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Abstract. We present a modelling framework for fossil fuel CO₂ emissions in an urban environment, which allows 11 

constraints from emission inventories to be combined with atmospheric observations of CO₂ and its co-emitted 12 

species CO, NOx, and SO2. Rather than a static assignment of average emission rates to each unit-area of the urban 13 

domain, the fossil fuel emissions we use are dynamic: they vary in time and space in relation to data that describe 14 

or approximate the activity within a sector, such as traffic density, power demand, 2m temperature (as proxy for 15 

heating demand), and sunlight and wind speed (as proxies for renewable energy supply). Through inverse 16 

modelling, we optimize the relationships between these activity data and the resulting emissions of all species 17 

within the dynamic fossil fuel emission model, based on atmospheric mole fraction observations. The advantage 18 

of this novel approach is that the optimized parameters (emission factors and emission ratios, N=44) in this 19 

dynamic model (a) vary much less over space and time, (b) allow a physical interpretation of mean and uncertainty, 20 

and (c) have better defined uncertainties and covariance structure. This makes them more suited to extrapolate, 21 

optimize, and interpret than the gridded emissions themselves. The merits of this approach are investigated using 22 

a pseudo-observation-based ensemble Kalman filter inversion setup for the Dutch Rijnmond area at 1x1 km 23 

resolution. 24 

We find that the dynamic fossil fuel model approximates the gridded emissions well (annual mean differences < 25 

2 %, hourly temporal r2 = 0.21–0.95), while reported errors on the underlying parameters allow a full covariance 26 

structure to be created readily. Propagating this error structure into atmospheric mole fractions shows a strong 27 

dominance of a few large sectors and a few dominant uncertainties, most notably the emission ratios of the various 28 

gases considered. If these are either sufficiently well-known a-priori, or well-constrained from a dense observation 29 

network, we find that including observations of co-emitted species improves our ability to estimate emissions per 30 

sector relative to using CO₂ mole fractions only. Nevertheless, the total CO2 emissions can be well-constrained 31 

with CO2 as only tracer in the inversion. Because some sectors are sampled only sparsely over a day, we find that 32 

propagating solutions from day-to-day leads to largest uncertainty reduction and smallest CO₂ residuals over the 33 

14 consecutive days considered. Although we can technically estimate the temporal distribution of some emission 34 

categories like shipping separate from their total magnitude, the controlling parameters are difficult to distinguish. 35 

Overall, we conclude that our new system looks promising for application in verification studies, provided that 36 

reliable urban atmospheric transport fields and reasonable a-priori emission ratios for CO₂ and its co-emitted 37 

species can be produced.  38 
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1 Introduction 39 

Within the 2015 Paris Agreement, 195 nations agreed with a climate action plan in which each nation sets its own 40 

targets for carbon emission reductions and reports all efforts regularly to the UNFCCC (UNFCCC, 2015). An 41 

important role in reaching emission reduction targets is laid out for cities, which emit a large portion of the global 42 

fossil fuel CO₂ emissions (about 70 % according to the International Energy Agency (IEA, 2008)). The Paris 43 

Agreement also states that parties should strengthen their cooperation, also with respect to the sharing of 44 

information and good practices. Within this context it becomes increasingly important to map fossil fuel emissions 45 

and to quantify emission trends, both at the country- and city-level.  46 

Most country-level greenhouse gas emission estimates reported to the UNFCCC are currently based on yearly fuel 47 

consumption data (bottom-up method), and are often spatiotemporally disaggregated using activity data and 48 

proxies to create spatially explicit emission inventories (Kuenen et al., 2014; Hutchins et al., 2017). Although the 49 

yearly national estimates are reasonably accurate (estimated uncertainty for developed countries is less than 8 % 50 

for CO₂ (Monni et al., 2004; Fauser et al., 2011; Andres et al., 2014)), their uncertainty increases rapidly when 51 

disaggregating them towards finer spatiotemporal resolutions (Ciais et al., 2010; Nassar et al., 2013; Andres et al., 52 

2016). A method to improve emission estimates is using transport models in combination with independent 53 

observations of atmospheric mole fractions (Palmer et al., 2018), called data assimilation (DA) or inverse 54 

modelling (a top-down method). Recently, efforts have been made to apply DA techniques to the urban 55 

environment (McKain et al., 2012; Brioude et al., 2013; Lauvaux et al., 2013; Bréon et al., 2015; Boon et al., 2016; 56 

Lauvaux et al., 2016; Staufer et al., 2016; Brophy et al., 2018), but several challenges and unexploited opportunities 57 

remain. 58 

First, urban DA studies have tried to constrain the total fossil fuel flux to validate bottom-up CO₂ inventories, often 59 

without considering the underlying emission process that caused the mismatch between observed and modelled 60 

concentrations. As one of very few exceptions, Lauvaux et al. (2013) used the CO:CO₂ concentration ratio to 61 

conclude that the emission reduction in Davos during the World Economic Forum 2012 was likely related to 62 

reduced traffic emissions, but without a quantification. However, emission reduction policies usually target 63 

specific source sectors. Therefore, an increase in fossil fuel emissions from one source sector can cause the total 64 

CO₂ emissions to appear stable, although a policy targeting another source sector can be effective in itself. To 65 

monitor the effect of each measure independently it becomes essential to attribute changes in the total CO₂ 66 

emissions to these policies and thus to specific source sectors. It is, therefore, not sufficient to constrain the total 67 

CO₂ flux, but we need to differentiate the total CO₂ signal into signals from the different source sectors. One way 68 

to accomplish this is by using additional measurements of co-emitted species and isotopes. Such measurements 69 

have previously been used in modelling studies to differentiate between biogenic and anthropogenic emissions or 70 

between fuel types (Djuricin et al., 2010; LaFranchi et al., 2013; Lopez et al., 2013; Turnbull et al., 2015; Fischer 71 

et al., 2017; Super et al., 2017b; Brophy et al., 2018; Graven et al., 2018), but also to separate between different 72 

fossil fuel sources (Lindenmaier et al., 2014; Super et al., 2017a; Nathan et al., 2018). 73 

Second, for urban DA the fine scales (less than 1km and less than 1 hour) need to be resolved, therefore putting a 74 

higher demand on the atmospheric transport models. For example, Boon et al. (2016) mentioned that sources with 75 

a small spatial extent (point sources) are not correctly represented on a 2x2 km2 grid, while these sources have a 76 

significant impact on the locally observed mole fractions. Concurrently, we have previously shown that a plume 77 

model improves the representation of sources with a limited spatial extent. Moreover, we found that the description 78 
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of short-term variations in the wind direction by the Eulerian WRF model in the vicinity of an urban area is poor 79 

(Super et al., 2017a). 80 

Third, the prior emissions also need to have a higher resolution for urban-scale studies to resolve the dominant 81 

spatiotemporal variations. Previous studies have often used high-resolution emission maps developed specifically 82 

for that region, using local data as much as possible (Zhou and Gurney, 2011; Bréon et al., 2015; Boon et al., 2016; 83 

Lauvaux et al., 2016; Rao et al., 2017; Gurney et al., 2019). Yet such emission maps are only available for a few 84 

data-rich regions. For other regions, continental or global emission maps (such as MACC or EDGAR) can be used 85 

if downscaling is applied to reach the high resolution required for urban-scale inversions. For example, the 86 

temporal downscaling can be done using typical daily, weekly and monthly profiles for each source sector (Denier 87 

van der Gon et al., 2011), which are based on activity data (e.g. traffic counts) averaged over several years and/or 88 

a large region. Spatial downscaling often involves proxies like population density. This spatiotemporal 89 

downscaling introduces a large additional uncertainty due to uncertainties in the proxies. For example, Hogue et 90 

al. (2016) have found an uncertainty of 150 % in the 1x1 ° fossil fuel CO₂ emissions for the US, whereas Ciais et 91 

al. (2010) estimated the uncertainty of regional European emissions at 100 km resolution to be about 50 %. 92 

Quantification of the uncertainty at an even higher resolution for urban applications has so far been limited (Andres 93 

et al., 2016) (Super et al., 2019), also for most local inventories, while a correct definition of the prior error 94 

covariance matrix for an inversion is important to get reliable output (Chevallier et al., 2006; Boschetti et al., 95 

2018). This currently complicates the application of DA studies to urban areas. 96 

Here, we describe the development of an urban-scale DA framework (based on the CarbonTracker Data 97 

Assimilation Shell (CTDAS)) which uses a dynamic fossil fuel emission model as a prior and optimizes the 98 

parameters of this model. The dynamic fossil fuel emission model uses a wide range of (statistical) data to calculate 99 

CO₂ emissions per source sector at high spatiotemporal resolution (1x1 km2 and hourly). The emission model is 100 

dynamic in the sense that its formulation allows emissions to change as a function of rapidly varying conditions 101 

in the emission landscape, such as the outside temperature, the traffic density, or availability of wind and solar 102 

radiation for sustainable power generation. Using such information enables the calculation of dynamic emissions 103 

in near real-time, as opposed to the construction of a static emission map based on statistical downscaling. 104 

Moreover, the emission model can supply spatiotemporal emission uncertainties and error correlations between 105 

source sectors, based on the estimated uncertainty of its model parameters. Since many of these parameters are 106 

also used in bottom-up accounting of emissions, their uncertainty is often better established than the uncertainty 107 

in the total emissions themselves. Finally, we use the dynamic emission model to calculate emissions of other co-108 

emitted species (CO, NOx and SO2) from the CO₂ emissions using source sector specific emission ratios. These 109 

co-emitted species are included in the DA system to facilitate source attribution, which is possible due to the 110 

distinct emission ratios of different source sectors. The overall aim of this study is to explore how our dynamic 111 

fossil fuel emission model and additional tracers can be used to overcome the known limitations in anthropogenic 112 

