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Interactive comment on “Optimizing a dynamic fossil fuel CO2 emission model with CTDAS (v1.0) for an urban 

area using atmospheric observations of CO2, CO, NOx, and SO2” by Ingrid Super et al. 

We would like to thank the reviewers for their interest in our study and for expressing their thoughts on our work. 

We are aware of the large amount of work that we describe and the review comments have been helpful in 

reflecting on our work and pointing out parts that required more explanation. Below we address specific issues 

mentioned by the reviewers point by point. The manuscript has been updated accordingly (changes are highlighted, 

line numbers refer to the final manuscript). 

Anonymous Referee #1Received and published: 16 December 2019 

This manuscript presents a modelling framework to optimize fossil fuel CO2 emissions using a data assimilation 

system and atmospheric observations. The prior emissions are estimated using a dynamic CO2 emission model, 

which allows constraining physically relevant parameters. The manuscript provides a novel approach, that can 

overcome some current limitations in urban-scale inversions such as source attribution, definition of the prior 

emissions and its uncertainties, and the sensitivity to errors in atmospheric transport.  

The paper is well written and clear and a very good contribution for GMD. Results are presented in a detailed 

way and the conclusions are well-reasoned. My only major comment has to do with some of the subsections of the 

methods sections, which sometimes are not presented in sufficient detail and/or remain a little bit too general. 

1. Section 2.1.1 and Table A1: How is the “E/A” term derived from the IEA statistics (L175)? According to Table 

A1, “E/A” values are derived from CBS and KNMI (description of these acronyms should be provided). To the 

best of my knowledge, the information that IEA reports is primary energy consumption by sector and fuel, which 

is equivalent to the “E” term of equation 1. Should not it be more efficient to directly use the “E” information 

provided by IEA instead of deriving it from the expression A* (E/A) proposed in equation 1? I find difficult to 

understand what is the added value of having to compile the “A” and “E/A” terms instead of directly using “E”. 

Also, when describing “A” some examples are used such as “vehicle kilometers driven” (L161), but according to 

Table A1, the units used for the term “E/A” in road traffic cars and HDV are “PJ/mln C ́’. Should not it be 

“PJ/km”? The “A” terms and corresponding sources of information should also be provided in Table A1.  

We thank the reviewer for pointing out this ambiguity. The equation was adopted from Raupach et al. (2007) 

because of its simplicity and global applicability. The authors of that paper used this equation to calculate the total 

emission per country. Here, we apply the equation to each of the source sectors. Indeed, the energy consumption 

data could be used directly when such data are available. However, this is not always the case, while the term ‘A’, 

often GDP, is known for each country and we choose to use the full equation to ensure global applicability. For 

the same reason we suggested to use IEA statistics to make an assumption on the value of ‘E/A’ in absence of 

country-specific energy consumption data, for example by taking values from a comparable region. If country-

specific data is available with more detail than IEA data, this can also be used of course, which is what we did 

here. 

We have clarified why we used ‘E/A’ instead of ‘E’ in lines 183-184 and the suggestion to use IEA statistics (or 

other data) to estimate ‘E/A’ in lines 186-188. We replaced the acronyms with full names in lines 822 and 832-
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833. To avoid confusion, the example of vehicle kilometers driven is moved to lines 184-185, where it is mentioned 

as an option to improve local emission estimates. The sources of ‘A’ are given in the footnote of Table A1, where 

it is mentioned that GDP is provided by Statistics Netherlands and degree day sum is based on data from the Royal 

Netherlands  Meteorological Institute. For completeness, their values are added. 

2. Section 2.1.3: This section remains too general, especially when compared to the previous one, where the 

temporal disaggregation methodology is presented in a detailed way for each sector. It is not clear to the reader 

the specific datasets/methods that are being used to spatially distribute the emissions for each sector. More details 

should be provided (perhaps the spatial proxies used should also be summarized in Table A1). Later on, in the 

manuscript, the authors say that the spatial distribution is assumed to be well-known (L346) and therefore this 

element is not considered when performing the uncertainty analysis. This sentence however seems at odds with a 

previous statement, which says that “their uncertainty increases rapidly when disaggregating them towards finer 

spatiotemporal resolutions” (L52). Considering the special increase in the emissions uncertainty that the 

introduction of spatial disaggregation generally causes, the non-inclusion of this element in the uncertainty 

analysis should be better justified (i.e. better discussed why the spatial proxies applied in this study can be assumed 

to be well-known). 

We have carefully evaluated the reviewer’s comment and distilled two main questions. 

First, it seems unclear how the spatial disaggregation was performed and which data were used. We did not intend 

to improve the spatial distribution used in local inventories and decided to take over existing spatial patterns instead 

of creating our own. The reason is that spatial downscaling has received a lot of attention from inventory builders 

and instead we wanted to put our effort in improving the temporal downscaling as a first step towards building a 

dynamic emission model.  For the Netherlands an emission map is available at 1x1 km2 resolution and for many 

European countries such maps are exist. These maps are often based on widely available proxies for spatial 

disaggregation, like population density and land use type, although in some cases scaling factors are applied based 

on local circumstances. In absence of local knowledge, these proxies can be used directly and that is why we listed 

those in Section 2.1.3 to describe a methodology that is applicable in other regions as well. 

Second, the reviewer raises the concern that the uncertainty in spatial disaggregation is not taken into account, 

while it is considered an important contributor to the overall uncertainties in a high-resolution emission map. We 

agree with the reviewer that these statements seem to be contradictory and that spatial downscaling indeed 

increases the uncertainty drastically. Our choice to not include the spatial component in our setup is further justified 

by the choice of observation network here, where we only consider 7 sites across the domain which together will 

make it very hard to see high-resolution spatial variations. To estimate these, we would rather test the capacity of 

satellite observations in combination with a gridded state vector, which is actually part of ongoing work in our 

group. In this first exploration, we however use the same spatial distribution for our pseudo-observations and for 

our prior. 

We have added extra information explaining why we did not pay more attention to spatial downscaling and how 

general proxy data can be used in lines 339-344. We have also added a sentence explaining our assumption on not 

including spatial uncertainties in lines 359-363 and that this should be part of future work (lines 671-673). 
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In addition to these major comments, I list several doubts and minor comments mostly related to suggestions to 

improve the presentation of the work: 

L94: Change (Andres et al., 2016) (Super et al., 2019) for (Andres et al., 2016; Super et al., 2019) 

Done. 

L104: I think that the concept of “near real-time” is too strong. For instance, this would imply that traffic 

emissions are estimated based on near-real time data collected from traffic counts and, therefore, that congestion 

situations or traffic accidents are considered when calculating the dynamic emissions. A similar thing would apply 

to powerplants (e.g. emissions are derived from near-real time collected data on the activity of each individual 

facility). 

We agree with the reviewer that this concept is not applicable to the emission model shown here, but that it reflects 

what we would like to have in the future. We have updated line 104 and added some words about the future 

dynamic emission model in lines 155-159. 

L120: Replace “inverse part” for “inverse modelling part” 

Done. 

Table 1: Could you provide a reference to the CO2 contribution shares that are shown in Table 1? 

The source of this data has been added to the table caption. 

L206: Some European studies have suggested the use of 15.5◦C as the value for defining the threshold temperature 

when calculating the HDD (e.g.https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/joc.3959). According to 

the results shown in Figure 3 (left), the parametrization proposed for households (18◦C) is underestimating most 

of the observed peaks in winter, while it overestimates the ones observed during spring/summer. On the contrary, 

the parametrization proposed for glasshouse (15◦C) reproduces much better the winter peaks. Do you think that 

reducing the value of Tb for the household parametrization could allow improving the reproduction of winter 

peaks? (this is just a suggestion, does not need to be added in the revised manuscript) 

We appreciate the authors suggestions on this topic. Indeed, we are aware that some studies have used a different 

temperature threshold. We have adopted the value suggested by Mues et al. (2014), because they applied their 

method to Germany, which has a similar climatology as the Netherlands. To test the sensitivity, we compared the 

results using 18 and 15.5°C and the winter peaks are slightly better when using 15.5°C, yet the correlation 

coefficient remains the same. We did not include this in the manuscript. 

L220: Are you referring to the MACC-III fixed temporal profile? Please specify 

Yes, we used the diurnal profile from TNO-MACC. A reference is added to line 227. 
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L239:Add a reference to the ENTSO-E database 

(e.g.https://www.sciencedirect.com/science/article/pii/S0306261918306068) 

Done. 

L244: The correlations presented between power generation and meteorological variables are rather low. This 

implies that the proposed parametrization for this sector is not so well correlated with observed activity data such 

as it is for other sectors (e.g .households or road transport). Considering the importance of this sector to the total 

CO2 emissions, perhaps it would be interesting to discuss how these parametrizations could be improved in future 

works. 

We value the reviewer’s suggestion to pay more attention to the energy sector emission timing. Indeed, it is a 

combination of uncertainty and absolute importance that determines where the effort should go. We think that 

especially the timing of coal-fired power plant activity can be improved by introducing a seasonal variation in the 

constant offset based on economic activity (e.g. lower industrial activity during the summer holidays). In contrast, 

the power generation from gas-fired power plants is more used as back-up for renewable energy. Yet, since the 

electricity supply is not local, the size of our domain limits correct calculation of the wind/solar shortage that needs 

to be supplemented by gas-fired power plants. These suggestions have been added to lines 267-273. How large 

the area should be to model energy supply is an interesting question for future research. 

L260: Could you also provide the R2 value for daily data? 

The R2 values of coal- and gas-fired power plants (0.17 and 0.31) are added to lines 265-266. 

Table 1 / L272 / Figure 9: The industrial sector is the largest contributor to total CO2, but at the same time is the 

only sector that has not been split between subcategories. Is there a specific reason for that? Should not a split 

between e.g. type of industries would help to provide better temporal parametrizations or reduce the uncertainty 

of the emission factors for this sector? 

We thank the reviewer for pointing this out. Indeed, the industrial sector is an important source of CO2 and in our 

study a major source of uncertainty. The large uncertainty has to do with the wide range of activities that are part 

of this sector that are difficult to capture in one emission factor, but also because it makes a lot of difference 

whether filtering technologies are implemented or not. Local knowledge can improve the emission factor estimate 

and for the case study region the emission factor is actually much better known. Splitting the industry up into 

subsectors could help reduce the uncertainty, but only if more specific information is available for each of the 

subsectors, which is often lacking or still includes a large uncertainty. Moreover, a further split in subsectors would 

add more parameters to our state vector, which are difficult to separate because industrial activities are often 

clustered in space. Therefore, we decided for now it would not be helpful to split this up into subsectors, as this 

would not reduce the overall uncertainty. We have added a statement on this in lines 145-147. 

Figure 5 (left): It looks like the activity data (red line) is missing for the last day 
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We thank the reviewer for noticing the missing data. Unfortunately, the traffic count data are not complete and 

there is a small gap in the dataset. This is also why the sample size (line 308) differs and is smaller than a full year. 

This is now also mentioned in line 308. 

Figure 9: According to this figure, the uncertainty of the time profile “T” is larger in the household sector than 

in the power plant sector. Nevertheless, the correlation between the temporal parametrization and true activity 

data reported for the household sector is higher than the one reported for the power plant sector. Is there a specific 

explanation for that? 

We apologize for this confusion. The uncertainty in the temporal profiles is actually similar for the gas-fired power 

plants and households and somewhat lower for coal-fired power plants (based on the comparison between the 

parameterizations and TNO-MACC fixed profiles, as mentioned in the footnote of Table A1). However, what is 

shown in Figure 9 is their contribution to the uncertainty in the emissions of that specific sector. So if another 

parameter is highly uncertain it will dominate the total emission uncertainty: the emission factor of coal-fired 

power plants has a larger uncertainty than the emission factor of households and therefore the relative importance 

of the uncertainty in the time profile is larger for households.  

Section 3.1: I assumed that the meteorological-dependent time profiles were calculated using the WRF model, but 

perhaps it should be clarified at some point in this section. 

We used the same meteorological data as for the calculation of the degree day sum as mentioned in the footnote 

of Table A1: observations from the Royal Netherlands Meteorological Institute (KNMI). This is now clarified in 

lines 222-223. 

Section 5: In the introduction section the authors pose three research questions that want to answer with this 

study. It would be interesting to rewrite the conclusions section so that it provide concise and clear statements 

that directly answers each one of these research questions (i.e. include a bullet list with a statement per question). 

This structure may facilitate the reader to link the posed questions with the outcomes of the work. 

We have carefully addressed this comment by rewriting the conclusion so that a clear and concise answer is 

provided for each research question (lines 787-796). 

Anonymous Referee #2Received and published: 17 February 2020 

The paper describes a new modelling framework to describe urban fossil fuel emissions of CO2 (ffCO2) in which 

emission ratios vary in time in space. To achieve this, the authors use atmospheric gases that are co-emitted with 

ffCO2 and range of proxy data that are associated with typical sectors that lie within the urban domain. They 

apply the resulting framework to a synthetic numerical experiment focused on the Rijnmond area, Netherlands.  

This is a nice piece of work that with some development will eventually address some of the outstanding challenges 

we face as a community to quantify urban ffCO2. My recommendation is to accept the manuscript for publication 

after the authors have addressed my comments. 
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Broad comments 

This is a chunky piece of work that contains a lot of information. For the sake of readability I encourage the 

authors to consider judicious use of additional appendices.  

We have carefully considered the reviewer’s perspective and decided to create two additional appendices to reduce 

the amount of redundant details in the main text. Appendix B gives a summary of the data used to create the time 

profiles. Also the detailed explanation of the degree day function with corresponding equations is moved to 

Appendix B. Some of the details on the observation operator, which are not directly essential to the main point of 

the manuscript, have been moved to Appendix C. 

I have seen the authors present this work before and the use of “dynamic” has always rankled me. They could 

have just as easily described their new inventory as an online model that is fed with time-dependent data with 

resulting emissions being passed directly to subsequent atmospheric calculations. This is in contrast with static or 

offline inventories. Static inventories can also be dynamic in time and space, albeit on a discrete basis. 

We appreciate the reviewer’s thoughts on this and have carefully discussed it with all co-authors. We agree with 

the reviewer that what we present in the manuscript is not yet a full dynamic emission model. However, our 

ultimate goal is to develop a system that aggregates high-resolution activity data (traffic data, energy demand, 

shipping tracks) as well as the highly dynamic meteorological drivers of these activities. We moreover aim to 

access these in near real-time to calculate emissions for that specific moment only. We consider this approach to 

be justly called “dynamic” for several reasons: 1) it allows flexible use of different data sources including highly 

dynamic variables on activity/drivers that are not part of typical emission models or inventories; 2) it is not 

dependent on pre-calculated yearly emissions and spatial/temporal downscaling; 3) it provides emissions in near 

real-time. What we present here is a first step towards achieving this goal, namely by showing the potential of 

high-resolution activity data to describe temporal variations in emissions. 

