
Author’s response to reviews of the manuscript “MFIT 1.0.0: 
Multiflow inversion of tracer breakthrough curves in fractured and 
karst aquifers” by Jacques Bodin 
jacques.bodin@univ-poitiers.fr 

I am grateful to the two referees for their positive and constructive feedback, which has greatly benefited the work presented 

in this manuscript. I address their specific comments in detail here. 

Font legend: 

1. Reviewers’ comments are shown in a black italic font. 

2. My responses are shown in a blue normal font. Where not specified, line, table and/or figure numbers refer to the original 

manuscript. 

3. The text that has been modified or added to the revised manuscript is shown in an orange normal font. 

Anonymous Referee #1 

My major criticism is focused on the code verification, in particular in the BTCs selected for the comparative analysis of 

simulation results. The five synthetic BTCs generated fail in both the relatively simple curve morphologies and the test 

duration. Since the four proposed models try to better fit multi-peaks and long-tailed curve shapes, the multimodal curves 

obtained from real field experiences show more marked/pronounced peaks (very often reaching relatively quite similar tracer 

concentration, as twin peaks) and the long-tailed ones (even with higher concentrations slowly decreasing along the lower 

slope ending curve segments) use to be recordered during much more prolonged tests (>100 hours). So, I would recommend 

incorporates and/or replacing new synthetic BTCs representing more adapted-to-reality morphologies. This will deeply test 

the code efficiency under more realistic and non-ideal (Fickian) transport dynamics. 

The model parameter values in tests 1−5 have been modified following your recommendations. Table 2 and Fig. 2 have been 

updated. 

  



Table 2. Input parameters for the five verification tests. 

Test Parameters Values 

1 

(single flow channel, ADE, 

instantaneous injection) 

Flow rate Q 10 m3 h-1 

Injected mass m 20 g 

Mean transit time T0 200 h 

Peclet number Pe 2 

2 

(single flow channel, ADE, 

exponentially decaying injection) 

Mean transit time T0 70 h 

Peclet number Pe 10 

Initial (maximum) injection concentration C0 8.0 × 10-3 mg l-1 

Gamma coefficient γ 0.9 

3 

(single flow channel, SFDM) 

Q, m, T0, Pe same as Test 1 

Diffusion parameter β 0.04 h-1/2 

4 

(single flow channel, 2RNE) 

Q, m, T0, Pe same as Test 1 

Length of the flow channel L 1000 m 

Fraction of mobile water ψ 0.7 

Omega coefficient ω 0.1 m-1 

5 

(two channels, MDM-ADE) 

Total system flow rate Q 10 m3 h-1 

Mass flowing through the first channel m1 12 g 

Mass flowing through the second channel m2 8 g 

Mean transit time in the first channel T01 170 h 

Mean transit time in the second channel T02 300 h 

Peclet number in the first channel Pe1 15 

Peclet number in the second channel Pe2 80 

 

  



Figure 2. Comparison among MFIT, CXTFIT, and TRACI simulations for test 1 (single flow channel, ADE, instantaneous 

injection), test 2 (single flow channel, ADE, exponentially decaying injection), test 3 (single flow channel, SFDM), test 4 

(single flow channel, 2RNE), and test 5 (two channels, MDM-ADE) 

Regarding the modeled BTCs from the HES experimental site, they also display short tracer test duration and local transport 

dynamics. Some questions arise me, what about longer –multi-kilometers- karst connections and their expected very often 

long-tailed BTCs? and, what about the degree of flow diversion in anastomosed/ forked karst conduit systems and their 

associated multi-peak BTCs? I agree with the proposed pathway decomposition in multi-single channel scheme but, how the 

flow diversion in one or several of them and where (close to the injection point or to the end of the master conduit) may 

condition the obtained BTC shape? 

There is no specific scale attached to the multiflow modeling approach, as depicted in Fig. 1. The lengths of the flow channels 

can be assumed to be a few meters or several kilometers. The proposed model is applicable to any tracer test, regardless of the 

distance between the injection site and the monitoring point. Likewise, short-, medium-, or long-duration BTCs can be 

simulated with the model depending on the values of the parameters that influence the spreading of transit/residence times in 

the individual flow channels (Pe, γ, β, ψ, and ω) and/or by considering multiple flow channels that have a large span of mean 

transit time (T0) values. The only unsuitable cases are those for which extensive breakthrough tailing would be due to i) 

unsteady flow, and/or ii) complex injection signals (e.g., multiple steps), and/or iii) reactive transport processes, which are not 

considered in the present model version. A noticeable difference between modeling short- or long-distance tracer tests could 

be the physical interpretation that pertains to the channels of the multiflow model. For short distances, the channels might be 

considered as model-abstractions of real individual fractures or karst-conduits. For longer distances, this abstraction likely 

would be physically unrealistic. As discussed in the manuscript (L105−108), in the general case, the channels are not assumed 

to represent individual fractures or karst conduits but are lumped submodels of the main flow routes employed by the tracer 

through the fractures/karst conduit network. The multiflow model that will be fitted against a multi-peak BTC generated by a 

complex flow structure geometry will always be a simplification of the real flow network pattern, which is the essence of 

modeling. Moreover, the information content of a tracer BTC only does not allow for further structural interpretation. For 



instance, the existence of two concentration peaks in a tracer BTC indicates at least one diverging-converging flow structure 

between the injection site and the monitoring point. However, many more structures may exist in reality; their effects can be 

masked by mixing at the converging nodes and/or by similar transit times in the different pathways. Similarly, it is impossible 

to determine the relative location of the diverging and converging nodes between the injection site and the monitoring point. 

Promising approaches to address this issue are i) the joint inversion of multiple tracer tests with different injection and 

monitoring locations, which is also referred to as tracer tomography (see, e.g., Borghi et al., Can one identify karst conduit 

networks geometry and properties from hydraulic and tracer test data? Adv. Water Resour. 2016) and ii) the joint interpretation 

of tracer test and geophysical data (see, e.g., Shakas et al., Probabilistic inference of fracture-scale flow paths and aperture 

distribution from hydrogeophysically-monitored tracer tests, J. Hydrol. 2018). 

I miss complementary numerical results such as transport parameters and their discussion (i.e. sensitivity analysis) for a 

deeper comparative analysis of simulation results in section 5. The recovery rate of the injected tracer for the three examined 

BTCs would be helpful to the reader to have information about how many tracer mass has been lost during the test. This will 

help to understand the potential role of rock matrix or stagnant zones in the karst circuit by which anomalous transport is 

reflected as multi-peaks or long-tailed BTC shapes. 

A table that lists the fitted parameter values that correspond to Fig. 4 has been prepared: 

https://doi.org/10.5281/zenodo.3824439. The table also contains i) the injected and recovered mass values for each tracer 

experiment, ii) the corresponding recovery ratios, iii) the minimum and maximum parameter values considered for the 

optimization, iv) the composite parameter sensitivities computed with PEST, and v) the post-calibration scaled values of the 

parameters pairs (Q, mj) and (C0, Qj/Q), which are consistent with the recovered mass values. This post-calibration scaling was 

necessary because no parameter was fixed prior to the inversion; so a degree of freedom remained in the pairs of parameters 

due to their balance in the model equations. Owing to its large size (more than 400 parameters for the different models and 

channel number scenarios), I propose the inclusion of this table as a supplement rather than as an appendix. I also added a 

discussion about the (consistent) variation in the values of the parameters that influence the spreading of transit/residence times 

in the individual flow channels according to the different models and/or the number of flow channels. 

The optimized parameter values and their composite sensitivities at the end of the optimization process are provided in the 

Supplement (Table S1). Unsurprisingly, the model parameters that influence the spreading of transit/residence times in the 

individual flow channels while accounting for different processes (Pe, γ, β, ψ, and ω) are sensitive to the number of channels. 

For instance, when comparing single- with multiple-channel models, the former requires lower Pe values to compensate for 

the coarser description of the flow system heterogeneity (recall that the dispersion coefficient integrated in the Peclet number 

reflects the unresolved variability of the flow velocity below the modeling scale). The same observation holds when comparing 

single- and double-porosity models with the same number of flow channels, i.e., the Pe values of single-porosity models are 

lower than the Pe values of double-porosity models because part of the spreading of transit/residence times in the latter case 

is implicitly captured by solute mass exchanges between the mobile and immobile domains. A noticeable exception is the 

diffusion parameter β of the SFDM model, whose values are mostly around 1.0 × 10-3 h-1/2. This value corresponds to the upper 

bound of the optimization range set for this parameter, which is based on a matrix porosity of 30 %, a molecular diffusion 

coefficient of 1.0 × 10-9 m2 s-1, and a flow-channel aperture of 1.0 × 10-2 m. Beta values larger than 1.0 × 10-3 h-1/2 would be 

physically unrealistic. The fact that the Beta value is limited by its upper bound during the optimization process indicates that 

the SFDM model is not suitable for describing the HES tracer experiments, as further discussed below. All other parameters 

have converged to values far from their optimization bounds. 

https://doi.org/10.5281/zenodo.3824439


Concerning your last remark, it is not possible, with the specified assumptions of steady-state flow and non-reactive tracer, to 

establish a link between the incomplete recovery of a tracer and mass-exchanges between flowing and stagnant water regions. 

These exchanges are assumed to obey physically reversible processes (regarded either as a first-order system or second-order 

system in the 2RNE model and SFM model, respectively), and therefore, cannot be regarded as potentially responsible for the 

incomplete mass recovery. For tracer tests performed in steady state conditions that involve non-reactive tracers, an incomplete 

recovery of the injected mass indicates a diverging flow structure between the injection site and the monitoring point. 

Unfortunately, no additional information can be drawn about this flow divergence from the recovered tracer data only. This 

discussion has been added to the revised manuscript. 

The mass recovery ratios for these three tracer experiments were 58 %, 79 %, and 60 %, respectively. Note that these recovery 

data cannot be included in the model because the flow structure assumption that underlies the multiflow approach (Fig. 1) 

implies that all the mass that enters the system flows out after a certain lapse of time. The same holds for any single- or double-

porosity modeling approach based on a 1-D flow assumption. For tracer tests that are performed in steady state conditions and 

involve non-reactive tracers, an incomplete recovery of the injected mass indicates a diverging flow structure between the 

injection site and the monitoring point. Unfortunately, no additional information can be obtained about this flow divergence 

from the tracer data only. Therefore, the total mass in a multiflow model must be consistent with the recovered tracer mass 

rather than the injected mass. 

I recommend adding at the early sections a glossary of acronyms and parameters described throughout the text.  

The acronyms and model parameters have been summarized in two separate tables. Owing to their size, I felt that it was more 

appropriate to place these two tables (A1 and A2) in the Appendix. Two sentences have been added at the end of the 

Introduction to refer to these tables. Four new references quoted in Table A1 (Diersch, 2014; Langevin et al., 2017; Zheng et 

al., 2012; Zheng and Bennett, 2002) have been added to the References. 

Appendix A: Glossary 

Table A1. Acronyms and model abbreviations utilized in the text. 

Acronym or model 

name 

Description Reference 

ADE Advection-dispersion equation Zheng and Bennett (2002) 

BTC Breakthrough curve  

CATTI Computer Aided Tracer Test Interpretation: a computer program 

for tracer BTC fitting 

Sauty et al. (1992) 

CMA-ES Covariance Matrix Adaptation – Evolution Strategy: a global 

optimization algorithm 

Hansen and Ostermeier (2001) 

CMAES_P PEST-compatible program that implements the CMA-ES 

method 

Doherty (2019a) 

CXTFIT Computer program for tracer BTC fitting Toride et al. (1999) 

DADE Dual-advection-dispersion equation Field and Leij (2012) 

FEFLOW Finite Element FLOW model; a simulation package for flow, 

heat, and mass transport in groundwater 

Diersch (2014) 

GUI Graphical user interface  



HES Hydrogeological Experimental Site in Poitiers, France Audouin et al. (2008) 

MDM Multi-Dispersion Model Maloszewski et al. (1992) 

MDMed Computer program that implements the Multi-Dispersion Model 

and assumes a non-instantaneous injection (exponentially 

decaying concentration) at the inlet of the flow system 

This article 

MDMi Computer program that implements the Multi-Dispersion Model 

and assumes an instantaneous injection of tracer at the inlet of 

the flow system 

This article 

MDP Multi-Double Porosity: a combination of multiflow and double-

porosity models 

This article 

MDP_SFDM Computer program that implements the MDP approach, where 

the mass exchanges between the mobile and immobile domains 

are modeled as a second-order (diffusion) process 

This article 

MDP_2RNE Computer program that implements the MDP approach, where 

the mass exchanges between the mobile and immobile domains 

are modeled as a first-order process 

This article 

MFIT MultiFlow Inversion of Tracer breakthrough curves: a GUI for 

the MDMi, MDMed, MDP_SFDM, MDP_2RNE, and PEST 

programs. 