CO₂ inverse modelling described above. The research questions are: 113 

1. Can our dynamic fossil fuel emission model represent the spatiotemporal structure of a high-resolution 114 

emission inventory, and what does it add to that on small scales?  115 

2. Is the addition of co-emitted species beneficial for the attribution of CO₂ signals to specific source sectors, 116 

and which observations help most in that effort? 117 
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3. Does the prior error covariance structure that we build with the dynamic emissions model help the 118 

optimization, and what can we learn from the posterior error covariance estimate? 119 

In the inverse part of this study we use observing system simulation experiments (OSSEs, experiments using 120 

pseudo-observations), applied to the urban-industrial complex of Rotterdam (Netherlands). This choice allows us 121 

to test our new approach, while with real observations the errors in non-fossil and background fluxes, model 122 

structure, and model transport will likely dominate the results (Tolk et al., 2008; Super et al., 2017a; He et al., 123 

2018) and reduce the ability to evaluate the methodology. First, we give an overview of the dynamic fossil fuel 124 

emission model and demonstrate its applicability to the domain, followed by an introduction to the DA system 125 

components and the model settings. Then we discuss the different experiments in which we start with the 126 

comparison of different network configurations, one with only CO₂ and one including co-emitted species to 127 

examine the ability to attribute CO₂ emissions to specific source sectors, and different state vectors. Another 128 

experiment is used to examine the importance of propagating posterior parameters values and covariances. Finally, 129 

we address the effect of cross-correlations. 130 

2 Methods 131 

2.1 The dynamic emission model 132 

 133 
Figure 1. Map of the domain covered (Randstad area, the Netherlands) within this study, including major cities 134 
Amsterdam, Rotterdam, The Hague, and Utrecht (underlined). The squares show the locations of the measurement 135 

Although generally applicable, the dynamic emission model is initially developed for the Netherlands and focused 137 

on Rotterdam (Fig. 1). This is one of the major cities in the Netherlands (about 625,000 inhabitants) with the 138 

largest sea port of Europe to its west. It is located in a larger urbanized area (Randstad, about 7 million inhabitants) 139 

with The Hague, Amsterdam and Utrecht being other major cities. A large area to the southwest of The Hague is 140 

covered with glasshouses. The Rotterdam area is characterized by a complex mixture of residential and industrial 141 

activities and therefore we distinguish five source sectors and a total of ten sub-sectors to construct its emissions 142 

(see Table 1). Note that, for simplicity, only the largest source sectors are included, which are responsible for >95 143 

136 sites within the urban network configuration. The area of this domain is approximately 77x88km. Source: © Google Maps. 
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% of the CO2 emissions in the area. The main goal is to get a reasonable first estimate of the emission landscape 144 

using readily available data. 145 

Table 1. Overview of source sectors and subsectors distinguished in the dynamic emission model, including their short 146 
name used in the figures, whether they are represented as point or area sources, and their approximate contribution to 147 
the total CO₂ emission in Rotterdam. Crosses indicate which emission factors (EF), and tracer ratios of CO, NOx or 148 
SO2 (Rco, RNOx, RSO2) are part of the state vector and circles indicate whether they are also part of the short state 149 
vector (see Sect. 2.3). 150 

Source sector Subsector Short 

name 

Source 

type 

Contribution  EF RCO RNOx RSO2 

Power plants Gas-fired power plants 1A Point 37 % XO X X  

 Coal-fired power plants 1B  XO X X X 

Non-industrial 

combustion 

Households 2A Area 15 % XO XO X X 

Glasshouses 2B  XO X X  

Industry  3 Point 39 % XO XO XO XO 

Road traffic Cars 7A Area 6 % XO XO XO  

 Heavy duty vehicles 7B  XO XO XO  

Shipping Ocean shipping 8A Area 3 % XO X XO XO 

 Inland shipping 8B  XO X XO XO 

 Recreational shipping 8C      

 151 

The emissions are calculated in four steps. First, the yearly, national emission is calculated per sector using 152 

reported annual activity data and CO₂ emission factors. Second, we apply temporal disaggregation to hourly 153 

emissions using time profiles based on a combination of default temporal profiles, and environmental conditions. 154 

Third, we downscale the national totals to 1x1 km2 resolution using statistical data, such as population density. 155 

Finally, our approach also allows uncertainties to be described in detail based on parameters in Eq. (2).  156 

2.1.1 Step 1: Sectorial total emission calculations 157 

Total annual emissions (FX in kg yr-1) per sector and species (X=CO₂, CO, NOx, SO2) are calculated as a function 158 

of the economic activity and an emission factor (adapted from Raupach et al. (2007)): 159 

𝐹𝑋 = 𝐴 (
𝐸

𝐴
) (

𝐹

𝐸
) 𝑅𝑋          (1) 160 

where A is the amount of activity, such as vehicle kilometres driven or generated power, and E is the primary 161 

energy consumption (petajoule (PJ)). RX is the emission ratio needed to calculate emissions of co-emitted species 162 

X from the CO₂ emissions, which is specific for each economic sector (RCO₂ is always 1, others are illustrated in 163 

Fig. 2). In this equation the term F/E is the emission factor (EF), i.e. the amount of CO₂ emitted per amount of 164 

energy consumed. The term E/A can be seen as a measure of energy efficiency, in which technological 165 

development plays an important role (Nakicenovic et al., 2000).  166 
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 167 
Figure 2. Emission ratios of CO:CO₂ (RCO), NOx:CO₂ (RNOx) and SO2:CO₂ (RSO2) for specific source sectors based on 168 
the Dutch Pollution Release and Transfer Register (Netherlands PRTR, 2014). Units are in ppb ppm-1. A value of 10 on 169 
the y-axis thus implies that for each 1000 moles of CO₂, 10 moles of the auxiliary tracer is emitted. 170 

The information needed in Eq. (1) comes from various inventories and national information sources. For example, 171 

changes in annual activity can be approximated based on national statistics such as the GDP (Gross Domestic 172 

Product), which can be a proxy for industrial activity. Or A can be based on environmental data such as the annual 173 

degree day sum based on the outside temperature, as proxy for the need for household heating in a particular year. 174 

The second term in Eq. (1) (E/A, the energy efficiency) can be estimated from energy consumption statistics, such 175 

as available from the International Energy Agency. Note that this term can show a large trend in case of 176 

technological development. The last terms in Eq. (1) (F/E and Rx, the emission factors) are the most uncertain 177 

ones, because the emission factor is dependent on the fuel mix and the energy efficiency, which itself can vary 178 

with environmental conditions (e.g. a cold engine on a winter day burns less efficiently). It can therefore differ 179 

significantly between countries. Emission factor values that are generally valid can be gathered from the 180 

Intergovernmental Panel on Climate Change (IPCC) or the European Environmental Agency (EEA), while 181 

country-specific values are typically less easily accessible. For our study area, we have access to both EEA data, 182 

as well as to Netherlands-specific numbers and even to Rijnmond-specific values (PRTR). See Appendix A for a 183 

full overview of the data used. 184 

 185 

2.1.2 Step 2: Temporal profiles and parameterizing activity 186 

The second step is to disaggregate the yearly emissions to hourly emissions by calculating time profiles, such that 187 

Eq. (1) becomes "dynamic": 188 

𝐹𝑋,𝑡 = 𝐴 (
𝐸

𝐴
) (

𝐹

𝐸
) 𝑅𝑋𝑇𝑡          (2) 189 

where Tt is the hourly time factor. Averaged over a year the value of Tt is 1.0, so that it only alters the temporal 190 

evolution and not the total emissions. Energy use is often specifically linked to an activity (A in Eq. (1) and Eq. 191 

(2)) on which temporal information is more readily available than on the resulting emissions. Therefore, Tt can be 192 

calculated in two ways: 1) by directly using temporally explicit activity data or 2) by parameterizing temporal 193 

variations from environmental and/or economic conditions. When activity data is available the first option is 194 
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preferable. However, in data-sparse regions the second option might be necessary to implement, which is still an 195 

improvement compared to long-term average profiles as commonly used as we will discuss next for several sectors 196 

represented in our dynamic emission model. 197 

Non-industrial combustion is dominated by households' natural gas consumption to heat houses, for cooking, and 198 

for warm water supply. A Dutch energy provider has a dataset publicly available from about 80 smart meters for 199 

the year 2013 with hourly gas consumption (Liander, 2018). It clearly shows a seasonal cycle, but also more small-200 

term variations (daily data are shown in Fig. 3). We also see higher gas consumption in the beginning of the year, 201 

where the first three months of 2013 had some long, cold spells. 202 

The use of energy for household heating is connected to the outside temperature. Previous studies have therefore 203 

used the concept of heating degree days to describe the temporal variability in emissions from households (Mues 204 

et al., 2014; Terrenoire et al., 2015). This concept assumes that heating only takes place below a certain temperature 205 

threshold (here 18°C) and the hourly time factor can be defined as: 206 

𝑇𝑡 = 𝐻 𝐷 ̅⁄             (3) 207 

where H is the heating degree day factor (H = max(291.15-𝑇2𝑚
̅̅ ̅̅ ̅,0)) based on the daily mean outside temperature 208 

at 2 m. 𝐷̅ is the yearly average heating degree day (𝐷̅ =
1

𝑁
∑ 𝐻𝑁

𝑗=1 ). However, gas consumption related to warm 209 

water supply and cooking is largely independent of the outside temperature and therefore a constant offset is 210 

included in the heating degree day factor: 211 

𝐻𝑓 = H + 𝑓 ∙ D̅           (4) 212 

where f is the constant offset. We assumed an offset of 20 %, similar to Mues et al. (2014). The time factor can 213 

now be defined as: 214 

𝑇𝑡 = 𝐻𝑓 𝐷𝑓  ̅̅ ̅̅⁄             (5) 215 

where the average heating degree day accounted for the constant offset 𝐷𝑓
̅̅ ̅ = (1 + 𝑓)𝐷̅.  216 

