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 23	

Abstract: The terrestrial biosphere and atmospheric chemistry interact through 24	

multiple feedbacks, but the models of vegetation and chemistry are developed 25	

separately. In this study, the Yale Interactive terrestrial Biosphere (YIBs) model, a 26	

dynamic vegetation model with biogeochemical processes, is implemented into the 27	

Chemical Transport Model GEOS-Chem version 12.0.0. Within the GC-YIBs 28	

framework, leaf area index (LAI) and canopy stomatal conductance dynamically 29	

predicted by YIBs are used for dry deposition calculation in GEOS-Chem. In turn, the 30	

simulated surface ozone (O3) by GEOS-Chem affect plant photosynthesis and 31	

biophysics in YIBs. The updated stomatal conductance and LAI improve the 32	

simulated daytime O3 dry deposition velocity for major tree species. Compared with 33	

the GEOS-Chem model, the model-to-observation correlation for dry deposition 34	

velocities increases from 0.76 to 0.85 while the normalized mean error decreases from 35	

35% to 27% using the GC-YIBs model. Furthermore, we quantify O3 vegetation 36	

damaging effects and find a global reduction of annual gross primary productivity by 37	

2-5%, with regional extremes of 11–15% in the eastern U.S. and eastern China. The 38	

online GC-YIBs model provides a useful tool for discerning the complex feedbacks 39	

between atmospheric chemistry and terrestrial biosphere under global change. 40	

 41	
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1 Introduction 45	

The terrestrial biosphere interacts with atmospheric chemistry through the exchanges 46	

of trace gases, water, and energy (Green et al., 2017; Hungate and Koch, 2015). 47	

Emissions from terrestrial biosphere, such as biogenic volatile organic compounds 48	

(BVOCs) and nitrogen oxides (NOx) affect the formation of air pollutants and 49	

chemical radicals in the atmosphere (Kleinman, 1994; Li et al., 2019). Globally, 50	

terrestrial biosphere emits ~1100 Tg (1 Tg = 1012 g) BVOC annually, which is 51	

approximately ten times more than the total amount of VOC emitted worldwide from 52	

anthropogenic sources including fossil fuel combustion and industrial activities 53	

(Carslaw et al., 2010). Meanwhile, the biosphere acts as a major sink through dry 54	

deposition of air pollutants, such as surface ozone (O3) and aerosols (Fowler et al., 55	

2009; Park et al., 2014; Petroff, 2005). Dry deposition accounts for ~25% of the total 56	

O3 removed from the troposphere (Lelieveld and Dentener, 2000).  57	

 58	

In turn, atmospheric chemistry can also affect the terrestrial biosphere (McGrath et al., 59	

2015; Schiferl and Heald, 2018; Yue and Unger, 2018). Surface O3 has a negative 60	

impact on plant photosynthesis and crop yields by reducing gas-exchange and 61	

inducing phytotoxic damages on plant tissues (Van Dingenen et al., 2009; Wilkinson 62	

et al., 2012; Yue and Unger, 2014). Unlike O3, the increase of aerosols in the 63	

atmosphere is beneficial to vegetation (Mahowald, 2011; Schiferl and Heald, 2018). 64	

The aerosol-induced enhancement in diffuse light results in more radiation reaching 65	

surface from all directions than solely from above. As a result, leaves in the shade or 66	
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at the bottom can receive more radiation and are able to assimilate more CO2 through 67	

photosynthesis, leading to an increase of canopy productivity (Mercado et al., 2009; 68	

Yue and Unger, 2018). 69	

 70	

Models are essential tools to understand and quantify the interactions between 71	

terrestrial biosphere and atmospheric chemistry at the global and/or regional scales. 72	

Many studies have performed multiple global simulations with 73	

climate-chemistry-biosphere models to quantify the effects of air pollutants on 74	

terrestrial biosphere (Mercado et al., 2009; Oliver et al., 2018; Schiferl and Heald, 75	