This article 

MIM Mobile-Immobile Model Coats and Smith (1964) 

MODFLOW MODular three-dimensional groundwater FLOW model: a 

computer code developed by the U.S. Geological Survey that 

numerically solves the groundwater flow equation  

Langevin et al. (2017) 

MT3DMS Modular Three-Dimensional MultiSpecies transport model: a 

numerical code to simulate solute transport 

in groundwater 

Zheng et al. (2012) 

OM-MADE One-dimensional Model for Multiple Advection, Dispersion, 

and storage in Exchanging zones: a python script to simulate 

solute transport in multiflow systems with possible mass 

exchanges between the flow channels  

Tinet et al. (2019) 

OptSFDM Computer program for tracer BTC fitting based on the SFDM 

model 

Gharasoo et al. (2019) 

OTIS One-dimensional Transport with Inflow and Storage: a 

numerical code to simulate solute transport in streams and rivers 

Runkel (1998) 

PEST Parameter ESTimation: a collection of computer programs for 

model-independent parameter estimation and uncertainty 

analysis  

Doherty (2019a) 

SCE-UA Shuffled Complex Evolution method – University of Arizona: a 

global optimization algorithm 

Duan et al. (1992) 



SCEUA_P PEST compatible program that implements the SCE-UA 

method 

Doherty (2019a) 

SFDM Single-Fracture Dispersion Model Maloszewski and Zuber (1990) 

STANMOD STudio of ANalytical MODels: a collection of computer 

programs for tracer BTC fitting 

van Genuchten et al. (2012) 

SVD Singular value decomposition Doherty (2015) 

TRAC Computer program for tracer BTC fitting Gutierrez et al. (2013) 

TRACI Computer program for tracer BTC fitting Käss (2004) 

1-D One-dimensional  

2RNE Two-region nonequilibrium equation Toride et al. (1993) 

Table A2. List of model parameters. 

Parameter Description Unit Specific model (an 

empty box means that 

the parameter is 

employed in all the 

models) 

bj Half-aperture of the j-th flow channel L MDP-SFDM 

Cj Concentration in the j-th flow channel ML-3  

Cpj Concentration in the immobile domain assigned to the j-th 

channel 

ML-3 MDP-SFDM 

Cimj Concentration in the immobile domain assigned to the j-th 

channel 

ML-3 MDP-2RNE 

C0 Initial (maximum) concentration at the inflow boundary 

for an exponentially decaying injection concentration  

ML-3 MDMed 

Dj Dispersion coefficient in the j-th flow channel L2T-1  

Dpj Molecular diffusion coefficient in the immobile domain 

assigned to the j-th channel 

L2T-1 MDP-SFDM 

Lj Length of the j-th flow channel L  

mj Part of the solute mass flowing through the j-th channel M MDMi, MDP-SFDM, 

MDP-2RNE 

N Number of flow channels -  

Nmax Maximum number of flow channels -  

Pej Peclet number in the j-th channel -  

P Number of optimized model parameters -  

PHI Measurement objective function (sum of the squared 

weighted differences between the tracer BTCs and the 

model-fitted curves) 

M2L-6  



Q Total system flow rate L3T-1  

Qj Flow rate in the j-th channel L3T-1  

t Time variable T  

Tmin Minimum time value of the user-provided BTC T  

Tmax Maximum time value of the user-provided BTC T  

T5 T5 time, Eq. (18) T  

T5th Earliest time at which the concentration values exceed 5 % 

of the maximum concentration value 

T  

T95 T95 time, Eq. (19) T  

T95th Latest time at which the concentration values exceed 5 % 

of the maximum concentration value 

T  

T0j Mean transit time in the j-th channel T  

uj Advection velocity in the j-th flow channel LT-1  

xj Spatial coordinate along the j-th flow channel L  

yj Spatial coordinate perpendicular to the j-th flow channel L  

αj First-order mass transfer coefficient between the mobile 

and immobile domains assigned to the j-th channel 

T-1 MDP-2RNE 

βj Diffusion parameter in the j-th flow channel, Eq. (12) T-1/2 MDP-SFDM 

γj Gamma coefficient in the j-th flow channel, Eq. (8) - MDMed 

θj Volumetric water content of the mobile domain assigned 

to the j-th channel 

- MDP-2RNE 

θimj Volumetric water content of the immobile domain 

assigned to the j-th channel 

- MDP-2RNE 

λj Time decay constant that controls the exponentially 

decaying release of tracer in the j-th channel 

T-1 MDMed 

ξ Integration variable, Eq. (11) T MDP-SFDM 

σj Standard deviation of travel times for transport by 

advection and dispersion in the j-th channel 

T  

τ Integration variable, Eq. (15) L MDP-2RNE 

ψj Fraction of mobile water in the j-th channel, Eq. (16) - MDP-2RNE 

ωj Omega coefficient in the j-th flow channel, Eq. (17) L-1 MDP-2RNE 

Point-to-point comments: 

Page 12: Table 2, test 4 >>> “Partitioning coefficient (ß)” instead of “Fraction of mobile water (ѱ)”? 

Page 12: Table 2, test 4 >>> “Mass transfer coefficient” instead of “Omega coefficient”? 

As mentioned in Table 2 and the text (lines 296−298), test 4 addresses the case of a single-flow channel that is described as a 

two-region nonequilibrium (2RNE) medium. The 2RNE model is mathematically described by Equations (13) – (17) and the 



model parameters are summarized in Table 1. The parameters ψ and ω are part of the 2RNE model and correct in Table 2, test 

4. The suggested changes would be inappropriate since the parameter β is the diffusion parameter in the SFDM model, and 

the "mass transfer coefficient" corresponds more specifically to the parameter α, which is part of ω (refer to line 175 and Eq. 

17). 

Anonymous Referee #2 

Figure 1: should this say what the dashed line represents, is it non flowing water? 

The dashed line was supposed to represent possible additional flow channels (greater than 3 and less than N). I removed this 

line for clarity. 

Line 115-116: “A possible reason is the increasing number of fitting parameters, which makes the inverse problem more 

complicated. The use of modern inversion tools such as PEST enables overcoming this problem, as discussed in section 3” I 

agree that these methods can efficiently find parameters sets in the situation you outline but I would assume not without the 

possibility that the parameters best fitting the data are far from unique and more so the greater the number of parameters. 

For me, this sentence misses a discussion of this important caveat in an otherwise very carefully considered section. 

A short discussion about the non-uniqueness (equifinality) issue has been added in this section. 

Among the challenges related to the inversion of a multiflow model is the inherent problem of nonuniqueness (or equifinality). 

A variety of parameter sets can yield nearly identical simulated BTCs because the change in the value of a parameter of a 

given channel can be compensated by modifying at least one other parameter that pertains to this same channel or the 

parameters of the other channels. This nonuniqueness causes the inverse problem to be ill-posed in the sense of Hadamard 

(1902) and requires the use of advanced optimization methods, such as regularization, to make the inverse problem tractable 

(Tikhonov and Arsenin, 1977; Moore and Doherty, 2006; Zhou et al., 2014). 

The uncertainty associated with the inverted parameter set and the methods that can be employed to assess this uncertainty are 

addressed again at the end of Chapter 3 and at the end of section 5 (application example). 

Around line 235: For my understanding, is the optimisation run for a given number of channels and if so should the user seek 

the minimum number of n that perform well for the measurement objective function and regularisation terms. OK, I see later 

where this comes in but I’ll leave the comment so you can see the issue I had when reading for the first time. 

Clarification was necessary; the text has been amended. 

The optimization and uncertainty analysis of the model parameters for a given number of flow channels are carried out using 

PEST routines (Doherty, 2019a, 2019b). The influence of the number of channels on the model fitting performance can be 

analyzed once a series of calibrations has been performed for a variety of channel numbers, as illustrated below. 

Around line 285: A series of utility functions are called here for the uncertainty analysis. I don’t think they need further 

explanation here but a pointer to the relevant documentation/literature on these would aid completeness. 

A sentence that specifies appropriate references has been added. 



The method is essentially similar to that described by Fang et al. (2019) and relies on the use of the PREDUNC7 and 

RANDPAR utilities documented in the PEST manual (Doherty, 2019b). 

Section 4 code verification – should this also test for the case where n channels is unknown? So for test 5 if n_max was set to 

6 would the same results be found as for the current test. Perhaps this goes beyond verification of the transport processes 

models, which is clearly the aim of this section, but I think checking the multistart would add value if feasible. 

A new test has been implemented to assess the multistart method. The related discussion has been placed in a new/separate 

section (section 5) for the sake of clarity. 

5 Assessment of the multistart optimization method 

The purpose of this section is to assess the automatic multistart method described in section 3 using a new synthetic test case. 

A multimodal BTC that corresponds to 3 channels has been simulated using the MDMi program with the parameters listed in 

Table 3. A "blind" inversion of this BTC has been performed using the automatic multistart method with a maximum number 

of flow channels Nmax = 6. The only model parameter that has been fixed prior to the inversion process was the total flow rate 

Q to simplify the post-comparison of the inverted mass values in each channel with the "true" mass values. Otherwise, a degree 

of freedom would persist for the pairs of the optimized Q and mj values, i.e., multiplying or dividing these parameters by the 

same constant would yield the same BTCs; refer to Eq. (6). The parameters mj, T0j and Pej of the different flow channels were 

optimized with virtually no upper and lower bound constraints (minimum and maximum allowed parameter values of 1.0 × 

10-10 and 1.0 × 10+10, respectively). As shown in Fig. 3, the inverted BTCs that correspond to N = 3, 4, 5, and 6 channels 

overlap perfectly with each other and with the original simulated BTC; and as shown in Table 4, the optimized values for the 

parameters of the 3-channel model are equal to the "true" parameter values.  

Table 3. Model parameters that correspond to the multimodal simulated BTC in Fig. 3. 

Parameters Values 

Q 10 m3 h-1 

m1 10 g 

m2 6 g 

m3 4 g 

T01 150 h 

T02 250 h 

T03 350 h 

Pe1 20 

Pe2 50 

Pe3 100 



Figure 3. Inversion of the 3-channel-simulated BTC using the automatic multistart method with Nmax = 6. The inverted BTCs 

that correspond to N = 3, 4, 5, and 6 channels overlap perfectly with each other and the original simulated BTC. 

Table 4. Optimized model parameters that correspond to the inverted BTCs in Fig. 3. 

N 1 2 3 4 5 6 

m1 (g) 21.11 10.79 10.00 2.79 2.66 2.66 

m2 (g) - 

 
9.54 6.00 7.19 7.35 7.35 

m3 (g) - 

 

- 

 
4.00 6.02 5.99 5.91 

m4 (g) - 

 

- 

 

- 

 
4.00 2.58 2.62 

m5 (g) - 

 

- 

 

- - 

 
1.42 1.45 

m6 (g) - - - - - 0.02 

T01 (h) 239.36 155.82 150.00 126.17 151.55 151.31 

T02 (h) - 

 
302.91 250.00 158.91 149.47 149.60 

T03 (h) - 

 

- 

 
350.00 250.00 249.97 249.30 

T04 (h) - 

 

- 

 

- 

 
350.01 349.48 347.68 

T05 (h) - 

 

- 

 

- 

 

- 

 
350.84 351.08 

T06 (h) - - - - - 405.58 

Pe1 6.72 17.52 20.00 24.22 19.80 19.92 

Pe2 - 

 
27.55 50.00 22.18 20.07 20.01 

Pe3 - 

 

- 

 
100.00 49.94 50.04 50.62 

Pe4 - 

 

- 

 

- 

 
100.00 98.45 88.42 

Pe5 - 

 

- 

 

- 

 

- 

 
102.68 120.27 

Pe6 - - - - - 442.13 



Figure 3: In my version the dots and labels overlap, generally this figure could be cleaner, and the scale bar is also quite 

small. Would it also be possible to highlight the wells used for pumping and injections in the experiments, perhaps with colours 

or different symbology. 