We compared the heating degree day method with gas consumption data on a daily basis (Fig. 3). The degree day 217 

function follows the gas consumption data very well, including the higher consumption at the start of the year, 218 

reaching an R2 of 0.90 (N=365). The gas consumption of consumers also has a diurnal pattern with peaks in the 219 

early morning and late afternoon. Therefore, a diurnal profile can be estimated based on typical working hours. 220 

For hourly data R2 is 0.80 (N=8760, not shown). 221 

 222 
Figure 3. Daily time profiles for households (left) and glasshouses (right). Solid red lines are based on true activity data, 223 
whereas dashed black lines are parameterizations based on the degree day function. 224 
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For the energy consumption of glasshouses there is no true activity data available. Instead, we use modelled daily 225 

energy consumption for a typical Dutch glasshouse cultivating tomatoes (courtesy of Bas Knoll, TNO) as the 226 

‘truth’ (activity data). This time profile is calculated for typical meteorological conditions, such that the order of 227 

magnitude and the peaks are representative for an average year. There is almost no energy consumption during the 228 

summer, which indicates that there is no constant offset. So, we use Eq. (3) to determine the emission factor. 229 

Moreover, we use a lower temperature threshold of 15 °C to get a better fit with the observed energy consumption. 230 

The estimated function compares well with the activity data (Fig. 3) with an R2 of 0.85 (N=365).  231 

The diurnal cycle of glasshouse emissions is likely to be different from that of household emissions. Yet we lack 232 

data to establish a diurnal cycle. We therefore use the same diurnal profile as for households, although this is likely 233 

to be incorrect. 234 

Power plants can use different fuels such as hard coal, natural gas or biomass. In the Netherlands coal-fired and 235 

gas-fired power plants account for 80–85 % of the total energy production. The remainder comes mainly from 236 

wind energy (5–6 %) and biomass burning (5–6 %). Power generation data are reported by the European Network 237 

of Transmission System Operators for Electricity (ENTSO-E), which has detailed data available for the whole of 238 

Europe. Coal-fired power plants are currently the main source of energy and their generation is relatively stable 239 

compared to other sources. It does, however, show a seasonal cycle with less energy production during the summer 240 

months. Gas-fired power plants have a larger temporal variability as they are mainly used as back-up for peak 241 

hours, depending also on the amount of renewable energy that is available.  242 

We use Eq. (5) to estimate the time profiles of both coal- and gas-fired power plants. Linear regression analysis 243 

shows that the coal-fired power generation is correlated with degree days (R2 = 0.17). In this case we use a large 244 

constant offset of 80 % and a threshold of 25 °C which were chosen to best match the actual power generation 245 

data. The offset is much larger than for households because there is always a basic energy demand from the 246 

industry. In contrast, the gas-fired power plants are (negatively) correlated with the wind speed (R2 = 0.13) and 247 

incoming solar radiation (R2 = 0.10), indicating the need for gas-fired power generation in the absence of 248 

renewable sources. Therefore, we replace the temperature used to calculate Hf in Eq. (4) with the multiplication of 249 

wind speed and incoming solar radiation: 250 

𝐻 = max(10 − 𝑢̅, 0) ∙ max(150 − 𝑅̅, 0)        (6) 251 

where u is the wind speed (m s-1) and R the incoming solar radiation (J cm-2). Here we use a constant offset of 10 252 

% and a threshold of 10 m s-1 and 150 J cm-2. 253 

The diurnal cycles for power plants can be based on socio-economic factors. For example, the energy demand 254 

peaks early in the morning when people get ready to go to work and at the end of the afternoon when they get 255 

home. We find this pattern in the actual power generation data, with coal-fired power plants being less variable 256 

during the day than gas-fired power plants. The fixed profile from the European MACC-III emission inventory 257 

(Denier van der Gon et al., 2011; Kuenen et al., 2014) matches reasonably well with gas-fired power plant profiles, 258 

but it is less applicable for coal-fired power plants (Fig. 4). Overall, the estimated profiles for gas-fired power 259 

plants (hourly data) have an R2 of 0.32 (N=8784) when compared to the activity data. For coal-fired power plants 260 

this is 0.21 (N=8784). 261 
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 262 

 263 

Figure 4. (top row) Daily time profiles for gas-fired (left) and coal-fired (right) power plants. Solid red lines are based 264 
on true activity data, whereas dashed black lines are parameterizations based on observed temperature (coal) and wind 265 
speed/radiation (gas). (bottom row) Average diurnal cycle for gas-fired (left) and coal-fired (right) power plants. Solid 266 
red lines are based on true activity data, whereas dashed black lines are fixed profiles from the MACC inventory (Denier 267 
van der Gon et al., 2011; Kuenen et al., 2014). Shading gives the 1σ variability of the diurnal cycle based on activity 268 
data. 269 

The industrial sector consists of a wide range of activities, of which some are semi-continuous and only interrupted 270 

by maintenance stops while others follow working hours. This makes it very difficult to predict the temporal 271 

variability, especially for the overall sector. Since the largest CO₂ emissions are related to refineries and heavy 272 

industry we will focus on these activities. We find a seasonal cycle in the reported industrial activity, with a small 273 

decline during the summer and Christmas holidays. However, the variations are very small (max. 1 %). Therefore, 274 

we assume constant emissions.  275 

Road transport emissions can vary between different road and vehicle types (Mues et al., 2014), but are also 276 

strongly dependent on environmental, socio-economic and driving conditions (such as the amount of stops, free-277 

flow versus stagnant conditions, and engine temperature). Traffic count data are often used to create average time 278 

profiles for road traffic emissions, although with traffic counts we are unable to account for environmental and 279 

driving conditions. Traffic counts for the Netherlands are made available by the Nationale Databank 280 

Wegverkeersgegevens (NDW) and similar data is available in many developed countries. We differentiate between 281 

two vehicle types (passenger cars + motorcycles (hereafter referred to as cars) and light duty + heavy duty vehicles 282 

(hereafter referred to as HDV)) and three road types (highway, main road, urban road). We selected all available 283 

locations for 2014 within or close to Rotterdam that distinguish 3-5 vehicle lengths and filtered for a minimum 284 

data coverage of 75 %. This leaves us with 25 highway, 6 main road and 13 urban road locations. From this data 285 

we make average time profiles (daily, weekly and monthly) per road and vehicle type, as is often done to 286 
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disaggregate road traffic emissions. Note that this method excludes any spatial variations (e.g. highways leading 287 

towards the city vs. the beach), except for differentiating between road types. 288 

Generally, HDV show a larger spread due to the low counts during the weekend (Fig. 5). Car counts on weekdays 289 

show a morning and evening rush hour and they go down in between. In contrast, HDV counts peak throughout 290 

the day and only go down after the evening rush hour. Moreover, the diurnal cycles are different during the 291 

weekend than on weekdays. These patterns can be explained from socio-economic factors. Current time profiles 292 

are often based on cars and are unable to correctly represent the temporal variability of HDV. This also affects the 293 

spatial distribution of emissions and therefore we create average diurnal, weekly and seasonal profiles separately 294 

for cars and HDV, for different road types and considering the day of the week. The comparison of true traffic 295 

counts and averaged traffic counts results in R2 values between 0.83 and 0.95 for hourly data for the whole year 296 

(N between 2665 and 6471). 297 

 298 

Figure 5. Time profiles of passenger cars (left) and heavy-duty vehicles (right) road transport on highways for ten 299 
randomly chosen days in March. Solid red lines are based on true activity data, whereas dashed black lines are 300 
parameterizations based on averaged traffic counts for Rotterdam. 301 

Shipping emissions are dependent on the type of fuel used and whether ships apply slow-steaming. Additionally, 302 

during loading and unloading ships still emit CO₂ and other pollutants, even though they are not moving. Such 303 

information is currently not available, so instead we use information about the arrival and departure of ships in the 304 

port of Rotterdam to make a time series of ship movements. Note that this only applies to large vessels that 305 

transport goods and passengers and that the time profile will look quite different for recreational shipping. 306 

However, large ships account for approximately 80 % of the total shipping emissions in the area of interest. Since 307 

we lack information about other type of shipping movements, we will only account for large ships in the time 308 

profiles. 309 

We collected ship movements for one month (daily data) and an average diurnal profile. The diurnal cycle shows 310 

a peak throughout the day, which corresponds well with the HDV road transport emission patterns on highways. 311 

The reason for this is that HDV road transport is related to shipping movements, as HDV takes care of part of the 312 

good transport further inland after the goods have arrived by ship. We also find a clear weekly pattern with less 313 

ship movements during the weekend, although the decrease is less than for HDV road transport. This is likely 314 

because large ships, such as entering the port of Rotterdam, continue travelling during the weekend. Therefore, 315 

the weekly pattern resembles more that of car road transport on highways. Thus, we can estimate ship movements 316 

by using the temporal profiles of HDV and cars on highways. This method is specifically tested for Rotterdam and 317 

different patterns might be visible elsewhere. We also use HDV patterns for the seasonal variability, and final 318 
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parameterized and reported activity in this method reach an R2 value of 0.89 for a period of 18 days with hourly 319 

data (N=432) as shown in Fig 6. 320 

 321 

Figure 6. Daily time profiles for shipping. Solid red line is based on true activity data, whereas dashed black line is a 322 
parameterization based on traffic counts of heavy-duty vehicles (diurnal cycle) and cars (day-to-day variations) on 323 
highways. 324 

2.1.3 Step 3: Spatial disaggregation.  325 

National total sectorial emissions need to be distributed into spatially explicit emissions for our study domain. The 326 

spatial disaggregation of emissions has received quite some attention already from inventory builders. Existing 327 

emission inventories can be used to describe the spatial disaggregation, if available for the region at high 328 

resolution.  329 

If not, simple default proxies for the spatial distribution are population density and the presence of roads or 330 

waterways (e.g. OpenStreetMap). For example, main roads and urban roads are busiest in densely populated areas 331 

and we assume emissions on main and urban roads are correlated with population density. Highways are used for 332 

transport between cities and therefore emissions take place outside densely populated areas as well. Nevertheless, 333 

highway transport is usually to and from densely populated areas, such that most emissions will take place close 334 

to cities. We can therefore relate these emissions with the population density in the area of interest (in this case 335 