2018; Yue and Unger, 2015). In contrast, very few studies have quantified the 76	

O3-induced biogeochemical and meteorological feedbacks to air pollution 77	

concentrations (Sadiq et al., 2017; Zhou et al., 2018). Although considerable efforts 78	

have been made, uncertainties in biosphere-chemistry interactions remain large 79	

because their two-way coupling is not adequately represented in current generation of 80	

terrestrial biosphere models or global chemistry models. Global terrestrial biosphere 81	

models usually use prescribed O3 and aerosol concentrations (Lombardozzi et al., 82	

2012; Mercado et al., 2009; Sitch et al., 2007), and global chemistry models often 83	

apply fixed offline vegetation variables (Lamarque et al., 2013). For example, 84	

stomatal conductance, which plays a crucial role in regulating water cycle and altering 85	

pollution deposition, responds dynamically to vegetation biophysics and 86	

environmental stressors at various spatiotemporal scales (Franks et al., 2017; 87	

Hetherington and Woodward, 2003). However, these processes are either missing or 88	
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lack of temporal variations in most current chemical transport models (Verbeke et al., 89	

2015). The fully two-way coupling between biosphere and chemistry is necessary to 90	

better quantify the responses of ecosystems and pollution to global changes. 91	

 92	

In this study, we develop the GC-YIBs model by implementing the Yale Interactive 93	

terrestrial Biosphere (YIBs) model version 1.0 (Yue and Unger, 2015) into the 94	

chemical transport model (CTM) GEOS-Chem version 12.0.0 95	

(http://wiki.seas.harvard.edu/ geos-chem/index.php/GEOS-Chem_12#12.0.0). The 96	

GEOS-Chem (short as GC thereafter) model has been widely used in episode 97	

prediction (Cui et al., 2016), source attribution (D'Andrea et al., 2016; Dunker et al., 98	

2017; Lu et al., 2019; Ni et al., 2018), future pollution projection (Ramnarine et al., 99	

2019; Yue et al., 2015), health risk assessment (Xie et al., 2019), and so on. The 100	

standard GC model uses prescribed vegetation parameters and as a result cannot 101	

depict the changes in chemical components due to biosphere-pollution interactions. 102	

The updated GC-YIBs model links atmospheric chemistry with biosphere in a 103	

two-way coupling such that changes in chemical components or vegetation will 104	

simultaneously feed back to influence the other systems. Here, we evaluate the 105	

dynamically simulated dry deposition and leaf area index (LAI) from GC-YIBs and 106	

examine the consequent impacts on surface O3. We also quantify the detrimental 107	

effects of O3 on gross primary productivity (GPP) using instant pollution 108	

concentrations from the chemical module. The next section describes the GC-YIBs 109	

model and the evaluation data. Section 3 compares simulated O3 from GC-YIBs with 110	
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that from the original GC models and explores the causes of differences. Section 4 111	

quantifies O3 damaging effects to global GPP using the GC-YIBs model. The last 112	

section summarizes progresses and discusses the next-step tasks to optimize the 113	

GC-YIBs model. 114	

 115	

2 Methods and data 116	

2.1 Descriptions of the YIBs model 117	

YIBs is a terrestrial vegetation model designed to simulate land carbon cycle with 118	

dynamical prediction of LAI and tree height (Yue and Unger, 2015). The model 119	

considers 9 plant functional types (PFTs), including evergreen needleleaf forest, 120	

deciduous broadleaf forest, evergreen broadleaf forest, shrubland, tundra, C3/C4 grass, 121	

and C3/C4 crops. The satellite-based land types and cover fraction are aggregated into 122	

these 9 PFTs and used as input. The YIBs is driven with hourly 2-D meteorology and 123	

3-D soil variables (6 layers) from the Modern-Era Retrospective analysis for Research 124	

and Applications, version 2 (MERRA2). 125	

 126	

The YIBs uses the model of Ball and Berry (Baldocchi et al., 1987) to compute leaf 127	

stomatal conductance: 128	

                     bRH
c
Am

r
g

s

net

s
s +==
1                           (1) 129	

where sr  is the leaf stomatal resistance; m  is the empirical slope of the Ball-Berry 130	

stomatal conductance equation and is affected by water stress; sc  is the CO2 131	

concentration at the leaf surface; RH is the relative humidity of atmosphere; b  132	
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represents the minimum leaf stomatal conductance when net carbon assimilation 133	

