
Response to reviewers

We would like to thank both reviewers for their very helpful comments. Based

on these comments we realized that some clarification was needed. We have there-

fore added two new sections (“The normalized yield curve” and “Broader consid-

erations”) and we have also written explicitly the steps that should be followed

for calculating and plotting the normalized VP stresses. We have adressed these

comments with the goal of keeping the manuscript relatively short. Indeed, we

want this manuscript to be a “quick” guide for sea ice modelers. Below, the com-

ments from the reviewers (1) are in normal character. Our responses (2) are in

bold while changes to the manuscript (3) mentioned here are also in bold and in

quotes. Note that modifications in the revised manuscript are shown in magenta.

REVIEWER 1

(1) The note “On the calculation of normalized viscous-plastic sea ice stresses”

by Lemieux and Dupont describes how to compute normalised viscous-plastic sea

ice stress properly. They also describe two common traps one can fall into when

computing this quantity. This is a valuable (small) contribution that would have

saved me from trying to figure out things myself (and wasting a lot of time on

that). The text is clearly written, there are a few small comments to consider,

see below. The representation is convincing and the explanation of the procedure

and the common errors are clear.

I have one small issue. I would like the authors to revisit the derivation of their

equation (6). First, one needs eqs(1,3,4,5) (and not just 1 and 5) and Delta to

arrive at an expression like this; second, it only works if Pp in eq(1) is replaced

by the replacement pressure P (that’s not immediately clear from the text). If

one does not want to use the replacement pressure P (and there are reasons to

do so), the derivation ends up with Pp instead of P on the rhs, because in eq(1)

Pp is on the rhs. This is important because eq(10) with then have a “1” instead

of P/Pp and in eq(16) it would be Pp/P instead of “1”. This has implications

for the interpretation (but not for the general conclusions, as far as I can see).
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Adding a treatment of the no-replacement pressure case would be very helpful

for the generality of the paper, so I recommend that the paper be published only

after addressing this issue.

(2) Ok it is now mentioned in the revised manuscript that equations

(1,3,4,5) are needed.

Setting P = Pp leads to the following equation(
∆

∆∗

)2

=

[
σn
p1 + σn

p2 +
Pp

Pp

]2
+ e2

[
σn
p1 − σn

p2

]2
. (1)

This slightly different equation (compared to equation(10) in the manuscript)

does not affect the recommendations given here. The ratio Pp

Pp
or P

Pp

(equation(10)) defines the center of the ellipse. As mentionned by

Geiger et al. 1998, normalized states of stress in the viscous regime

are positionned on concentric ellipses all centered at (−0.5, 0.5) when

P = Pp while the center of an ellipse when using the replacement pres-

sure depends on the ratio P
Pp

. The following sentence has been added

to the revised manuscript (in the new section called “Broader consid-

erations”).

(3) “If one does not use a replacement pressure, the stresses in step 2

should be calculated the same way with P = Pp. Instead of lying on el-

lipses defined by equation (10), the normalized viscous states of stress

would lie on concentric ellipses centered at σn
p1 = σn

p2 = −0.5 (Geiger et

al. 1998).”

Minor comments:

(1) page 1 l21 large spatial

(2) Done.
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(1) l24 Unfortunately,...I would add how that leads to misunderstandings in order

to formulate a “problem statement”. If we all assume we know what we are doing

then there’s no problem. E.g., Subtle mistakes in calculating stresses can lead to

a complete misinterpretation of the state of convergence. Or similar...

(2) We have added the following sentence:

(3)“As demonstrated here, care must be taken when calculating the

normalized stresses as two potential mistakes can lead to a misinter-

pretation of modeling results.”

(1) page 2 l40: I prefer to write ∆ as ((e11 + e22)
2 + e−2((e11 − e22)2 + 4e212))

1
2 ,

because it is also more straightforward to implement

(2) We agree. It has been changed.

(1) page 3 l63: such as a Picard solver...or with a Newton solver

(2) Done.

(1) l65: Kimmritz et al 2015 use the terminology of “modified” EVP. “revised”

EVP was used by Bouillon et al 2013.

(2) Ok it has been corrected.

(1) l76 a Picard solver

(2) We decided to keep the sentence as is because the words solve,

solution and solver are already present...

(1) page 5 l117: remove: that could be done by modelers

(2) Done.
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(1) l122: truely?

(2) We don’t think we need to add ’truely’.

(1) page 6 l140: remove “that could be made by modelers”

(2) Done.

(1) l145 rephrase sentence: This is the equation of an ellipse we obtain if the

principal stresses are normalized by the replacement pressure.

(2) Ok it has been rephrased.

(1) l149, but why only for the elliptical yield curve and not for the Coulombic

and Diamond yield curves?

(2) This is a good question...We argue that the recommendations in

our manuscript apply to all the yield curves. We do not have the

diamond nor the modified coulombic yield curve implemented in the

McGill model but we have recently coded a standard Mohr-Coulomb

yield curve with compressive capping (i.e., a triangle). This other con-

stitutive formulation is obtained by writting ζ, η and P as

ζ =
Pp

2|ε̇∗I |
, (2)

P = 2ζ|ε̇I |, (3)

η =

(
P
2
− ζε̇I

)
sinφ

2ε̇∗s
(4)

where ε̇I is the divergence, |ε̇∗I | = max(|ε̇I |, dmin) with dmin a small number

similar to ∆min, φ is the angle of friction, ε̇∗s = max(ε̇s, smin) with ε̇s the
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maximum shear strain rate and smin another small number, set equal

to dmin.

Note that this formulation of Mohr-Coulomb assumes a pure shear

flow rule. Divergence (larger than dmin) can only occur at the tip of

the triangle and convergence when the sea ice pressure is equal to Pp.

It is observed that with this new rheology, the Picard solver really

struggles to obtain a numerically converged solution. With P∗ =

27.5 × 103 Nm−2 , dmin = 2 × 10−9 s−1 and sinφ = 0.5 (i.e., φ = 30◦), the

solver does not converge. When calculating the normalized stresses

the proper way, there are states of stress outside the yield curve. Sim-

ilar to the results obtained with the elliptical yield curve, the stresses

(shown in Fig.1 in this document) appear to have converged if only uk

is used to calculate the normalized stresses.

To obtain a fully converged solution, some rheology parameters were

modified from the values given above; P∗ = 5 × 102 Nm−2, sinφ = 0.01

and dmin=smin = 2× 10−8 s−1. Consistent with the results obtained with

the ellipse, the fully converged stresses normalized by Pp are either on

or inside the yield curve (shown in Fig.2).

Fig.3 shows the fully converged stress invariants when normalized by

the replacement pressure P . As for the ellipse, the solution is not

realistic as there are no stresses in the viscous regime. Strangely,

there are no states of stress on the long side of the triangle. This

can understood when considering the normalized first stress invariant

(σI = (σ11 + σ22)/2). It is easy to show that

σI = ζ (ε̇I − |ε̇I |) . (5)

Normalizing by P = 2ζ|ε̇I |, the normalized σI (i.e. σn
I ) is
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Figure 1: Stress invariants normalized by Pp and calculated only from uk after two outer loop
iterations.

σn
I =

1

2

(
ε̇I
|ε̇I |
− 1

)
. (6)

Consistent with what is observed in Fig.3, σn
I can take only two possible

values: σn
I = 0 if ε̇I > 0 (divergence) or σn

I = −1 if ε̇I < 0 (convergence).

To further support our conclusions, we have added some of this

material in the revised manuscript (in the new section “Broader con-

siderations”.

Going back to the results of Wang and Wang 2009, it seems that the di-

amond yield curve does not use a replacement pressure (see their p.3).

We don’t know, however, why some states of stress are inside the yield
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Figure 2: Fully converged stress invariants normalized by Pp.

curve for the modified Coulomb. Is it possible it was correctly normal-

ized by the ice strength? This is not discussed in the manuscript but

we speculate that Wang and Wang also made the other mistake: they

calculated the normalized stresses only using the latest iterate. This

problably explains why the solution seems to have converged. Con-

sistent with our new results in our revised manuscriopt when using a

Mohr-Coulomb, Ringeisen et al. 2019 were not able to get numerical

convergence with the modified Coulomb (see their Fig. 12). Anyway,

we think that mentioning this figure from Wang and Wang only adds

more confusion as it is not clear what they did exactly. We have re-

moved the reference to it in the revised manuscript.

(1) page 7 l166: gives
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Figure 3: Fully converged stress invariants normalized by P .

(2) Done.

(1) page 10 Figure 2: I think the caption is misleading. It should start with the

statement that sigma is computed based on uk only.

(2) Done.

REVIEWER 2

(1) Topic of the manuscript is the correct evaluation of the normalized viscous-

plastic sea ice stresses. The model under consideration is the viscous-plastic sea

ice model which was formulated by Hibler in 1979 with a replacement pressure
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introduced by Kreyscher et al. in 2000. The manuscript focuses on the evaluation

of the normal stress that are archived with a Picard solver. Two error sources

that may occur using the diagnostic are described.

Main issues:

(1) I miss a more detailed discussion of the term numerical convergence of the VP

solution and a more careful use of the term numerical convergence. Sometimes

you describe by numerical convergence that all stress states are on/in the ellipse

( physical consistency) sometimes you use the term the numerical convergence

for the convergence of the sea ice velocity. Please distinguish better between this

two cases. Applications might think that the diagnostic implies numerical con-

vergence of the solution VP solution (sea ice velocity). Explanation/motivation

why plotting the normalized stresses is a suitable diagnostic to evaluate numer-

ical convergence of the VP solution in a first step. Clarify that being physical

consistent does not imply that one has a convergent approximation of the sea ice

velocity. Maybe add a paragraph to the introduction how this diagnostic needs

to be used.

(2) The stresses are function of the velocity vector. A numerically

converged velocity therefore leads to numerically converged stresses

(consistent with the physics of the problem). We have improved the

text and introduce the nonlinear residual vector to better explain what

we mean by numerical convergence. We have also added in section 4

the sentence:

(3)“A ’fully’ converged solution for u is characterized by a small resid-

ual. As the stresses are function of u, a fully converged velocity vector

leads to states of stress that are either on (plastic) or inside (viscous)

the yield curve.”

(2) We also better explain in the introduction why the normalized

stresses are useful to assess convergence and physical consistency. The
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last paragraph of the introduction now starts with the following sen-

tences:

(3) ”Calculating and plotting the normalized states of stress with re-

spect to the yield curve is a useful diagnostic for assessing the physi-

cal consistency and numerical convergence of a VP solution. Indeed,

this method can confirm whether a sea ice rheology is properly imple-

mented in a model. The method is also helpful for evaluating numerical

convergence. This is especially true for the explicit elastic-VP (EVP)

solver (e.g., Hunke, 2001) which does not include a measure of conver-

gence such as a residual.“

(1) Can you please explain how the diagnostic should be evaluated for Newton-

like solvers? I don’t think that it is straight forward. Using your 1D example a

fully implicit discretized rheology reads as σ = Pp/(2|εk|εk)−Pp/2 = −Pp. Does

this mean that the diagnostic is unnecessary? I do not think so as Newton-type

methods also introduce some form of linearization...

(2) The same method should be followed for Newton solvers. Indeed,

they are also based on a linearization with uk−1 for the calculation of

the Jacobian matrix and the residual vector.

(1) Please provide the explicit formulation of the yield curve that you use to plot

the figures.

(2) the formulation has been written in the captions of Fig.1-3. The

normalized yield curve is also better explained in section 3 of the re-

vised manuscript. The following text has been added after equation

(10):

(3) ”...which describes a family of ellipses that depend on the ratio

∆/∆∗ for their size and on the ratio P/Pp for their center. Equation

(10) with ∆/∆∗ = P/Pp = 1 defines what we refer to as the normalized
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yield curve in principal stress space. Hence, according to our rheology,

normalized plastic stresses should fall on the normalized yield curve

while normalized viscous stresses should lie on smaller ellipses inside

the normalized yield curve (Geiger et al. 1998).“

(1) Is the diagnostic effected if other limitations are used in (4)? How to deal

with different linearization?

(2) Good points. We have added in the revised manuscript a section

called “Broader considerations” where we argue that our conclusions

remain the same for other approaches for the limitation (e.g. Kreyscher

et al. 2000, Lemieux and Tremblay 2009):

(3) “The recommendations given above remain the same if another

approach is used for limiting the viscous coefficients (see equation 4).

Numerical experiments with the approach of Kreyscher et al. 2000 or

with the hyperbolic tangent of Lemieux and Tremblay 2009 allow one

to draw the same conclusions (not shown).”

(2) We have also added a sentence to explain how the normalized

stresses should be calculated when using another kind of linearization

(e.g. Lemieux and Tremblay 2009):

(3) “While it is not recommended to linearize the rheology term with

the previous two iterates (as done by Lemieux and Tremblay 2009) the

stresses in step 2 (see beginning of section 5) should in this case be

obtained from σij = 2η(ul)ε̇ij(u
k) + [ζ(ul)− η(ul)]ε̇kk(uk)δij −P (ul)δij/2 with

ul = (uk−1 + uk−2)/2.”

(1) I recommend that the paper be published only after addressing these issues.

Minor issues:
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(1) L. 5 -8 The first example is true for approximations calculated with Picard

solver. What about Newton and EVP? The 2 sentences can be misleading.

(2) Thanks for pointing this out. The same conclusions apply for both

Picard and Newton solvers (see comment above). We have, however,

clarified the text in the abstract and in the conclusion to clearly state

that the first “mistake” can only be made for implicit solvers while the

second one applies to implicit and explicit solvers.

(1) L106 Here numerical solution describes the numerical convergence of v. In

line 90 the term numerical convergence is used to describe that the stress states

are in/on the ellipse (which is the physical consistency). Be more specific when

using the term numerical convergence.

(2) See our response to your first main comment above.

(1) L106 The residual of the momentum equation? Which residual?

(2) The residual F = Au− b and the criterion for the nonlinear conver-

gence have been introduced in the revised manuscript. This sentence

has been modified.

(1) L107-110 I think this point must be emphasized and moved to the introduc-

tion ( see main issue 1))

(2) This is a conclusion of Lemieux and Tremblay 2009. We prefer not

to repeat it elsewhere in the manuscript. However, the sentence was

not well formulated and we have therefore decided to rephrase it:

(3) “Note that, in general, the fact that states of stress are on or inside

the yield curve does not imply full convergence; the final positions (on

and inside the yield curve) are obtained once uk is the fully converged

solution (Lemieux and Tremblay 2009).”
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(1) L 121 The solution of the momentum equation?

(2) See our response to your first main comment above.

(1) L154 Please be more specific how numerical convergence can be assessed.

(2) See our other responses above.

Jean-François Lemieux
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