Rijnmond) relative to the rest of the country, which places the same amount of the country-level emissions in our 336 

case study domain as the gridded inventory. Additionally, the location of large power plants or industrial plants is 337 

often known (for example from E-PRTR (Pollutant Release and Transfer Register), which can be used directly. 338 

Although such information allows us to possibly construct a detailed fossil fuel model in data-sparse regions in 339 

the future, in this study we focus first on the more easily implementable and less-developed parameterization of 340 

temporal activity in different sectors (step 2) to assess whether this approach is promising enough for future 341 

extension. 342 

2.1.4 Step 4: Uncertainty analysis 343 

The emission model we have constructed in steps 1–3 contains several parameters per source sector: activity, 344 

emission factor, spatial proxy and time profile. For the analysis we only consider the emission factors and time 345 

profiles, as we assume activity data and the spatial distribution to be well-known. As input for step 1 in the dynamic 346 

emission model we use generalized parameters which we take from the IPCC, EEA and other organizations. These 347 

databases also provide an uncertainty range, which we use in a final step to create a covariance matrix. The 348 

covariance matrix describes the Gaussian uncertainty of these parameters (diagonal values) and error correlations 349 

between parameters (off-diagonal values). From the covariance matrix we create an ensemble of parameters 350 
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(N=500) that represents their joint distributions, and we use them to calculate an ensemble of emissions. In this 351 

Monte Carlo simulation, we transform some Gaussian parameters into log-normal distributions to account for non-352 

negativity, or to account for distributions with a very long tail (mainly emission ratios, which can become high in 353 

specific cases where no emission reduction measures are taken). Appendix A summarizes the used parameter 354 

values and uncertainties (including the shape of the distributions) and shows an example of the covariance matrix.  355 

In a final step, we select the most important parameters which are either very uncertain or have a large impact on 356 

the total emissions. This leaves us with the 44 parameters that we optimize in a set of data assimilation experiments, 357 

described next. In Sect. 3.1 we report uncertainties in % (1 σ) for normal distributions (CO₂) or as a 90 % 358 

confidence interval (CI) for lognormal distribution (co-emitted species). 359 

2.2 Data assimilation to estimate fossil fuel sources 360 

The goal of data assimilation is to find a state at which the system is in optimal agreement with observations. In 361 

this work, the observations we want to explore are the mole fractions of CO₂ and its co-emitted species while the 362 

state of the system is the underlying spatiotemporal distribution of fossil fuel emissions. Such configurations are 363 

sometimes referred to as “FFDAS” (fossil fuel data assimilation systems) applications, with a number of examples 364 

in recent literature (Rayner et al., 2010; Asefi-Najafabady et al., 2014; Basu et al., 2016; Graven et al., 2018). 365 

Given the sparsity of approaches explored so far, the dynamic emission model with its parameter driven emissions 366 

we present here could lend itself well for application in an FFDAS, and this is what we explore through a set of 367 

experiments with our own data assimilation methodology. 368 

In this study we use the CarbonTracker Data Assimilation Shell (CTDAS) (v1.0) described in detail in Van der 369 

Laan-Luijkx et al. (2017). Briefly, the CTDAS system is a flexible implementation of a square-root Ensemble 370 

Kalman Filter (Whitaker and Hamill, 2002), which also allows lagged windows (i.e. smoothing instead of 371 

filtering). The Ensemble Kalman Filter optimizes the cost function for unknown variables in the state vector x 372 

using information from observations (y0 with covariance R) and a prior estimate of the state vector (xb with 373 

covariance P). 374 

𝐽(𝑥) = (𝑦0 − ℋ(𝑥))
𝑇

𝑅−1(𝑦0 − ℋ(𝑥)) + (𝑥 − 𝑥𝑏)𝑇𝑃−1(𝑥 − 𝑥𝑏)     (7) 375 

In this function, ℋ is the observation operator that returns simulated mole fractions given the state vector. R and 376 

P determine how much weight is given to the observations and prior estimate, respectively. 377 

The optimized state vector (indicated with superscript a, whereas b refers to the prior estimates) which minimizes 378 

the cost function is 379 

𝑥𝑎 = 𝑥𝑡
𝑏 + 𝐾(𝑦𝑡

0 − ℋ(𝑥𝑡
𝑏))         (8) 380 

and its covariance is 381 

𝑃𝑡
𝑎 = (𝐼 − 𝐾𝐻)𝑃𝑡

𝑏          (9) 382 

Here, H is the linearized observation operator and K is the Kalman gain matrix: 383 

𝐾 = (𝑃𝑡
𝑏𝐻𝑇)(𝐻𝑃𝑡

𝑏𝐻𝑇 + 𝑅)
−1

         (10) 384 
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The solutions of Eq. (8) and Eq. (9) are calculated as in Peters et al. (2005) using an ensemble of 80 members. The 385 

choice for the ensemble size was based on the typical dimensions of our inverse problem, which has N=1960 386 

observations and M=44 unknowns for the base run. 387 

 388 
Figure 7. Time series of pseudo-observations and prior CO₂ mole fractions and a summary of how these time series 389 
were created. 390 

We have adapted CTDAS for smaller scale studies by replacing the typical observation operator ℋ, which is the 391 

global TM5 transport model (Huijnen et al., 2010), with a combination of WRF-STILT footprints and the OPS 392 

plume model, building on the methods described in Super et al., (2017a) and He et al. (2018). Moreover, we have 393 

added our dynamic emission model to the observation operator so that we can sample its parameter distribution in 394 

atmospheric mole fraction space. More details about the individual parts of this system are provided below and 395 

are summarized in Fig. 7. 396 

2.2.1 Observation operator 397 

The observation operator translates the 44 parameters in the dynamic emission model first into emissions (through 398 

Eq. (1) and Eq. (2)) and then into atmospheric mole fractions. The transport modelling consists of two parts. The 399 

first part, the Weather Research and Forecasting-Stochastic Time-Inverted Lagrangian Transport (WRF-STILT, 400 

(Nehrkorn et al., 2010) model, is used for surface emissions that are representative of large areas (i.e., not a point 401 

source). STILT is a Lagrangian particle dispersion model that describes the footprint of a single measurement by 402 

dispersing particles back in time (Gerbig et al., 2003; Lin et al., 2003). With this footprint the surface influence of 403 

emissions on a single observation can be described. An advantage of this method is that it allows the pre-404 

calculation of linear atmospheric transport, which makes this part of the observation operator less computationally 405 
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demanding than running an ensemble of a full atmospheric transport model (like WRF with chemistry). The total 406 

domain covered with WRF-STILT is 77 x 88 km (Fig. 1) and includes most of the Randstad. 407 

To generate a footprint, 75 particles are released at the observation site at the start of the back-trajectory and 408 

followed back in time. Given that the variability in hourly observations at an urban location is dominated by local 409 

signals, we construct back-trajectories spanning 6 hours. This is based on the domain size, which could be covered 410 

within 6 hours for typical wind speeds of 4 m s-1. Within this time frame emissions can become well-mixed 411 

throughout the boundary layer under normal daytime mixing conditions, such that emissions outside this range 412 

can be represented by a boundary inflow. Footprints are generated for each hour within the back-trajectory to 413 

account for hourly variations in the emissions. We drive STILT with meteorology from the WRF model (v3.5.1). 414 

The WRF model was set up with two nested domains (15x15 and 3x3 km2 horizontal resolution) and the STILT 415 

footprints have a 1x1 km2 resolution over the entire domain.  416 

The second part of the transport modelling is a plume model. In a previous study we have shown that point source 417 

(stack) emissions should be modelled with a plume model to better represent the limited dimensions of the stack 418 

plume (Super et al., 2017a). Similarly, Vogel et al. (2013) have shown that the surface influence calculated by 419 

STILT can lead to large model errors for stack emissions. Therefore, we include the OPS (Operational Priority 420 

Substances, short-term version) plume model in our framework to model the transport and dispersion of stack 421 

emissions (Van Jaarsveld, 2004; Sauter et al., 2016). OPS provides hourly concentrations at pre-defined receptor 422 

points, which represent our measurement sites. The model keeps track of a plume trajectory, considering time-423 

varying transport over longer distances (e.g. changes in wind direction and dispersion). If for a time step a specific 424 

plume affects the receptor, a Gaussian plume formulation is used to calculate the mole fraction caused by that 425 

source based on the true travel distance along the trajectory. We drive the model with the same WRF meteorology 426 

as STILT. Only primary meteorological variables (temperature, relative humidity, wind direction, wind speed, 427 

precipitation, global radiation) are prescribed, secondary variables (e.g. boundary layer height, friction velocity) 428 

are calculated by OPS itself and can differ from WRF. 429 

Similar to the WRF-STILT model, we assume an influence time of 6 hours on our observations. However, in this 430 

case we run the OPS model forward from -6 hours to the time of observation. We apply the OPS model only to 431 

point source emissions within the Rijnmond area, as we found in a previous study that a plume model only has an 432 

added value less than 10–15 km downwind from the stack (Super et al., 2017a). Point sources at more than 10–15 433 

km from the observation site can be sufficiently represented with a Eulerian model. The OPS model input includes 434 

detailed information about the exact stack height and heat content of the plume.  435 

In addition to the fossil fuel contribution we also include background mole fractions for CO₂ and CO. NOx and 436 

SO2 are short-lived and therefore the variations in the background are relatively small compared to the fossil fuel 437 

signals. The CO₂ background is taken from the 3-D mole fractions of CarbonTracker Europe (Peters et al., 2010) 438 

and also accounts for biogenic fluxes. The resolution of these CO₂ fields is 1x1° and we select the grid box that is 439 

situated over Rotterdam. The 3-hourly data are linearly interpolated to get hourly background mole fractions that 440 

are added to the fossil fuel signals calculated by the transport models. We use the strong wintertime correlation 441 

between CO₂ and CO mole fractions (r = 0.73) to calculate CO background conditions from the CO₂ background. 442 