To address the reviewer’s concern we have added a few sentences on what we believe a dynamic emission model 

should look like in lines 155-160 and the notion that what we present is just a first step towards achieving this.  

The figures are of low quality. Not sure why. I could barely read the text in Figure 1and many of the other figures 

are grainy. Better quality figures will ultimately make the work easier to appreciate. 

Figures would also benefit from being labeled directly, e.g A), B), C), etc. In some instances when columns are 

rows show something common a well-placed label would be useful. For example, Figure 4 would benefit from 

“Gas fired” and “Coal fired” labels for the top left and top right labels.  

We thank the reviewer for these suggestions. We have updated the figures accordingly. 

Bug bear: kindly please refrain from using “quite” as a descriptor throughout your pa-per. It is scientifically 

meaningless. Focus on the statistics that often accompany your statements. 

We have removed/replaced this term throughout the manuscript. 
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Specific comments 

Line 141: reason for greenhouses would be welcome here. Please mention tomatoes later but introduce the usage 

here.  

We have given more detail on the glasshouses in lines 141-142. 

Section 2.2.1. I think there might be a problem with units in your equation. Flux Fx should be mass/time but units 

of the contributing variables don’t result in that unit. Please clarify units for all variables shown in equation 1. 

We thank the reviewer for pointing out this lack of clarity. The units are dependent on what type of activity data 

are used. In the case of GDP the unit of A would be € (or another monetary unit), the unit of E is PJ, the unit of F 

is kg/yr and the unit of Rx is kg/kg. Following equation 1 this would result in: € * (PJ/€) * ((kg/yr)/PJ) * (kg/kg) = 

kg/yr. So the units seem to be correct. We have added the missing units to lines 169-171. 

Figure 2. Please make this bigger. 

Done. 

Lines 203- 216 describe the definition of the time factor. I found the exposition of this point opaque, especially the 

accompanying mathematics. Please expound your argument. 

The usual approach for applying temporal disaggregation is to determine the average hourly emission in a specific 

year (yearly emission / number of hours) and then weigh them for each hour within the year using an hourly time 

factor (Tt). Over a full  year, the average value of this factor is 1.0. This has been explained in lines 201-202. The 

degree day method has been used to calculate these hourly time factors for household emissions, which makes the 

timing dependent on the outside temperature. Basically, this method weighs all daily mean temperatures above a 

certain threshold and assigns emissions to these days accordingly, except for the constant offset that is equally 

spread over all days. A simplified explanation has been added to lines 217-220 and the details have been moved 

to Appendix B. 

Figure 3. The drop in relative gas consumption during May-Sept presumably reflects warmer weather. Are the 

spikes during this period due to cold days? 

Indeed, since the emission timing is purely dependent on the outside temperature those peaks reflect days on which 

the daily mean temperature exceeds the threshold. This explanation has been added to lines 237-238. 

Pages 8-9 I was unclear reading through this text how much was based fact, e.g. the reason behind gas-fired 

power plants (weakly) negatively correlated with wind speed, and how much was interpretation. Please clarify.  

We thank the reviewer for point out that our reasoning requires further explanation. The temperature-dependency 

of household/glasshouse emissions has been examined in detail and supported by observations. The values for the 

temperature threshold and constant offset are based on literature (households) or data fitting (glasshouses). This 

has been mentioned in lines 218-220 and 236-237.  
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As for power plants, the values have been chosen based on data fitting. The meteorological parameters are chosen 

based on a linear regression analysis with different types of meteorological data, from which we choose the 

parameters with the most explaining power (lines 250-251 and 254-255). In the case of gas-fired power plants this 

turned out to be wind speed and incoming solar radiation, which are predictors for the amount of wind and solar 

renewable energy. Since wind and solar energy are not always available and gas-fired power plants mainly serve 

as back-up during peak hours, we  suggested that both support coal-fired power plants and that the energy mix 

depends on the amount of renewables that is available. This is our interpretation, which is now mentioned explicitly 

in line 255-256.  

Generally, this reader would appreciate a summary table that explains which variables are being used as proxy 

data for various urban sector emissions. 

A table has been made that summarizes the data used to create and validate the temporal profiles. It has been added 

to Appendix B. 

Curiosity: are gas-fired power plants quicker to respond to shortfalls in energy provision than coal-fired plants? 

Does this explain the weaker correlation reported in lines 259-261? 

We thank the reviewer for this interesting question. Since the temperature threshold for coal-fired power plants is 

relatively high, the temporal variations are relatively insensitive to the temperature, especially during the winter. 

The choice for this is indeed based on the knowledge that coal-fired power plants operate relatively continuously 

and respond less to chances in the temperature. Gas-fired power plants operate more dynamically, as they respond 

to chances in renewable energy supply (which are weather dependent). Moreover, an additional explanation for 

the lower correlation is due to our assumption that the offset is fixed throughout the year. We have tried to put this 

in perspective in lines 267-273.  

Uncertainty analysis shown in Section 2.4.1. is important for inverse modellers. Is this a stop-gap approach or do 

you envisage this as a final method? 

The methodology described in Section 2.1.4 is a first step towards a better quantification of parameters 

uncertainties and error correlations. We believe it is a promising method that, with some additional effort, could 

provide a flexible tool for inverse modelers. The main advantage is that it can include spatial uncertainties and 

therefore it can be applied irrespective of the required spatial/temporal resolution. A similar approach, albeit more 

detailed and including spatial uncertainties, has been recently published. 

We have added some notions on the use of the uncertainty analysis in lines 373-375. 

Section 2.2. Convention dictates that vectors and matrices are denoted as emboldened lower- and upper-case 

variables, respectively. 

This has been updated throughout the text. 

Section 2.2.1. There is a lot being described here. Worth a schematic? 
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A part of this section is moved to Appendix C, because it is of limited importance for interpreting the results. The 

most important features of the observation operator are summarized in Figure 7. 

Section 2.2.3. Closed-loop numerical experiments are considered useful only if the truth and prior are independent 

in some way. Some calculations might use independent inventories while others use independent transport models. 

Using the “dynamic” version of the static inventory is not sufficiently independent (e.g. Figures 5 and 6). 

Consequently, the authors have presented a very optimistic scenario. At least, the author should acknowledge this 

situation. 

We agree with the reviewer that the prior and truth are not completely independent. While the emission calculations 

use different, independent values, the spatial and temporal patterns are the same for the prior and truth in the 

experiments shown. Also the same atmospheric transport is used - except for the boundary conditions - although 

model errors are taken into account to estimate the observation error. However, we discussed experiments in which 

the temporal profiles and atmospheric transport are different for the prior and truth. In both experiments structural 

errors become the dominant and limiting factor, as supported by previous studies. While that setup represents a 

more realistic scenario, we believe it doesn’t support our goal to explore the potential of an inversion system with 

a dynamic fossil fuel emission model and co-emitted species. We have added a statement on this in lines 481-484.  

Section 2.2.3. The authors assume no contribution from biogenic CO2 to the excess CO2 over the background. 

This is not a general assumption. How will they cope with an urban area with parks, for example? 

The biogenic fluxes are included in the background mole fractions of CarbonTracker Europe (lines 459-460). What 

we assume is that the biogenic contribution is the same in the prior and true background, so that the error in the 

background/biogenic flux is attributed to the fossil fuel emissions. This represents a typical situation in which the 

fossil fuel signal is difficult to isolate from the total mole fraction. The presence of biogenic fluxes thus contributes 

to the uncertainty in the fossil fuel flux estimates, which makes this exercise more realistic. In a study using real 

observations biogenic fluxes can be treated in more detail, e.g. with a biogenic emission model, and an effort can 

be made to separate the fossil and biogenic signal with isotopes. This explanation has been added to lines 499-

502. 

Section 2.2.3. A few more details are necessary to describe the data. Ideally, earlier in the manuscript. I am 

surprised that the authors can achieve what they have with a handful of data collected at 10 metres a.s.l. Maybe 

this can only work in the Netherlands? Also, what is the origin of the values used in the R matrix? 

We only consider 7 observation sites with an inlet height of 10 m and select observations between 12 and 16h LT 

(lines 503-509). Nevertheless, we do have 4 species, which all add information to the inversion system. With this 

setup we have a total of 1930 observations to constrain 44 parameters as mentioned in lines 406 and 506. This is 

an important advantage of using co-emitted species. Normally using in-city ground-level observations can be 

challenging due to erroneous transport, but since we use the same transport for the truth and the optimization this 

is not an issue. This notion is added to lines 509-511. Some more detail on the R matrix is given in lines 517-518. 

Section 3. State that CI = confidence interval. Also, clarify “Below the annual scale” online 543. 



 

10 

 

The meaning of CI has been given in line 379. “Below the annual scale” has been replaced with “At the sub-annual 

time scale” in line 554. 

Section 3.2. The result associated with a shortened state vector was interesting and something this reviewer had 

not considered fully. How do we decide on the correct length of the state vector? Will this be location specific? 

This is a very interesting question and difficult to answer. Based on our results we believe that parameters with 

minor influence on the total emissions (e.g. because the contribution of the source sector is small) can still be 

important if they are highly uncertain. However, including all these minor parameters will make the state vector 

very large and introduce more correlations which hamper the separation between parameters. Therefore, we can 

imagine that in this example the CO2 mole fractions might get more weight than the mole fractions of co-emitted 

species if the emission ratios of those species are very uncertain. However, how to best approach this is worth a 

further examination. We have added a sentence on our interest to further explore this in lines 665-667. 

Minor comment: avoid using yellow in figures (Figure 10). 

The yellow lines have been replaced by green dashed lines to increase the readability of the figure. 

Figure 11 would benefit from a legend. It contains a lot of information that was all in the text and figure panel but 

it took a while to pick through it all. 

A legend has been added to the figure. 

Line 650. I would say that this approach provides a more detailed physical meaning of the results compared to 

estimating emission estimates. 

We thank the reviewer for this nuance and agree that emissions in itself are also important physical results. Line 

662 have been updated. 

Line 652. Non-included parameters? 

We refer to those parameters that have an uncertainty, but are not part of the state vector and therefore not 

optimized. This has been clarified in lines 663-664. 

Line 659. If your online inventory is using weather data to drive variations then you could use the correlation 

lengths associated with weather systems? 

We thank the reviewer for this suggestion. Indeed, a correlation length based on typical weather system 

characteristics could be helpful to determine over which time period data are correlated. However, this would only 

apply to certain source sectors which depend on weather conditions, so other approaches are needed to determine 

typical correlations lengths for other sectors. We have added the reviewer’s suggestion as an example in lines 678-

680. 
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Section 4.2. Putting all your eggs in one basket with radiocarbon is not a wise move. It is one weapon in your 

arsenal. With the growth of biofuel combustion in urban regions, there will be a lot of combustion CO2 that is 

missed using radiocarbon. Something to consider in your discussion, especially since your group has just 

published work on this topic that makes my point. 

We agree with the reviewer that radiocarbon is not the solution to all problems. However, it is mentioned here as 

it has been proven useful in several inverse modelling studies. Since our emission model only contains fossil fuel 

emissions, radiocarbon is definitely a good addition to constrain the model parameters. Nevertheless, we agree 

that there are several other fluxes that need to be considered, such as biogenic and biofuel combustion fluxes. 

Therefore, we have mentioned oxygen (O2 oxidative ratios), as well as several other isotopes that can be used to 

distinguish between different fuel types (lines 700-703) and the option to optimize the background (lines 704-

715). Ideally, a combination of these techniques is applied to gain as much information as possible on the distinct 

sources of CO2. 

Line 774. Are you saying that your model has an advantage because it uses a source of information (emission-

related parameters) that is often neglected by emission inventories? 

Regular emission inventories often calculate emissions based on energy consumption statistics in combination 

with emission factors, which is not much different from our approach. The main difference is that emission maps 

do not explicitly contain the underlying data anymore and therefore do not allow to optimize those parameters. 

Another advantage is that, because it is a model and not a static map, it can use local high-resolution data when 

available. Therefore, it is more flexible than a regular emission inventory and the calculation of its uncertainties is 

substantially easier and more transparent. We have clarified this in lines 788-796. 
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Abstract. We present a modelling framework for fossil fuel CO₂ emissions in an urban environment, which allows 11 

constraints from emission inventories to be combined with atmospheric observations of CO₂ and its co-emitted 12 

species CO, NOx, and SO2. Rather than a static assignment of average emission rates to each unit-area of the urban 13 

domain, the fossil fuel emissions we use are dynamic: they vary in time and space in relation to data that describe 14 

or approximate the activity within a sector, such as traffic density, power demand, 2m temperature (as proxy for 15 

heating demand), and sunlight and wind speed (as proxies for renewable energy supply). Through inverse 16 

modelling, we optimize the relationships between these activity data and the resulting emissions of all species 17 

within the dynamic fossil fuel emission model, based on atmospheric mole fraction observations. The advantage 18 

of this novel approach is that the optimized parameters (emission factors and emission ratios, N=44) in this 19 

dynamic emission model (a) vary much less over space and time, (b) allow a physical interpretation of mean and 20 

uncertainty, and (c) have better defined uncertainties and covariance structure. This makes them more suited to 21 

extrapolate, optimize, and interpret than the gridded emissions themselves. The merits of this approach are 22 

investigated using a pseudo-observation-based ensemble Kalman filter inversion setup for the Dutch Rijnmond 23 

area at 1x1 km resolution. 24 

We find that the fossil fuel emission model approximates the gridded emissions well (annual mean differences < 25 

2 %, hourly temporal r2 = 0.21–0.95), while reported errors on the underlying parameters allow a full covariance 26 

structure to be created readily. Propagating this error structure into atmospheric mole fractions shows a strong 27 

dominance of a few large sectors and a few dominant uncertainties, most notably the emission ratios of the various 28 

gases considered. If these are either sufficiently well-known a-priori, or well-constrained from a dense observation 29 

network, we find that including observations of co-emitted species improves our ability to estimate emissions per 30 

sector relative to using CO₂ mole fractions only. Nevertheless, the total CO2 emissions can be well-constrained 31 

with CO2 as only tracer in the inversion. Because some sectors are sampled only sparsely over a day, we find that 32 

propagating solutions from day-to-day leads to largest uncertainty reduction and smallest CO₂ residuals over the 33 