(𝐴"#$) is 0. For different PFTs, appropriate photosynthetic parameters are derived 134	

from the Community Land Model (CLM) (Bonan et al., 2011). 135	

 136	

The net carbon assimilation for C3 and C4 plants is computed based on 137	

well-established Michaelis–Menten enzyme-kinetics scheme (Farquhar et al., 1980; 138	

Voncaemmerer and Farquhar, 1981): 139	

                     ( ) dsecnet RJJJA -= ,,min                         (2) 140	

Where cJ , eJ  and sJ represent the Rubiso-limited photosynthesis, the RuBP-limited 141	

photosynthesis, and the product-limited photosynthesis, respectively. They are all 142	

parameterized as functions of the maximum carboxylation capacity (Collatz et al., 143	

1991) and meteorological variables (e.g., temperature, radiation, and CO2 144	

concentrations). 145	

 146	

In addition, the YIBs model implements the scheme for O3 damage on vegetation 147	

proposed by Sitch et al. (2007). The scheme directly modifies photosynthesis using a 148	

semi-mechanistic parameterization, which in turn affects stomatal conductance. The 149	

O3 damage factor is considered as the function of stomatal O3 flux: 150	

              𝐹 =
−𝑎 𝐹)* −	𝑇)* ,					𝐹)* > 	𝑇)*
0,																															𝐹)* ≤ 	𝑇)*

                     (3) 151	

Where a  represents the damaging sensitivity and 
3O

T  represents the O3 flux 152	

threshold. For a specific PFT, the coefficient a  varies from low to high to represent 153	

a range of uncertainties. 
3O

T is a critical threshold for O3 damage and varies with PFTs. 154	
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The F  becomes negative only if 
3O

F  is higher than 
3O

T . Stomatal O3 flux 
3O

F  is 155	

dependent on both stomatal resistance and ambient [ ]3O : 156	

                          [ ]
sb

O rkr
OF
×+

= 3
3

                            (4) 157	

where [ ]3O  represents O3 concentration at top of the canopy, br  represents the 158	

boundary layer resistance, and sr  represents the stomatal resistance. The Sitch et al. 159	

(2007) scheme within the YIBs framework has been well evaluated against hundreds 160	

of observations globally (Yue and Unger, 2018) and regionally (Yuan et al., 2017; Yue 161	

et al., 2016).  162	

 163	

2.2 Descriptions of the GEOS-Chem model 164	

GC is a global 3-D model of atmospheric compositions with fully coupled 165	

O3-NOx-hydrocarbon-aerosol chemical mechanisms (Gantt et al., 2015; Lee et al., 166	

2017; Ni et al., 2018). In this study, we use GC version 12.0.0 driven by assimilated 167	

meteorology from MERRA2 with a horizontal resolution of 4° latitude by 5° 168	

longitude and 47 vertical layers from surface to 0.01 hPa.  169	

 170	

In GC, terrestrial vegetation modulates tropospheric O3 mainly through LAI and 171	

canopy stomatal conductance, which affect both the sources and sinks of tropospheric 172	

O3 through changes in BVOC emissions, soil NOx emissions, and dry deposition 173	

(Zhou et al., 2018). BVOC emissions are calculated based on a baseline emission 174	

factor parameterized as the function of light, temperature, leaf age, soil moisture, LAI, 175	

and CO2 inhibition within the Model of Emissions of Gasses and Aerosols from 176	
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Nature (MEGAN v2.1) (Guenther et al., 2006). Soil NOx emission is computed based 177	

on the scheme of Hudman et al. (2012) and further modulated by a reduction factor to 178	

account for within-canopy NOx deposition (Rogers and Whitman, 1991). The dry 179	

deposition velocity ( dV ) for O3 is computed based on a resistance-in-series model 180	

within GC: 181	

                           
cba

d RRR
V

++
=

1                          (5) 182	

where aR  is the aerodynamic resistance representing the ability of the airflow to 183	

bring gases or particles close to the surface and is dependent mainly on the 184	

atmospheric turbulence structure and the height considered. bR  is the boundary 185	

resistance driven by the characteristics of surface (surface roughness) and gas/particle 186	