This is not very accurate, but for the purpose of this OSSE it provides us with a decent estimate of the variability 443 

in background mole fractions.  444 

2.2.2 State vector 445 
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We populated the state vector with a selection of the most important parameters of the dynamic emission model, 446 

based on their impact on the total emission uncertainty described in the results (Sect. 3.1). However, we 447 

hypothesize that emission model parameters that are not part of the state vector are nevertheless uncertain and may 448 

affect the results. Therefore, we include a total of 44 scaling factors in our state vector (xb), and each scaling factor 449 

is linearly related to a parameter from the dynamic emission model. The uncertainty in these parameters 450 

(covariance matrix P) is derived from the Monte Carlo simulations described in Sect. 2.1, with the spread in the 451 

emission model parameter values provided by the same databases of the IPCC and EEA. These uncertainty values 452 

can also be found in Appendix A.  453 

For this study we selected an arbitrary two-week period in January 2014 (6–20 January). Note that during the 454 

summer the importance of source sectors might be different, e.g. there will be less heating from households. 455 

Nevertheless, this period is sufficient to test the applicability of our DA system. We loop over the 14 days in our 456 

study period, resulting in one posterior state vector for each day. We initialize our state vector for every new day 457 

using the posterior values and posterior uncertainties from the previous day. Because the footprints we generated 458 

extend backwards for six hours, the state vector for each day is effectively only constrained by the observations 459 

from that same day, and hence we did not use a Kalman-smoother approach in this work in contrast to other 460 

CTDAS applications. 461 

Although this is a data-rich region, we use generic values for the prior emission model parameters which we take 462 

from the IPCC, EEA and other organisations (Appendix A). These values are typically valid for a large region 463 

(e.g. Europe) and not necessarily the best estimate for our regional case study. The reason that we use these values 464 

is that they can provide a first estimate of the emissions in data-scarce regions where inverse modelling might add 465 

most to our knowledge. With this set-up we can examine how well we can constrain the true emissions starting 466 

with this generic, and widely available, information. 467 

One major challenge in this study is to attribute the mismatch between the observed and modelled mole fractions 468 

to a specific sector, as a CO₂ observation alone provides no details on the origin of the CO₂. Therefore, we include 469 

three tracers (CO, NOx and SO2) that are co-emitted with CO₂ during fossil fuel combustion in a ratio (referred to 470 

as RCO, RNOx and RSO2) that is specific for each source sector (Fig. 2). Their (pseudo-)observations can inform us 471 

about the source of the mismatch, but through their emission ratio to CO₂ they also constrain the magnitude of 472 

CO₂ emissions in the emission model. The ratios RCO, RNOx and RSO2 used for this conversion to CO₂ emissions is 473 

not fixed: for each of the co-emitted species we included them in the state vector. This recognizes that emission 474 

ratios are highly variable and uncertain but play an important role in source attribution. 475 

2.2.3 Pseudo-observations 476 

In this work we create observing system simulation experiments (OSSEs), which use pseudo-observations instead 477 

of true observations. The advantage of using pseudo-observations is that we can accurately examine the abilities 478 

of our new approach without having to account yet for (often dominant) atmospheric transport errors.  479 

The pseudo-observations used to optimize the emission model parameters are created using the same observation 480 

operator as described above. The dynamic emission model is used to create realistic emissions with a high 481 

spatiotemporal resolution. Yet in contrast to the prior, we use specific local (Dutch) values for the emission model 482 

parameters. These parameters are considered to be the truth and are therefore not scaled (scaling factors are 1.0). 483 

We found that these local parameter values are always within the uncertainty range of the general (prior) values, 484 
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so that the true solution is part of the distribution explored within the prior. This is confirmed in an experiment 485 

with a small model-data mismatch and no noise on the background, which reproduces the true parameters very 486 

well (not shown). 487 

The resulting emissions are used in combination with the background mole fractions and transport calculated by 488 

WRF-STILT and the OPS model to create pseudo-observations at the locations shown in Fig. 1. For the pseudo-489 

observations the original background time series are used, whereas in the inversion random noise is added to the 490 

background mole fractions with a standard deviation of 2 ppm for CO₂. We assume no contribution from biogenic 491 

CO₂ to the excess CO₂ over the background, which means that any biogenic contribution to CO₂ within our 492 

footprint is the same as in the inflow from outside our domain, thus cancelling in the subtraction of the background 493 

CO₂. 494 

One simulated time series is illustrated in Fig. 7. The monitoring network consists of seven sites that are scattered 495 

over the city of Rotterdam and the port. All sites exist in the national CO₂ or air quality measurement networks, 496 

although not all species used in the inversion are observed at all locations. We only use the daytime (12–16 h LT) 497 

observations to constrain our emissions. This is normally done to favour well-mixed conditions when simulated 498 

transport is more reliable, and we want to mimic this limitation. We assume all instruments have an inlet at 10m 499 

above ground level. In reality this is lower for several sites, but during the well-mixed daytime conditions the 500 

difference is minimal. 501 

The covariance matrix R describes the observation error. It accounts for errors related to instrumentation, but also 502 

representativeness errors due to model transport, interpolation, and parameterization used in the dynamic emission 503 

model. Although in principle such errors can be excluded in an OSSE, we prefer to use realistic estimates of these 504 

errors to allow for the random errors that we applied to the prescribed boundary inflow, as well as to account for 505 

some parameters in the emission model that are not optimized even though they contained uncertainty in the 506 

pseudo-data creation. We base the R matrix on the calculated errors and variability caused by these specific 507 

differences, and we end up with variances of 2.5 ppm (CO₂), 8 ppb (CO), 3 ppb (NOx) and 1 ppb (SO2). 508 

2.3 Data Assimilation Experiments  509 

We perform various experiments to examine the sensitivity of the system to different set-ups and sources of error. 510 

The experiments are discussed here, and the detailed set-up of the inversions is summarized in Table 2. The base 511 

run is labelled “Base”. 512 

1) State vector definition: We start with a comparison of two different state vectors. For this purpose, we compare 513 

the base run with an inversion (Short_state) which only includes the 21 most important parameters as identified in 514 

the sensitivity analysis. This test allows us to examine the impact of erroneous, non-optimized emission model 515 

parameters on the emission estimates. The results are discussed in Sect. 3.2. 516 

2) Source attribution: Next we compare two monitoring network configurations which differ in the number of 517 

tracers used. We perform an inversion with CO₂ as the only tracer (CO₂_only) and one with the full range of tracers 518 

(Base) to assess the added value of including co-emitted species for source attribution. These tests address the 519 

question whether co-emitted species can be used for source attribution. The results are discussed in Sect. 3.2. 520 

3) Propagation: The third experiment is used to examine the effect of propagation of posterior values and 521 

uncertainties on the final emission estimates. We compare the base run to a run that has no propagation 522 

(No_propagation and CO2_only_no_propagation) but instead starts from the same prior mean and uncertainty on 523 
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each of our 14 days considered. The runs without would allow the parameter values to change over time. The 524 

results are discussed in Sect. 3.3. 525 

Table 2. Overview of the inversions: which tracers are included, the length of the state vector and whether posterior 526 
values and uncertainties are propagated. 527 

Inversion name Tracers State vector length (per day) Propagation to the next day 

Base All 44 Yes 

Short_state All 21 Yes 

No_propagation All 44 No 

CO₂_only CO₂ 44 Yes 

CO2_only_no_propagation CO2 44 No 

3 Results 528 

Before demonstrating the use of our dynamic emission model in an inverse framework, we demonstrate its 529 

application as a simple but versatile method to generate hourly gridded emissions for multiple species with full 530 

covariances.  531 

3.1 Dynamic emissions and their uncertainty 532 

The total yearly emission of CO₂ for the Netherlands calculated with the dynamic emission model is 180 Tg CO₂ 533 

with an uncertainty of 15 % (1-sigma Gaussian based on 500 members of a Monte Carlo simulation). This matches 534 

the total of the Dutch national emission inventory for 2014 by design (step 1), but the uncertainty on the latter was 535 

estimated with a similar Monte Carlo simulation to be only 1 % for CO₂ in 2004 (Ramírez et al., 2006). This 536 

smaller uncertainty is fully due to the use of country-specific emission factors with a much smaller range than we 537 

derived from the IEA and IPCC inventories. Spatial disaggregation (step 2) does not affect the uncertainty of the 538 

domain aggregated annual fluxes, and the time profiles (step 3) have no impact on the yearly total emissions. For 539 

CO, NOx and SO2 the uncertainties in the dynamic emission model are much larger, with medians (CI’s) of 6.5x108 540 

(1.3x108–6.8x109) kg CO yr-1, 5.0x108 (1.2x108–5.1x109) kg NOx yr-1, and 1.3x108 (5.1x106–2.2x1010) kg SO2 yr-541 

1. These ranges result from uncertainties in the assumed ratios of their release per unit of CO₂ emitted.  542 

Below the annual scale, time profiles have an impact on the uncertainties as well. The daily emissions of the 543 

Netherlands depend on the day and the season (Fig. 8) and range from 0.36 to 0.76 Tg CO₂ day-1. The time series 544 

shows a seasonal cycle with lower emissions during the summer. There is a clear weekly cycle with reduced 545 

emissions during the weekend. The uncertainty in the total daily emission varies between 8 and 15 %, which is 546 

similar to or lower than the uncertainty in the yearly total emissions. The explanation for these relatively low 547 

uncertainties is that many uncertainties are temporally uncorrelated and their impacts on individual days partially 548 

cancel out. Moreover, the largest sectors (coal-fired power plants and industry) already have a large uncertainty 549 

and adding more uncertainty through the time profiles has little impact. Nevertheless, the uncertainties introduced 550 

through the time profiles cause an uncertainty in daily CO₂ emissions of about 7 %, if the other uncertainties are 551 

excluded from the analyses.  552 
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 553 