14 consecutive days considered. Although we can technically estimate the temporal distribution of some emission 34 

categories like shipping separate from their total magnitude, the controlling parameters are difficult to distinguish. 35 

Overall, we conclude that our new system looks promising for application in verification studies, provided that 36 

reliable urban atmospheric transport fields and reasonable a-priori emission ratios for CO₂ and its co-emitted 37 

species can be produced.  38 
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1 Introduction 39 

Within the 2015 Paris Agreement, 195 nations agreed with a climate action plan in which each nation sets its own 40 

targets for carbon emission reductions and reports all efforts regularly to the UNFCCC (UNFCCC, 2015). An 41 

important role in reaching emission reduction targets is laid out for cities, which emit a large portion of the global 42 

fossil fuel CO₂ emissions (about 70 % according to the International Energy Agency (IEA, 2008)). The Paris 43 

Agreement also states that parties should strengthen their cooperation, also with respect to the sharing of 44 

information and good practices. Within this context it becomes increasingly important to map fossil fuel emissions 45 

and to quantify emission trends, both at the country- and city-level.  46 

Most country-level greenhouse gas emission estimates reported to the UNFCCC are currently based on annual 47 

fuel consumption data (bottom-up method), and are often spatiotemporally disaggregated using activity data and 48 

proxies to create spatially explicit emission inventories (Kuenen et al., 2014; Hutchins et al., 2017). Although the 49 

annual national estimates are reasonably accurate (estimated uncertainty for developed countries is less than 8 % 50 

for CO₂ (Monni et al., 2004; Fauser et al., 2011; Andres et al., 2014)), their uncertainty increases rapidly when 51 

disaggregating them towards finer spatiotemporal resolutions (Ciais et al., 2010; Nassar et al., 2013; Andres et al., 52 

2016). A method to improve emission estimates is using transport models in combination with independent 53 

observations of atmospheric mole fractions (Palmer et al., 2018), called data assimilation (DA) or inverse 54 

modelling (a top-down method). Recently, efforts have been made to apply DA techniques to the urban 55 

environment (McKain et al., 2012; Brioude et al., 2013; Lauvaux et al., 2013; Bréon et al., 2015; Boon et al., 2016; 56 

Lauvaux et al., 2016; Staufer et al., 2016; Brophy et al., 2018), but several challenges and unexploited opportunities 57 

remain. 58 

First, urban DA studies have tried to constrain the total fossil fuel flux to validate bottom-up CO₂ inventories, often 59 

without considering the underlying emission process that caused the mismatch between observed and modelled 60 

concentrations. As one of very few exceptions, Lauvaux et al. (2013) used the CO:CO₂ concentration ratio to 61 

conclude that the emission reduction in Davos during the World Economic Forum 2012 was likely related to 62 

reduced traffic emissions, but without a quantification. However, emission reduction policies usually target 63 

specific source sectors. Therefore, an increase in fossil fuel emissions from one source sector can cause the total 64 

CO₂ emissions to appear stable, although a policy targeting another source sector can be effective in itself. To 65 

monitor the effect of each measure independently it becomes essential to attribute changes in the total CO₂ 66 

emissions to these policies and thus to specific source sectors. It is, therefore, not sufficient to constrain the total 67 

CO₂ flux, but we need to differentiate the total CO₂ signal into signals from the different source sectors. One way 68 

to accomplish this is by using additional measurements of co-emitted species and isotopes. Such measurements 69 

have previously been used in modelling studies to differentiate between biogenic and anthropogenic emissions or 70 

between fuel types (Djuricin et al., 2010; LaFranchi et al., 2013; Lopez et al., 2013; Turnbull et al., 2015; Fischer 71 

et al., 2017; Super et al., 2017b; Brophy et al., 2018; Graven et al., 2018), but also to separate between different 72 

fossil fuel sources (Lindenmaier et al., 2014; Super et al., 2017a; Nathan et al., 2018). 73 

Second, for urban DA the fine scales (less than 1km and less than 1 hour) need to be resolved, therefore putting a 74 

higher demand on the atmospheric transport models. For example, Boon et al. (2016) mentioned that sources with 75 

a small spatial extent (point sources) are not correctly represented on a 2x2 km2 grid, while these sources have a 76 

significant impact on the locally observed mole fractions. Concurrently, we have previously shown that a plume 77 

model improves the representation of sources with a limited spatial extent. Moreover, we found that the description 78 
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of short-term variations in the wind direction by the Eulerian WRF model in the vicinity of an urban area is poor 79 

(Super et al., 2017a). 80 

Third, the prior emissions also need to have a higher resolution for urban-scale studies to resolve the dominant 81 

spatiotemporal variations. Previous studies have often used high-resolution emission maps developed specifically 82 

for that region, using local data as much as possible (Zhou and Gurney, 2011; Bréon et al., 2015; Boon et al., 2016; 83 

Lauvaux et al., 2016; Rao et al., 2017; Gurney et al., 2019). Yet such emission maps are only available for a few 84 

data-rich regions. For other regions, continental or global emission maps (such as MACC or EDGAR) can be used 85 

if downscaling is applied to reach the high resolution required for urban-scale inversions. For example, the 86 

temporal downscaling can be done using typical daily, weekly and monthly profiles for each source sector (Denier 87 

van der Gon et al., 2011), which are based on activity data (e.g. traffic counts) averaged over several years and/or 88 

a large region. Spatial downscaling often involves proxies like population density. This spatiotemporal 89 

downscaling introduces a large additional uncertainty due to uncertainties in the proxies. For example, Hogue et 90 

al. (2016) have found an uncertainty of 150 % in the 1x1 ° fossil fuel CO₂ emissions for the US, whereas Ciais et 91 

al. (2010) estimated the uncertainty of regional European emissions at 100 km resolution to be about 50 %. 92 

Quantification of the uncertainty at an even higher resolution for urban applications has so far been limited (Andres 93 

et al., 2016) (Andres et al., 2016; Super et al., 202019), also for most local inventories, while a correct definition 94 

of the prior error covariance matrix for an inversion is important to get reliable output (Chevallier et al., 2006; 95 

Boschetti et al., 2018). This currently complicates the application of DA studies to urban areas. 96 

Here, we describe the development of an urban-scale DA framework (based on the CarbonTracker Data 97 

Assimilation Shell (CTDAS) (Van der Laan-Luijkx et al., 2017)) which uses a dynamic fossil fuel emission model 98 

as a prior and optimizes the parameters of this model. The fossil fuel emission model uses a wide range of 99 

(statistical) data to calculate CO₂ emissions per source sector at high spatiotemporal resolution (1x1 km2 and 100 

hourly). The emission model is more dynamic than a regular emission inventory in the sense that its formulation 101 

allows emissions to change as a function of rapidly varying conditions in the emission landscape, such as the 102 

outside temperature, the traffic density, or availability of wind and solar radiation for sustainable power generation. 103 

Using such information enables the calculation of dynamic emissions without a two-year lagin near real-time, as 104 

opposed to the construction of a static emission map based on statistical downscaling. Moreover, the emission 105 

model can supply spatiotemporal emission uncertainties and error correlations between source sectors, based on 106 

the estimated uncertainty of its model parameters. Since many of these parameters are also used in bottom-up 107 

accounting of emissions, their uncertainty is often better established than the uncertainty in the total emissions 108 

themselves. Finally, we use the emission model to calculate emissions of other co-emitted species (CO, NOx and 109 

SO2) from the CO₂ emissions using source sector specific emission ratios. These co-emitted species are included 110 

in the DA system to facilitate source attribution, which is possible due to the distinct emission ratios of different 111 

source sectors. The overall aim of this study is to explore how our fossil fuel emission model and additional tracers 112 

can be used to overcome the known limitations in anthropogenic CO₂ inverse modelling described above. The 113 

research questions are: 114 

1. Can our dynamic fossil fuel emission model represent the spatiotemporal structure of a high-resolution 115 

emission inventory, and what does it add to that on small scales?  116 

2. Is the addition of co-emitted species beneficial for the attribution of CO₂ signals to specific source sectors, 117 

and which observations help most in that effort? 118 
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3. Does the prior error covariance structure that we build with the dynamic emissions model help the 119 

optimization, and what can we learn from the posterior error covariance estimate? 120 

In the inverse modelling part of this study we use observing system simulation experiments (OSSEs, experiments 121 

using pseudo-observations), applied to the urban-industrial complex of Rotterdam (Netherlands). This choice 122 

allows us to test our new approach, while with real observations the errors in non-fossil and background fluxes, 123 

model structure, and model transport will likely dominate the results (Tolk et al., 2008; Super et al., 2017a; He et 124 

al., 2018) and reduce the ability to evaluate the methodology. First, we give an overview of the dynamic fossil fuel 125 

emission model and demonstrate its applicability to the domain, followed by an introduction to the DA system 126 

components and the model settings. Then we discuss the different experiments in which we start with the 127 

comparison of different network configurations, one with only CO₂ and one including co-emitted species to 128 

examine the ability to attribute CO₂ emissions to specific source sectors, and different state vectors. Another 129 

experiment is used to examine the importance of propagating posterior parameters values and covariances. Finally, 130 

we address the effect of cross-correlations. 131 

2 Methods 132 

2.1 The dynamic emission model 133 

 134 

Figure 1. Map of the domain covered (Randstad area, the Netherlands) within this study, including major cities 135 
Amsterdam, Rotterdam, The Hague, and Utrecht (underlined). The squares show the locations of the measurement 136 
sites within the urban network configuration. The area of this domain is approximately 77x88km. Source: Google Maps. 137 

Although generally applicable, the dynamic emission model is initially developed for the Netherlands and focused 138 

on Rotterdam (Fig. 1). This is one of the major cities in the Netherlands (about 625,000 inhabitants) with the 139 

largest sea port of Europe to its west. It is located in a larger urbanized area (Randstad, about 7 million inhabitants) 140 

with The Hague, Amsterdam and Utrecht being other major cities. A large area to the southwest of The Hague is 141 
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covered withused for glasshouse horticultures producing vegetables and flowers. The Rotterdam area is 142 

characterized by a complex mixture of residential and industrial activities and therefore we distinguish five source 143 

sectors and a total of ten sub-sectors to construct its emissions (see Table 1). Note that, for simplicity, only the 144 

largest source sectors are included, which are responsible for >95 % of the CO2 emissions in the area. Moreover, 145 

a further subdivision of industrial activities is neglected because of two reasons: 1) the lack of data for each 146 

subsector and 2) the inability to separate between those activities with atmospheric measurements because of their 147 

spatial clustering. The main goal is to get a reasonable first estimate of the emission landscape using readily 148 

available data. 149 

Table 1. Overview of source sectors and subsectors distinguished in the dynamic emission model, including their short 150 
name used in the figures, whether they are represented as point or area sources, and their approximate contribution to 151 
the total CO₂ emission in Rotterdam (Netherlands PRTR, 2014). Crosses indicate which emission factors (EF), and 152 
tracer ratios of CO, NOx or SO2 (Rco, RNOx, RSO2) are part of the state vector and circles indicate whether they are 153 
also part of the short state vector (see Sect. 2.3). 154 

Source sector Subsector Short 

name 

Source 

type 

Contribution  EF RCO RNOx RSO2 

Power plants Gas-fired power plants 1A Point 37 % XO X X  

 Coal-fired power plants 1B  XO X X X 

Non-industrial 

combustion 

Households 2A Area 15 % XO XO X X 

Glasshouses 2B  XO X X  

Industry  3 Point 39 % XO XO XO XO 

Road traffic Cars 7A Area 6 % XO XO XO  

 Heavy duty vehicles 7B  XO XO XO  

Shipping Ocean shipping 8A Area 3 % XO X XO XO 

 Inland shipping 8B  XO X XO XO 

 Recreational shipping 8C      

 155 

The ultimate goal is to develop an emission model that assimilates high-resolution activity data, such as traffic 156 

data, in near real-time. A truly dynamic emission model is not dependent on pre-calculated annual emissions and 157 

spatial or temporal downscaling, but directly uses activity data to calculate emissions for that specific moment. 158 

However, the development of a dynamic emission model still requires a lot of research. Here, we make a first step 159 

by mainly illustrating the potential of using high-resolution activity data to better represent temporal variations.  160 

In this work, tThe emissions are calculated in four steps. First, the annual, national emission is calculated per sector 161 

using reported annual activity data and CO₂ emission factors. Second, we apply temporal disaggregation to hourly 162 

emissions using time profiles based on a combination of default temporal profiles, and environmental conditions. 163 

Third, we downscale the national totals to 1x1 km2 resolution using statistical data, such as population density. 164 

Finally, our approach also allows uncertainties to be described in detail based on parameters in Eq. (2).  165 

2.1.1 Step 1: Sectorial total emission calculations 166 
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Total annual emissions (FX in kg yr-1) per sector and species (X=CO₂, CO, NOx, SO2) are calculated as a function 167 

of the economic activity and an emission factor (adapted from Raupach et al. (2007)): 168 

𝐹𝑋 = 𝐴 (
𝐸

𝐴
) (

𝐹𝐶𝑂2𝐹

𝐸
) 𝑅𝑋          (1) 169 

where A is the amount of activity (which often has the unit € when GDP or industrial productivity is used as proxy) 170 

, such as vehicle kilometres driven or generated power, and E is the primary energy consumption (petajoule (PJ)). 171 

RX is the emission ratio needed to calculate emissions of co-emitted species X from the CO₂ emissions (kg kg-1), 172 

which is specific for each economic sector (RCO₂ is always 1, others are illustrated in Fig. 2). In this equation the 173 

term F/E is the CO2 emission factor (EF), i.e. the amount of CO₂ emitted per amount of energy consumed. The 174 

term E/A can be seen as a measure of energy efficiency, in which technological development plays an important 175 

role (Nakicenovic et al., 2000).  176 

 177 

Figure 2. Emission ratios of CO:CO₂ (RCO), NOx:CO₂ (RNOx) and SO2:CO₂ (RSO2) for specific source sectors based on 178 
the Dutch Pollution Release and Transfer Register (Netherlands PRTR, 2014). Units are in ppb ppm-1. A value of 10 on 179 
the y-axis thus implies that for each 1000 moles of CO₂, 10 moles of the auxiliary tracer is emitted. 180 

The information needed in Eq. (1) comes from various inventories and national information sources. For example, 181 

changes in annual activity can be approximated based on national statistics such as the GDP (Gross Domestic 182 