This figure (Fig. 4 in the revised manuscript) has been revised. 

Figure 4. Locations of wells at the HES in Poitiers, France. Map data are from Google. 

Line 345: Do the parameter bounds come into play in the optimised parameter sets? i.e. do you get parameters optimising to 

the bounds? Generally, there is not any discussion of the parameters found, we there a reason for this? I think this should be 

justified. 

A table that lists the fitted parameter values that correspond to Fig. 4 has been prepared: 

https://doi.org/10.5281/zenodo.3824439. The table also contains i) the injected and recovered mass values for each tracer 

experiment, ii) the corresponding recovery ratios, iii) the minimum and maximum parameter values considered for the 

optimization, iv) the composite parameter sensitivities computed with PEST, and v) the post-calibration scaled values of the 

parameters pairs (Q, mj) and (C0, Qj/Q), which are consistent with the recovered mass values. This post-calibration scaling was 

necessary because no parameter was fixed prior to the inversion; so a degree of freedom remained in the pairs of parameters 

due to their balance in the model equations. Owing to its large size (more than 400 parameters for the different models and 

channel number scenarios), I propose the inclusion of this table as a supplement rather than an appendix. I also added a 

discussion about the (consistent) variation in the values of the parameters that influence the spreading of transit/residence times 

in the individual flow channels according to the different models and/or number of flow channels. A bound effect on the 

optimization of parameter β (SFDM model) has been noted and discussed. 

https://doi.org/10.5281/zenodo.3824439


The optimized parameter values and their composite sensitivities at the end of the optimization process are provided in the 

Supplement (Table S1). Unsurprisingly, the model parameters that influence the spreading of transit/residence times in the 

individual flow channels while accounting for different processes (Pe, γ, β, ψ, and ω) are sensitive to the number of channels. 

For instance, when comparing single- with multiple-channel models, the former requires lower Pe values to compensate for 

the coarser description of the flow system heterogeneity (recall that the dispersion coefficient integrated in the Peclet number 

reflects the unresolved variability of the flow velocity below the modeling scale). The same observation holds when comparing 

single- and double-porosity models with the same number of flow channels, i.e., the Pe values of single-porosity models are 

lower than the Pe values of double-porosity models because part of the spreading of transit/residence times in the latter case 

is implicitly captured by solute mass exchanges between the mobile and immobile domains. A noticeable exception is the 

diffusion parameter β of the SFDM model, whose values are mostly around 1.0 × 10-3 h-1/2. This value corresponds to the upper 

bound of the optimization range set for this parameter, which is based on a matrix porosity of 30 %, a molecular diffusion 

coefficient of 1.0 × 10-9 m2 s-1, and a flow-channel aperture of 1.0 × 10-2 m. Beta values larger than 1.0 × 10-3 h-1/2 would be 

physically unrealistic. The fact that the Beta value is limited by its upper bound during the optimization process indicates that 

the SFDM model is not suitable for describing the HES tracer experiments, as further discussed below. All other parameters 

have converged to values far from their optimization bounds. 

Figure 5: Could the legend be a single legend for all plots. On my version the legend is also quite small making dashed and 

continuous lines difficult to identify. Worth checking in the final production of the figure for publication. 

The figure has been modified to include only one legend. The readability problems are most likely related to the .pdf file that 

was generated for the review. This figure is a vector graphic and should not pose any production/re-editing issues if the article 

is accepted for publication in GMD. 

Line 390 uncertainty analysis – Could you be more explicit about why the particular model and test case was chosen for the 

uncertainty analysis. Line 390 uncertainty analysis – Could you be more explicit about why the particular model and test case 

was chosen for the uncertainty analysis. Line 396: “fairly similar” could you be more precise about how similar was defined. 

The uncertainty analysis description in the methods is quite brief which means its difficult to fully appreciate the setup here in 

my opinion. Around line 400 – I feel the discussion of these results is somewhat rushed regarding the uncertainty analysis, I 

don’t feel I fully appreciate the results. Is this conclusion made because only the four and six channel models capture the first 

peak? MDP-2RNE seems to for the two channels although it’s difficult to see if this is really the case. 

Since this part of the original manuscript was unclear, I rewrote it and expanded the uncertainty analysis by considering i) two 

models (MDMi and MDP-2RNE) instead of one model (MDMi in the original manuscript) and ii) different numbers of 

channels (1, 2, and 3) in each case instead of a single two-channel model in the original manuscript. As outlined in the revised 

manuscript, the objective is to illustrate the possibilities offered by MFIT for the analysis of uncertainties associated with the 

inverted parameters. It would be inappropriate to rely on this analysis to compare the performances of the different models 

since, as discussed in the revised manuscript, the choice of a model and a number of channels (i.e., degree of complexity of 

the model) depends on the objective pursued by the modeler. In the revised manuscript, the results of Fig. 7 and Fig. 8 are 

discussed in terms of the equifinality of the inverted model parameters. 

The Pareto curves in Fig. 6 (previously Fig. 5) indicate that the final choice of a model, if one is to be made, relies on a tradeoff 

between the desired fitting accuracy and the desired degree of simplification/complexity with respect to the model structure 

(number of channels and/or number of model parameters). Beyond this subjective (expert) decision, which may depend on the 

goal of the study, and therefore, will not be discussed further in the present application case, uncertainty remains in the inverted 



model parameters as a consequence of the nonuniqueness of the inverse problem. This uncertainty is related to both the 

equifinality of the model parameters, which is partly due to the multiflow framework structure, and the measurement noise in 

the tracer BTCs. Figures 7 and 8 illustrate the post-calibration uncertainty analysis capabilities of MFIT, via an assessment of 

the MDMi and MDP-2RNE model fittings of the M16-M22 tracer BTC with 1, 2, and 3 flow channels. Owing to the balance 

between the Q and mj terms in the model equation (Eqs. (6) and (15)), at least one of these parameters must be fixed to assess 

the uncertainty of the other parameters. Here, the value of Q was set to 25 m3 h-1, which ensures the consistency of the model 

against the recovered tracer mass that was independently calculated from the experimental data (refer to Table S1). Following 

the PEST optimization of the different model parameters, 500 calibration-constrained parameter fields were stochastically 

generated and recalibrated by PEST. Depending on the model (MDMi or MDP-2RNE) and number of flow channels, between 

483 and 500 recalibration runs successfully achieved a level of fit that is fairly similar (i.e., within a tolerance of +5 % for the 

PHI value; refer to section 3) to that associated with the original calibration parameter field. The histograms shown in Figs. 7 

and 8 were constructed from these recalibrated parameter sets and illustrate the multitude of parameter combinations that are 

equally good, for a given number of flow channels, in terms of fitting the M16-M22 tracer BTC. As shown in these figures, 

the confidence intervals are quite narrow for most parameters but tend to widen as the number of channels increases, which 

reflects the equifinality of the multiflow modeling approach. Although not shown here, it has been established that the tailed 

behaviors of the parameters Lj and ωj in Fig. 8 are due to a partial correlation between these two parameters (refer to Eq. (15)), 

i.e., fixing the value of one parameter prior to the inversion drastically reduces the uncertainty of the other parameter. As

previously discussed, the higher Pe values in Fig. 8 compared to Fig. 7 are due to the fact that the distribution of the 

transit/residence times with the 2RNE model is primarily controlled by the solute mass exchanges between the mobile and 

immobile domains. 

Figure 7. Postcalibration uncertainty of model parameter values for the inversion of the M16-M22 tracer BTC by the MDMi 

model with 1, 2, and 3 flow channels. 



Figure 8. Postcalibration uncertainty of model parameter values for the inversion of the M16-M22 tracer BTC by the MDP-

2RNE model with 1, 2, and 3 flow channels. A logarithmic scale has been employed for Pe due to a wider range of values than 

shown in Fig. 7. 
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Abstract. More than half of the Earth’s population depends largely or entirely on fractured or karst aquifers for their drinking 

water supply. Both the characterization and modeling of these groundwater reservoirs are therefore of worldwide concern. 

Artificial tracer testing is a widely used method for the characterization of solute (including contaminant) transport in 

groundwater. Tracer experiments consist of a two-step procedure: 1) introducing a conservative tracer-labeled solution into an 

aquifer, usually through a sinkhole or a well, and 2) measuring the concentration breakthrough curve (BTC) response(s) at one 10 

or several downstream monitoring locations, usually spring(s) or pumping well(s). However, the modeling and interpretation 

of tracer test responses can be a challenging task in some cases, notably when the BTCs exhibit multiple local peaks and/or 

extensive backward tailing. MFIT is a new open-source, Windows-based computer package for the analytical modeling of 

tracer BTCs. This software integrates four transport models that are all capable of simulating single- or multiple-peak and/or 

heavy-tailed BTCs. The four transport models are encapsulated in a general multiflow modeling framework, which assumes 15 

that the spatial heterogeneity of an aquifer can be approximated by a combination of independent one-dimensional channels. 

Two of the MFIT transport models are believed to be new, as they combine the multiflow approach and the double-porosity 

concept, which is applied at the scale of the individual channels. Another salient feature of MFIT is its compatibility and 

interface with the advanced optimization tools of the PEST suite of programs. Hence, MFIT is the first BTC fitting tool that 

allows regularized inversion and nonlinear analysis of the postcalibration uncertainty of model parameters. 20 

1 Introduction 

Artificial tracer testing is one of the most valuable methods for the characterization of flow and solute transport in groundwater. 

Tracer experiments consist of a two-step procedure: 1) introducing a known mass of a tracer species into an aquifer, usually 

through a sinkhole or well, and 2) measuring the concentration breakthrough curve (BTC) response(s) at one or several 

downstream monitoring locations, usually spring(s) or pumping well(s). The analysis of a tracer BTC is best done by fitting a 25 

model-computed time-concentration curve to the measured values. Although spatially distributed numerical models (e.g., 

MODFLOW/MT3DMS or FEFLOW) can be used for this purpose, simpler (i.e., spatially lumped) models are generally used, 

at least in the early stages of tracer studies, either because of time constraints or because of a lack of model input data. A 

number of computer codes for BTC fitting have been developed in recent decades: CATTI (Sauty et al., 1992), TRACI (Käss, 
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1998, 2004), OTIS (Runkel, 1998), STANMOD (van Genuchten et al., 2012), TRAC (Gutierrez et al., 2013), OM-MADE 30 

(Tinet et al., 2019), and OptSFDM (Gharasoo et al., 2019). Note that STANMOD integrates a number of former codes, 

including the widely used CXTFIT code developed by Parker and van Genuchten (1984) and Toride et al. (1999). Despite the 

range of possibilities offered by these programs, the fitting and interpretation of tracer BTCs remains a challenging task in 

some cases, notably for BTCs exhibiting multiple local peaks and extensive backward tailing. Such BTC shapes, which fall in 

the general category of non-Fickian (or anomalous) transport (Berkowitz et al., 2006; Neuman and Tartakovsky, 2009), are 35 

frequently observed in fractured and karst aquifers (Tsang and Neretnieks, 1998; Streetly et al., 2002; Massei et al., 2006; 

Loefgren et al., 2007; Goldscheider et al., 2008; Field and Leij, 2012; Bertrand et al., 2015; Yang et al., 2019). 

To the best of the author’s knowledge, only the TRACI and OM-MADE programs are able to simulate multimodal BTCs. 