Figure 8. (top) Time series of daily CO₂ emissions (in Tg CO2 day-1) and their uncertainty. Given is the interquartile 554 
range (shaded area) and the median (line) from the ensemble. (bottom) Map of annual mean relative uncertainty of 555 
emissions for the top 25 % pixels with the largest emissions, during a winter month (dominated by household gas- and 556 
electricity use) and a summer month (electricity and road-traffic dominated). 557 

Differences in the relative contribution of different sectors are evident when looking at the map of uncertainties 558 

across the Netherlands (Fig. 8), reflecting both the most uncertain parameters, but also the dominant source sectors. 559 

Winter emissions for example are dominated by household gas-usage, while industrial and traffic emissions give 560 

rise to uncertainty year-round at a 10–30 % level. We further identified the most important parameters per source 561 

sector with a Monte Carlo simulation per source sector (Fig. 9). Results shows that the road traffic and shipping 562 

sectors contain the smallest relative uncertainties, although the time profile for shipping causes an uncertainty of 563 

about 7 % in the total shipping emissions. The industrial emissions are most uncertain, and this is almost 564 

exclusively due to the emission factor, which causes an uncertainty of 41 % in the total industrial emissions. 565 

Similarly, the power plant emissions have a large relative uncertainty due to the uncertain emission factor of coal-566 

fired power plants (19 %). Also, for households and glasshouses the emission factor is uncertain (14 % and 26 %, 567 

respectively), but here the time profiles also have a large impact (10 % and 16 %, respectively). 568 
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 569 
Figure 9. Box plots showing the uncertainty in the CO₂ emissions from power plants (1A+1B), households (2A), 570 
glasshouses (2B), industry (3), road traffic (7A+7B) and shipping (8A+8B+8C) caused by individual parameters 571 
affecting that sector. Uncertainty is represented as the spread in daily (normalized) emissions from each ensemble 572 
member (N=500) over a full year (N=365). EF refers to an emission factor (green bars) and T to a time profile (orange 573 
bars). (Sub)sectors are indicated with their short names as summarized in Table 1. Note that the time profiles of road 574 
traffic emissions are specified per road type (1 = highway, 2 = main road, 3 = urban road). Minor parameters that have 575 
very small impacts on CO₂ emissions are not shown here (23 out of 44). 576 

3.2 Optimizing dynamic emissions 577 

In the base inverse modelling setup, our system is able to improve the mean estimate and reduce the uncertainty 578 

on total CO₂, CO, NOx, and SO2 emissions. Figure 10 shows the probability density function of these estimated 579 

total emissions, compared to the prior (using parameters derived from IPCC/EEA) and the truth (created with 580 

country-specific parameter values). Interestingly, the posterior result deteriorates slightly when using a shortened 581 

state vector in which 11 parameters of “minor” influence (such as the SO2:CO₂ ratio of household emissions) are 582 

not optimized from their incorrect prior. This is caused by sporadic atmospheric signals that are dominated by 583 

household emissions, even if these emissions only contribute a small fraction to the total emissions. These signals 584 

are then used to update the emission factor, while the emission ratios are also incorrect. 585 
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 586 
Figure 10. Probability density functions of emissions per species or per source category (for CO₂) in units of Tg (CO₂) 587 
or Gg (CO, NOx, SO2). The truth is shown as a vertical dashed line, typically well-matched by the mean of the posterior 588 
in blue. Using a shortened state vector (yellow) deteriorates the total non-CO₂ emissions substantially and leads to 589 
misattribution of CO₂ emissions in minor categories such as 2A (households).  590 

With CO2 as the only tracer in the inversion we find that we can still estimate total CO2 emissions quite well (truth-591 

minus-optimized = 0.03 Tg CO2 yr-1), but we lose the capacity to attribute emissions to specific sectors. Instead, 592 

mainly the emission factor of the largest single source being industry (EF3) is optimized. We illustrate this in Fig. 593 

11, using the No_propagation run. The large spread across the 14 individual days indicates that the emission factor 594 

jumps around within a large prior uncertainty distribution and is not well-constrained on each day. Some of the 595 

other emission factors show almost no deviation from the prior and little variability. Given the constraints posed 596 

by CO2 observations alone, and the limited number of parameters that change the simulated CO2, optimizing EF3 597 

improves the results at the lowest costs. Introducing the co-emitted species allows the system to identify the source 598 

of a residual, and attribute it to the right parameters if sufficient sensitivity is present. This is especially true for 599 

those sectors that have relatively small emissions and/or uncertainties, like 2B and 1A. This is corroborated by the 600 

posterior covariance matrices (See Appendix B) which show a reduction in parameter correlations for those 601 

parameters (i.e., a better mathematical separation of the estimates) when all tracers are included in the estimate. 602 

For other parameters the median values are further from the truth than the prior (e.g. for RSO2 8), which indicates 603 

that there is too little sensitivity to these parameters. 604 

 605 
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 606 

Figure 11. Spread (Q1-Q3) and median values of the parameter scaling factors for the fourteen individual days included 607 
in the CO2_only_no_propagation (left) and No_propagation (right) inversions, and final value of the CO2_only (left) 608 
and base (right) inversion (red lines). The prior values are indicated by the black lines and the truth is indicated with 609 
the green dotted lines (value of 1.0). The left y-axis is for the emission factors, the right y-axis for the tracer ratios. The 610 
inversion with all tracers shows more variability in the emission factors and larger deviations from the prior values. 611 

3.3 Localization and propagation of information 612 

Propagating information on parameter values from one day to the next is often better than using the median of 613 

individual days’ estimates as illustrated by the red lines in Fig. 11. Nevertheless, the sporadic detection of plumes 614 

with specific signatures suggests that a form of selection or localization of the strongest signals could reduce noise 615 

and improve the estimate for the No_propagation run. We therefore ranked the 14 daily independent parameter 616 

estimates based on their relative posterior uncertainty and the residuals in an attempt to find the most trustworthy 617 

parameter values. This ranking is done per parameter, so the best estimate of different parameters can be related 618 

to different days. The increase in residual (same for all parameters) and posterior uncertainty (of the industrial 619 

emission factor) is shown in Fig. 12, where the 3–5 highest ranked days have similar characteristics after which 620 

the reliability decreases. On the lower ranked days, atmospheric signals from that particular source sector are too 621 

small (or even absent) to update the parameters related to that source sector. A similar pattern is found for the other 622 

parameters (not shown), with 2–5 days of high sensitivity out of 14. 623 

 624 
Figure 12. Increase in posterior uncertainty (1σ of unitless scaling factor) in the industrial emission factor (EF 3) and 625 
absolute mean residual of CO₂ (in ppm) from highest- to lowest-ranked days. 626 

 627 
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When we use the top-3 averaged parameter values to calculate emissions we find for most sectors that the emission 628 

estimate is similar to the base run, albeit with a larger uncertainty, while for a few specific sectors results 629 

deteriorate. This suggests that selecting for strong signals can dampen spurious noise, but still does not improve 630 

on the base run that includes full propagation of the covariances, hence carrying information on parameter 631 

correlations that is partially lost in the No_propagation run. 632 

From the posterior covariance matrices we can confirm our selection of “good” days, as these typically show 633 

relatively weak correlations between parameters. For the industrial sector (emission factor, RNOx, RSO2) these are 634 

typically weak on most days, and indeed the mean over the entire period already gives a robust estimate of the true 635 

parameter value (Fig. 13). The parameters with the strongest correlations are RCO of households and road traffic, 636 

and their mean values tend to be dominated by a few outliers. Selecting days on which the posterior parameter 637 

correlations are weak (i.e. the atmospheric signal clearly contains information about this specific parameter) results 638 

in a large improvement compared to the prior or a 14-day average. Moreover, these results show a similar or better 639 

performance as the top-3 selection based on Fig. 12 (0.08 for EF3 and 0.18 for Rco 7A, not shown), and are closer 640 

to the base run. 641 

 642 

Figure 13. Scatter plot of the absolute error in the scaling factor of the industrial emission factor (EF 3) and RCO of road 643 
traffic (7A) against the sum of the parameter correlations of the same parameters. The correlation coefficients are -0.17 644 
and 0.37 respectively. The horizontal lines give the average absolute error in the scaling factor for the prior (full black 645 
line), if all 14 days are averaged (dotted line), and based on the 3 days with the smallest parameter correlations (dashed 646 
line) and the result for the base run (full red line). The values are also given. 647 

4 Discussion 648 

4.1 Optimizing the dynamic emission model 649 

The dynamic emission model has the advantage over static emission fields that its parameters are optimized, giving 650 

physical meaning to the results. To reduce the size of the problem, the state vector can be populated with those 651 

parameters that are most important and/or uncertain. However, we find that uncertain, non-included parameters 652 

can still significantly affect the optimization. Therefore, the size of the state vector should be considered carefully 653 

when applying this method. Moreover, we performed an experiment to establish the possibility to optimize the 654 

time profiles as part of the state vector. Although we found some improvements, it appears to be difficult to 655 

differentiate between the different variables in Eq. (2) that have a linear relationship based purely on the 656 
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observations. Therefore, the results are not shown and optimizing the temporal dynamics of the emission model 657 

requires further work. 658 

Additionally, we identified the base run as the simplest method to get good estimates, but we do note that our 659 

current propagation scheme does not yet include error growth. That means that eventually the ensemble will 660 

converge on a parameter value and discard incoming observational evidence, unless the covariance is inflated to 661 

allow new updates. Examples of such a covariance inflation scheme are ample in literature and in principle not 662 

difficult to include, but were not yet considered in this work as the time periods covered were still short. 663 