Product), which can be a proxy for industrial activity. Or A can be based on environmental data such as the annual 183 

degree day sum based on the outside temperature, as proxy for the need for household heating in a particular year. 184 

These data are known globally, which is why we use Eq. (1) instead of directly using energy consumption data 185 

(E). For local studies more specific activity data could be used, for example vehicle kilometres driven as a predictor 186 

for road traffic emissions. The second term in Eq. (1) (E/A, the energy efficiency) can be estimated from activity 187 

data and energy consumption statistics, such as available from the International Energy Agency or data from 188 

national statistics agencies. Even if E is not directly available for a country, an estimate can be made based on a 189 

country with a comparable level of development and climatology. Note that this term can show a large trend in 190 

case of technological development. The last terms in Eq. (1) (F/E and Rx, the emission factors) are the most 191 

uncertain ones, because the emission factor is dependent on the fuel mix and the energy efficiency, which itself 192 
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can vary with environmental conditions (e.g. a cold engine on a winter day burns less efficiently). It can therefore 193 

differ significantly between countries. Emission factor values that are generally valid can be gathered from the 194 

Intergovernmental Panel on Climate Change (IPCC) or the European Environmental Agency (EEA), while 195 

country-specific values are typically less easily accessible. For our study area, we have access to both EEA data, 196 

as well as to Netherlands-specific numbers and even to Rijnmond-specific values (Netherlands PRTR, 2014) 197 

(PRTR). See Appendix A for a full overview of the data used. 198 

2.1.2 Step 2: Temporal profiles and parameterizing activity 199 

The second step is to disaggregate the annual emissions to hourly emissions by calculating time profiles, such that 200 

Eq. (1) becomes "dynamic": 201 

𝐹𝑋,𝑡 = 𝐴 (
𝐸

𝐴
) (

𝐹𝐶𝑂2,𝑡𝐹

𝐸
) 𝑅𝑋𝑇𝑡          (2) 202 

where Tt is the hourly time factor and F is in kg h-1 (hence the subscript t).. Averaged over a year the value of Tt is 203 

1.0, so that it only alters the temporal evolution and not the total emissions. Energy use is often specifically linked 204 

to an activity (A in Eq. (1) and Eq. (2)) on which temporal information is more readily available than on the 205 

resulting emissions. Therefore, Tt can be calculated in two ways: 1) by directly using temporally explicit activity 206 

data or 2) by parameterizing temporal variations from environmental and/or economic conditions. When activity 207 

data is available the first option is preferable. However, in data-sparse regions the second option might be 208 

necessary to implement, which is still an improvement compared to long-term average profiles as commonly used 209 

as we will discuss next for several sectors represented in our emission model. Appendix B provides an overview 210 

of the data that is used per sector. 211 

Non-industrial combustion is dominated by households' natural gas consumption to heat houses, for cooking, and 212 

for warm water supply. A Dutch energy provider has a dataset publicly available from about 80 smart meters for 213 

the year 2013 with hourly gas consumption (Liander, 2018). It clearly shows a seasonal cycle, but also more small-214 

term variations (daily data are shown in Fig. 3). We also see higher gas consumption in the beginning of the year, 215 

where the first three months of 2013 had some long, cold spells. 216 

The use of energy for household heating is connected to the outside temperature. Previous studies have therefore 217 

used the concept of heating degree days to describe the temporal variability in emissions from households (Mues 218 

et al., 2014; Terrenoire et al., 2015). This method weighs all daily mean temperatures concept assumes that heating 219 

only takes place belowabove a certain temperature threshold (here 18°C, as suggested by Mues et al. (2014)) and 220 

assigns emissions to these days accordingly. Besides heating, gas consumption is related to warm water supply 221 

and cooking, which is largely independent of the outside temperature. Therefore, a constant offset is assumed of 222 

20%, similar to Mues et al. (2014). More details can be found in Appendix B.and the hourly time factor can be 223 

defined as: 224 

𝑇𝑡 = 𝐻 𝐷 ̅⁄             (3) 225 

where H is the heating degree day factor (H = max(291.15-𝑇2𝑚
̅̅ ̅̅ ̅,0)) based on the daily mean outside temperature 226 

at 2 m. �̅� is the annual average heating degree day (�̅� =
1

𝑁
∑ 𝐻𝑁

𝑗=1 ). However, gas consumption related to warm 227 

water supply and cooking is largely independent of the outside temperature and therefore a constant offset is 228 

included in the heating degree day factor: 229 

𝐻𝑓 = H + 𝑓 ∙ D̅           (4) 230 
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where f is the constant offset. We assumed an offset of 20 %, similar to Mues et al. (2014). The time factor can 231 

now be defined as: 232 

𝑇𝑡 = 𝐻𝑓 𝐷𝑓  ̅̅ ̅̅⁄             (5) 233 

where the average heating degree day accounted for the constant offset 𝐷𝑓
̅̅ ̅ = (1 + 𝑓)�̅�.  234 

We compared the heating degree day method using observed temperature data from the Royal Netherlands 235 

Meteorological Institute (KNMI) with gas consumption data on a daily basis (Fig. 3). The degree day function 236 

follows the gas consumption data very well, including the higher consumption at the start of the year, reaching an 237 

R2 of 0.90 (N=365). The gas consumption of consumers also has a diurnal pattern with peaks in the early morning 238 

and late afternoon. Therefore, a diurnal profile can be estimated based on typical working hours, for which we 239 

used profiles from Denier van der Gon et al. (2011). For hourly data R2 is 0.80 (N=8760, not shown). 240 

 241 

Figure 3. Daily time profiles for households (lefta) and glasshouses (rightb). Solid red lines are based on true activity 242 
data, whereas dashed black lines are parameterizations based on the degree day function. 243 

For the energy consumption of glasshouses there is no true activity data available. Instead, we use modelled daily 244 

energy consumption for a typical Dutch glasshouse cultivating tomatoes (courtesy of Bas Knoll, TNO) as the 245 

‘truth’ (activity data). This time profile is calculated for typical meteorological conditions, such that the order of 246 

magnitude and the peaks are representative for an average year. There is almost no energy consumption during the 247 

summer, which indicates that there is no constant offset. So, we use the heating degree day function with no 248 

constant offsetEq. (3) to determine the emission time factors. Moreover, we use a lower temperature threshold of 249 

15 °C to get a better fit with the observed energy consumption. During summer several days show a peak in the 250 

relative gas consumption, suggesting that the average temperature has dropped below the threshold. The estimated 251 

function compares well with the activity data (Fig. 3) with an R2 of 0.85 (N=365). The diurnal cycle of glasshouse 252 

emissions is likely to be different from that of household emissions. Yet we lack data to establish a diurnal cycle. 253 

We therefore use the same diurnal profile as for households, although this is likely to be incorrect. 254 

Power plants can use different fuels such as hard coal, natural gas or biomass. In the Netherlands coal-fired and 255 

gas-fired power plants account for 80–85 % of the total energy production. The remainder comes mainly from 256 

wind energy (5–6 %) and biomass burning (5–6 %). Power generation data are reported by the European Network 257 

of Transmission System Operators for Electricity (ENTSO-E), which has detailed data available for the whole of 258 

Europe (Hirth et al., 2018). Coal-fired power plants are currently the main source of energy and their generation 259 

is relatively stable compared to other sources. It does, however, show a seasonal cycle with less energy production 260 

during the summer months. Gas-fired power plants have a larger temporal variability as they are mainly used as 261 

back-up for peak hours, depending also on the amount of renewable energy that is available.  262 
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We use Eq. (5)the degree day function to estimate the time profiles of both coal- and gas-fired power plants. Linear 263 

regression analysis shows that the coal-fired power generation is correlated with degree days (R2 = 0.17). In this 264 

case we use a large constant offset of 80 % and a threshold of 25 °C which were chosen to best match the actual 265 

power generation data. The offset is much larger than for households because there is always a basic energy 266 

demand from the industry. In contrast, the gas-fired power plants are (negatively) correlated with the wind speed 267 

(R2 = 0.13) and incoming solar radiation (R2 = 0.10), which may indicateing the a higher need for gas-fired power 268 

generation in the absence of renewable sources. Therefore, we replace the temperature in the degree day function 269 

with used to calculate Hf in Eq. (4) with the multiplication of wind speed (threshold of 10 m s-1) and incoming 270 

solar radiation (threshold of 150 J cm-2). A constant offset of 10 % is assumed.: 271 

𝐻 = max(10 − �̅�, 0) ∙ max(150 − �̅�, 0)        (6) 272 

where u is the wind speed (m s-1) and R the incoming solar radiation (J cm-2). Here we use a constant offset of 10 273 

% and a threshold of 10 m s-1 and 150 J cm-2. 274 

The diurnal cycles for power plants can be based on socio-economic factors. For example, the energy demand 275 

peaks early in the morning when people get ready to go to work and at the end of the afternoon when they get 276 

home. We find this pattern in the actual power generation data, with coal-fired power plants being less variable 277 

during the day than gas-fired power plants. The fixed profile from the European MACC-III emission inventory 278 

(Denier van der Gon et al., 2011; Kuenen et al., 2014) matches reasonably well with gas-fired power plant profiles, 279 

but it is less applicable for coal-fired power plants (Fig. 4). Overall, the estimated profiles for gas-fired power 280 

plants (daily/hourly data) have an R2 of 0.31/0.32 (N=366/8784) when compared to the activity data. For coal-281 

fired power plants this is 0.17/0.21 (N=366/8784).  282 

The constant offset of 80% for coal-fired power plants is mainly caused by the energy demand of the industry and 283 

other semi-continuous processes. Taking into account seasonal variations in these processes could improve the 284 

timing of coal-fired power plant activities, probably increasing the power generation in winter relative to the 285 

summer holiday period. Moreover, the renewable energy supply is probably better modelled when taking into 286 

account a larger domain, since the energy supply is not just local. With a better prediction of the amount of 287 

renewables we could improve the timing of the gas-fired power plant emissions, which mostly function as a back-288 

up for renewable energy. 289 
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 290 

Figure 4. (top row) Daily time profiles for gas-fired (lefta) and coal-fired (rightb) power plants. Solid red lines are based 291 
on true activity data, whereas dashed black lines are parameterizations based on observed temperature (coal) and wind 292 
speed/radiation (gas). (bottom row) Average diurnal cycle for gas-fired (leftc) and coal-fired (rightd) power plants. Solid 293 
red lines are based on true activity data, whereas dashed black lines are fixed profiles from the MACC inventory (Denier 294 
van der Gon et al., 2011; Kuenen et al., 2014). Shading gives the 1σ variability of the diurnal cycle based on activity 295 
data. 296 

The industrial sector consists of a wide range of activities, of which some are semi-continuous and only interrupted 297 

by maintenance stops while others follow working hours. This makes it very difficult to predict the temporal 298 

variability, especially for the overall sector. Since the largest CO₂ emissions are related to refineries and heavy 299 

industry we will focus on these activities. We find a seasonal cycle in the reported industrial activity, with a small 300 

decline during the summer and Christmas holidays. However, the variations are very small (max. 1 %). Therefore, 301 

we assume constant emissions.  302 

Road transport emissions can vary between different road and vehicle types (Mues et al., 2014), but are also 303 

strongly dependent on environmental, socio-economic and driving conditions (such as the amount of stops, free-304 

flow versus stagnant conditions, and engine temperature). Traffic count data are often used to create average time 305 

profiles for road traffic emissions, although with traffic counts we are unable to account for environmental and 306 

driving conditions. Traffic counts for the Netherlands are made available by the Nationale Databank 307 

Wegverkeersgegevens (NDW) and similar data is available in many developed countries. We differentiate between 308 

two vehicle types (passenger cars + motorcycles (hereafter referred to as cars) and light duty + heavy duty vehicles 309 

(hereafter referred to as HDV)) and three road types (highway, main road, urban road). We selected all available 310 

locations for 2014 within or close to Rotterdam that distinguish 3-5 vehicle lengths and filtered for a minimum 311 

data coverage of 75 %. This leaves us with 25 highway, 6 main road and 13 urban road locations. From this data 312 

we make average time profiles (daily, weekly and monthly) per road and vehicle type, as is often done to 313 
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disaggregate road traffic emissions. Note that this method excludes any spatial variations (e.g. highways leading 314 

towards the city vs. the beach), except for differentiating between road types. 315 

Generally, HDV show a larger spread due to the low counts during the weekend (Fig. 5). Car counts on weekdays 316 

show a morning and evening rush hour and they go down in between. In contrast, HDV counts peak throughout 317 

the day and only go down after the evening rush hour. Moreover, the diurnal cycles are different during the 318 

weekend than on weekdays. These patterns can be explained from socio-economic factors. Current time profiles 319 

are often based on cars and are unable to correctly represent the temporal variability of HDV. This also affects the 320 

spatial distribution of emissions and therefore we create average diurnal, weekly and seasonal profiles separately 321 

for cars and HDV, for different road types and considering the day of the week. The comparison of true traffic 322 

counts and averaged traffic counts results in R2 values between 0.83 and 0.95 for hourly data for the whole year 323 

(N between 2665 and 6471 because of gaps in the traffic count data). 324 

 325 

Figure 5. Time profiles of passenger cars (lefta) and heavy-duty vehicles (rightb) road transport on highways for ten 326 
randomly chosen days in March. Solid red lines are based on true activity data, whereas dashed black lines are 327 
parameterizations based on averaged traffic counts for Rotterdam. 328 

Shipping emissions are dependent on the type of fuel used and whether ships apply slow-steaming. Additionally, 329 

during loading and unloading ships still emit CO₂ and other pollutants, even though they are not moving. Such 330 

information is currently not available, so instead we use information about the arrival and departure of ships in the 331 

port of Rotterdam to make a time series of ship movements. Note that this only applies to large vessels that 332 

transport goods and passengers and that the time profile will look quite different for recreational shipping. 333 

However, large ships account for approximately 80 % of the total shipping emissions in the area of interest. Since 334 

we lack information about other type of shipping movements, we will only account for large ships in the time 335 

profiles. 336 

We collected ship movements for one month (daily data) and an average diurnal profile. The diurnal cycle shows 337 

a peak throughout the day, which corresponds well with the HDV road transport emission patterns on highways. 338 

