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Response to reviewer 1

We would like to thank reviewer 1 for his/her very helpful comments. Based on the reviewers’
comments we realized that some clarification was needed. We have therefore added two new
sections (“The normalized yield curve” and “Broader considerations”) and we have also written
explicitly the steps that should be followed for calculating and plotting the normalized VP
stresses. We have adressed these comments with the goal of keeping the manuscript relatively
short. Indeed, we want this manuscript to be a “quick” guide for sea ice modelers. Below,
the comments from the reviewers (1) are in normal character. Our responses (2) are in bold
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while changes to the manuscript (3) mentioned here are also in bold and in quotes. Note that
modifications in the revised manuscript are shown in magenta.

REVIEWER 1

(1) The note “On the calculation of normalized viscous-plastic sea ice stresses” by Lemieux
and Dupont describes how to compute normalised viscous-plastic sea ice stress properly. They
also describe two common traps one can fall into when computing this quantity. This is a
valuable (small) contribution that would have saved me from trying to figure out things myself
(and wasting a lot of time on that). The text is clearly written, there are a few small comments
to consider, see below. The representation is convincing and the explanation of the procedure
and the common errors are clear.

I have one small issue. I would like the authors to revisit the derivation of their equation (6).
First, one needs eqs(1,3,4,5) (and not just 1 and 5) and Delta to arrive at an expression like
this; second, it only works if Pp in eq(1) is replaced by the replacement pressure P (that’s not
immediately clear from the text). If one does not want to use the replacement pressure P (and
there are reasons to do so), the derivation ends up with Pp instead of P on the rhs, because in
eq(1) Pp is on the rhs. This is important because eq(10) with then have a “1” instead of P/Pp

and in eq(16) it would be Pp/P instead of “1”. This has implications for the interpretation (but
not for the general conclusions, as far as I can see). Adding a treatment of the no-replacement
pressure case would be very helpful for the generality of the paper, so I recommend that the
paper be published only after addressing this issue.

(2) Ok it is now mentioned in the revised manuscript that equations (1,3,4,5) are needed.

Setting P = Pp leads to the following equation
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This slightly different equation (compared to equation(10) in the manuscript) does not
affect the recommendations given here. The ratio Pp

Pp
or P

Pp
(equation(10)) defines the

center of the ellipse. As mentionned by Geiger et al. 1998, normalized states of stress in
the viscous regime are positionned on concentric ellipses all centered at (−0.5, 0.5) when
P = Pp while the center of an ellipse when using the replacement pressure depends on
the ratio P

Pp
. The following sentence has been added to the revised manuscript (in the new

section called “Broader considerations”).

(3) “If one does not use a replacement pressure, the stresses in step 2 should be cal-
culated the same way with P = Pp. Instead of lying on ellipses defined by equation
(10), the normalized viscous states of stress would lie on concentric ellipses centered at
σn

p1 = σn
p2 = −0.5 (Geiger et al. 1998).”

Minor comments:

(1) page 1 l21 large spatial

(2) Done.

(1) l24 Unfortunately,...I would add how that leads to misunderstandings in order to formulate
a “problem statement”. If we all assume we know what we are doing then there’s no problem.
E.g., Subtle mistakes in calculating stresses can lead to a complete misinterpretation of the
state of convergence. Or similar...
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(2) We have added the following sentence:

(3)“As demonstrated here, care must be taken when calculating the normalized stresses
as two potential mistakes can lead to a misinterpretation of modeling results.”

(1) page 2 l40: I prefer to write ∆ as ((e11 + e22)2 + e−2((e11 − e22)2 + 4e212))
1
2 , because it is

also more straightforward to implement

(2) We agree. It has been changed.

(1) page 3 l63: such as a Picard solver...or with a Newton solver

(2) Done.

(1) l65: Kimmritz et al 2015 use the terminology of “modified” EVP. “revised” EVP was used
by Bouillon et al 2013.

(2) Ok it has been corrected.

(1) l76 a Picard solver

(2) We decided to keep the sentence as is because the words solve, solution and solver are
already present...
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(1) page 5 l117: remove: that could be done by modelers

(2) Done.

(1) l122: truely?

(2) We don’t think we need to add ’truely’.

(1) page 6 l140: remove “that could be made by modelers”

(2) Done.