(molecular diffusivity). aR  and bR  are calculated from the global climate models 187	

(GCM) meteorological variables (Jacob et al., 1992). The surface resistance cR is 188	

determined by the affinity of surface for the chemical compound. For O3 over 189	

vegetated regions, dV is mainly driven by cR  during daytime because the effects of 190	

aR  and bR  are generally small. Surface resistances cR are computed using the 191	

Wesely (1989) canopy model with some improvements, including explicit dependence 192	

of canopy stomatal resistances on LAI (Gao and Wesely, 1995) and direct/diffuse PAR 193	

within the canopy (Baldocchi et al., 1987): 194	

                     
gcllumsc RRRRRR
11111

+++
+

=                      (6) 195	

where sR  is the stomatal resistance, mR  is the leaf mesophyll resistance ( mR = 0 s 196	

cm-1 for O3), luR  is the upper canopy or leaf cuticle resistance, clR  is the lower 197	
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canopy resistance. 𝑅2 is calculated based on minimum stomatal resistance (𝑟2), solar 198	

radiation (𝐺), surface air temperature (𝑇2), and the molecular diffusivities (𝐷67) and 199	

𝐷8) for a specific gas 𝑥:  200	

             
( )[ ] ( ) x

OH

ss
ss D

D
TTG

rR 2

40
400

1.0200
11 2

þ
ý
ü

î
í
ì

-þ
ý
ü

î
í
ì

+
+=                 (7) 201	

In GC, the above parameters related to cR  have prescribed values for 11 deposition 202	

land types, including snow/ice, deciduous forest, coniferous forest, agricultural land, 203	

shrub/grassland, amazon forest, tundra, desert, wetland, urban and water (Jacob et al., 204	

1992; Wesely, 1989).  205	

 206	

The Olson 2001 land cover map used in GC version 12.0.0 has a native resolution of 207	

0.25°×0.25° and 74 land types (Olson et al., 2001). Each of the Olson land types is 208	

associated with a corresponding deposition land type with prescribed parameters. 209	

There are 74 Olson land types but only 11 deposition land types, suggesting that many 210	

of the Olson land types share the same deposition parameters. At specific grids (4°×5° 211	

or 2°×2.5°), dry deposition velocity is calculated as the weighted sum of native 212	

resolution (0.25°×0.25°).  213	

 214	

2.3 Implementation of YIBs into GEOS-Chem (GC-YIBs) 215	

In this study, GC model time steps are set to 30 min for transport and convection and 216	

60 min for emissions and chemistry. In the online GC-YIBs configuration, GC 217	

provides the hourly meteorology and surface [O3] to YIBs. Without YIBs 218	

implementation, the GC model computes O3 dry deposition velocity using prescribed 219	
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LAI and parameterized canopy stomatal resistance ( sR ), and as a result ignore 220	

feedbacks from ecosystems (details in 2.2). With YIBs embedded, daily LAI and 221	

hourly stomatal conductance are dynamically predicted for the dry deposition scheme 222	

within the GC model. The online-simulated surface [O3] affects carbon assimilation 223	

and canopy stomatal conductance, in turn, the online-simulated vegetation variables 224	

such as LAI and stomatal conductance affect both the sources and sinks of O3 by 225	

altering precursor emissions and dry deposition at the 1-hour integration time step. 226	

The above processes are summarized in Fig. 1. To preserve the corresponding 227	

relationship between vegetation parameters and land cover map in the GC-YIBs 228	

model, we replace the Olson 2001 land cover map in GC with satellite-retrieved land 229	

cover dataset used by YIBs (Defries et al., 2000; Hanninen and Kramer, 2007). 230	