Finally, we have demonstrated that tracers are suitable for source attribution. Several previous studies have used 664 

co-emitted species as tracer for fossil fuel CO₂ by taking advantage of the specific emission ratio characteristics 665 

of each source sector (Lauvaux et al., 2013; Lindenmaier et al., 2014; Turnbull et al., 2015) and came to similar 666 

conclusions. Nevertheless, the uncertainty in emission ratios remains a source of error and therefore the 667 

optimization of emission ratios with our system is a promising step forward. Using co-emitted species to identify 668 

the total fossil fuel contribution to the observed CO₂ signal is more difficult (Turnbull et al., 2006). The reason for 669 

this is that there is a large variability in emission ratios between sectors. This makes it difficult to establish an 670 

average emission ratio for an urban area, because it depends strongly on the relative contribution of each source 671 

sector and may vary over time. 672 

4.2 Radiocarbon and background definition 673 

Therefore, a nice addition to this inversion system would be the inclusion of radiocarbon measurements. The 674 

radiocarbon isotope (14CO₂) can be used to simulate fossil fuel CO₂ records and has been applied successfully in 675 

several inverse modelling studies (Turnbull et al., 2006; Levin and Karstens, 2007; Miller et al., 2012; Turnbull et 676 

al., 2015; Basu et al., 2016; Wang et al., 2018). The radiocarbon measurements could be used directly in the 677 

inversion (as we did with the co-emitted species) or be used to define a fossil fuel CO₂ record in advance (Fischer 678 

et al., 2017; Graven et al., 2018). Our urban network detects average fossil fuel CO₂ signals of about 5 ppm with 679 

peaks up to 50 ppm. This would result in Δ14C signals (the ratio of 14CO₂ to 12CO₂) of around 13 up to 130 per 680 

mille, which are certainly detectable with current techniques. However, observations of carbon isotopes are 681 

expensive and currently not widely available, so their applicability is still limited. Besides Δ14C other isotope 682 

signatures and tracers can also provide additional information. For example, 13CO₂ and O2/N2 can give insight in 683 

the dominant sources and sinks or fuel types (Lopez et al., 2013; Van der Laan et al., 2014) and as such be an 684 

indicator for the transition from fossil fuels to biofuels. They might also help to separate between the stack 685 

emissions of industry and coal- and gas-fired power plants. 686 

An additional advantage of including the radiocarbon isotope is that the uncertainty in the background CO2 can be 687 

excluded, i.e. only the fossil fuel record is considered. Here, we choose to ignore the uncertainty in the background, 688 

except in the definition of the covariance matrix R, and attribute all tracer residuals to the fossil fuel emissions. 689 

Yet an incorrect definition of the background causes a large bias in the optimized emissions (Göckede et al., 2010). 690 

There are also several other methods to deal with the non-fossil fuel related CO₂ signals. First, the uncertain 691 

background can be added to the state vector and be optimized in the inversion. For example, He et al. (2018) have 692 

shown that high-altitude aircraft observations are suitable to improve regional biosphere flux estimates by 693 

correcting the bias in boundary conditions. Second, a mole fraction gradient over the area of interest can be 694 

calculated using an upwind and downwind site such that the boundary inflow plays no role anymore (Turnbull et 695 
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al., 2015). This method was shown to reduce the impact of boundary inflow, but only when the wind direction is 696 

more or less perpendicular to the gradient (Bréon et al., 2015; Staufer et al., 2016). Therefore, this method limits 697 

the amount of useful measurements.  698 

4.3 Error correlations 699 

The dynamic emission model also allows us to study the correlations between model parameters, therefore giving 700 

more insight in how information can be used in the system and which parameters are more challenging to separate. 701 

Previously, Boschetti et al. (2018) have used the presence of error correlations between emissions of different 702 

species and found that this reduces the posterior uncertainties for all species. They even show that the uncertainty 703 

reduction increases with the correlation and that an incorrect definition of the error correlations may cause a 704 

systematic bias in the posterior emission estimate. However, error correlations are only beneficial if the 705 

atmospheric observations can distinguish between the correlated parameters. If this is not the case the presence of 706 

parameter correlations can result in poorly constrained parameters and/or large posterior uncertainties. This is 707 

especially true when parameters are sensitive to parameter correlations, as we show for RCO of road traffic. 708 

An important question is then why some emission model parameters are more sensitive to the presence of 709 

parameter correlations than others. One hypothesis is that parameters with a lower prior uncertainty are more 710 

sensitive to the presence of parameter correlations. The idea behind this is that if we reduce the diagonal value 711 

(uncertainty) by a factor of 4 the off-diagonal value (parameter correlation) reduces by a factor of 2. This means 712 

that the parameter correlation is relatively stronger if the uncertainty is lower (Boschetti et al., 2018). This 713 

hypothesis cannot be confirmed by our results, as we only find a correlation of -0.27 between the prior uncertainty 714 

and the sensitivity to parameter correlations (defined as the correlation between the posterior uncertainty and the 715 

sum of the parameter correlations). The main difficulty here is that not all parameters can be discerned with the 716 

observed atmospheric signals. Although we included the additional co-emitted tracers for source attribution, the 717 

emission ratios have a large uncertainty and the system can have difficulties assigning residuals to either the 718 

emission ratio or the emission factor. Yet if we calculate an average sensitivity and total posterior uncertainty per 719 

sector (by combining the emission factor and emission ratios per sector) we find a correlation coefficient of -0.82. 720 

This suggests that this hypothesis might indeed be correct and source sectors with larger parameter uncertainties 721 

are less sensitive to the presence of parameter correlations. 722 

4.4 Atmospheric transport model errors 723 

In addition to the experiments described in Sect. 2.3 we conducted an experiment that focused on the role of 724 

transport model errors by using observed meteorology to drive the OPS model in the inversion. Like many authors 725 

before us (McKain et al., 2012; Brioude et al., 2013; Lauvaux et al., 2013; Bréon et al., 2015; Boon et al., 2016) 726 

we found a large impact on the performance of our system and once again confirmed the need for accurate transport 727 

models. This experiment is not further shown in this work because of its redundancy with previous conclusions. 728 

Nevertheless, we performed this experiment to examine whether transport errors are important when the state 729 

vector consists of parameters that are valid for the entire domain. Random errors, such as errors in the wind 730 

direction, are unlikely to affect the optimized emissions much when averaged over a longer time period and 731 

domain. This was shown by Deng et al. (2017), who found little variation in the average CO₂ emission for 732 

Indianapolis using different configurations of WRF to calculate the transport. However, they did find an impact 733 

https://doi.org/10.5194/gmd-2019-283
Preprint. Discussion started: 13 November 2019
c© Author(s) 2019. CC BY 4.0 License.



 

26 

 

on the spatial distribution of the emissions. This becomes important when optimizing a specific source sector that 734 

is clustered in one place, such as the glasshouses. We found that the glasshouse sector is only correctly optimized 735 

with a specific wind direction. If the modelled wind direction is wrong the residuals would thus not be attributed 736 

to the glasshouse sector as it is not in the modelled footprint of the measurement site. As such, we conclude that 737 

the footprint definition has an impact on the optimized parameters, despite that the parameters have no spatial 738 

distribution. Similarly, Broquet et al. (2018) mention that the location and structure of a simulated urban plume 739 

might differ significantly from the true plume characteristics due to errors in the simulated wind speed and wind 740 

direction. 741 

Systematic errors, whether in the modelled transport or in the observations, are more difficult to solve as they do 742 

not cancel out when simulating a longer period, and this can lead to biased emission estimates (Meirink et al., 743 

2008; Su et al., 2011). Several methods have been suggested to overcome problems with an incorrect description 744 

of atmospheric transport, such as using an ensemble of atmospheric transport model simulations (Angevine et al., 745 

2014) or the assimilation of meteorological observations (Lauvaux et al., 2013). The latter showed lower biases in 746 

buoyancy and mean horizontal wind speed. Another method that is often used is the selection of well-mixed 747 

afternoon hours to exclude stable conditions under which pollutant dispersion is often poorly represented (Lauvaux 748 

et al., 2013; Bréon et al., 2015; Boon et al., 2016). Such data selection however leads to a bias in the estimated 749 

emissions when the diurnal cycle is not correctly accounted for (Super et al., 2019). 750 

Here, we also applied a daytime selection criterion to mimic this situation. However, we found that night time 751 

hours could be very useful to constrain our emissions. In our DA system we use residual fossil fuel enhancements 752 

over a background (prior - true mole fraction enhancement) to constrain the fossil fuel fluxes. The larger the 753 

residual, the more information can be gained from it since the impact of the observation error (R matrix) is 754 

relatively small. If, for example, the industrial emission factor is underestimated by 10 %, the residual industrial 755 

enhancement (given a linear relationship between the emission factor and the total emission from this sector) will 756 

be 10 % of the pseudo-observed mole fraction. This means that a large signal from the industry is needed to reach 757 

a residual that is larger than the observation error (σ is 1.6 ppm for CO₂). Looking at the time series of pseudo-758 

observations we find that such large signals mostly occur during night time or in the early morning. Therefore, the 759 

inversion could benefit strongly from an improved description of night time boundary layers and stable conditions, 760 

so that the large night time enhancements can be used to constrain the fossil fuel fluxes. 761 

5 Conclusions 762 

The aim of this study was to examine how well our DA system can quantify urban CO₂ emissions per source 763 

sector. Since the prior consists of a dynamic fossil fuel emission model the model parameters are optimized rather 764 

than the emissions themselves. The parameters are related to specific source sectors and to attribute residuals to 765 

these sectors measurements of additional tracers (CO, NOx and SO2) are included in the inversions. We tested this 766 

system to examine its ability to overcome some major limitations in current urban-scale inversions: source 767 

attribution, definition of the prior and its uncertainties, and the sensitivity to errors in atmospheric transport. 768 