Unfortunately, these two programs suffer from some limitations both in terms of ease of use and with respect to their 

modeling/calibration capabilities. For instance, the TRACI software has not been maintained since 2004 and can only be used 40 

on physical or virtual computers running Windows operating system versions from Windows 98 to Windows 7. Another 

drawback of TRACI is the inability of the inversion (automated calibration) algorithm included in the software to handle 

multimodal BTCs. Each local concentration peak must be sequentially fitted through a manual (trial-and-error) calibration 

procedure. The OM-MADE program was written as a Python script and has neither a graphical user interface (GUI) nor inverse 

modeling functionality. The purpose of this paper is to present a new open-source GUI-based software, named MFIT, that 45 

aims to help in the interpretation of single- or multiple-peak and/or heavy-tailed BTCs. MFIT stands for "Multi-Flow Inversion 

of Tracer breakthrough curves". The MFIT software integrates four transport models that can be tested against field and 

laboratory tracer BTCs with the assistance of the PEST automated calibration and uncertainty analysis routines (Doherty, 

2019a). In its current version, the scope of the software is limited to tracer tests involving nonreactive tracer species and 

performed in steady flow conditions. These assumptions are maintained throughout the paper. 50 

The remainder of this paper is organized as follows. Section 2 discusses the possible origins of multiple peaks and long tails 

in tracer BTCs and presents the conceptual and mathematical framework of the transport models integrated in MFIT. The code 

implementation and coupling with PEST for automated BTC fitting are discussed in section 3. In section 4, the accuracy of 

MFIT-computed BTCs is verified against CXTFIT and TRACI simulations for five test cases. In section 5An additional test 

is presented in section 5 to assess the reliability of a new multistart method that was specifically developed to improve the 55 

automatic optimization of the model parameters. In section 6, we illustrate the use of the software by analyzing tracer BTCs 

obtained in the karst aquifer of the Hydrogeological Experimental Site (HES) in Poitiers, France. The summary and conclusions 

are presented in section 67. A number of acronyms, model abbreviations, and model parameters are employed throughout this 

paper. Two glossaries, Tables A1 and A2, are provided in Appendix A for easy reference. 
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2 Multimodal and heavy-tailed BTCs: causes and modeling 60 

Under the already mentioned assumptions (nonreactive tracer, steady-state flow), multimodal BTCs unequivocally indicate 

that a number of tracer-plume splittings occurred somewhere between the injection site and the monitoring point. Although 

injection artifacts may be involved in some cases, see, e.g., Guvanasen and Guvanasen (1987), tracer splitting most commonly 

originates from the spreading (transverse dispersion) of the solute into areas of contrasting flow velocities; see, e.g., Moreno 

and Tsang (1991), Siirila-Woodburn et al. (2015), and Boon et al. (2017). More precisely, assuming a single-pulse tracer 65 

injection signal, multimodal BTCs reflect a three-step process: 1) tracer spreading into different flowing or nonflowing aquifer 

subdomains characterized by different transit/residence times, 2) tracer motion within each subdomain with little or no 

exchange between the different subdomains, and 3) convergence (mixing) of the subtracer fluxes somewhere upstream from, 

or at, the monitoring point. The different models that have been proposed in the literature for simulating multimodal tracer 

BTCs share a common "multiflow" approach initially proposed by Zuber (1974) for the modeling of layered aquifers. In this 70 

approach, which is depicted in Fig. 1, the flow system is described as a juxtaposition of a number of one-dimensional (1-D) 

channels that are connected by a single common diverging (splitting) node at the entrance to the system and a single common 

converging (mixing) node at the outlet. 
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Figure 1. Conceptual sketch of the (generic) multiflow modeling approach, modified from Leibundgut et al. (2009) 

In the multi-dispersion model (MDM) proposed by Maloszewski et al. (1992) and implemented in the TRACI software, the 

transport along each channel is assumed to obey the one-dimensional (1-D) advection-dispersion equation (ADE), and no mass 

exchange is allowed between different channels. In the dual-advection-dispersion equation (DADE) model proposed by Field 

and Leij (2012), only two channels are considered. The tracer is transported by advection and dispersion along each channel, 80 

and mass exchanges between the two domains are possible. These exchanges are assumed to be governed by a first-order 

process. The transport model implemented in the OM-MADE code can be viewed as a generalization of the DADE model, 

where (i) a larger number of channels can be used, (ii) each channel can be discretized to a number of subelements with 

different hydraulic and transport properties, and (iii) some channels can be specified as nonflowing (stagnant) water volumes. 

Mass exchanges between the different channels (either flowing or nonflowing) are likewise modeled as a first-order process. 85 

As pointed out above, the production of a multimodal BTC requires little or no exchange between the subtransport domains; 

otherwise, the mixing of the mass fluxes would rehomogenize the subtracer plumes. In accordance with this principle, small 

exchange coefficient values must be used in the DADE and OM-MADE models for simulating multimodal BTCs, and this 

approach makes these models converge toward the MDM. 

The interpretation of the long-tail behavior of a BTC may be more difficult than that of multiple peaks, as different mechanisms 90 

can be involved. The possible sources of extensive BTC tailing can be listed as follows: (i) tracer retention/decaying boundary 

condition at the injection site; (ii) tracer splitting into well-separated flow paths and then downstream 

convergence/mixing/overlapping of the individual pathway responses; and (iii) mass exchanges between flow domains 

characterized by different transit/residence times. The above-listed processes are referred to below as "injection decay", 

"multiflow overlapping", and "multiflow exchanges", respectively. The MDM can simulate long-tailed BTCs as a result of 95 

multiflow overlapping. Multiflow exchanges are the core of the DADE model, and both multiflow overlapping and multiflow 

exchanges can be combined in the OM-MADE model. A number of other models have been proposed in the literature for 

simulating unimodal long-tailed BTCs; see, e.g., reviews in Bodin et al. (2003b), Neuman and Tartakovsky (2009), Zhang et 
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al. (2009), Dentz et al. (2011) and examples of recent works in Field and Leij (2014) and Labat and Mangin (2015). The two 

most commonly used models for the analysis of artificial tracer tests are the two-region nonequilibrium (2RNE) model of 100 

Toride et al. (1993), implemented in the CXTFIT code, and the single-fracture dispersion model (SFDM) of Maloszewski and 

Zuber (1990), implemented in TRACI and OptSFDM software. Both the 2RNE model and SFDM assume mass exchange 

between a single mobile (flowing) domain and a single immobile domain. A key distinction between the 2RNE model and 

SFDM is the formulation of mass exchange, which is described as a first-order process in the 2RNE model (as in the DADE 

and OM-MADE models) and as a second-order (diffusion) process in the SFDM. 105 

As already noted, multimodal and long-tailed BTCs are typical of tracer tests performed in fractured and karst aquifers. A 

common feature of both aquifer types is the existence of low hydraulic resistance pathways provided by the fractures and karst 

conduits (Tsang and Neretnieks, 1998; Worthington and Ford, 2009). A generic multiflow modeling approach is therefore 

intuitively appealing for the interpretation of tracer tests in fractured and karst aquifers. Of course, the actual (and generally 

unknown) geometry of the discrete flow network experienced by the tracer is likely more complex than that depicted in Fig. 110 

1. The channels are therefore not assumed to represent individual fractures or karst conduits but are lumped submodels of the 

main flow routes used by the tracer through the fractures/karst conduit network. The four transport models integrated in the 

MFIT software are based on the multiflow approach. The first model is a reimplementation of the MDM. The second model 

is a variant of the MDM that assumes an exponentially decaying injection of the tracer concentration at the inlet of the flow 

system. In the third and fourth models, the double-porosity concept (2RNE model and SFDM) is applied at the scale of the 115 

individual channels. It is unclear whether this idea of combining multiflow and double-porosity systems is new. In the TRACI 

software, it is technically possible to fit a series of SFDM curves to a multimodal tracer BTC and then calculate the mean 

combined model curve, but to the best of the author’s knowledge, this method has never been discussed or applied in the 

literature. A possible reason is the increasing number of fitting parameters, which makes the inverse problem more 

complicated. The use of modern inversion tools such as PEST enables overcoming this problem, as discussed in section 3. 120 

Among the challenges related to the inversion of a multiflow model is the inherent problem of nonuniqueness (or equifinality). 

A variety of parameter sets can yield nearly identical simulated BTCs because the change in the value of a parameter of a 

given channel can be compensated by modifying at least one other parameter that pertains to this same channel or the 

parameters of the other channels. This nonuniqueness causes the inverse problem to be ill-posed in the sense of Hadamard 

(1902) and requires the use of advanced optimization methods, such as regularization, to make the inverse problem tractable 125 

(Tikhonov and Arsenin, 1977; Moore and Doherty, 2006; Zhou et al., 2014). 

In this article, the combination of multiflow and double-porosity systems is referred to as the multi-double porosity (MDP) 

approach. The immobile domain that is assigned to each flow channel is assumed to describe the porous rock matrix in contact 

with the fractures/karst conduits and/or any other stagnant water zones (e.g., pool volumes) adjacent to the main tracer 

pathways. For each of the four MFIT models, the channels are assumed to be independent of each other, i.e., no mass exchange 130 

is allowed between the channels. Actually, this assumption is mathematically convenient rather than physically motivated. As 

already indicated, the channels are abstractions of the real main tracer pathways, which may cross (and therefore exchange 
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between) each other between the injection site and the monitoring point. Assuming fully separated channels allows analytical 

modeling of mass fluxes in the multiflow system, and this approach makes the inversion of model parameters computationally 

more efficient (see discussion in section 3). 135 

The governing equations of the transport models are given as follows. The concentration at the outlet of a multiflow system as 

depicted in Fig. 1 can be calculated from the mass flux balance as follows:  

𝑄𝑄𝑄𝑄 = ∑ 𝑄𝑄𝑗𝑗𝑄𝑄𝑗𝑗𝑁𝑁
𝑗𝑗=1     (1) 

where Q(L3T-1) is the total system flow rate; C(ML-3) is the outflow concentration; N is the number of flow channels; the 

subscript j denotes the flow channel index; and Qj(L3T-1) and Cj(ML-3) are the flow rate and concentration in the j-th channel, 140 

respectively. 

The mathematical equations that have been used by Maloszewski et al. (1992) in the MDM to describe the solute transport in 

each flow channel are the 1-D ADE as follows: 

𝜕𝜕𝐶𝐶𝑗𝑗
𝜕𝜕𝜕𝜕

= −𝑢𝑢𝑗𝑗
𝜕𝜕𝐶𝐶𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝐷𝐷𝑗𝑗
𝜕𝜕2𝐶𝐶𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗

2     (2) 

and its analytical solution for the case of an instantaneous solute injection in a semi-infinite medium with both injection and 145 

detection in flux, which is expressed as follows (Kreft and Zuber, 1978):) 

𝑄𝑄𝑗𝑗 =
𝑚𝑚𝑗𝑗

2𝑄𝑄𝑗𝑗𝑇𝑇0𝑗𝑗�
𝜋𝜋
𝑃𝑃𝑒𝑒𝑗𝑗

� 𝑡𝑡
𝑇𝑇0𝑗𝑗

�
3
𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑃𝑃𝑒𝑒𝑗𝑗𝑇𝑇0𝑗𝑗
4𝜕𝜕

�1 − 𝜕𝜕
𝑇𝑇0𝑗𝑗
�
2
�    (3) 

where t(T) is the time variable; xj(L) is the spatial coordinate along the j-th flow channel; uj(LT-1) and Dj(L2T-1) are the 

advection velocity and the dispersion coefficient, respectively; mj(M) is the part of the solute mass flowingthat flows through 

the j-th channel; and T0j(T) and Pej(−) are the mean transit time and Peclet number, respectively, as follows:which are expressed 150 

as 

𝑇𝑇0𝑗𝑗 =
𝐿𝐿𝑗𝑗
𝑢𝑢𝑗𝑗

    (4) 

𝑃𝑃𝑒𝑒𝑗𝑗 =
𝑢𝑢𝑗𝑗𝐿𝐿𝑗𝑗
𝐷𝐷𝑗𝑗

    (5) 

where Lj(L) is the length of the j-th pathway. Substituting Eq. (3) into Eq. (1) yields: 
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𝑗𝑗=1     (6) 155 

The calibration of Eq. (6) against a tracer test BTC requires determination of the total system flow rate Q; the number N of 

flow channels; and for each flow channel, the values of mj, T0j and Pej. In this work, we generalize the above-described method 
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by considering alternative models for the transport in individual channels and substituting the related analytical expressions of 

Cj into Eq. (1). The analytical transport models that are considered are (i) the solution of Eq. (2) for the case of a decaying 

injection boundary condition, (ii) the SFDM, and (iii) the 2RNE model.  160 

The analytical solution of Eq. (2) for the case of a decaying injection boundary condition 𝑄𝑄𝑗𝑗�𝑒𝑒𝑗𝑗 = 0, 𝑡𝑡� = 𝑄𝑄0 𝑒𝑒𝑒𝑒𝑒𝑒�−𝜆𝜆𝑗𝑗𝑡𝑡� was 

derived by Marino (1974) and can be written in the following form: 
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where C0(ML-3) is the initial (maximum) injection concentration at the inflow boundary;, λj(T-1) is the time decay constant;, 

and 165 

𝛾𝛾𝑗𝑗 = �1 −
4𝐷𝐷𝑗𝑗𝜆𝜆𝑗𝑗
𝑢𝑢𝑗𝑗
2     (8) 