The reason for this is that HDV road transport is related to shipping movements, as HDV takes care of part of the 339 

good transport further inland after the goods have arrived by ship. We also find a clear weekly pattern with less 340 

ship movements during the weekend, although the decrease is less than for HDV road transport. This is likely 341 

because large ships, such as entering the port of Rotterdam, continue travelling during the weekend. Therefore, 342 

the weekly pattern resembles more that of car road transport on highways. Thus, we can estimate ship movements 343 

by using the temporal profiles of HDV and cars on highways. This method is specifically tested for Rotterdam and 344 

different patterns might be visible elsewhere. We also use HDV patterns for the seasonal variability, and final 345 
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parameterized and reported activity in this method reach an R2 value of 0.89 for a period of 18 days with hourly 346 

data (N=432) as shown in Fig 6. 347 

 348 

Figure 6. Daily time profiles for shipping. Solid red line is based on true activity data, whereas dashed black line is a 349 
parameterization based on traffic counts of heavy-duty vehicles (diurnal cycle) and cars (day-to-day variations) on 350 
highways. 351 

2.1.3 Step 3: Spatial disaggregation.  352 

National total sectorial emissions need to be distributed into spatially explicit emissions for our study domain. The 353 

spatial disaggregation of emissions has already received quite some attention already from inventory builders. 354 

Existing emission inventories can be used to describe the spatial disaggregation, if available for the region at high 355 

resolution. Therefore, no extra effort is put in the spatial disaggregation and the spatial patterns from the Dutch 356 

Emission Registration have been adopted (Netherlands PRTR, 2014). 357 

In absence of a high-resolution inventoryf not, simple default proxies for the spatial distribution can be used, such 358 

asare population density (e.g. Gridded Population of the World (GPW)) and the presence of roads or waterways 359 

(e.g. OpenStreetMap). Generally, these proxies are also used by inventory builders, but are often updated to take 360 

into account local circumstances. For example, main roads and urban roads are busiest in densely populated areas 361 

and we can assume emissions on main and urban roads are correlated with population density. Highways are used 362 

for transport between cities and therefore emissions take place outside densely populated areas as well. 363 

Nevertheless, highway transport is usually to and from densely populated areas, such that most emissions will take 364 

place close to cities. We can therefore relate these emissions with the population density in the area of interest (in 365 

this case Rijnmond) relative to the rest of the country, which places the same amount of the country-level emissions 366 

in our case study domain as the gridded inventory. Additionally, the location of large power plants or industrial 367 

plants is often known (for example from E-PRTR (Pollutant Release and Transfer Register)), which can be used 368 

directly. 369 

Although such information allows us to possibly construct a detailed fossil fuel model in data-sparse regions in 370 

the future, in this study we focus first on the more easily implementable and less-developed parameterization of 371 

temporal activity in different sectors (step 2) to assess whether this approach is promising enough for future 372 

extension. 373 

2.1.4 Step 4: Uncertainty analysis 374 

The emission model we have constructed in steps 1–3 contains several parameters per source sector: activity, 375 

emission factor, spatial proxy and time profile. For the analysis we only consider the emission factors and time 376 

profiles, as we assume activity data and the spatial distribution to be (a) well-known for our study area, and (b) 377 
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mostly unobservable from a network of only 7 sites. Although the spatial distribution is actually a large source of 378 

uncertainty, we aim at optimizing parameter values that are valid for the entire case study area and for simplicity 379 

we ignore the spatially variable uncertainties. Nevertheless, it is possible to incorporate spatial uncertainties in this 380 

methodology as well, as illustrated by Super et al. (2020).  381 

As input for step 1 in the dynamic emission model we use generalized parameters which we take from the IPCC, 382 

EEA and other organizations. These databases also provide an uncertainty range, which we use in a final step to 383 

create a covariance matrix. The covariance matrix describes the Gaussian uncertainty of these parameters (diagonal 384 

values) and error correlations between parameters (off-diagonal values). From the covariance matrix we create an 385 

ensemble of parameters (N=500) that represents their joint distributions, and we use them to calculate an ensemble 386 

of emissions. In this Monte Carlo simulation, we transform some Gaussian parameters into log-normal 387 

distributions to account for non-negativity, or to account for distributions with a very long tail (mainly emission 388 

ratios, which can become high in specific cases where no emission reduction measures are taken). Appendix A 389 

summarizes the used parameter values and uncertainties (including the shape of the distributions) and shows an 390 

example of the covariance matrix. This method is a first step towards a better quantification of parameter 391 

uncertainties and error correlations and additional effort has already been made to improve this method (Super et 392 

al., 2020). 393 

In a final step, we select the most important parameters which are either very uncertain or have a large impact on 394 

the total emissions. This leaves us with the 44 parameters that we optimize in a set of data assimilation experiments, 395 

described next. In Sect. 3.1 we report uncertainties in % (1 σ) for normal distributions (CO₂) or as a 90 % 396 

confidence interval (CI) for lognormal distribution (co-emitted species). 397 

2.2 Data assimilation to estimate fossil fuel sources 398 

The goal of data assimilation is to find a state at which the system is in optimal agreement with observations. In 399 

this work, the observations we want to explore are the mole fractions of CO₂ and its co-emitted species while the 400 

state of the system is the underlying spatiotemporal distribution of fossil fuel emissions. Such configurations are 401 

sometimes referred to as “FFDAS” (fossil fuel data assimilation systems) applications, with a number of examples 402 

in recent literature (Rayner et al., 2010; Asefi-Najafabady et al., 2014; Basu et al., 2016; Graven et al., 2018). 403 

Given the sparsity of approaches explored so far, the dynamic emission model with its parameter driven emissions 404 

we present here could lend itself well for application in an FFDAS, and this is what we explore through a set of 405 

experiments with our own data assimilation methodology. 406 

In this study we use the CarbonTracker Data Assimilation Shell (CTDAS) (v1.0) described in detail in Van der 407 

Laan-Luijkx et al. (2017). Briefly, the CTDAS system is a flexible implementation of a square-root Ensemble 408 

Kalman Filter (Whitaker and Hamill, 2002), which also allows lagged windows (i.e. smoothing instead of 409 

filtering). The Ensemble Kalman Filter optimizes the cost function for unknown variables in the state vector x 410 

using information from observations (y0 with covariance R) and a prior estimate of the state vector (xb with 411 

covariance P). 412 

J(𝐱) = (𝐲0 − ℋ(𝐱))
T

𝐑−1(𝐲0 − ℋ(𝐱)) + (𝐱 − 𝐱b)
T

𝐏−1(𝐱 − 𝐱b)     (7) 413 

In this function, ℋ is the observation operator that returns simulated mole fractions given the state vector. R and 414 

P determine how much weight is given to the observations and prior estimate, respectively. 415 
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The optimized state vector (indicated with superscript a, whereas b refers to the prior estimates) which minimizes 416 

the cost function is 417 

𝐱a = 𝐱t
b + 𝐊(𝐲t

0 − ℋ(𝐱t
b))         (8) 418 

and its covariance is 419 

𝐏t
a = (𝐈 − 𝐊𝐇)𝐏t

b          (9) 420 

Here, H is the linearized observation operator and K is the Kalman gain matrix: 421 

𝐊 = (𝐏t
b𝐇T)(𝐇𝐏t

b𝐇T + 𝐑)
−1

         (10) 422 

The solutions of Eq. (8) and Eq. (9) are calculated as in Peters et al. (2005) using an ensemble of 80 members. The 423 

choice for the ensemble size was based on the typical dimensions of our inverse problem, which has N=1960 424 

observations and M=44 unknowns for the base run. 425 

 426 
Figure 7. Time series of pseudo-observations and prior CO₂ mole fractions and a summary of how these time series 427 
were created. 428 

We have adapted CTDAS for smaller scale studies by replacing the typical observation operator ℋ, which is the 429 

global TM5 transport model (Huijnen et al., 2010), with a combination of WRF-STILT footprints and the OPS 430 

plume model, building on the methods described in Super et al., (2017a) and He et al. (2018). Moreover, we have 431 

added our emission model to the observation operator so that we can sample its parameter distribution in 432 

atmospheric mole fraction space. More details about the individual parts of this system are provided below and 433 

are summarized in Fig. 7. 434 

2.2.1 Observation operator 435 
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The observation operator translates the 44 parameters in the emission model first into emissions (through Eq. (1) 436 

and Eq. (2)) and then into atmospheric mole fractions. The transport modelling consists of two parts. The first part, 437 

the Weather Research and Forecasting-Stochastic Time-Inverted Lagrangian Transport (WRF-STILT, (Nehrkorn 438 

et al., 2010) model, is used for surface emissions that are representative of large areas (i.e., not a point source). 439 

STILT is a Lagrangian particle dispersion model that describes the footprint of a single measurement by dispersing 440 

particles back in time (Gerbig et al., 2003; Lin et al., 2003). With this footprint the surface influence of emissions 441 

on a single observation can be described. An advantage of this method is that it allows the pre-calculation of linear 442 

atmospheric transport, which makes this part of the observation operator less computationally demanding than 443 

running an ensemble of a full atmospheric transport model (like WRF with chemistry). The total domain covered 444 

with WRF-STILT is 77 x 88 km (Fig. 1) and includes most of the Randstad. 445 

To generate a footprint, 75 particles are released at the observation site at the start of the back-trajectory and 446 

followed back in time. Given that the variability in hourly observations at an urban location is dominated by local 447 

signals, we construct back-trajectories spanning 6 hours. This is based on the domain size, which could be covered 448 

within 6 hours for typical wind speeds of 4 m s-1. Within this time frame emissions can become well-mixed 449 

throughout the boundary layer under normal daytime mixing conditions, such that emissions outside this range 450 

can be represented by a boundary inflow. Footprints are generated for each hour within the back-trajectory to 451 

account for hourly variations in the emissions. We drive STILT with meteorology from the WRF model (v3.5.1). 452 

The WRF model was set up with two nested domains (15x15 and 3x3 km2 horizontal resolution) and the STILT 453 

footprints have a 1x1 km2 resolution over the entire domain.  454 

The second part of the transport modelling is a plume model. In a previous study we have shown that point source 455 

(stack) emissions should be modelled with a plume model to better represent the limited dimensions of the stack 456 

plume (Super et al., 2017a). Similarly, Vogel et al. (2013) have shown that the surface influence calculated by 457 

STILT can lead to large model errors for stack emissions. Therefore, we include the OPS (Operational Priority 458 

Substances, short-term version) plume model in our framework to model the transport and dispersion of stack 459 

emissions (Van Jaarsveld, 2004; Sauter et al., 2016). OPS provides hourly concentrations at pre-defined receptor 460 

points, which represent our measurement sites. The model keeps track of a plume trajectory, considering time-461 

varying transport over longer distances (e.g. changes in wind direction and dispersion). If for a time step a specific 462 

plume affects the receptor, a Gaussian plume formulation is used to calculate the mole fraction caused by that 463 

source based on the true travel distance along the trajectory. We drive the model with the same WRF meteorology 464 

as STILT. Only primary meteorological variables (temperature, relative humidity, wind direction, wind speed, 465 

precipitation, global radiation) are prescribed, secondary variables (e.g. boundary layer height, friction velocity) 466 

are calculated by OPS itself and can differ from WRF. 467 

Similar to the WRF-STILT model, we assume an influence time of 6 hours on our observations. However, in this 468 

case we run the OPS model forward from -6 hours to the time of observation. We apply the OPS model only to 469 

point source emissions within the Rijnmond area, as we found in a previous study that a plume model only has an 470 

added value less than 10–15 km downwind from the stack (Super et al., 2017a). Point sources at more than 10–15 471 

km from the observation site can be sufficiently represented with a Eulerian model. The OPS model input includes 472 

detailed information about the exact stack height and heat content of the plume. For more details on WRF-STILT 473 

and OPS see Appendix C. 474 
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In addition to the fossil fuel contribution we also include background mole fractions for CO₂ and CO. NOx and 475 

SO2 are short-lived and therefore the variations in the background are relatively small compared to the fossil fuel 476 

signals. The CO₂ background is taken from the 3-D mole fractions of CarbonTracker Europe (Peters et al., 2010) 477 

and also accounts for biogenic fluxes. The resolution of these CO₂ fields is 1x1° and we select the grid box that is 478 

situated over Rotterdam. The 3-hourly data are linearly interpolated to get hourly background mole fractions that 479 

are added to the fossil fuel signals calculated by the transport models. We use the strong wintertime correlation 480 

between CO₂ and CO mole fractions (r = 0.73) to calculate CO background conditions from the CO₂ background. 481 

This is not very accurate, but for the purpose of this OSSE it provides us with a decent estimate of the variability 482 

in background mole fractions.  483 

2.2.2 State vector 484 

We populated the state vector with a selection of the most important parameters of the emission model, based on 485 

their impact on the total emission uncertainty described in the results (Sect. 3.1). However, we hypothesize that 486 

emission model parameters that are not part of the state vector are nevertheless uncertain and may affect the results. 487 

Therefore, we include a total of 44 scaling factors in our state vector (xb), and each scaling factor is linearly related 488 

to a parameter from the emission model. The uncertainty in these parameters (covariance matrix P) is derived from 489 

the Monte Carlo simulations described in Sect. 2.1, with the spread in the emission model parameter values 490 

provided by the same databases of the IPCC and EEA. These uncertainty values can also be found in Appendix A.  491 

For this study we selected an arbitrary two-week period in January 2014 (6–20 January). Note that during the 492 

summer the importance of source sectors might be different, e.g. there will be less heating from households. 493 

Nevertheless, this period is sufficient to test the applicability of our DA system. We loop over the 14 days in our 494 

study period, resulting in one posterior state vector for each day. We initialize our state vector for every new day 495 

using the posterior values and posterior uncertainties from the previous day. Because the footprints we generated 496 

extend backwards for six hours, the state vector for each day is effectively only constrained by the observations 497 

from that same day, and hence we did not use a Kalman-smoother approach in this work in contrast to other 498 

CTDAS applications. 499 

Although this is a data-rich region, we use generic values for the prior emission model parameters which we take 500 

from the IPCC, EEA and other organisations (Appendix A). These values are typically valid for a large region 501 

(e.g. Europe) and not necessarily the best estimate for our regional case study. The reason that we use these values 502 

is that they can provide a first estimate of the emissions in data-scarce regions where inverse modelling might add 503 

most to our knowledge. With this set-up we can examine how well we can constrain the true emissions starting 504 

with this generic, and widely available, information. 505 

One major challenge in this study is to attribute the mismatch between the observed and modelled mole fractions 506 

to a specific sector, as a CO₂ observation alone provides no details on the origin of the CO₂. Therefore, we include 507 

three tracers (CO, NOx and SO2) that are co-emitted with CO₂ during fossil fuel combustion in a ratio (referred to 508 

as RCO, RNOx and RSO2) that is specific for each source sector (Fig. 2). Their (pseudo-)observations can inform us 509 

about the source of the mismatch, but through their emission ratio to CO₂ they also constrain the magnitude of 510 

CO₂ emissions in the emission model. The ratios RCO, RNOx and RSO2 used for this conversion to CO₂ emissions is 511 

not fixed: for each of the co-emitted species we included them in the state vector. This recognizes that emission 512 

ratios are highly variable and uncertain but play an important role in source attribution. 513 
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2.2.3 Pseudo-observations 514 

In this work we create observing system simulation experiments (OSSEs), which use pseudo-observations instead 515 

of true observations. The advantage of using pseudo-observations is that we can accurately examine the abilities 516 

of our new approach without having to account yet for (often dominant) atmospheric transport errors. This 517 

approach represents an ideal situation with relatively few sources of error compared to a study using real 518 

observations, which makes it useful to study the potential of this new system to optimize emission model 519 

parameters. 520 

The pseudo-observations used to optimize the emission model parameters are created using the same observation 521 

operator as described above. The emission model is used to create realistic emissions with a high spatiotemporal 522 

resolution. Yet in contrast to the prior, we use specific local (Dutch) values for the emission model parameters. 523 

These parameters are considered to be the truth and are therefore not scaled (scaling factors are 1.0). We found 524 

that these local parameter values are always within the uncertainty range of the general (prior) values, so that the 525 

true solution is part of the distribution explored within the prior. This is confirmed in an experiment with a small 526 

model-data mismatch and no noise on the background, which reproduces the true parameters very well (not 527 

shown). 528 

The resulting emissions are used in combination with the background mole fractions and transport calculated by 529 

WRF-STILT and the OPS model to create pseudo-observations at the locations shown in Fig. 1. For the pseudo-530 

observations the original background time series are used, whereas in the inversion random noise is added to the 531 

background mole fractions with a standard deviation of 2 ppm for CO₂. We assume no contribution from biogenic 532 

CO₂ to the excess CO₂ over the background, which means that any biogenic contribution to CO₂ within our 533 

footprint is the same as in the inflow from outside our domain, thus cancelling in the subtraction of the background 534 

CO₂. An error in biogenic fluxes is therefore attributed to the fossil fuel emissions, which represents a typical case 535 

where biogenic and fossil fuel signals are hard to distinguish from each other and from the background. Biogenic 536 

fluxes can significant, even in urban areas, and therefore add significant uncertainty to the fossil fuel flux estimates 537 

(Fischer et al., 2017; Sargent et al., 2018). 538 

One simulated time series is illustrated in Fig. 7. The monitoring network consists of seven sites that are scattered 539 

over the city of Rotterdam and the port. All sites exist in the national CO₂ or air quality measurement networks, 540 

although not all species used in the inversion are observed at all locations. We only use the daytime (12–16 h LT) 541 

observations to constrain our emissions, resulting in a total of 1960 observations. This is normally done to favour 542 

well-mixed conditions when simulated transport is more reliable, and we want to mimic this limitation. We assume 543 

all instruments have an inlet at 10m above ground level. In reality this is lower for several sites, but during the 544 

well-mixed daytime conditions the difference is minimal. Representing atmospheric transport around in-city sites 545 

can be very challenging and therefore the use of elevated sites or a transport model that can represent transport in 546 

complex terrain in more detail is recommended when true observations are used.  547 

The covariance matrix R describes the observation error. It accounts for errors related to instrumentation, but also 548 

representativeness errors due to model transport, interpolation, and parameterization used in the emission model. 549 

Although in principle such errors can be excluded in an OSSE, we prefer to use realistic estimates of these errors 550 

to allow for the random errors that we applied to the prescribed boundary inflow, as well as to account for some 551 

parameters in the emission model that are not optimized even though they contained uncertainty in the pseudo-552 

data creation. We base the R matrix on the calculated errors in the background and atmospheric transport and 553 
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variability caused by these specific differencesparameters that are not part of the state vector from the uncertainty 554 

analysis, and we end up with variances of 2.5 ppm (CO₂), 8 ppb (CO), 3 ppb (NOx) and 1 ppb (SO2). 555 

2.3 Data Assimilation Experiments  556 

We perform various experiments to examine the sensitivity of the system to different set-ups and sources of error. 557 

The experiments are discussed here, and the detailed set-up of the inversions is summarized in Table 2. The base 558 

run is labelled “Base”. 559 

1) State vector definition: We start with a comparison of two different state vectors. For this purpose, we compare 560 

the base run with an inversion (Short_state) which only includes the 21 most important parameters as identified in 561 

the sensitivity analysis. This test allows us to examine the impact of erroneous, non-optimized emission model 562 

parameters on the emission estimates. The results are discussed in Sect. 3.2. 563 

2) Source attribution: Next we compare two monitoring network configurations which differ in the number of 564 

tracers used. We perform an inversion with CO₂ as the only tracer (CO₂_only) and one with the full range of tracers 565 

(Base) to assess the added value of including co-emitted species for source attribution. These tests address the 566 

question whether co-emitted species can be used for source attribution. The results are discussed in Sect. 3.2. 567 

3) Propagation: The third experiment is used to examine the effect of propagation of posterior values and 568 

uncertainties on the final emission estimates. We compare the base run to a run that has no propagation 569 

(No_propagation and CO2_only_no_propagation) but instead starts from the same prior mean and uncertainty on 570 

each of our 14 days considered. The runs without would allow the parameter values to change over time. The 571 

results are discussed in Sect. 3.3. 572 

Table 2. Overview of the inversions: which tracers are included, the length of the state vector and whether posterior 573 
values and uncertainties are propagated. 574 

Inversion name Tracers State vector length (per day) Propagation to the next day 

Base All 44 Yes 

Short_state All 21 Yes 

No_propagation All 44 No 

CO₂_only CO₂ 44 Yes 

CO2_only_no_propagation CO2 44 No 

3 Results 575 

Before demonstrating the use of our dynamic emission model in an inverse framework, we demonstrate its 576 

application as a simple but versatile method to generate hourly gridded emissions for multiple species with full 577 

covariances.  578 

3.1 Dynamic emissions and their uncertainty 579 

The total annual emission of CO₂ for the Netherlands calculated with the dynamic emission model is 180 Tg CO₂ 580 

with an uncertainty of 15 % (1-sigma Gaussian based on 500 members of a Monte Carlo simulation). This matches 581 

the total of the Dutch national emission inventory for 2014 by design (step 1), but the uncertainty on the latter was 582 

estimated with a similar Monte Carlo simulation to be only 1 % for CO₂ in 2004 (Ramírez et al., 2006). This 583 
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smaller uncertainty is fully due to the use of country-specific emission factors with a much smaller range than we 584 

derived from the IEA and IPCC inventories. Spatial disaggregation (step 2) does not affect the uncertainty of the 585 

domain aggregated annual fluxes, and the time profiles (step 3) have no impact on the annual total emissions. For 586 

CO, NOx and SO2 the uncertainties in the emission model are much larger, with medians (CI’s) of 6.5x108 587 

(1.3x108–6.8x109) kg CO yr-1, 5.0x108 (1.2x108–5.1x109) kg NOx yr-1, and 1.3x108 (5.1x106–2.2x1010) kg SO2 yr-588 

1. These ranges result from uncertainties in the assumed ratios of their release per unit of CO₂ emitted.  589 

At the subBelow the -annual time scale, time profiles have an impact on the uncertainties as well. The daily 590 

emissions of the Netherlands depend on the day and the season (Fig. 8) and range from 0.36 to 0.76 Tg CO₂ day-591 

1. The time series shows a seasonal cycle with lower emissions during the summer. There is a clear weekly cycle 592 

with reduced emissions during the weekend. The uncertainty in the total daily emission varies between 8 and 15 593 

%, which is similar to or lower than the uncertainty in the annual total emissions. The explanation for these 594 

relatively low uncertainties is that many uncertainties are temporally uncorrelated and their impacts on individual 595 

days partially cancel out. Moreover, the largest sectors (coal-fired power plants and industry) already have a large 596 

uncertainty and adding more uncertainty through the time profiles has little impact. Nevertheless, the uncertainties 597 

introduced through the time profiles cause an uncertainty in daily CO₂ emissions of about 7 %, if the other 598 

uncertainties are excluded from the analyses.  599 

 600 

Figure 8. (topa) Time series of daily CO₂ emissions (in Tg CO2 day-1) and their uncertainty. Given is the interquartile 601 
range (shaded area) and the median (line) from the ensemble. (bottomb and c) Map of annual mean relative uncertainty 602 
of emissions for the top 25 % pixels with the largest emissions, during a winter month (dominated by household gas- 603 
and electricity use) and a summer month (electricity and road-traffic dominated). 604 
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Differences in the relative contribution of different sectors are evident when looking at the map of uncertainties 605 

across the Netherlands (Fig. 8), reflecting both the most uncertain parameters, but also the dominant source sectors. 606 

Winter emissions for example are dominated by household gas-usage, while industrial and traffic emissions give 607 

rise to uncertainty year-round at a 10–30 % level. We further identified the most important parameters per source 608 

sector with a Monte Carlo simulation per source sector (Fig. 9). Results shows that the road traffic and shipping 609 

sectors contain the smallest relative uncertainties, although the time profile for shipping causes an uncertainty of 610 

about 7 % in the total shipping emissions. The industrial emissions are most uncertain, and this is almost 611 

exclusively due to the emission factor, which causes an uncertainty of 41 % in the total industrial emissions. 612 

Similarly, the power plant emissions have a large relative uncertainty due to the uncertain emission factor of coal-613 

fired power plants (19 %). Also, for households and glasshouses the emission factor is uncertain (14 % and 26 %, 614 

respectively), but here the time profiles also have a large impact (10 % and 16 %, respectively). 615 

 616 
Figure 9. Box plots showing the uncertainty in the CO₂ emissions from power plants (1A+1B), households (2A), 617 
glasshouses (2B), industry (3), road traffic (7A+7B) and shipping (8A+8B+8C) caused by individual parameters 618 
affecting that sector. Uncertainty is represented as the spread in daily (normalized) emissions from each ensemble 619 
member (N=500) for a randomly chosen day. EF refers to an emission factor (green bars) and T to a time profile (orange 620 
bars). (Sub)sectors are indicated with their short names as summarized in Table 1. Note that the time profiles of road 621 
traffic emissions are specified per road type (1 = highway, 2 = main road, 3 = urban road). Minor parameters that have 622 
very small impacts on CO₂ emissions are not shown here (23 out of 44). 623 

3.2 Optimizing dynamic emissions 624 

In the base inverse modelling setup, our system is able to improve the mean estimate and reduce the uncertainty 625 

on total CO₂, CO, NOx, and SO2 emissions. Figure 10 shows the probability density function of these estimated 626 

total emissions, compared to the prior (using parameters derived from IPCC/EEA) and the truth (created with 627 

country-specific parameter values). Interestingly, the posterior result deteriorates slightly when using a shortened 628 

state vector in which 11 parameters of “minor” influence (such as the SO2:CO₂ ratio of household emissions) are 629 

not optimized from their incorrect prior. This is caused by sporadic atmospheric signals that are dominated by 630 

household emissions, even if these emissions only contribute a small fraction to the total emissions. These signals 631 

are then used to update the emission factor, while the emission ratios are also incorrect. 632 
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 633 

Figure 10. Probability density functions of emissions per species or per source category (for CO₂) in units of Tg (CO₂) 634 
or Gg (CO, NOx, SO2). The truth is shown as a vertical dashed dotted line, typically well-matched by the mean of the 635 
posterior in blue. Using a shortened state vector (yellowgreen dashed line) deteriorates the total non-CO₂ emissions 636 
substantially and leads to misattribution of CO₂ emissions in minor categories such as 2A (households).  637 

With CO2 as the only tracer in the inversion we find that we can still estimate total CO2 emissions quite well (truth-638 

minus-optimized = 0.03 Tg CO2 yr-1), but we lose the capacity to attribute emissions to specific sectors. Instead, 639 

mainly the emission factor of the largest single source being industry (EF3) is optimized. We illustrate this in Fig. 640 

11, using the No_propagation run. The large spread across the 14 individual days indicates that the emission factor 641 

jumps around within a large prior uncertainty distribution and is not well-constrained on each day. Some of the 642 

other emission factors show almost no deviation from the prior and little variability. Given the constraints posed 643 

by CO2 observations alone, and the limited number of parameters that change the simulated CO2, optimizing EF3 644 

improves the results at the lowest costs. Introducing the co-emitted species allows the system to identify the source 645 

of a residual, and attribute it to the right parameters if sufficient sensitivity is present. This is especially true for 646 

those sectors that have relatively small emissions and/or uncertainties, like 2B and 1A. This is corroborated by the 647 

posterior covariance matrices (See Appendix CB) which show a reduction in parameter correlations for those 648 

parameters (i.e., a better mathematical separation of the estimates) when all tracers are included in the estimate. 649 

For other parameters the median values are further from the truth than the prior (e.g. for RSO2 8), which indicates 650 

that there is too little sensitivity to these parameters. 651 

 652 
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 653 

Figure 11. Spread (Q1-Q3) and median values of the parameter scaling factors for the fourteen individual days included 654 
in the CO2_only_no_propagation (lefta) and No_propagation (rightb) inversions, and final value of the CO2_only (left) 655 
and base (right) inversion (red lines). The prior values are indicated by the black lines and the truth is indicated with 656 
the green dotted lines (value of 1.0). The left y-axis is for the emission factors, the right y-axis for the tracer ratios. The 657 
inversion with all tracers shows more variability in the emission factors and larger deviations from the prior values. 658 

3.3 Localization and propagation of information 659 

Propagating information on parameter values from one day to the next is often better than using the median of 660 

individual days’ estimates as illustrated by the red lines in Fig. 11. Nevertheless, the sporadic detection of plumes 661 

with specific signatures suggests that a form of selection or localization of the strongest signals could reduce noise 662 

and improve the estimate for the No_propagation run. We therefore ranked the 14 daily independent parameter 663 

estimates based on their relative posterior uncertainty and the residuals in an attempt to find the most trustworthy 664 

parameter values. This ranking is done per parameter, so the best estimate of different parameters can be related 665 

to different days. The increase in residual (same for all parameters) and posterior uncertainty (of the industrial 666 

emission factor) is shown in Fig. 12, where the 3–5 highest ranked days have similar characteristics after which 667 

the reliability decreases. On the lower ranked days, atmospheric signals from that particular source sector are too 668 

small (or even absent) to update the parameters related to that source sector. A similar pattern is found for the other 669 

parameters (not shown), with 2–5 days of high sensitivity out of 14. 670 

 671 
Figure 12. Increase in posterior uncertainty (1σ of unitless scaling factor) in the industrial emission factor (EF 3) and 672 
absolute mean residual of CO₂ (in ppm) from highest- to lowest-ranked days. 673 