Stomatal resistance is first calculated for each of 9 PFTs at individual grid cells. The 231	

dry deposition velocity is then computed based on the area-weighted sum of stomatal 232	

resistance over all PFTs within the same grid. 233	

 234	

2.4 Model simulations 235	

We conduct six simulations to evaluate the performance of GC-YIBs and to quantify 236	

global O3 damage to vegetation (Table 1): (i) Offline, a control run using the offline 237	

GC-YIBs model. The YIBs module shares the same meteorological forcing as the GC 238	

module and predicts both GPP and LAI. However, predicted vegetation variables are 239	

not fed into GC, which is instead driven by prescribed LAI from Moderate Resolution 240	

Imaging Spectroradiometer (MODIS) product and parameterized canopy stomatal 241	
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conductance proposed by Gao and Wesely (1995). (ii) Online_LAI, a sensitive run 242	

using online GC-YIBs with dynamically predicted daily LAI from YIBs but original 243	

parameterizations of stomatal conductance. (iii) Online_GS, another sensitive run 244	

using YIBs predicted stomatal conductance but prescribed MODIS LAI. (iv) 245	

Online_ALL, in which both YIBs predicted LAI and stomatal conductance are used 246	

for GC. (v) Online_ALL_HS, the same as Online_ALL except that predicted surface 247	

O3 damages plant photosynthesis with high sensitivities. (vi) Online_ALL_LS, the 248	

same as Online_ALL_HS but with low O3 damaging sensitivities. Each simulation is 249	

run from 2006 to 2012 with the first 4 years for spin-up, and results from 2010 to 250	

2012 are used to evaluate the online GC-YIBs model. The differences between 251	

Online_ALL and Online_GS (Online_LAI) represent the effects of coupled LAI 252	

(stomatal conductance) on simulated [O3]. Differences between Offline and 253	

Online_ALL then represent joint effects of coupled LAI and stomatal conductance. 254	

The last three runs are used to quantify the global O3 damage on ecosystem 255	

productivity. 256	

 257	

2.5 Validation data 258	

We use observed LAI data for 2010–2012 from the MODIS product. Benchmark GPP 259	

product of 2010–2012 is estimated by upscaling ground-based FLUXNET eddy 260	

covariance data using a model tree ensemble approach (Jung et al., 2009). 261	

Measurements of surface [O3] over North America and Europe are provided by the 262	

Global Gridded Surface Ozone Dataset (Sofen et al., 2016), and those over China are 263	
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interpolated from data at ~1500 sites operated by China’s Ministry of Ecology and 264	

Environment (http://english.mee.gov.cn). We perform literature research to collect 265	

data of dry deposition velocity from 3 deciduous forest, 2 amazon forest, and 4 266	

coniferous forest sites (Table 2). 267	

 268	

3 Results 269	

3.1 Evaluation of offline GC-YIBs model 270	

The simulated GPP and LAI are compared with observations for the period of 271	

2010-2012 (Fig. 2). Observed LAI and benchmark GPP both show high values in the 272	

tropics and medium values in the northern mid-high latitudes. Compared to 273	

observations, the GC-YIBs model forced with MERRA2 meteorology depicts similar 274	

spatial distributions, with spatial correlation coefficients of 0.83 (p <0.01) for GPP 275	

and 0.86 (p <0.01) for LAI. Although the model overestimates LAI in the tropics and 276	

northern high latitudes by 1-2 m2 m-2, the simulated global area-weighted LAI (1.42 277	

m2 m-2) is close to observations (1.33 m2 m-2) with a normalized mean bias (NMB) of 278	

6.7%. Similar to LAI, the global NMB for GPP is only 7.1%, though there are 279	

substantial regional biases especially in Amazon and central Africa. Such differences 280	

are in part attributed to the underestimation of GPP for tropical rainforest in the 281	

benchmark product, because the recent simulations at eight rainforest sites with the 282	

YIBs model driven by a different meteorology dataset (Yue and Unger, 2015) 283	

reproduced ground-based observations well (Yue and Unger, 2018) 284	

 285	
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We then evaluate simulated annual mean surface [O3] during 2010-2012 (Fig. 3). The 286	

simulated high values are mainly located in the mid-latitudes of Northern Hemisphere 287	

(NH, