Also, Cao et al. (2018) pointed out that the equilibrium climate sensitivity 

to CO2 forcing in the NESM v3 is about 10% higher than the CMIP5 ensemble. 

3. 5. 2 NESM v3 simulated oceanic CO2 uptake under historical and SSP5-8.5 scenario 10 

The ocean carbon cycle is regulated by changes in atmospheric CO2 and physical climate (Doney et al., 

2004). In the FC simulation, weakening of the vertical ocean mixing, as indicated by the reduced mixed 

layer depth, will reduce the vertical transport of CO2 from the upper ocean to ocean interior, and the 

weakening of AMOC would significantly reduce the oceanic CO2 uptake in the Northern Atlantic (Roy 

et al., 2011). A warmer surface ocean would reduce CO2 solubility, also reducing oceanic CO2 uptake.  15 

Figure 14 shows the time evolution of the oceanic CO2 uptake from the BC, RC, FC, and the linear sum 

of BC and RC. In the BC simulation, the global ocean absorbed a total of 662 PgC of anthropogenic CO2 

from the atmosphere by the year 2100. In the RC simulation, the increased sea surface temperature, 

enhanced ocean stratification, and the weakened AMOC all act to decrease CO2 uptake. As a result, global 

warming alone causes the ocean to release CO2 into the atmosphere. By the year 2100, the modeled 20 

cumulative CO2 uptake is -35.9 PgC. In the FC simulation, oceanic CO2 uptake is affected by both the 

increase in atmospheric CO2 and global warming. By the end of the 21st century, simulated cumulative 

oceanic CO2 uptake since the pre-industrial era is 567 PgC, which is within the ranges from 420 PgC to 

600 Pg C from CMIP5 models results under the RCP 8.5 scenario (Jones et al., 2013).  

The sum of the simulated oceanic CO2 uptake from the BC and RC simulations (626 PgC) is larger than 25 

that from the FC run (567 PgC), indicating that the effect of increasing atmospheric CO2 (carbon-

concentration sensitivity) and the effect of global warming (carbon-climate sensitivity) on the oceanic 
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CO2 uptake is not exactly additive. This nonlinearity was also found in previous studies (Boer and Arora, 

2009; Gregory et al., 2009; Schwinger et al., 2014). The NESM v3 simulated nonlinearity (i.e., BC+RC-

FC) is 59 PgC by the end of the 21st century. This nonlinearity is about 10.4% of the total ocean uptake, 

and it is larger than the absolute value of the radiative effect on ocean carbon uptake (-35.9 PgC). 

To better understand oceanic CO2 uptake in response to changing atmospheric CO2 and global warming, 5 

Figure 15 shows the spatial distribution of anthropogenic sea-air CO2 flux at the end of the 21st century 

(averaged over the year 2091 to 2100) under the SSP5-8.5 scenario from FC, RC, BC simulations, and 

the difference between FC simulation and the sum of RC and BC simulations.  

In the BC simulation, the total oceanic anthropogenic CO2 uptake is 8.0 Pg C at the end of the 21st century. 

The ocean absorbs atmospheric CO2 in most regions except for a few scattered grid points at the mid-10 

latitudes with slight CO2 outgassing. The strongest CO2 uptake of about 150 g C m-2 yr-1 is found in the 

North Atlantic, subarctic Pacific, and the Southern Ocean between 45°S and 60°S. Results from the RC 

simulation show CO2 outgassing in large parts of the global ocean as a result of global warming that 

reduces the CO2 solubility and increases the oceanic pCO2. The total CO2 outgassing in the RC simulation 

is 0.67 Pg C, less than 10% of the amount of CO2 uptake in the BC simulation. The warming also has a 15 

direct impact on the marine biological processes by altering metabolic, photosynthesis, and respiration 

rates of plankton. As a consequence, the changes in biological production and the subsequent export of 

organic matter and CaCO3 changes may further affect the oceanic CO2 uptake by altering the DIC, 

alkalinity, and biological pump (Olonscheck et al., 2013; Lewandowska et la., 2014). Plattner et al. (2001) 

found that the biologically mediated changes enhance ocean CO2 uptake at the high latitude, and reduce 20 

ocean CO2 uptake at the low latitude. Cao et al. (2017) found that 20% of warming reduced cumulative 

oceanic CO2 uptake is associated with the change in marine biological rates. However, this result has a 

large model dependency, and the net biological effect on CO2 uptake is uncertain because of the complex 

interaction among biological activities. In the Arctic Ocean, warming induces a net uptake of CO2 of 0.07 

PgC yr-1 (~6 g C m-2 yr-1) because the reduced sea-ice extent under global warming allows more open 25 

seawater to absorb atmospheric CO2. The FC simulation shows the combined effect of increasing 

atmospheric CO2 and global warming on the oceanic CO2 uptake (Fig. 14c). Oceanic CO2 uptake is 

simulated in most regions, indicating the dominant role of the increasing atmospheric CO2 on the oceanic 
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carbon uptake. Similar to the BC simulation, the strongest CO2 uptake is simulated in the Southern Ocean. 

Due to the reduced AMOC, the capacity of the Northern Atlantic uptakes CO2 is significantly suppressed. 

Thus, some regions of the Northern Atlantic even appear CO2 outgassing. Also, CO2 outgassing is seen 

in the subtropical Pacific, indicating that the radiative effect dominates the biogeochemical effect in this 

region. 5 

Figure 15d shows the spatial distribution of differences in sea-air CO2 flux between the FC simulation 

and the sum of the BC and RC simulations during the 2090s. The differences represent the nonlinearity 

between carbon-climate sensitivity and carbon-concentration sensitivity. In the NESM v3, a relatively 

large nonlinearity is simulated in the Northern Atlantic north of 45°N (19.8% of the total nonlinearity) 

and the Southern Ocean south of 40°S (35.3% of the total nonlinearity), which is consistent with the 10 

findings of previous studies (Zickfeld et al., 2011; Schwinger et al., 2014). The background simulation 

effects can partly explain the nonlinearity. Compared with the radiatively coupled simulation, more 

carbon is subject to the impact of climate change in fully coupled simulations. As a consequence, in fully 

coupled simulations, the increased temperature would have a larger effect on CO2 solubility and buffer 

factor (Yi et al., 2001). Also, reduced ocean circulation and increased ocean stratification would slow 15 

down the transport of anthropogenic CO2 from the surface to the deep ocean. Thus, compared to the BC 

simulation, slowing ocean ventilation in FC would cause a larger reduction in oceanic CO2 uptake. The 

oceanic carbon uptake in the fully-coupled simulations is lower than the sum of the BC and RC 

simulations, which is consistent with other CMIP5 models (Schwinger et al., 2014). 

3. 5. 3 carbon-concentration and carbon-climate sensitivity parameters diagnosed from the NESM v3.  20 

In this section, we investigate oceanic CO2 uptake under the framework of the carbon-concentration and 

carbon-climate sensitivity parameters.  

Arora et al. (2013) diagnosed these two parameters from two types of experiments performed by a 

subset of CMIP5 models, i.e., BC simulations and RC simulations.  

In the biogeochemically-coupled simulations where the ocean carbon uptake is only affected by 25 

changing atmospheric CO2. The relationship between atmospheric CO2 concentration and sea-air CO2 

flux can be simplified as:  
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∫ 𝐹′
𝑡

0
𝑑𝑡 ≈ 𝛽∆𝐶𝐴                                                                                                                (5) 

Where 𝐹′ represents oceanic carbon uptake change in the biogeochemically coupled simulation. In the 

radiatively-coupled simulations where the oceanic carbon uptake is only affected by temperature 

change. The relationship between temperature and sea-air CO2 flux can be simplified as:  

∫ 𝐹′
𝑡

0
𝑑𝑡 ≈ 𝛾∆𝑇                                                                                                                  (6) 5 

Where 𝐹′ represents oceanic carbon uptake change in the radiatively coupled simulation. 

In this study, we estimate the strengths of sensitivity parameters of carbon-concentration and carbon-

climate sensitivities, using equations (5) and (6). Figure 16 shows the change in ocean carbon storage 

against the change in the atmospheric CO2 concentration (Fig. 16a) and the global annual mean surface 

temperature (Fig. 16b), respectively. The derived evolution of the carbon-concentration sensitivity 10 

parameter 𝛽 as a function of atmospheric CO2 concentration and carbon-climate sensitivity parameter 𝛾 

as a function of the change in temperature is shown in Fig. 16c and 16d, respectively.  

As shown in Fig. 16, in the BC and RC simulations, modeled ocean storage of anthropogenic CO2 

scales roughly linearly with atmospheric CO2 and changes in global mean surface temperature. 

Increasing atmospheric CO2 alone increases oceanic CO2 uptake whereas increasing temperature alone 15 

decreases CO2 uptake. Therefore, the carbon-climate parameter 𝛾 is negative while the carbon-

concentration parameter 𝛽 is positive. In the year 2100, the carbon-climate parameter is -5.4 Pg C/K 

and the carbon-concentration parameter is 0.79 Pg C/ppm. From 1850 to 2100, the carbon-climate 

parameter decreases with the increasing temperature change, indicating that with enhanced warming, 

each degree of surface temperature increase would induce more CO2 outgassing from the ocean (Fig. 20 

16d). The Carbon-concentration parameter initially increases with atmospheric CO2 and then decreases 

(Fig. 16c). The decreasing trend of 𝛽 is consistent with the slowdown of the increasing trend of the 

oceanic CO2 uptake at the end of the 21st century as a result of decreased oceanic buffer ability due to 

the increasing DIC concentration. Similar trends of carbon-climate and carbon-concentration sensitivity 

parameters are also found in previous studies (Arora et al., 2013). The increased sensitivity of CO2 25 

outgassing to temperature and the decreased sensitivity of CO2 uptake to atmospheric CO2 

concentration indicate that the ocean’s ability to absorb atmospheric CO2 would be weakened with 
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increasing atmospheric CO2 and global warming. 

3. 5. 4 Carbon-concentration and carbon-climate sensitivity parameters from 1ptCO2 runs. 

Arora et al., (2013) analyzed carbon-concentration and carbon-climate sensitivity parameters from 

CMIP5 models using the benchmark simulations in which atmospheric CO2 is assumed to increase at a 

rate of 1% per year for 140 years to reach 4×CO2. It is reported that the carbon feedback parameters of β 5 

and γ are sensitive to CO2 scenarios (Gregory et al., 2009; Arora et al., 2013). To have a direct comparison 

with CMIP5 results, we performed a similar set of simulations. 

The total CO2 uptake during the 140 years in FC-1% is 636 Pg C, while the results from CMIP5 models 

range from 533 to 676 Pg C. The sum of the total CO2 uptake in the RC-1% and the BC-1% is 65.7 Pg C 

larger than that in the FC-1%. The simulated nonlinearity (i.e. BC-1% + RC-1% - FC-1%) is about 10.3% 10 

of the total CO2 uptake in the FC-1%, which is at the higher end of the nonlinearity estimated by CMIP5 

models range from 3.6%-10.6% (Schwinger et al., 2014). 

Then, we compare NESM v3 simulated β and γ parameters with those of CMIP5 results. Figure 17 shows 

the simulated β and γ parameters in the 1ptCO2 runs. At the end of 1ptCO2 runs, the diagnosed value of β 

from CMIP5 models ranges from 0.69 to 0.91 PgC/ppm with a multi-model mean value of 0.80 PgC/ppm. 15 

For comparison, the β diagnosed from the NESM v3 simulations is 0.88 PgC/ppm at the end of the 

simulation. The declining trend in β is found after ~550ppm, later than in Hist+RCP8.5 experiments (~400 

ppm), consistent with the results in CMIP5 models. Compared with β, the γ parameter from CMIP5 

models has a much larger range, and the value at the end of the simulations ranges from -2.4 to -12.1 

PgC/K. The larger spread of γ is associated with the spread of the model-simulated climate change and 20 

the dependency of carbon cycle processes on climate change. For comparison, our simulated γ parameter 

is -7.9 PgC/K. 

4 Discussion and conclusion 

In this study, we evaluated the performance of the NUIST Earth System Model (NESM v3) in simulating 

the present-day ocean biogeochemical cycle. We also investigated the response of oceanic CO2 uptake to 25 

the individual and combined effect of increasing atmospheric CO2 and CO2-induced global warming 
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under SSP5-8.5 and 1ptCO2 scenarios.  

The model simulates reasonably well the large-scale patterns of upper ocean nutrients with high 

concentrations in the Mid-Eastern Pacific, subarctic Pacific, and the Southern Ocean. The NESM v3 

simulated global patterns of upper ocean alkalinity and DIC broadly agree with observations with high 

alkalinity concentration in the middle-latitude oceans and high DIC concentration in the high-latitude 5 

oceans. 

Chlorophyll is reproduced in the model with high concentrations in the high-latitude ocean, but there are 

noticeable negative biases in the Indian Ocean and maritime continent. The vertically integrated NPP in 

the model broadly agrees with observational NPP diagnosed by Epply-VGPM and CbPM with high NPP 

concentrations in the low-latitude oceans. The integrated global ocean NPP from 2003 to 2014 simulated 10 

by the NESM v3 is 45.1 PgC yr-1, which is comparable with observation-based estimates and CMIP5 

model-simulated results of 30.9-78.7 PgC yr-1. Our results suggest that temperature-dependence is 

necessary to be considered when estimating marine NPP. 

The NESM v3 simulates reasonably well the global pattern of sea-air CO2 flux. The model-simulated 

cumulative anthropogenic CO2 uptake from the pre-industrial time to the year 2016 is 149 PgC, which 15 

compares well with data-based estimates of 150 ± 20 PgC. In the 1ptCO2 run, by year 140, the NESM v3 

simulated carbon-concentration sensitivity parameter is 0.8 PgC/ppm, and the carbon-climate sensitivity 

parameter is -7.9 PgC/K, indicating that increasing atmospheric CO2 alone increases oceanic CO2 uptake 

while global warming alone decreases oceanic CO2 uptake. These estimated sensitivity parameters are 

comparable with those estimated by CMIP5 models. The nonlinear of CO2 uptake is mainly simulated in 20 

the high-latitude oceans and is associated with equilibrium climate sensitivity (ECS). The ECS in the 

NESM v3 is about 10% higher than the CMIP5 ensemble (Cao et al., 2018), and thus results in a relatively 

larger nonlinearity of oceanic CO2 uptake. In this study, the diagnosed nonlinearity accounts for about 

10% of the total oceanic CO2 uptake.  

The model captures many aspects of the spatial structure of biogeochemical fields and their responses to 25 

climate change. However, some defects and their underlying causes should also be emphasized, which 

are helpful to future model development.  

Slight overestimations of nutrients are found in the Pacific and the Southern Ocean (Fig. 1), where the 
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strong iron limitation is simulated (Fig. 5). The strong iron limitation in these areas limits biological 

activities, therefore reducing the uptake of nutrients by phytoplankton. In the Indian Ocean, the 

underestimation of nutrients is associated with the weak upwelling (figures not shown) that suppresses 

the nutrient entrainment to surface water. The low-level nutrients in the Indian Ocean reduce the biological 

activities and then result in negative biases of NPP and chlorophyll. Also, in a relatively coarse resolution 5 

model, the negative biases of NPP and chlorophyll in the Indian Ocean could be associated with the poor 

descriptions of mesoscale and submesoscale processes (McGillicuddy et al., 1998; Lévy et al., 2001b). 

The latitudinal-depth distribution of nutrients broadly agrees with observations, but the simulated high-

concentration centers in the Northern Pacific are too strong and too deep (Fig. 2). The same problem is 

also found in the IPSL-CM5A-LR simulated nutrients (figures in the supplement). By decomposing 10 

phosphate into its preformed and regenerated components (Fig. 3), then comparing them with the total 

phosphate distribution, we found that excessive remineralization in the deep ocean is the main cause of 

the overestimated nutrients in the Northern Pacific.  