The SFDM developed by Maloszewski and Zuber (1990) describes solute transport in a double-porosity fracture-matrix 

system. The considered transport mechanisms are advection-dispersion in the fracture and diffusion in the surrounding rock 

matrix. The fracture is idealized as a parallel-plate channel, and the matrix diffusion is assumed to be unlimited, i.e., not 

influenced by the fluxes from other fractures. The transport equations can be written as follows: 170 
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𝜕𝜕𝐶𝐶𝑝𝑝𝑗𝑗
𝜕𝜕𝑦𝑦𝑗𝑗

�
𝑦𝑦𝑗𝑗=𝑏𝑏𝑗𝑗

 for 0 ≤ 𝑦𝑦𝑗𝑗 ≤ 𝑏𝑏𝑗𝑗   (9) 

𝜕𝜕𝐶𝐶𝑝𝑝𝑗𝑗
𝜕𝜕𝜕𝜕

= 𝐷𝐷𝑝𝑝𝑗𝑗
𝜕𝜕2𝐶𝐶𝑝𝑝𝑗𝑗
𝜕𝜕𝑦𝑦𝑗𝑗

2  for 𝑏𝑏𝑗𝑗 ≤ 𝑦𝑦𝑗𝑗 ≤ ∞    (10) 

where Cj(ML-3) and Cpj(ML-3) are the solute concentrations in the flow channel and in the rock matrix, respectively,; θpj(−) is 

the matrix porosity,; Dpj(L2T-1) is the molecular diffusion coefficient in the matrix,; bj(L) is the half-aperture of the flow 

channel,; and yj(L) is the spatial coordinate perpendicular to the channel extension. The solution to Eqs. (9) and (10) for the 175 

case of an instantaneous injection is: 

𝑄𝑄𝑗𝑗 =
𝑚𝑚𝑗𝑗𝛽𝛽𝑗𝑗�𝑃𝑃𝑒𝑒𝑗𝑗𝑇𝑇0𝑗𝑗

2𝜋𝜋𝑄𝑄𝑗𝑗
∫

𝑒𝑒𝑥𝑥𝑝𝑝�−
𝑃𝑃𝑒𝑒𝑗𝑗�𝑇𝑇0𝑗𝑗−𝜉𝜉�

2

4𝑇𝑇0𝑗𝑗𝜉𝜉
−
𝛽𝛽𝑗𝑗
2𝜉𝜉2

𝑡𝑡−𝜉𝜉 �

�𝜉𝜉(𝜕𝜕−𝜉𝜉)3
𝑑𝑑𝑑𝑑𝜕𝜕

0     (11) 

where ξ(T) is the integration variable and βj(T-1/2) is the so-called diffusion parameter defined as: 

𝛽𝛽𝑗𝑗 =
𝜃𝜃𝑝𝑝𝑗𝑗�𝐷𝐷𝑝𝑝𝑗𝑗

2𝑏𝑏𝑗𝑗
    (12) 
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Coats and Smith (1964) proposed a different mathematical formulation of solute mass exchange between flowing and stagnant 180 

water regions in double-porosity media, which is well known in the literature either as the mobile-immobile (MIM) model or 

as the 2RNE model as follows: 

𝜃𝜃𝑗𝑗
𝜕𝜕𝐶𝐶𝑗𝑗
𝜕𝜕𝜕𝜕

+ 𝜃𝜃𝑖𝑖𝑚𝑚𝑗𝑗
𝜕𝜕𝐶𝐶𝑖𝑖𝑖𝑖𝑗𝑗

𝜕𝜕𝜕𝜕
= 𝜃𝜃𝑗𝑗 �−𝑢𝑢𝑗𝑗

𝜕𝜕𝐶𝐶𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝐷𝐷𝑗𝑗
𝜕𝜕2𝐶𝐶𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗

2 �    (13) 

𝜃𝜃𝑖𝑖𝑚𝑚𝑗𝑗
𝜕𝜕𝐶𝐶𝑖𝑖𝑖𝑖𝑗𝑗

𝜕𝜕𝜕𝜕
= 𝛼𝛼𝑗𝑗�𝑄𝑄𝑗𝑗 − 𝑄𝑄𝑖𝑖𝑚𝑚𝑗𝑗�    (14) 

where θj(−) and θimj(−) are the mobile and immobile volumetric water contents, respectively, Cimj(ML-3) is the concentration 185 

in the immobile domain, and αj(T-1) is a first-order mass transfer coefficient. The two main differences with respect to the 

SFDM are (i) the dual-domain formulation of the problem (mobile and immobile regions are assumed to coexist at each point 

in space, and this assumption differs from the parallel-plate channel geometry in the SFDM) and that (ii) the solute mass 

exchange between mobile and immobile domains is assumed to be governed by a first-order process, whereas the SFDM refers 

to the second-order diffusion Eq. (10). Building on a general set of analytical solutions developed by Toride et al. (1993), the 190 

solution of the 2RNE model for the case of an instantaneous injection can be written as follows: 

𝑄𝑄𝑗𝑗 =
𝑚𝑚𝑗𝑗

𝑄𝑄𝑗𝑗

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1

𝑇𝑇0𝑗𝑗�
4𝜋𝜋
𝑃𝑃𝑒𝑒𝑗𝑗

� 𝑡𝑡
𝑇𝑇0𝑗𝑗

�
3
𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑃𝑃𝑒𝑒𝑗𝑗�1−
𝑡𝑡

𝑇𝑇0𝑗𝑗
�
2

4 𝑡𝑡
𝑇𝑇0𝑗𝑗

− 𝜔𝜔𝑗𝑗𝐿𝐿𝑗𝑗
𝜕𝜕
𝑇𝑇0𝑗𝑗
�

+
𝜔𝜔𝑗𝑗𝜓𝜓𝑗𝑗
𝑇𝑇0𝑗𝑗

�
𝐿𝐿𝑗𝑗
3𝑃𝑃𝑒𝑒𝑗𝑗

4𝜋𝜋�1−𝜓𝜓𝑗𝑗�
∫ 1

𝜏𝜏�𝜓𝜓𝑗𝑗𝐿𝐿𝑗𝑗
𝑡𝑡

𝑇𝑇0𝑗𝑗
−𝜏𝜏
𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑃𝑃𝑒𝑒𝑗𝑗�𝜓𝜓𝑗𝑗𝐿𝐿𝑗𝑗−𝜏𝜏�
2

4𝜓𝜓𝑗𝑗𝐿𝐿𝑗𝑗𝜏𝜏
−

𝜔𝜔𝑗𝑗𝜏𝜏

𝜓𝜓𝑗𝑗
−

𝜔𝜔𝑗𝑗�𝜓𝜓𝑗𝑗𝐿𝐿𝑗𝑗
𝑡𝑡

𝑇𝑇0𝑗𝑗
−𝜏𝜏�

1−𝜓𝜓𝑗𝑗
� 𝐼𝐼1 �2𝜔𝜔𝑗𝑗�

𝜏𝜏�𝜓𝜓𝑗𝑗𝐿𝐿𝑗𝑗
𝑡𝑡

𝑇𝑇0𝑗𝑗
−𝜏𝜏�

𝜓𝜓𝑗𝑗�1−𝜓𝜓𝑗𝑗�
� 𝑑𝑑𝑑𝑑

𝜓𝜓𝑗𝑗𝐿𝐿𝑗𝑗
𝑡𝑡

𝑇𝑇0𝑗𝑗
0

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

   (15) 

where I1 is the modified Bessel function of the first kind;, τ(L) is the integration variable;, and 

𝜓𝜓𝑗𝑗 =
𝜃𝜃𝑗𝑗

𝜃𝜃𝑗𝑗+𝜃𝜃𝑖𝑖𝑖𝑖𝑗𝑗
    (16) 195 

𝜔𝜔𝑗𝑗 =
𝛼𝛼𝑗𝑗
𝜃𝜃𝑗𝑗𝑢𝑢𝑗𝑗

    (17) 

It is notable that when ψj=1 and ωj=0, Eq. (15) simplifies to Eq. (3). Table 1 summarizes the parameters of the four MFIT 

transport models. 

 

Table 1. Parameters of the transport models integrated in the MFIT software. The subscript j  denotes a parameter that must 200 

be defined for each flow channel. The parameters without this subscript are common to all channels. 
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Model Parameters 

Maximum number of 

calibration parameters for 

an n-channel solution 

MDMi (ADE, instantaneous 

injection) 
Q, mj, T0j, Pej 3n+1 

MDMed (ADE, exponentially 

decaying injection) 
C0, Qj/Q, T0j, Pej, γj 4n+1 

MD2PMDP-SFDM Q, mj, T0j, Pej, βj  4n+1 

MD2PMDP-2RNE Q, mj, Lj, T0j, Pej, ψj, ωj 6n+1 

3 Code implementation and inversion 

The four analytical models described in the previous section have been implemented in C++ and compiled as executable 

Windows programs named MDMi.exe (for MDM, instantaneous injection), MDMed.exe (for MDM, exponentially decaying 

injection), MDP_SFDM.exe, and MDP_2RNE.exe. The code and executable files are freely available on the public Zenodo 205 

repository https://doi.org/10.5281/zenodo.3470751. In the MDP_SFDM and MDP_2RNE programs, the numerical 

evaluation of the integrals in Eqs. (11) and (15) is performed using the QAG adaptive integration routine from the GNU 

Scientific Library with a 61-point Gauss-Kronrod rule and a relative error convergence criterion of 10-2. These four programs 

can be run as console applications to solve a direct (forward) problem, i.e., computing a series of time-concentration values 

for a given set of model parameters. Both the input and output files are in ASCII format and can be edited with any text editor 210 

program for pre-/postprocessing. A convenient alternative is to use the MFIT software as a GUI for these applications. The 

MFIT software has been developed using the C++ Builder environment (Embarcadero RAD Studio 10.1 Berlin) and provides 

a GUI for (i) importation and graphic visualization of user-provided BTC data; (ii) parameterization, direct running, and 

graphical output of the analytical transport models; (iii) inversion (automatic calibration) of model parameters for optimal 

curve fitting; and (iv) assessment of the uncertainty of calibrated parameter values. 215 

Both theThe optimization and uncertainty analysis of the model parameters for a given number of flow channels are carried 

out using PEST routines (Doherty, 2019a, 2019b). The influence of the number of channels on the model fitting performance 

can be analyzed once a series of calibrations has been performed for a variety of channel numbers, as illustrated below. PEST 

is a public domain model-independent program suite that has been widely used over the past two decades, notably in the field 

of surface and subsurface hydrology (e.g., Long, 2015; Woodward et al., 2016; Gaudard et al., 2017; Wang et al., 2019). The 220 

theoretical framework and full range of capabilities of the PEST software are well documented (Doherty et al., 2010; Doherty, 

2015, 2019a, 2019b) and are not repeated here. Only the concepts and methods that were deemed to be the most relevant to 

the multiflow modeling approach and that have been made accessible through the MFIT GUI software are briefly reviewed 

below. 

https://doi.org/10.5281/zenodo.3470751
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PEST is based on a gradient optimization method and, as such, requires the derivatives of model outputs with respect to the 225 

adjustable model parameters to be calculated in each iteration for implementing the Jacobian (sensitivity) matrix. As pointed 

out by Doherty (2015), the accuracy of these derivative calculations is critical to the performance of the PEST optimization 

algorithm. In the MFIT program suite, most of the model partial derivatives are calculated analytically and externally provided 

to PEST. This approach ensures both the accuracy and speed of this part of the optimization process. Less straightforward 

partial derivative expressions were derived using MAPLE and exported as C code using the MAPLE code generation routine. 230 

The partial derivative functions were implemented in the MDMi, MDMed, MDP_SFDM, and MDP_2RNE programs and are 

processed during the PEST system calls to these programs by providing an optional "/d" command line argument to the 

program name. In a few cases, however, the partial derivatives cannot be calculated analytically, as they involve undefined 

limits. Such is the case for the derivatives of Eq. (15) with respect to the parameters ψj, Lj and T0j. In these cases, the partial 

derivatives are computed by PEST using finite differences. 235 

The calibration of a multiflow transport model against a tracer BTC is hampered by two well-known issues in inverse modeling: 

(i) model nonlinearity and (ii) solution nonuniqueness. Both issues may cause numerical instabilities that can prevent the 

inversion algorithm from converging to the optimal solution. PEST includes two regularization methods that can be used either 

individually or together to guide the optimization process. The singular value decomposition (SVD) method subtracts 

parameter combinations for which the tracer BTC is uninformative. The inversion is conducted on the basis of a reduced set 240 

of orthogonal linear combinations of the model parameters rather than attempting to estimate the parameters individually. The 