(1) l145 rephrase sentence: This is the equation of an ellipse we obtain if the principal stresses
are normalized by the replacement pressure.

(2) Ok it has been rephrased.

(1) l149, but why only for the elliptical yield curve and not for the Coulombic and Diamond
yield curves?

(2) This is a good question...We argue that the recommendations in our manuscript apply
to all the yield curves. We do not have the diamond nor the modified coulombic yield curve
implemented in the McGill model but we have recently coded a standard Mohr-Coulomb
yield curve with compressive capping (i.e., a triangle). This other constitutive formulation
is obtained by writting ζ, η and P as
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ζ =
Pp

2|ε̇∗I |
, (2)

P = 2ζ|ε̇I |, (3)

η =

(
P
2 − ζε̇I

)
sinφ

2ε̇∗s
(4)

where ε̇I is the divergence, |ε̇∗I | = max(|ε̇I |, dmin) with dmin a small number similar to
∆min, φ is the angle of friction, ε̇∗s = max(ε̇s, smin) with ε̇s the maximum shear strain rate
and smin another small number, set equal to dmin.

Note that this formulation of Mohr-Coulomb assumes a pure shear flow rule. Divergence
(larger than dmin) can only occur at the tip of the triangle and convergence when the sea
ice pressure is equal to Pp.

It is observed that with this new rheology, the Picard solver really struggles to obtain a
numerically converged solution. With P∗ = 27.5 × 103 Nm−2 , dmin = 2 × 10−9 s−1 and
sinφ = 0.5 (i.e., φ = 30◦), the solver does not converge. When calculating the normalized
stresses the proper way, there are states of stress outside the yield curve. Similar to
the results obtained with the elliptical yield curve, the stresses (shown in Fig.1 in this
document) appear to have converged if only uk is used to calculate the normalized stresses.

To obtain a fully converged solution, some rheology parameters were modified from
the values given above; P∗ = 5 × 102 Nm−2, sinφ = 0.01 and dmin=smin = 2 × 10−8
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s−1. Consistent with the results obtained with the ellipse, the fully converged stresses
normalized by Pp are either on or inside the yield curve (shown in Fig.2).

Fig.3 shows the fully converged stress invariants when normalized by the replacement
pressure P . As for the ellipse, the solution is not realistic as there are no stresses in the
viscous regime. Strangely, there are no states of stress on the long side of the triangle.
This can understood when considering the normalized first stress invariant (σI = (σ11 +
σ22)/2). It is easy to show that

σI = ζ (ε̇I − |ε̇I |) . (5)

Normalizing by P = 2ζ|ε̇I |, the normalized σI (i.e. σn
I ) is

σn
I =

1
2

(
ε̇I
|ε̇I |
− 1

)
. (6)

Consistent with what is observed in Fig.3, σn
I can take only two possible values: σn

I = 0 if
ε̇I > 0 (divergence) or σn

I = −1 if ε̇I < 0 (convergence).

To further support our conclusions, we have added some of this material in the revised
manuscript (in the new section “Broader considerations”.

Going back to the results of Wang and Wang 2009, it seems that the diamond yield
curve does not use a replacement pressure (see their p.3). We don’t know, however,
why some states of stress are inside the yield curve for the modified Coulomb. Is it
possible it was correctly normalized by the ice strength? This is not discussed in the
manuscript but we speculate that Wang and Wang also made the other mistake: they
calculated the normalized stresses only using the latest iterate. This problably explains
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why the solution seems to have converged. Consistent with our new results in our revised
manuscriopt when using a Mohr-Coulomb, Ringeisen et al. 2019 were not able to get
numerical convergence with the modified Coulomb (see their Fig. 12). Anyway, we think
that mentioning this figure from Wang and Wang only adds more confusion as it is not
clear what they did exactly. We have removed the reference to it in the revised manuscript.

(1) page 7 l166: gives

(2) Done.

(1) page 10 Figure 2: I think the caption is misleading. It should start with the statement that
sigma is computed based on uk only.

(2) Done.

Jean-François Lemieux
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norm_stress_inv_MC_73.png

Fig. 1. Stress invariants normalized by Pp and calculated only from uk after two outer loop
iterations.
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norm_stress_inv_MC_71.png

Fig. 2. Fully converged stress invariants normalized by Pp.
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norm_stress_inv_MC_72.png

Fig. 3. Fully converged stress invariants normalized by P .
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