 674 
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When we use the top-3 averaged parameter values to calculate emissions we find for most sectors that the emission 675 

estimate is similar to the base run, albeit with a larger uncertainty, while for a few specific sectors results 676 

deteriorate. This suggests that selecting for strong signals can dampen spurious noise, but still does not improve 677 

on the base run that includes full propagation of the covariances, hence carrying information on parameter 678 

correlations that is partially lost in the No_propagation run. 679 

From the posterior covariance matrices we can confirm our selection of “good” days, as these typically show 680 

relatively weak correlations between parameters. For the industrial sector (emission factor, RNOx, RSO2) these are 681 

typically weak on most days, and indeed the mean over the entire period already gives a robust estimate of the true 682 

parameter value (Fig. 13). The parameters with the strongest correlations are RCO of households and road traffic, 683 

and their mean values tend to be dominated by a few outliers. Selecting days on which the posterior parameter 684 

correlations are weak (i.e. the atmospheric signal clearly contains information about this specific parameter) results 685 

in a large improvement compared to the prior or a 14-day average. Moreover, these results show a similar or better 686 

performance as the top-3 selection based on Fig. 12 (0.08 for EF3 and 0.18 for Rco 7A, not shown), and are closer 687 

to the base run. 688 

 689 

Figure 13. Scatter plot of the absolute error in the scaling factor of the industrial emission factor (EF 3) and RCO of road 690 
traffic (7A) against the sum of the parameter correlations of the same parameters. The correlation coefficients are -0.17 691 
and 0.37 respectively. The horizontal lines give the average absolute error in the scaling factor for the prior (full black 692 
line), if all 14 days are averaged (dotted line), and based on the 3 days with the smallest parameter correlations (dashed 693 
line) and the result for the base run (full red line). The values are also given. 694 

4 Discussion 695 

4.1 Optimizing the dynamic emission model 696 

The dynamic emission model has the advantage over static emission fields that its parameters are optimized, giving 697 

more detailed physical meaning to the results. To reduce the size of the problem, the state vector can be populated 698 

with those parameters that are most important and/or uncertain. However, we find that other uncertain , non-699 

included parameters that are not part of the state vector can still significantly affect the optimization. Therefore, 700 

the size of the state vector should be considered carefully when applying this method. How to best determine the 701 

size of the state vector requires further work, possibly using some objective criterion to select for a dynamic model 702 

with an optimal information content (Akaike, 1974). Moreover, we performed an experiment to establish the 703 
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possibility to optimize the time profiles as part of the state vector. Although we found some small improvements 704 

for some sectors, it appears to be difficult to differentiate between the different variables in Eq. (2) that have a 705 

linear relationship based purely on the observations. Therefore, the results are not shown and optimizing the 706 

temporal dynamics of the emission model requires further work. In a future study the uncertainty caused by spatial 707 

disaggregation should also be included, as well as the possibility to reduce this uncertainty using higher-resolution 708 

satellite observations (Kuhlmann et al., 2019). 709 

Additionally, we identified the base run as the simplest method to get good estimates, but we do note that our 710 

current propagation scheme does not yet include error growth. That means that eventually the ensemble will 711 

converge on a parameter value and discard incoming observational evidence, unless the covariance is inflated to 712 

allow new updates. Examples of such a covariance inflation scheme are ample in literature and in principle not 713 

difficult to include, but were not yet considered in this work as the time periods covered were still short. An 714 

example related to this work is to use weather system characteristics to determine a correlation length for 715 

household emissions. 716 

Finally, we have demonstrated that tracers are suitable for source attribution. Several previous studies have used 717 

co-emitted species as tracer for fossil fuel CO₂ by taking advantage of the specific emission ratio characteristics 718 

of each source sector (Lauvaux et al., 2013; Lindenmaier et al., 2014; Turnbull et al., 2015) and came to similar 719 

conclusions. Nevertheless, the uncertainty in emission ratios remains a source of error and therefore the 720 

optimization of emission ratios with our system is a promising step forward. Using co-emitted species to identify 721 

the total fossil fuel contribution to the observed CO₂ signal is more difficult (Turnbull et al., 2006). The reason for 722 

this is that there is a large variability in emission ratios between sectors. This makes it difficult to establish an 723 

average emission ratio for an urban area, because it depends strongly on the relative contribution of each source 724 

sector and may vary over time. 725 

4.2 Radiocarbon and background definition 726 

Therefore, a nice addition to this inversion system would be the inclusion of radiocarbon measurements. The 727 

radiocarbon isotope (14CO₂) can be used to simulate fossil fuel CO₂ records and has been applied successfully in 728 

several inverse modelling studies (Turnbull et al., 2006; Levin and Karstens, 2007; Miller et al., 2012; Turnbull et 729 

al., 2015; Basu et al., 2016; Wang et al., 2018). The radiocarbon measurements could be used directly in the 730 

inversion (as we did with the co-emitted species) or be used to define a fossil fuel CO₂ record in advance (Fischer 731 

et al., 2017; Graven et al., 2018). Our urban network detects average fossil fuel CO₂ signals of about 5 ppm with 732 

peaks up to 50 ppm. This would result in Δ14C signals (the ratio of 14CO₂ to 12CO₂) of around 13 up to 130 per 733 

mille, which are certainly detectable with current techniques. However, observations of carbon isotopes are 734 

expensive and currently not widely available, so their applicability is still limited. Besides Δ14C other isotope 735 

signatures and tracers can also provide additional information. For example, 13CO₂ and O2/N2 can give insight in 736 

the dominant sources and sinks or fuel types (Lopez et al., 2013; Van der Laan et al., 2014) and as such be an 737 

indicator for the transition from fossil fuels to biofuels. They might also help to separate between the stack 738 

emissions of industry and coal- and gas-fired power plants. 739 

An additional advantage of including the radiocarbon isotope is that the uncertainty in the background CO2 can be 740 

excluded, i.e. only the fossil fuel record is considered. Here, we choose to ignore the uncertainty in the background, 741 

except in the definition of the covariance matrix R, and attribute all tracer residuals to the fossil fuel emissions. 742 
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Yet an incorrect definition of the background causes a large bias in the optimized emissions (Göckede et al., 2010). 743 

There are also several other methods to deal with the non-fossil fuel related CO₂ signals. First, the uncertain 744 

background can be added to the state vector and be optimized in the inversion. For example, He et al. (2018) have 745 

shown that high-altitude aircraft observations are suitable to improve regional biosphere flux estimates by 746 

correcting the bias in boundary conditions. Second, a mole fraction gradient over the area of interest can be 747 

calculated using an upwind and downwind site such that the boundary inflow plays no role anymore (Turnbull et 748 

al., 2015). This method was shown to reduce the impact of boundary inflow, but only when the wind direction is 749 

more or less perpendicular to the gradient (Bréon et al., 2015; Staufer et al., 2016). Therefore, this method limits 750 

the amount of useful measurements.  751 

4.3 Error correlations 752 

The emission model also allows us to study the correlations between model parameters, therefore giving more 753 

insight in how information can be used in the system and which parameters are more challenging to separate. 754 

Previously, Boschetti et al. (2018) have used the presence of error correlations between emissions of different 755 

species and found that this reduces the posterior uncertainties for all species. They even show that the uncertainty 756 

reduction increases with the correlation and that an incorrect definition of the error correlations may cause a 757 

systematic bias in the posterior emission estimate. However, error correlations are only beneficial if the 758 

atmospheric observations can distinguish between the correlated parameters. If this is not the case the presence of 759 

parameter correlations can result in poorly constrained parameters and/or large posterior uncertainties. This is 760 

especially true when parameters are sensitive to parameter correlations, as we show for RCO of road traffic. 761 

An important question is then why some emission model parameters are more sensitive to the presence of 762 

parameter correlations than others. One hypothesis is that parameters with a lower prior uncertainty are more 763 

sensitive to the presence of parameter correlations. The idea behind this is that if we reduce the diagonal value 764 

(uncertainty) by a factor of 4 the off-diagonal value (parameter correlation) reduces by a factor of 2. This means 765 

that the parameter correlation is relatively stronger if the uncertainty is lower (Boschetti et al., 2018). This 766 

hypothesis cannot be confirmed by our results, as we only find a correlation of -0.27 between the prior uncertainty 767 

and the sensitivity to parameter correlations (defined as the correlation between the posterior uncertainty and the 768 

sum of the parameter correlations). The main difficulty here is that not all parameters can be discerned with the 769 

observed atmospheric signals. Although we included the additional co-emitted tracers for source attribution, the 770 

emission ratios have a large uncertainty and the system can have difficulties assigning residuals to either the 771 

emission ratio or the emission factor. Yet if we calculate an average sensitivity and total posterior uncertainty per 772 

sector (by combining the emission factor and emission ratios per sector) we find a correlation coefficient of -0.82. 773 

This suggests that this hypothesis might indeed be correct and source sectors with larger parameter uncertainties 774 

are less sensitive to the presence of parameter correlations. 775 

4.4 Atmospheric transport model errors 776 

In addition to the experiments described in Sect. 2.3 we conducted an experiment that focused on the role of 777 

transport model errors by using observed meteorology to drive the OPS model in the inversion. Like many authors 778 

before us (McKain et al., 2012; Brioude et al., 2013; Lauvaux et al., 2013; Bréon et al., 2015; Boon et al., 2016) 779 

we found a large impact on the performance of our system and once again confirmed the need for accurate transport 780 
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models. This experiment is not further shown in this work because of its redundancy with previous conclusions. 781 

Nevertheless, we performed this experiment to examine whether transport errors are important when the state 782 

vector consists of parameters that are valid for the entire domain. Random errors, such as errors in the wind 783 

direction, are unlikely to affect the optimized emissions much when averaged over a longer time period and 784 

domain. This was shown by Deng et al. (2017), who found little variation in the average CO₂ emission for 785 

Indianapolis using different configurations of WRF to calculate the transport. However, they did find an impact 786 

on the spatial distribution of the emissions. This becomes important when optimizing a specific source sector that 787 

is clustered in one place, such as the glasshouses. We found that the glasshouse sector is only correctly optimized 788 

with a specific wind direction. If the modelled wind direction is wrong the residuals would thus not be attributed 789 

to the glasshouse sector as it is not in the modelled footprint of the measurement site. As such, we conclude that 790 

the footprint definition has an impact on the optimized parameters, despite that the parameters have no spatial 791 

distribution. Similarly, Broquet et al. (2018) mention that the location and structure of a simulated urban plume 792 

might differ significantly from the true plume characteristics due to errors in the simulated wind speed and wind 793 

direction. 794 

Systematic errors, whether in the modelled transport or in the observations, are more difficult to solve as they do 795 

not cancel out when simulating a longer period, and this can lead to biased emission estimates (Meirink et al., 796 

2008; Su et al., 2011). Several methods have been suggested to overcome problems with an incorrect description 797 

of atmospheric transport, such as using an ensemble of atmospheric transport model simulations (Angevine et al., 798 

2014) or the assimilation of meteorological observations (Lauvaux et al., 2013). The latter showed lower biases in 799 

buoyancy and mean horizontal wind speed. Another method that is often used is the selection of well-mixed 800 

afternoon hours to exclude stable conditions under which pollutant dispersion is often poorly represented (Lauvaux 801 

et al., 2013; Bréon et al., 2015; Boon et al., 2016). Such data selection however leads to a bias in the estimated 802 

emissions when the diurnal cycle is not correctly accounted for (Super et al., 202019). 803 

Here, we also applied a daytime selection criterion to mimic this situation. However, we found that night time 804 

hours could be very useful to constrain our emissions. In our DA system we use residual fossil fuel enhancements 805 

over a background (prior - true mole fraction enhancement) to constrain the fossil fuel fluxes. The larger the 806 

residual, the more information can be gained from it since the impact of the observation error (R matrix) is 807 

relatively small. If, for example, the industrial emission factor is underestimated by 10 %, the residual industrial 808 

enhancement (given a linear relationship between the emission factor and the total emission from this sector) will 809 

be 10 % of the pseudo-observed mole fraction. This means that a large signal from the industry is needed to reach 810 

a residual that is larger than the observation error (σ is 1.6 ppm for CO₂). Looking at the time series of pseudo-811 

observations we find that such large signals mostly occur during night time or in the early morning. Therefore, the 812 

inversion could benefit strongly from an improved description of night time boundary layers and stable conditions, 813 

so that the large night time enhancements can be used to constrain the fossil fuel fluxes. 814 

5 Conclusions 815 

The aim of this study was to examine how well our DA system can quantify urban CO₂ emissions per source 816 

sector. Since the prior consists of a dynamic fossil fuel emission model the model parameters are optimized rather 817 

than the emissions themselves. The parameters are related to specific source sectors and to attribute residuals to 818 

these sectors measurements of additional tracers (CO, NOx and SO2) are included in the inversions. We tested this 819 
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system to examine its ability to overcome some major limitations in current urban-scale inversions: source 820 

attribution, definition of the prior and its uncertainties, and the sensitivity to errors in atmospheric transport. 821 

We find that inverse modelling at the urban scale is feasible when the observations contain a lot of information 822 

about the different source sectors. Based on this work we can conclude: 823 

1. A dynamic fossil fuel emission model can be useful to create a prior in data-sparse regions or to make 824 

use of local data to increase the spatiotemporal representation, while allowing to constrain physically 825 

relevant parameters in more detail. 826 

2. When only CO2 mole fractions are used in the inversion the total CO2 emissions are well-constrained,. 827 

but A additional tracers are an important addition to the inversion framework in order to discern the 828 

information belonging to specific source sectors and emission model parameters. However, even more 829 

tracers might be needed to fully capture the heterogeneity of the emission landscape. 830 

3. The prior error covariance structure based on the emission model provides useful insight in how 831 

parameters interact and what is needed to separate them. 832 

However, even more tracers might be needed to fully capture the heterogeneity of the emission landscape. 833 

Moreover, we argue that a dynamic emission model has some major advantages over regular emission maps, 834 

allowing us to constrain physically relevant parameters even in the absence of good prior information. 835 

Nevertheless, quite someseveral challenges remain. Transport modelling at this small scale needs to be improved 836 

to be able to use real urban observations, as under current conditions the transport error strongly dominates the 837 

results. Especially improving the description of night time boundary layers could be beneficial, because large 838 

atmospheric signals mostly occur during theis period. For the future, additional advances need to be made to 839 

include satellite observations in the inverse modelling framework. The advantage of satellite data is that it covers 840 

data-sparse regions and with a larger view it can differentiate between the urban dome with high pollution levels 841 

and the cleaner rural areas, which is a nice addition to in situ measurements. 842 

Code and data availability 843 

The availability of the CTDAS (v1.0) code is described in a previous publication (Van der Laan-Luijkx et al., 844 

2017) is released under a GNU-GPL3.0 license. The source code available from 845 

https://git.wageningenur.nl/ctdas/CTDAS , which forms the basis of the system described in this paper. Minor 846 

changes have been made to include the dynamic emission model. Revised code and the additional module used to 847 

describe the dynamic emission model and the creation of pseudo-observations is included as Supplement, as is a 848 

script used for the emission uncertainty analysis (Monte Carlo simulation). Input data for the dynamic emission 849 

model are taken from open, online databases and are summarized in Appendix A, including their data sources. 850 

Example input files for CTDAS and the OPS model are also included as Supplement.  851 

https://git.wageningenur.nl/ctdas/CTDAS
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Appendix A: Emission model input data and uncertainties 852 

Table A1. Overview of all parameters in the dynamic emission model, their unit, function type, expected value and 853 
uncertainty (range). 854 

Parameter (Sub)sector Unit Function 

type 

Expected 

value  

Uncertainty 

Emission factor(a) Coal-fired power plants(c) kg PJ-1 Normal 1.01E8 23 % 

Gas-fired power plants(c) kg PJ-1 normal 5.61E7 10 % 

Households(c) kg PJ-1 normal 5.89E7 14 % 

Glasshouses(c) kg PJ-1 normal 5.61E7 25 % 

Industry(d) kg PJ-1 normal 7.66E7 40 % 

Road traffic cars(e) kg PJ-1 normal 7.24E7 10 % 

Road traffic HDV(e) kg PJ-1 normal 7.33E7 5 % 

Ocean shipping(f) kg PJ-1 normal 7.76E7 5 % 

Inland shipping(f) kg PJ-1 normal 7.30E7 5 % 

Recreational shipping(f) kg PJ-1 normal 7.10E7 5 % 

Emission ratio 

CO:CO₂ 

Coal-fired power plants(e) kg kg-1 lognormal 1.29E-4 8.7E-7–2.9E-4 

Gas-fired power plants(e) kg kg-1 lognormal 8.47E-4 3.4E-4–2.5E-3 

Households(e) kg kg-1 lognormal 3.88E-3 8.3E-4–9.6E-3 

Glasshouses(e) kg kg-1 lognormal 5.40E-4 3.1E-5–7.7E-4 

Industry(d) kg kg-1 normal 2.06E-3 40 % 

Road traffic cars(e) kg kg-1 lognormal 1.32E-2 8.0E-5–6.5E-2 

Road traffic HDV(e) kg kg-1 lognormal 2.22E-3 9.3E-5–1.3E-2 

Ocean shipping(f) kg kg-1 normal 2.32E-3 30 % 

Inland shipping(f) kg kg-1 normal 3.42E-3 30 % 

Recreational shipping(f) kg kg-1 normal 2.96E-1 30 % 

Emission ratio 

NOx:CO₂ 

Coal-fired power plants(e) kg kg-1 lognormal 5.94E-4 3.0E-4–9.4E-4 

Gas-fired power plants(e) kg kg-1 lognormal 2.00E-3 2.6E-4–3.7E-3 

Households(e) kg kg-1 lognormal 1.50E-3 4.8E-4–3.3E-3 

Glasshouses(e) kg kg-1 lognormal 1.63E-3 5.0E-4–3.5E-3 

Industry(d) kg kg-1 normal 6.56E-4 40 % 

Road traffic cars(e) kg kg-1 lognormal 1.76E-3 9.0E-5–7.5E-3 

Road traffic HDV(e) kg kg-1 lognormal 1.11E-2 3.3E-4–3.7E-2 
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Ocean shipping(f) kg kg-1 normal 2.32E-2 30 % 

Inland shipping(f) kg kg-1 normal 1.37E-2 30 % 

Recreational shipping(f) kg kg-1 normal 1.97E-3 30 % 

Emission ratio 

SO2:CO₂ 

Coal-fired power plants(e) kg kg-1 lognormal 1.66E-4 2.9E-5–4.4E-4 

Gas-fired power plants(e) kg kg-1 lognormal 5.01E-6 2.9E-6–7.2E-6 

Households(e) kg kg-1 lognormal 2.21E-5 1.4E-5–6.7E-5 

Glasshouses(e) kg kg-1 lognormal 8.91E-6 5.2E-6–1.3E-5 

Industry(d) kg kg-1 normal 4.28E-4 40 % 

Road traffic cars(g) kg kg-1 normal 1.01E-6 100 % 

Road traffic HDV(g) kg kg-1 normal 8.16E-7 100 % 

Ocean shipping(f) kg kg-1 lognormal 6.18E-3 3.3E-4–2.0E-2 

Inland shipping(f) kg kg-1 lognormal 6.57E-3 3.5E-4–3.0E-2 

Recreational shipping(f) kg kg-1 lognormal 3.14E-4 1.1E-4–7.0E-4 

Hourly time  

factor(h) 

Coal-fired power plants - normal 1 28 % 

Gas-fired power plants - normal 1 43 % 

Industry - normal 1 5 % 

Households - normal 1 43 % 

Glasshouses - normal 1 74 % 

Road traffic cars highway - normal 1 18 % 

Road traffic cars main road - normal 1 18 % 

Road traffic cars urban road - normal 1 18 % 

Road traffic HDV highway - normal 1 41 % 

Road traffic HDV main road - normal 1 18 % 

Road traffic HDV urban road - normal 1 48 % 

Total shipping - normal 1 31 % 

Energy 

consumption per 

activity data(i) 

Total power plants PJ/mln € - 8.22E-4 - 

Households PJ/dd(b) - 0.199 - 

Glasshouses PJ/dd(b) - 0.061 - 

Industry PJ/mln € - 7.05E-4 - 

Road traffic cars PJ/mln € - 3.98E-4 - 
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Road traffic HDV PJ/mln € - 2.01E-4 - 

Total shipping PJ/mln € - 1.51E-4 - 

Fraction of total 

energy 

consumption per 

subsector(j) 

Total power plants: coal - - 0.62 - 

Total power plants: gas - - 0.38 - 

Road traffic cars: highway - - 0.47 - 

Road traffic cars: main road - - 0.28 - 

Road traffic cars: urban road - - 0.25 - 

Road traffic HDV: highway - - 0.56 - 

Road traffic HDV: main road - - 0.24 - 

Road traffic HDV: urban road - - 0.20 - 

Total shipping: ocean - - 0.79 - 

 Total shipping: inland - - 0.20 - 

 Total shipping: recreational - - 0.01 - 

(a) Emission factor for coal-fired and gas-fired power plants include uncertainty due to variations in fuel type, including burning 855 

of biomass (5 % uncertainty). For households assume 8 % wood combustion based on CO2 emission values (Vernieuwd 856 

emissiemodel houtkachels, by B.I. Jansen (TNO, 2016)), the remainder is natural gas (with 10 % uncertainty). For glasshouses 857 

assume only natural gas combustion, including 20 % additional uncertainty due to use of cogeneration plants. For road traffic 858 

cars assume 69 % gasoline, 29 % diesel and 2 % LPG (with 5 % uncertainty); for road traffic HDV assume 100 % diesel. 859 

(b) dd = degree day 860 

 (c) Expected value and uncertainty based on IPCC Emission Factor Database (EFDB) using 2006 IPCC guidelines  861 

(d) Expected value based on Emissieregistratie Netherlands PRTR (emission) and Statistics NetherlandsCBS (energy 862 

consumption); uncertainty based on expert judgement 863 

(e) Expected value and uncertainty based on the EMEP/EEA air pollutant emission inventory guidebook 2016 864 

(f) Expected value and uncertainty based on CO₂, CH4, and N2O emissions from transportation-water-borne navigation, by Paul 865 

Jun, Michael Gillenwater, and Wiley Barbour (Good Practice Guidance and Uncertainty Management in National Greenhouse 866 

Gas Inventories)  867 

(g) Expected value based on Air Pollutant Emission Factor Library (Finish Environment Institute); uncertainty based on expert 868 

judgement 869 

(h) Uncertainties based on comparison activity data-based time profiles and estimated time profiles from environmental/socio-870 

economic factors (Denier van der Gon et al., 2011) 871 

(i) Expected value based on data from Statistics Netherlands CBS (energy consumption, GDP (663008 mln € in 2014)) and 872 

KNMI Royal Netherlands Meteorological Institute (degree day sum (2313.95 for households, 1443.63 for glasshouses)) 873 

(j) Expected value based on EmissieregistratieNetherlands PRTR 874 
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 875 

Figure A1. Covariance matrix for all parameters in the emission model. For all covariances we assume a correlation 876 
coefficient of 0.5. (Sub)sectors are indicated with their short names as summarized in Table 1. Note that the time profiles 877 
of road traffic emissions are specified per road type (1 = highway, 2 = main road, 3 = urban road).  878 
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Appendix B: Temporal profiles 879 

Table B1. Overview of the data used to create the temporal profiles presented in Sect. 2.1.2. The activity data represents 880 
the actual and the parameterizations are based on environmental variables or other proxies. 881 

Source sector Subsector Parameterization Activity data 

Power plants Gas-fired power plants Wind speed, solar 

radiation 

Threshold: 10 m s-1, 

150 J cm-2 

f: 0.1 

Power generation 

 Coal-fired power plants Temperature 

Threshold: 25°C 

f: 0.8 

Power generation 

Non-industrial 

combustion 

Households Temperature 

Threshold: 18°C 

f: 0.2 

Gas consumption from 

smart meters 

Glasshouses Temperature 

Threshold: 15°C 

f: 0 

Modelled energy 

consumption 

Industry  None (fixed profile)  

Road traffic Cars Average traffic counts Traffic counts 

 Heavy duty vehicles Average traffic counts Traffic counts 

Shipping Ocean shipping None (fixed profile)  

 Inland shipping Traffic counts Shipping movements 

 Recreational shipping None (fixed profile)  

 882 

The daily time factor of gas combustion for households may be described in terms of two components. First, gas 883 

is used for warm water supply and cooking, which is relatively fixed. Second, gas is used for heating, which is 884 

strongly temperature dependent. The second component has previously been described using the degree day 885 

concept, from which the daily time factor can be defined as: 886 

𝑇𝑡 = 𝐻 𝐷 ̅⁄             (B1) 887 

where H is the heating degree day factor (H = max(Tthreshold-𝑇2𝑚
̅̅ ̅̅ ̅,0)) based on the daily mean outside temperature 888 

at 2 m and a threshold temperature below which heating takes place. �̅� is the annual average heating degree day 889 

(�̅� =
1

𝑁
∑ 𝐻𝑁

𝑗=1 ). However, gas consumption related to warm water supply and cooking is largely independent of 890 

the outside temperature and therefore a constant offset is included in the heating degree day factor: 891 

𝐻𝑓 = H + 𝑓 ∙ D̅           (B2) 892 

where f is the constant offset, which is assigned equally to all days The time factor can now be defined as: 893 

𝑇𝑡 = 𝐻𝑓 𝐷𝑓  ̅̅ ̅̅⁄             (B3) 894 

where the average heating degree day accounted for the constant offset 𝐷𝑓
̅̅ ̅ = (1 + 𝑓)�̅�.  895 
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The Eq. B3 is used for households and coal-fired power plants, whereas for glasshouses no constant offset is 896 

assumed and so Eq. B1 is applied. For gas-fired power plants Eq. B3 is used, but the temperature is replaced with 897 

average wind speed and solar radiation to match its function as back-up for renewable energy supply: 898 

𝐻 = max(10 − �̅�, 0) ∙ max(150 − �̅�, 0)        (B46) 899 

where u is the wind speed (m s-1) and R the incoming solar radiation (J cm-2 hr-1). Here we use a constant offset of 900 

10 % and a threshold of 10 m s-1 and 150 J cm-2. 901 

Appendix C: Observation operator 902 

To generate a footprint with the WRF-STILT model, 75 particles are released at the observation site at the start of 903 

the back-trajectory and followed back in time. Given that the variability in hourly observations at an urban location 904 

is dominated by local signals, we construct back-trajectories spanning 6 hours. This is based on the domain size, 905 

which could be covered within 6 hours for typical wind speeds of 4 m s-1. Within this time frame emissions can 906 

become well-mixed throughout the boundary layer under normal daytime mixing conditions, such that emissions 907 

outside this range can be represented by a boundary inflow. Footprints are generated for each hour within the back-908 

trajectory to account for hourly variations in the emissions. We drive STILT with meteorology from the WRF 909 

model (v3.5.1). The WRF model was set up with two nested domains (15x15 and 3x3 km2 horizontal resolution) 910 

and the STILT footprints have a 1x1 km2 resolution over the entire domain.  911 

The OPS plume model keeps track of a plume trajectory, considering time-varying transport over longer distances 912 

(e.g. changes in wind direction and dispersion). If for a time step a specific plume affects the receptor, a Gaussian 913 

plume formulation is used to calculate the mole fraction caused by that source based on the true travel distance 914 

along the trajectory. We drive the model with the same WRF meteorology as STILT. Only primary meteorological 915 

variables (temperature, relative humidity, wind direction, wind speed, precipitation, global radiation) are 916 

prescribed, secondary variables (e.g. boundary layer height, friction velocity) are calculated by OPS itself and can 917 

differ from WRF.  918 

Similar to the WRF-STILT model, we assume an influence time of 6 hours on our observations. However, in this 919 

case we run the OPS model forward from -6 hours to the time of observation. 920 

Appendix DB 921 
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 922 
Figure BD1. Matrix showing the difference in correlation coefficient (r) between the CO2_only_no_propagation and 923 
No_propagation run averaged for all 14 days, where positive differences indicate reduced parameter correlations when 924 
all tracers are included (No_propagation). (Sub)sectors are indicated with their short names as summarized in Table 1. 925 
For some parameters a strong reduction in parameter correlations is shown, indicating that with all tracers that 926 
parameter can be more easily separated from others, for example the emission factors of industry and coal-fired power 927 
plants (EF3 and EF1B). 928 
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