Tikhonov regularization method provides a different but complementary strategy, where the information content of the tracer 

BTC is supplemented with expert knowledge pertaining to the model parameters. When using Tikhonov regularization, the 

objective function that is minimized by PEST is defined as the sum of two terms. The first term is the "measurement objective 

function" and is defined as the sum of the squared weighted differences between the real tracer BTC and the model-simulated 245 

curve. The second term is referred to as the "regularization objective function" and acts as a penalty function for deviations 

from some preferred parameter conditions. Two Tikhonov regularization options have been implemented in MFIT. The first 

option, referred to as "preferred homogeneity", promotes a solution of minimum variance for the model parameters pertaining 

to the different channels. In the second option, referred to as "preferred value", the optimization process seeks the solution that 

is the closest to some prior estimates of the model parameters. 250 

Unfortunately, neither SVD nor Tikhonov regularization can guarantee that the PEST optimization algorithm will converge to 

the global optimal solution in the parameter space. Where local minima exist in the objective function, which is the rule rather 

than the exception with nonlinear models, the optimization process may become trapped and fail to identify existing better 

solutions (Singh et al., 2012; Espinet and Shoemaker, 2013; Abdelaziz et al., 2019). A central issue in this case is the sensitivity 

to initial parameter values, i.e., different initial parameter sets may lead to different optimized solutions. Global optimization 255 

methods have been proposed in the literature to overcome this issue; see, e.g., Arsenault et al. (2014) for a review and 

comparison of various algorithms. The PEST program suite includes two such global optimizers based on the SCE-UA method 

(Duan et al., 1992) and the CMA-ES method (Hansen and Ostermeier, 2001). The corresponding programs are named 
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SCEUA_P and CMAES_P, respectively. It must be noted, however, that global optimization methods suffer from their own 

drawbacks, including sensitivity to tuning parameters and low computational efficiency. An alternative strategy to improve 260 

the chances of convergence toward the global optimum with gradient-based methods is the "multistart" approach, which 

consists of repeating the optimization process starting from different initial parameter value sets (Skahill and Doherty, 2006; 

Piotrowski and Napiorkowski, 2011). Such a strategy has been implemented in the MFIT software. The key principle of the 

proposed algorithm is that rather than conducting the optimization for a fixed number N of channels only, a series of automatic 

tracer BTC fittings is performed for a decreasing number of channels ranging from Nmax to 1. The main steps of the MFIT 265 

multistart algorithm are detailed as follows: 

1. The first optimization is performed by considering the maximum number of flow channels, Nmax. The initial transport 

parameters are automatically tuned by MFIT to obtain Nmax well-separated concentration peaks. For this goal, the tracer 

BTC is first analyzed to determine the times T5 and T95, which are defined as follows: 

 𝑇𝑇5 = 𝑚𝑚𝑚𝑚𝑒𝑒(𝑇𝑇5𝜕𝜕ℎ, 1.1 × 𝑇𝑇𝑚𝑚𝑖𝑖𝑚𝑚)  (18) 270 

 𝑇𝑇95 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑇𝑇95𝜕𝜕ℎ, 0.9 × 𝑇𝑇𝑚𝑚𝑚𝑚𝑥𝑥)  (19) 

Wherewhere T5th and T95th are the earliest and latest times at which the concentration values are above and below 5 % of 

the maximum concentration value, respectively, and Tmin and Tmax are the minimum and maximum time values of the user-

provided BTC, respectively. The mean travel times T0j are then uniformly distributed between the times T5 and T95. Next, 

the initial Peclet number Pej of each channel is calculated as: 275 

 𝑃𝑃𝑒𝑒𝑗𝑗 = �15
𝑁𝑁𝑖𝑖𝑚𝑚𝑚𝑚𝑇𝑇0𝑗𝑗
𝑇𝑇95−𝑇𝑇5

�
2
  (20) 

Equation (20) is based on a semiempirical relationship between the standard deviation of travel times for transport by 

advection and dispersion, 𝜎𝜎𝑗𝑗 = 𝑇𝑇0𝑗𝑗�2 𝑃𝑃𝑒𝑒𝑗𝑗⁄  (see, e.g., Bodin et al. 2003a, Eq. 10), and the time span of the j-th 

concentration peak, which is on the order of 6σj. The constraint of well-separated concentration peaks may be formulated 

as 6σjNmax << (T95−T5), which is verified by Eq. (20). The initial values of the other transport parameters in Eqs. (7), (11)280 

, and (15) are chosen to minimize the tailing effect due to noninstantaneous injection or solute mass exchange between 

flowing and stagnant water regions as follows: γj = 0.1, βj = 0.001, ψj = 0.9, and ωj = 0.05. 

2. Once the optimization has been performed for the Nmax channel model, the next step is to optimize the transport parameters 

for Nmax−1 channels. The multistart optimization approach begins here as not only one but Nmax optimizations are 

performed in this step. The initial parameter values for the Nmax−1 channels are initialized from the previously optimized 285 

Nmax channel solution by sequentially removing one of the channels. Only the solution corresponding to the lowest sum 

of the squared weighted differences between the tracer BTC and model-simulated curve is retained. 

3. This procedure is repeated up to the single-channel solution. The total number of PEST optimizations is Nmax(Nmax+1)/2. 

Calling the multistart algorithm has been made optional in MFIT, as this algorithm significantly increases the computational 

cost and running time of the optimization process. However, experience has shown that the multistart approach can truly 290 

improve the model fit results and can be worth the effort in many circumstances. A comparison between optimizations 
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conducted by the PEST multistart algorithm and the global SCE-UA and CMA-ES methods was conducted in this study and 

is discussed in section 56. 

Because of the nonuniqueness of the inverse problem, some uncertainties may be associated with the PEST-optimized model 

parameter values. A nonlinear analysis method has been implemented in MFIT for the assessment of postcalibration parameter 295 

uncertainty. The method is essentially similar to that described by Fang et al. (2019) and relies on the use of the PREDUNC7 

and RANDPAR utilities documented in the PEST manual (Doherty, 2019b). The algorithm can be described by the following 

steps: 1) compute a linear approximation to the posterior parameter covariance matrix by using the PEST PREDUNC7 utility; 

2) sample the posterior parameter covariance matrix, and generate multiple calibration-constrained random parameter sets 

using the PESTwith RANDPAR utility; 3) recalibrate each parameter set with PEST up to achieving a level of fit fairly similar 300 

to the original calibration result (a tolerance of +5 % for the measurement objective function is allowed by MFIT); and 4) 

compute histograms of the recalibrated parameter values. The following two assumptions underlie this method: (i) the upper 

and lower parameter bounds specified by the user for the PEST inversion reflect the prior (expert knowledge) parameter 

uncertainty, and (ii) the model parameters are statistically independent from a prior point of view. This second assumption is 

relaxed through the recalibration process. 305 

4 Code verification 

The robustness of the PEST inversion program has been demonstrated in a number of studies, see, e.g., Anderson et al. (2015) 

and Hunt et al. (2019), and is not reassessed here. The purpose of this section is to assess the accuracy of MFIT direct 

simulations through five synthetic test cases. Tests 1 and 2 address the case of a single flow channel described as a single-

porosity medium in which the transport is governed by advection-dispersion. An instantaneous injection of the tracer is 310 

assumed in test 1, whereas test 2 addresses the case of an exponentially decaying concentration at the inlet. A double-porosity 

medium, single flow channel is assumed in tests 3 and 4, which conform to the assumptions of the SFDM and 2RNE model, 

respectively. In test 5, the tracer is transported by advection-dispersion in a multiflow system composed of threetwo channels. 

This scenario corresponds to the MDM. The input parameters for the five test cases are listed in Table 2. The BTCs simulated 

by MFIT for tests 1, 2 and 4 are compared to those obtained by CXTFIT. The MFIT simulations for tests 3 and 5 are compared 315 

against those obtained by TRACI. As shown in Fig. 2, very good agreement was obtained in each case. 
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Table 2. Input parameters for the five verification tests. 

Test Parameters Values 

1 

(single flow 

channel, ADE, 

instantaneous 

injection) 

Flow rate Q 10 m3 h-1 

Injected mass m 120 g 

Mean transit time T0 20200 h 

Peclet number Pe 502 

2 

(single flow 

channel, ADE, 

exponentially 

decaying 

 

T0, PeMean transit time T0 same as Test 170 h 

Peclet number Pe 10 

Initial (maximum) injection concentration C0 8.0.01 × 10-3 mg l-1 

Gamma coefficient γ 0.939 

3 

(single flow 

channel  SFDM) 

Q, m, T0, Pe same as Test 1 

Diffusion parameter β 0.04 h-1/2 

4 

(single flow 

channel, 2RNE) 

Q, m, T0, Pe same as Test 1 

Length of the flow channel L 101000 m 

Fraction of mobile water ψ 0.7 

Omega coefficient ω 0.1 m-1 

5 

(threetwo 

channels, MDM-

ADE) 

Total system flow rate Q 10 m3 h-1 

Mass flowing through the first channel m1 0.412 g 

Mass flowing through the second channel m2 0.38 g 

Mass flowing through the third channel m3 0.3 g 

Mean transit time in the first channel T01 20170 h 

Mean transit time in the second channel T02 32300 h 

Mean transit time in the third channel T03 50 h 

Peclet number in the first channel Pe1 5015 

Peclet number in the second channel Pe2 7080 

Peclet number in the third channel Pe3 50 
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Figure 2. Comparison among MFIT, CXTFIT, and TRACI simulations for test 1 (single flow channel, ADE, instantaneous 

injection), test 2 (single flow channel, ADE, exponentially decaying injection), test 3 (single flow channel, SFDM), test 4 325 

(single flow channel, 2RNE), and test 5 (threetwo channels, MDM-ADE) 

55 Assessment of the multistart optimization method 

The purpose of this section is to assess the automatic multistart method described in section 3 using a new synthetic test case. 

A multimodal BTC that corresponds to 3 channels has been simulated using the MDMi program with the parameters listed in 

Table 3. A "blind" inversion of this BTC has been performed using the automatic multistart method with a maximum number 330 

of flow channels Nmax = 6. The only model parameter that has been fixed prior to the inversion process was the total flow rate 

Q to simplify the post-comparison of the inverted mass values in each channel with the "true" mass values. Otherwise, a degree 

of freedom would persist for the pairs of the optimized Q and mj values, i.e., multiplying or dividing these parameters by the 

same constant would yield the same BTCs; refer to Eq. (6). The parameters mj, T0j and Pej of the different flow channels were 

optimized with virtually no upper and lower bound constraints (minimum and maximum allowed parameter values of 1.0 × 335 

10-10 and 1.0 × 10+10, respectively). As shown in Fig. 3, the inverted BTCs that correspond to N = 3, 4, 5, and 6 channels 

overlap perfectly with each other and with the original simulated BTC; and as shown in Table 4, the optimized values for the 

parameters of the 3-channel model are equal to the "true" parameter values.  
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Table 3. Model parameters that correspond to the multimodal simulated BTC in Fig. 3. 

Parameters Values 

Q 10 m3 h-1 

m1 10 g 

m2 6 g 

m3 4 g 

T01 150 h 

T02 250 h 

T03 350 h 

Pe1 20 

Pe2 50 

Pe3 100 

340 

Figure 3. Inversion of the 3-channel-simulated BTC using the automatic multistart method with Nmax = 6. The inverted BTCs 

that correspond to N = 3, 4, 5, and 6 channels overlap perfectly with each other and the original simulated BTC. 
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Table 4. Optimized model parameters that correspond to the inverted BTCs in Fig. 3.  

N 1 2 3 4 5 6 

m1 (g) 21.11 10.79 10.00 2.79 2.66 2.66 

m2 (g) - 

 
9.54 6.00 7.19 7.35 7.35 

m3 (g) - 

 

- 

 
4.00 6.02 5.99 5.91 

m4 (g) - 

 

- 

 

- 

 
4.00 2.58 2.62 

m5 (g) - 

 

- 

 

- 

 

- 

 
1.42 1.45 

m6 (g) - 

 

- 

 
- - 

 

- 

 
0.02 

T01 (h) 239.36 155.82 150.00 126.17 151.55 151.31 

T02 (h) - 

 
302.91 250.00 158.91 149.47 149.60 

T03 (h) - 

 

- 

 
350.00 250.00 249.97 249.30 

T04 (h) - 

 

- 

 

- 

 
350.01 349.48 347.68 

T05 (h) - 

 

- 

 

- 

 

- 

 
350.84 351.08 

T06 (h) - 

 

- 

 

- 

 

- 

 

- 

 
405.58 

Pe1 6.72 17.52 20.00 24.22 19.80 19.92 

Pe2 - 

 
27.55 50.00 22.18 20.07 20.01 

Pe3 - 

 

- 

 
100.00 49.94 50.04 50.62 

Pe4 - 

 

- 

 

- 

 
100.00 98.45 88.42 

Pe5 - 

 

- 

 

- 

 

- 

 
102.68 120.27 

Pe6 - 

 

- 

 

- 

 

- 

 

- 

 
442.13 

 345 

6 Application example: analysis of tracer BTCs from the Hydrogeological Experimental Site in Poitiers, France 

The HES is a field research facility operated by the University of Poitiers, France. The facility consists of 32 wells that have 

been drilled within an overall area of 0.2 km² (Fig. 34) and that fully penetrate a 100 -m -thick confined limestone aquifer. The 

interwell flow and transport connectivity have been shown to be mainly related to karst conduits, 0.01–3 m in diameter, that 

develop preferentially within specific lithostratigraphic horizons interbedded with nonkarstified limestone units. The karstified 350 

layers may contribute to the connectivity from one well to another either directly (e.g., the wells intersect with the same karst 
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network in a single layer) or indirectly (e.g., the wells intersect with different karst network layers that are interconnected by 

either a third well or a subvertical fracture); see Audouin et al. (2008) and Chatelier et al. (2011). 
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355 

Figure 3. The locations4. Locations of wells at the HES in Poitiers, France. Map data are from Google. 

A large number of pumping test experiments have been conducted at the HES since 2002. As discussed in a number of studies 

(Delay et al., 2007; Riva et al., 2009; Delay et al., 2011; Bodin et al., 2012; Sanchez‐Vila et al., 2016; Le Coz et al., 2017), the 

drawdown responses exhibit complex behaviors, which are likely due to the strong aquifer heterogeneity induced 

predominantly by the presence of karst features. In addition to the pumping test experiments, a number of cross-borehole tracer 360 

tests have been performed at the HES since 2011. The standard experimental protocol of HES tracer experiments can be 

summarized as follows: 

1. Starting a pumping experiment and waiting for the establishment of a pseudosteady state flow regime (i.e., stabilization

of interwell piezometric head gradients), which typically takes approximately 6 h at the HES;

2. Performing flow log measurements in the candidate injection well to identify the main inflow/outflow levels along the 365 

well bore; 

3. Connecting a series of 2.5 m length and 1.5 cm inner diameter PVC pipes in the injection well, from the ground down to

the tracer injection depth (usually chosen to be as close as possible to a main outflow level). The pipeline is terminated by

a 5 cm length screened cap that ensures a horizontal outflow of the tracer solution in the injection well.
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4. Injecting a tracer solution (typically 2 l of uranine solution at 1 g l-1) in the pipe and flushing with 40 l of "clean" ground 370 

water. The total duration of an injection is typically less than 3 min.

5. Monitoring the tracer BTC at the pumped well using a flow-through fluorometer (Albillia GGUN-FL22) connected to a

branch pipe extending from the discharge line at ground level. The fluorometer is periodically calibrated in the laboratory

with solutions of 10 µg l-1 and 100 µg l-1.

To date, more than 70 cross-well tracer experiments have been performed at the HES. The purpose here is not to interpret each 375 

of these experiments but to pick a few examples for illustrating the application of the MFIT software. The selected data 

correspond to three tracer experiments that were performed in 2016 and 2017 using well M22 as the pumped well and M16, 

MP6, and P2 as injection wells. Fig. 45 shows the experimental BTCs and a collection of calibrated MFIT curves for different 

numbers of channels. The selected experiments were chosen for their representativeness of the BTC shapes observed at the 

HES, which exhibit either a single peak followed by a more or less pronounced tailing, e.g., P2-M22, overlapping double-peak 380 

responses, e.g., M16-M22, or well-marked multimodal responses, e.g., MP6-M22. The mass recovery ratios for these three 

tracer experiments were 58 %, 79 %, and 60 %, respectively. Note that these recovery data cannot be included in the model 

because the flow structure assumption that underlies the multiflow approach (Fig. 1) implies that all the mass that enters the 

system flows out after a certain lapse of time. The same holds for any single- or double-porosity modeling approach based on 

a 1-D flow assumption. For tracer tests that are performed in steady state conditions and involve non-reactive tracers, an 385 

incomplete recovery of the injected mass indicates a diverging flow structure between the injection site and the monitoring 

point. Unfortunately, no additional information can be obtained about this flow divergence from the tracer data only. Therefore, 

the total mass in a multiflow model must be consistent with the recovered tracer mass rather than the injected mass. 

The model fit results shown in Fig. 45 were obtained using the multistart method discussed in section 3 and only SVD as a 

regularization tool for the inversion. None of the model parameters were fixed, and all were optimized within realistic upper 390 

and lower limits. The optimized parameter values and their composite sensitivities at the end of the optimization process are 

provided in the Supplement (Table S1). Unsurprisingly, the model parameters that influence the spreading of transit/residence 

times in the individual flow channels while accounting for different processes (Pe, γ, β, ψ, and ω) are sensitive to the number 

of channels. For instance, when comparing single- with multiple-channel models, the former requires lower Pe values to 

compensate for the coarser description of the flow system heterogeneity (recall that the dispersion coefficient integrated in the 395 

Peclet number reflects the unresolved variability of the flow velocity below the modeling scale). The same observation holds 

when comparing single- and double-porosity models with the same number of flow channels, i.e., the Pe values of single-

porosity models are lower than the Pe values of double-porosity models because part of the spreading of transit/residence times 

in the latter case is implicitly captured by solute mass exchanges between the mobile and immobile domains. A noticeable 

exception is the diffusion parameter β of the SFDM model, whose values are mostly around 1.0 × 10-3 h-1/2. This value 400 

corresponds to the upper bound of the optimization range set for this parameter, which is based on a matrix porosity of 30 %, 

a molecular diffusion coefficient of 1.0 × 10-9 m2 s-1, and a flow-channel aperture of 1.0 × 10-2 m. Beta values larger than 1.0 

× 10-3 h-1/2 would be physically unrealistic. The fact that the Beta value is limited by its upper bound during the optimization 
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process indicates that the SFDM model is not suitable for describing the HES tracer experiments, as further discussed below. 

All other parameters have converged to values far from their optimization bounds. 405 

Beyond what can be visually inferred from Fig. 45, the assessment of the relative fitting performance of the different models 

can be analyzed through the evolution of the measurement objective function, hereafter named PHI, with respect to the number 

N of channels and/or the number P of optimized model parameters. Fig. 56 displays the PHI(N) and PHI(P) curves summarizing 

the best-fitting results achieved with the use of the multistart PEST optimization and with the use of the SCEUA_P and 

CMAES_P global optimization routines. A number of observations can be made from this figure. As a first remark, the SCEUA 410 

curves for the two MDP models are missing in Fig. 56. The reason is that the SCEUA_P program has no "forgive−error" 

capability, i.e., if a set of trial parameters causes the numerical evaluation of Eq. (11) or Eq. (15) to crash, the optimization 

process is stopped instead of moving to a new set of parameter values. Such a forgiveness option is available in the PEST and 

CMAES_P programs. The next observations that can be made from Fig. 56 are that the CMAES and SCEUA curves are (i) 

more irregular, (ii) always above or equal to their PEST-computed counterparts, and (iii) do not always follow the expected 415 

decreasing trend in the PHI value (meaning a better model fit) as the number of channels rises, as depicted by the PEST curves. 

However, it must be mentioned that the number of optimization runs was much greater for the CMAES_P and SCEUA_P 

programs, and various optimization options were tested (e.g., changing the upper and lower parameter bounds and log-

transformation of parameters). The CMAES and SCEUA curves shown in Fig. 56 are actually the "best results" obtained after 

several days of computation time. It is clear that the multistart PEST optimization method performs better in each case. 420 

The PHI curves obtained by PEST can be viewed as Pareto curves illustrating the tradeoff between the model fitting quality 

and the number of channels or the number of calibration parameters. It must be noted that since no Tikhonov regularization 

was used in this illustration example, the model inversion results for higher N values are likely affected by overfitting. More 

reliable parameter values could be obtained by adding Tikhonov regularization constraints to the optimization process. 
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425 
Figure 45. Inversion solutions of three tracer BTCs for different numbers of channels. Some model curves are hardly 

distinguishable, as they perfectly overlap (seerefer to the text and Fig. 56). 
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Figure 56. Best-fitting performance of the multiflow models achieved with the use ofusing PEST with the 

multistart optimization approach and with the use ofusing global optimizers. N is the number of channels in the models, P is 

the number 
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of optimized parameters, and PHI is the sum of the squared weighted differences between the tracer BTCs and the model-fitted 

curves. 435 

According to the PHI(N) curves shown in Fig. 56, the MDMi model and MDP-SFDM perform similarly for the three tracer 

tests, and the related PHI(N) curves are hardly differentiable. This result was expected, as the short duration of the HES tracer 

tests, typically from a few hours to a few days, makes the matrix diffusion process unlikely to be significant. Assuming 

exponential decaying (MDMed) instead of instantaneous (MDMi) injection gives slightly better fitting results for a low number 

of channels but provides no benefit for a moderate to high number of channels. Also accordingAccording to the PHI(N) curves, 440 

the fitting performance of the MDP-2RNE model seems significantly better than that of the three other models. However, this 

observation must be counterbalanced by the larger number of calibration parameters in the MDP-2RNE model (see Table 1). 

A two-channel MDP-2RNE model involves 13 parameters, which corresponds to the number of parameters in a four-channel 

MDMi model. The PHI(P) curves shown in Fig. 56 provide a fairer assessment of the fitting performance of the different 

models. According to these curves, the MDP-2RNE model performs slightly better than the MDMi model for the P2-M22 445 

tracer test (single-peak slightly tailed BTC), almost equally well for the M16-M22 tracer test (overlapping double peaks), and 

worse for the MP6-M22 tracer test (well-marked multimodal BTC). It must be appreciated that these two models should not 

be opposed to each other. Both models likely provide an equally valid description of the tracer transport in the HES aquifer 

while relying on different conceptualizations of the medium heterogeneity. 

An exampleThe Pareto curves in Fig. 6 indicate that the final choice of postcalibrationa model, if one is to be made, relies on 450 

a tradeoff between the desired fitting accuracy and the desired degree of simplification/complexity with respect to the model 

structure (number of channels and/or number of model parameters). Beyond this subjective (expert) decision, which may 

depend on the goal of the study, and therefore, will not be discussed further in the present application case, uncertainty remains 

in the inverted model parameters as a consequence of the nonuniqueness of the inverse problem. This uncertainty is related to 

both the equifinality of the model parameters, which is partly due to the multiflow framework structure, and the measurement 455 

noise in the tracer BTCs. Figures 7 and 8 illustrate the post-calibration uncertainty analysis is shown in Fig. 6, which illustrates 

the uncertainty of parameter values pertaining to the inversion capabilities of MFIT, via an assessment of the MDMi and MDP-

2RNE model fittings of the M16-M22 tracer BTC by a two-channel MDMi model.with 1, 2, and 3 flow channels. Owing to 

the balance between the Q and mj terms in Eq.the model equation (Eqs. (6), and (15)), at least one of these parameters must be 

fixed forto assess the uncertainty of the others to be assessedother parameters. Here, the value of Q was set to 60.325 m3 h-1, 460 

which corresponds to the pumping rate in the experiment.ensures the consistency of the model against the recovered tracer 

mass that was independently calculated from the experimental data (refer to Table S1). Following the PEST optimization of 

the 6 otherdifferent model parameters (m1, m2, T01, T02, Pe1, Pe2),, 500 calibration-constrained parameter fields were 

stochastically generated and recalibrated by PEST. Of theseDepending on the model (MDMi or MDP-2RNE) and number of 

flow channels, between 483 and 500 recalibration runs, 499 successfully achieved a level of fit that is fairly similar (i.e., within 465 

a tolerance of +5 % for the PHI value; refer to section 3) to that associated with the original calibration parameter field. The 
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histograms shown in Fig. 6Figs. 7 and 8 were constructed from these 499 recalibrated parameter sets and illustrate the 

uncertainty in the calibrated model parameter values. As shown in this figure, the confidence interval for each parameter is 

quite narrow, except for the Peclet number related to the first channel, which has a mediummultitude of parameter 

combinations that are equally good, for a given number of flow channels, in terms of fitting the M16-M22 tracer BTC. As 470 

shown in these figures, the confidence intervals are quite narrow for most parameters but tend to widen as the number of 

channels increases, which reflects the equifinality of the multiflow modeling approach. Although not shown here, it has been 

established that the tailed behaviors of the parameters Lj and ωj in Fig. 8 are due to a partial correlation between these two 

parameters (refer to Eq. (15)), i.e., fixing the value of one parameter prior to the inversion drastically reduces the uncertainty. 

This finding suggests that the first BTC peak is not well fitted by the two-channel MDMi model and that either more channels 475 

or a different model should be taken into consideration for a more precise fitting of the M16-M22 tracer BTC of the other 

parameter. As previously discussed, the higher Pe values in Fig. 8 compared to Fig. 7 are due to the fact that the distribution 

of the transit/residence times with the 2RNE model is primarily controlled by the solute mass exchanges between the mobile 

and immobile domains. 
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Figure 67. Postcalibration uncertainty of model parameter values for the inversion of the M16-M22 tracer BTC by a two-

channelthe MDMi model with 1, 2, and 3 flow channels. 
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Figure 8. Postcalibration uncertainty of model parameter values for the inversion of the M16-M22 tracer BTC by the MDP-485 

2RNE model with 1, 2, and 3 flow channels. A logarithmic scale has been employed for Pe due to a wider range of values than 

shown in Fig. 7. 
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7 Summary and conclusions 

Multiple flow path transport is likely the rule rather than the exception in most transport problems in fractured and karst 

aquifers. The main aim of this paper was to present a new curve-fitting tool for the analytical modeling of BTCs from tracer 490 

tests performed in such media. The MFIT software is a free open-source Windows-based GUI that provides access to four 

multiflow transport models. The multiflow approach assumes that the transport from the injection site to the monitoring point 

takes place in a number of independent 1-D channels. The channels are not assumed to represent individual fractures or karst 

conduits but are lumped submodels of the main flow routes used by the tracer through the fractures/karst conduit network. The 

multiflow modeling framework allows the simulation of multimodal BTCs, which are frequently observed in fractured and 495 

karst aquifers. Two of the MFIT transport models combine the multiflow framework and the double-porosity concept, which 

is applied at the scale of the individual channels. This modeling approach, which has been named MDP, is believed to be new 

and versatile for the fitting of BTCs with multiple local peaks and/or extensive backward tailing. The accuracy of the MFIT-

computed BTCs was verified against two other well-accepted simulation tools for five synthetic test cases. 

An important feature of MFIT is its compatibility and interface with the advanced calibration tools of the PEST suite of 500 

programs. Hence, MFIT is the first BTC fitting tool that allows regularized inversion and nonlinear analysis of the 

postcalibration uncertainty of model parameters. Given the nonlinearity of the MFIT model equations, an original multistart 

algorithm was implemented to maximize the chances for PEST to converge to the global optimal solution in the parameter 

space during a BTC fitting procedure. The main drawback of the multistart optimization method is that the processing time 

can be long (up to a few hours) if a large number of channels is assumed in the model. Time reduction for this method is one 505 

of the development perspectives of the MFIT code, as the multistart process is computationally parallelizable. Other 

development perspectives are the management of more complex injection signals, e.g., described as multiple steps, and the 

implementation of additional analytical transport models for the simulation of reactive transport processes. 

Three tracer test BTCs from the HES in Poitiers, France, were used for illustrating the application of the MFIT software. An 

analysis of the Pareto curves between the model fitting quality and the number of model calibration parameters suggests that 510 

the MDMi and MDP-2RNE models are the most appropriate for the interpretation of HES tracer tests. This preliminary result 

needs to be refined or confirmed by the analysis of additional HES tracer BTCs. 

Appendix A: Glossary 

Table A1. Acronyms and model abbreviations utilized in the text. 

Acronym or model 
name 

Description Reference 

ADE Advection-dispersion equation Zheng and Bennett (2002) 
BTC Breakthrough curve 
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CATTI Computer Aided Tracer Test Interpretation: a computer program 
for tracer BTC fitting 

Sauty et al. (1992) 

CMA-ES Covariance Matrix Adaptation – Evolution Strategy: a global 
optimization algorithm 

Hansen and Ostermeier (2001) 

CMAES_P PEST-compatible program that implements the CMA-ES 
method 

Doherty (2019a) 

CXTFIT Computer program for tracer BTC fitting Toride et al. (1999) 
DADE Dual-advection-dispersion equation Field and Leij (2012) 
FEFLOW Finite Element FLOW model; a simulation package for flow, 

heat, and mass transport in groundwater 
Diersch (2014) 

GUI Graphical user interface 
HES Hydrogeological Experimental Site in Poitiers, France Audouin et al. (2008) 
MDM Multi-Dispersion Model Maloszewski et al. (1992) 
MDMed Computer program that implements the Multi-Dispersion Model 

and assumes a non-instantaneous injection (exponentially 
decaying concentration) at the inlet of the flow system 

This article 

MDMi Computer program that implements the Multi-Dispersion Model 
and assumes an instantaneous injection of tracer at the inlet of 
the flow system 

This article 

MDP Multi-Double Porosity: a combination of multiflow and double-
porosity models 

This article 

MDP_SFDM Computer program that implements the MDP approach, where 
the mass exchanges between the mobile and immobile domains 
are modeled as a second-order (diffusion) process 

This article 

MDP_2RNE Computer program that implements the MDP approach, where 
the mass exchanges between the mobile and immobile domains 
are modeled as a first-order process 

This article 

MFIT MultiFlow Inversion of Tracer breakthrough curves: a GUI for 
the MDMi, MDMed, MDP_SFDM, MDP_2RNE, and PEST 
programs. 

This article 

MIM Mobile-Immobile Model Coats and Smith (1964) 
MODFLOW MODular three-dimensional groundwater FLOW model: a 

computer code developed by the U.S. Geological Survey that 
numerically solves the groundwater flow equation  

Langevin et al. (2017) 

MT3DMS Modular Three-Dimensional MultiSpecies transport model: a 
numerical code to simulate solute transport 
in groundwater 

Zheng et al. (2012) 

OM-MADE One-dimensional Model for Multiple Advection, Dispersion, 
and storage in Exchanging zones: a python script to simulate 
solute transport in multiflow systems with possible mass 
exchanges between the flow channels  

Tinet et al. (2019) 

OptSFDM Computer program for tracer BTC fitting based on the SFDM 
model 

Gharasoo et al. (2019) 

OTIS One-dimensional Transport with Inflow and Storage: a 
numerical code to simulate solute transport in streams and rivers 

Runkel (1998) 
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PEST Parameter ESTimation: a collection of computer programs for 
model-independent parameter estimation and uncertainty 
analysis  

Doherty (2019a) 

SCE-UA Shuffled Complex Evolution method – University of Arizona: a 
global optimization algorithm 

Duan et al. (1992) 

SCEUA_P PEST compatible program that implements the SCE-UA 
method 

Doherty (2019a) 

SFDM Single-Fracture Dispersion Model Maloszewski and Zuber (1990) 
STANMOD STudio of ANalytical MODels: a collection of computer 

programs for tracer BTC fitting 
van Genuchten et al. (2012) 

SVD Singular value decomposition Doherty (2015) 
TRAC Computer program for tracer BTC fitting Gutierrez et al. (2013) 
TRACI Computer program for tracer BTC fitting Käss (2004) 
1-D One-dimensional 
2RNE Two-region nonequilibrium equation Toride et al. (1993) 

Table A2. List of model parameters. 515 

Parameter Description Unit Specific model (an empty 
box means that the 
parameter is employed in all 
the models) 

bj Half-aperture of the j-th flow channel L MDP-SFDM 
Cj Concentration in the j-th flow channel ML-3 
Cpj Concentration in the immobile domain assigned to the j-th channel ML-3 MDP-SFDM 
Cimj Concentration in the immobile domain assigned to the j-th channel ML-3 MDP-2RNE 
C0 Initial (maximum) concentration at the inflow boundary for an 

exponentially decaying injection concentration  
ML-3 MDMed 

Dj Dispersion coefficient in the j-th flow channel L2T-1 
Dpj Molecular diffusion coefficient in the immobile domain assigned to 

the j-th channel 
L2T-1 MDP-SFDM 

Lj Length of the j-th flow channel L 
mj Part of the solute mass flowing through the j-th channel M MDMi, MDP-SFDM, 

MDP-2RNE 
N Number of flow channels - 
Nmax Maximum number of flow channels - 
Pej Peclet number in the j-th channel - 
P Number of optimized model parameters - 
PHI Measurement objective function (sum of the squared weighted 

differences between the tracer BTCs and the model-fitted curves) 
M2L-6 

Q Total system flow rate L3T-1 
Qj Flow rate in the j-th channel L3T-1 
t Time variable T 
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Tmin Minimum time value of the user-provided BTC T 
Tmax Maximum time value of the user-provided BTC T 
T5 T5 time, Eq. (18) T 
T5th Earliest time at which the concentration values exceed 5 % of the 

maximum concentration value 
T 

T95 T95 time, Eq. (19) T 
T95th Latest time at which the concentration values exceed 5 % of the 

maximum concentration value 
T 

T0j Mean transit time in the j-th channel T 
uj Advection velocity in the j-th flow channel LT-1 
xj Spatial coordinate along the j-th flow channel L 
yj Spatial coordinate perpendicular to the j-th flow channel L 
αj First-order mass transfer coefficient between the mobile and 

immobile domains assigned to the j-th channel 
T-1 MDP-2RNE 

βj Diffusion parameter in the j-th flow channel, Eq. (12) T-1/2 MDP-SFDM 
γj Gamma coefficient in the j-th flow channel, Eq. (8) - MDMed 
θj Volumetric water content of the mobile domain assigned to the j-th 

channel 
- MDP-2RNE 

θimj Volumetric water content of the immobile domain assigned to the 
j-th channel 

- MDP-2RNE 

λj Time decay constant that controls the exponentially decaying 
release of tracer in the j-th channel 

T-1 MDMed 

ξ Integration variable, Eq. (11) T MDP-SFDM 
σj Standard deviation of travel times for transport by advection and 

dispersion in the j-th channel 
T 

τ Integration variable, Eq. (15) L MDP-2RNE 
ψj Fraction of mobile water in the j-th channel, Eq. (16) - MDP-2RNE 
ωj Omega coefficient in the j-th flow channel, Eq. (17) L-1 MDP-2RNE 

Code and data availability. The source codes of the MFIT program suite version 1.0.0 are available from 

https://doi.org/10.5281/zenodo.3470751 under the terms of the CeCILL Free Software License Agreement v2.1 

(https://spdx.org/licenses/CeCILL-2.1.html#licenseText, last accessed: 02 October 2019). An "EXE" installation package 

compiled with Inno Setup (http://www.jrsoftware.org/isinfo.php, last accessed: 02 October 2019) and a user's guide are 

provided along with the source codes. The following numerical libraries are required for the compilation of the MFIT suite of 520 

codes: Boost (https://www.boost.org/, last accessed: 02 October 2019), GSL-GNU (https://www.gnu.org/software/gsl/, last 

accessed: 02 October 2019), and Spline (https://github.com/ttk592/spline, last accessed: 02 October 2019). The PEST program 

package is also required for running MFIT. PEST is distributed by default using the MFIT software installer or can be 

independently downloaded from http://www.pesthomepage.org/Downloads.php (last accessed: 02 October 2019). The data of 

https://doi.org/10.5281/zenodo.3470751
https://spdx.org/licenses/CeCILL-2.1.html#licenseText
http://www.jrsoftware.org/isinfo.php
https://www.boost.org/
https://www.gnu.org/software/gsl/
https://github.com/ttk592/spline
http://www.pesthomepage.org/Downloads.php
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the HES tracer experiments processed in section 56 of this study are available from the H+ database 525 

(http://hplus.ore.fr/en/poitiers/data-poitiers, last accessed: 02 October 2019) through thewith registration of a free account. 

The Supplement related to this article is available online at https://doi.org/10.5281/zenodo.3824439. 
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