We find that inverse modelling at the urban scale is feasible when the observations contain a lot of information 769 

about the different source sectors. When only CO2 mole fractions are used in the inversion the total CO2 emission 770 

are well-constrained. Additional tracers are an important addition to the inversion framework in order to discern 771 

the information belonging to specific source sectors and emission model parameters. However, even more tracers 772 
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might be needed to fully capture the heterogeneity of the emission landscape. Moreover, we argue that a dynamic 773 

emission model has some major advantages over regular emission maps, allowing us to constrain physically 774 

relevant parameters even in the absence of good prior information. 775 

Nevertheless, quite some challenges remain. Transport modelling at this small scale needs to be improved to be 776 

able to use real urban observations, as under current conditions the transport error strongly dominates the results. 777 

Especially improving the description of night time boundary layers could be beneficial, because large atmospheric 778 

signals mostly occur during the period. For the future, additional advances need to be made to include satellite 779 

observations in the inverse modelling framework. The advantage of satellite data is that it covers data-sparse 780 

regions and with a larger view it can differentiate between the urban dome with high pollution levels and the 781 

cleaner rural areas, which is a nice addition to in situ measurements. 782 

Code and data availability 783 

The availability of the CTDAS (v1.0) code is described in a previous publication (Van der Laan-Luijkx et al., 784 

2017), which forms the basis of the system described in this paper. Minor changes have been made to include the 785 

dynamic emission model. Revised code and the additional module used to describe the dynamic emission model 786 

and the creation of pseudo-observations is included as Supplement, as is a script used for the emission uncertainty 787 

analysis (Monte Carlo simulation). Input data for the dynamic emission model are taken from open, online 788 

databases and are summarized in Appendix A, including their data sources. Example input files for CTDAS and 789 

the OPS model are also included as Supplement.  790 
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Appendix A 791 

Table A1. Overview of all parameters in the dynamic emission model, their unit, function type, expected value and 792 
uncertainty (range). 793 

Parameter (Sub)sector Unit Function 

type 

Expected 

value  

Uncertainty 

Emission factor(a) Coal-fired power plants(c) kg PJ-1 Normal 1.01E8 23 % 

Gas-fired power plants(c) kg PJ-1 normal 5.61E7 10 % 

Households(c) kg PJ-1 normal 5.89E7 14 % 

Glasshouses(c) kg PJ-1 normal 5.61E7 25 % 

Industry(d) kg PJ-1 normal 7.66E7 40 % 

Road traffic cars(e) kg PJ-1 normal 7.24E7 10 % 

Road traffic HDV(e) kg PJ-1 normal 7.33E7 5 % 

Ocean shipping(f) kg PJ-1 normal 7.76E7 5 % 

Inland shipping(f) kg PJ-1 normal 7.30E7 5 % 

Recreational shipping(f) kg PJ-1 normal 7.10E7 5 % 

Emission ratio 

CO:CO₂ 

Coal-fired power plants(e) kg kg-1 lognormal 1.29E-4 8.7E-7–2.9E-4 

Gas-fired power plants(e) kg kg-1 lognormal 8.47E-4 3.4E-4–2.5E-3 

Households(e) kg kg-1 lognormal 3.88E-3 8.3E-4–9.6E-3 

Glasshouses(e) kg kg-1 lognormal 5.40E-4 3.1E-5–7.7E-4 

Industry(d) kg kg-1 normal 2.06E-3 40 % 

Road traffic cars(e) kg kg-1 lognormal 1.32E-2 8.0E-5–6.5E-2 

Road traffic HDV(e) kg kg-1 lognormal 2.22E-3 9.3E-5–1.3E-2 

Ocean shipping(f) kg kg-1 normal 2.32E-3 30 % 

Inland shipping(f) kg kg-1 normal 3.42E-3 30 % 

Recreational shipping(f) kg kg-1 normal 2.96E-1 30 % 

Emission ratio 

NOx:CO₂ 

Coal-fired power plants(e) kg kg-1 lognormal 5.94E-4 3.0E-4–9.4E-4 

Gas-fired power plants(e) kg kg-1 lognormal 2.00E-3 2.6E-4–3.7E-3 

Households(e) kg kg-1 lognormal 1.50E-3 4.8E-4–3.3E-3 

Glasshouses(e) kg kg-1 lognormal 1.63E-3 5.0E-4–3.5E-3 

Industry(d) kg kg-1 normal 6.56E-4 40 % 

Road traffic cars(e) kg kg-1 lognormal 1.76E-3 9.0E-5–7.5E-3 

Road traffic HDV(e) kg kg-1 lognormal 1.11E-2 3.3E-4–3.7E-2 
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Ocean shipping(f) kg kg-1 normal 2.32E-2 30 % 

Inland shipping(f) kg kg-1 normal 1.37E-2 30 % 

Recreational shipping(f) kg kg-1 normal 1.97E-3 30 % 

Emission ratio 

SO2:CO₂ 

Coal-fired power plants(e) kg kg-1 lognormal 1.66E-4 2.9E-5–4.4E-4 

Gas-fired power plants(e) kg kg-1 lognormal 5.01E-6 2.9E-6–7.2E-6 

Households(e) kg kg-1 lognormal 2.21E-5 1.4E-5–6.7E-5 

Glasshouses(e) kg kg-1 lognormal 8.91E-6 5.2E-6–1.3E-5 

Industry(d) kg kg-1 normal 4.28E-4 40 % 

Road traffic cars(g) kg kg-1 normal 1.01E-6 100 % 

Road traffic HDV(g) kg kg-1 normal 8.16E-7 100 % 

Ocean shipping(f) kg kg-1 lognormal 6.18E-3 3.3E-4–2.0E-2 

Inland shipping(f) kg kg-1 lognormal 6.57E-3 3.5E-4–3.0E-2 

Recreational shipping(f) kg kg-1 lognormal 3.14E-4 1.1E-4–7.0E-4 

Hourly time  

factor(h) 

Coal-fired power plants - normal 1 28 % 

Gas-fired power plants - normal 1 43 % 

Industry - normal 1 5 % 

Households - normal 1 43 % 

Glasshouses - normal 1 74 % 

Road traffic cars highway - normal 1 18 % 

Road traffic cars main road - normal 1 18 % 

Road traffic cars urban road - normal 1 18 % 

Road traffic HDV highway - normal 1 41 % 

Road traffic HDV main road - normal 1 18 % 

Road traffic HDV urban road - normal 1 48 % 

Total shipping - normal 1 31 % 

Energy 

consumption per 

activity data(i) 

Total power plants PJ/mln € - 8.22E-4 - 

Households PJ/dd(b) - 0.199 - 

Glasshouses PJ/dd(b) - 0.061 - 

Industry PJ/mln € - 7.05E-4 - 

Road traffic cars PJ/mln € - 3.98E-4 - 
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Road traffic HDV PJ/mln € - 2.01E-4 - 

Total shipping PJ/mln € - 1.51E-4 - 

Fraction of total 

energy 

consumption per 

subsector(j) 

Total power plants: coal - - 0.62 - 

Total power plants: gas - - 0.38 - 

Road traffic cars: highway - - 0.47 - 

Road traffic cars: main road - - 0.28 - 

Road traffic cars: urban road - - 0.25 - 

Road traffic HDV: highway - - 0.56 - 

Road traffic HDV: main road - - 0.24 - 

Road traffic HDV: urban road - - 0.20 - 

Total shipping: ocean - - 0.79 - 

 Total shipping: inland - - 0.20 - 

 Total shipping: recreational - - 0.01 - 

(a) Emission factor for coal-fired and gas-fired power plants include uncertainty due to variations in fuel type, including burning 794 

of biomass (5 % uncertainty). For households assume 8 % wood combustion based on CO2 emission values (Vernieuwd 795 

emissiemodel houtkachels, by B.I. Jansen (TNO, 2016)), the remainder is natural gas (with 10 % uncertainty). For glasshouses 796 

assume only natural gas combustion, including 20 % additional uncertainty due to use of cogeneration plants. For road traffic 797 

cars assume 69 % gasoline, 29 % diesel and 2 % LPG (with 5 % uncertainty); for road traffic HDV assume 100 % diesel. 798 

(b) dd = degree day 799 

 (c) Expected value and uncertainty based on IPCC Emission Factor Database (EFDB) using 2006 IPCC guidelines  800 

(d) Expected value based on Emissieregistratie (emission) and CBS (energy consumption); uncertainty based on expert 801 

judgement 802 

(e) Expected value and uncertainty based on the EMEP/EEA air pollutant emission inventory guidebook 2016 803 

(f) Expected value and uncertainty based on CO₂, CH4, and N2O emissions from transportation-water-borne navigation, by Paul 804 

Jun, Michael Gillenwater, and Wiley Barbour (Good Practice Guidance and Uncertainty Management in National Greenhouse 805 

Gas Inventories)  806 

(g) Expected value based on Air Pollutant Emission Factor Library (Finish Environment Institute); uncertainty based on expert 807 

judgement 808 

(h) Uncertainties based on comparison activity data-based time profiles and estimated time profiles from environmental/socio-809 

economic factors 810 

(i) Expected value based on CBS (energy consumption, GDP) and KNMI (degree day sum) 811 

(j) Expected value based on Emissieregistratie 812 
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 813 

Figure A1. Covariance matrix for all parameters in the dynamic emission model. For all covariances we assume a 814 
correlation coefficient of 0.5. (Sub)sectors are indicated with their short names as summarized in Table 1. Note that the 815 
time profiles of road traffic emissions are specified per road type (1 = highway, 2 = main road, 3 = urban road).  816 
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Appendix B 817 

 818 
Figure B1. Matrix showing the difference in correlation coefficient (r) between the CO2_only_no_propagation and 819 
No_propagation run averaged for all 14 days, where positive differences indicate reduced parameter correlations when 820 
all tracers are included (No_propagation). (Sub)sectors are indicated with their short names as summarized in Table 1. 821 
For some parameters a strong reduction in parameter correlations is shown, indicating that with all tracers that 822 
parameter can be more easily separated from others, for example the emission factors of industry and coal-fired power 823 
plants (EF3 and EF1B). 824 
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