The negative deviations of alkalinity of ~60 mmol / m3 and DIC of ~40 mmol C / m3 are simulated near 

the maritime continent, where the model underestimates the surface salinity of ~ 2 PSU. Cao et al. (2018) 15 

found that this underestimation of surface salinity is caused by excessive precipitation in this region. In 

the high-latitude ocean, the model underestimates SST of about 1°C, indicating stronger convective 

mixing, which would lead to the overestimation of alkalinity. Similar to the latitudinal-depth distributions 

of nutrients, the model-simulated high concentration centers of alkalinity and DIC are too strong and too 

deep in the Northern Pacific. Excessive remineralization in the deep ocean consumes a large amount of 20 

oxygen and releases dissolved organic carbon and nutrients. To better evaluate the NUIST-CSM simulated 

ocean dynamics and the ocean carbon cycle, the simulation of natural and bomb 14C will be implemented 

in future versions of NESM. 

It is expected that an improved representation of physical circulation would result in an improved 

representation of the marine biogeochemical cycle. Overall, NESM v3 can be  applied in the future to 25 

study interactive feedbacks between the ocean carbon cycle and climate change and the underlying 

mechanisms.  . .  

Code and data availability.  

https://doi.org/10.5194/gmd-2019-288
Preprint. Discussion started: 26 November 2019
c© Author(s) 2019. CC BY 4.0 License.



 26 

The source code of NESM v3, together with all input data are saved in one compressed file, which can 

be downloaded from: https://doi.org/10.5281/zenodo.3524938 after registration. Also, a user guide 

describing the installation instructions, driver scripts, and software dependencies can be found in the 

repository at the same link. The simulation results illustrated in this study can be made available upon 

request to the authors. 5 
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Table 1. Global ocean anthropogenic CO2 uptake simulated by NESM v3 during different periods 

compared against data-based estimate (Ciais et al., 2013) (it is noted that the pre-industrial time in this 15 

study represents the year 1850 while it represents 1750 in IPCC AR5). 

 

Pre-industrial-

2011 Cumulative 

PgC 

1980-1989 

 PgC yr-1 

1990-1999  

PgC yr-1 

2000-2009  

PgC yr-1 

2002-2011  

PgC yr-1 

IPCC AR5 155±30 2.0±0.7 2.2±0.7 2.3±0.7 2.4±0.7 

NESM v3 137.2 1.7 2.0 2.3 2.3 
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Figure 1. Annual mean upper ocean (averaged in the upper 100m) distribution of phosphate (PO4
3−), 

nitrate (NO3
−), and silicate (SiO4

2−) from 1985 to 2014 from the NESM v3 simulations (FC) and the 

WOA18 observation dataset (in unit of mmol/m3). 
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Figure 2. The latitude-depth distribution of silicate (a), phosphate (b), and nitrate (c) averaged from 

1985 to 2014 (FC) compared with the WOA18 observation dataset (with a unit of mmol m-3). a, b, c 

represent the silicate, phosphate, and nitrate, respectively. 0 and 1 represent the distributions in the 

Pacific Ocean, 2 and 3 represent the distributions in the Atlantic Ocean, and 4 and 5 represent the 5 

distributions in the Global Ocean. 
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Figure 3. The latitude-depth distribution of preformed and regenerated phosphate concentration (mmol 

m-3) simulated by the model and analyzed from WOA18 observation dataset in the Pacific, Atlantic, and 

global Ocean. The panels from a1 to a6 show the preformed component, while the panels from b1 to b6 

show the regenerated component. 5 
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Figure 4. Diagnosed pattern of nutrients limitation over the annual time scale for nanophytoplankton 

and from 1985 to 2014 in the FC simulation. Shade of each color indicate the factor that most limits 

growth. Replete means nutrient concentrations are sufficient for the phytoplankton growth (growth rate 

is greater than 90% of their maximal growth rate). 5 
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Figure 5. Annual mean surface chlorophyll concentration (mg Chl m-3) from the NESM v3 FC 

simulations (a; from 1998 to 2014), the SeaWiFS dataset (b; from 1998 to 2010), the GlobColour 

merged dataset (c; from 1998 to 2014), and OCCCI merged dataset (d; from 1998 to 2014). 
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Figure 6. Annual mean distribution of vertically integrated net primary production (g C m-2 yr-1) 

averaged from 2003 to 2014 from the NESM v3 FC simulations (a) and MODIS observation-based 

estimates (b: VGPM; c: Epply-VGPM; d: CbPM). 
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Figure 7. Annual mean distributions of upper ocean mean (0-100m) alkalinity (mmol m-3) (a, b) and 

DIC (mol m-3) (c, d) averaged from1985 to 2014 from the NESM v3 FC simulations (a, c) and 

GLODAP v2 (b, d). 

 5 

 

 

 

 

 10 

https://doi.org/10.5194/gmd-2019-288
Preprint. Discussion started: 26 November 2019
c© Author(s) 2019. CC BY 4.0 License.



 46 

 

Figure 8. The latitude-depth distributions of the alkalinity (a) and DIC (b) averaged from 1985 to 2014 

(FC) compared with GLODAP v2 observations (with a unit of mmol m-3; a1, a2, b1, and b2: over the 

Atlantic Ocean; a3, a4, b3, and b4: over the Pacific Ocean; a5, a6, b5, and b6: over the global ocean).  
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Figure 9. Model-simulated sea-air CO2 flux (g C m-2 yr-1) in the year 2000 compared with data-based 

observational estimates (Takahashi.et al., 2009). Spatial distributions of model simulation (a), 

observation (b), the difference between model and observation (d), and zonal mean pattern of model 5 

simulation and observation (c). Positive values represent CO2 flux out of the ocean, and negative values 

represent CO2 flux into the ocean.  
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Figure 10. Vertically integrated column inventory of anthropogenic DIC (mol C m-2) from the FC 

simulation (a, c) and GLODAP v1 and GLODAP v2 observation (b, d). Model simulation results are 

averaged from 2000 to 2004 (a) and from 1992 to 1996 (c), while the observation is normalized to the 

year of 2002 (b) and 1994 (d). 5 
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Figure 11. Zonal mean latitude-depth distribution of anthropogenic DIC (mmol C m-3) distribution from 

the FC simulation (a1: Atlantic, a2: Pacific, and a3: Global) and data-based estimates (GLODAP v2) 

(b1: Atlantic, b2: Pacific, and b3: Global).  
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Figure 12. Taylor diagram comparing statistical patterns of annual mean carbon-related fields between 

the NESM v3 simulation (FC) and corresponding observations, including upper ocean nitrate, 

phosphate, silicate, alkalinity, chlorophyll concentration, and vertically-integrated net primary 

production. NPP is compared with the CbPM, and chlorophyll is compared with SeaWiFS. All fields are 5 

normalized by the standard deviation of corresponding observations. Thus, observation fields have a 

standard deviation of one, which is represented by REF. The distance between the model points and the 

reference point indicate the root-mean-square (RMS) difference between model simulation and 

observations.  
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Figure 13. Time series of climate changes (minus control simulation) from 1850 to 2100 for the 

simulation of fully-coupled, biogeochemically-coupled, and radiatively-coupled simulations. (a) global 

and annual mean surface air temperature, (b) global and annual mean mixed layer depth (the depth 

where the difference in potential density is 0.01 kg m-3 relative to the sea surface) and (c) Atlantic 5 

meridional overturning circulation index (maximum zonal mean stream function in the Atlantic Ocean 

at 30°N).  
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Figure 14. The NESM v3 simulated (a) annually oceanic CO2 uptake change (minus control simulation) 

and (b) cumulative oceanic CO2 uptake for the simulations RC, BC, FC, and the linear sum of BC and 

RC from 1850 to 2100 (in unit of Pg C).  5 
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Figure 15. Spatial distribution of anthropogenic sea-air CO2 flux at the end of the 21st century (mean of 

2091-2100 minus control simulation) from the (a) BC, (b) RC, and (c) FC, respectively. Also shown is 

the difference between FC simulation and the sum of RC and BC simulations (FC-RC-BC). Positive 

values represent CO2 flux out of ocean, and negative values represent CO2 flux into the ocean. 5 
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Figure 16. The cumulated oceanic CO2 uptake against (a) the atmospheric CO2 in the BC simulation 

and (b) the global mean surface air temperature change in the RC simulation. Also shown is time 

evolution of diagnosed carbon-concentration sensitivity parameter as a function of atmospheric CO2 (c) 

and carbon-climate sensitivity parameter as a function of global mean surface air temperature change 5 

(d).  
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Figure 17. Same as Figure 16, but for the 1pt CO2 runs. 
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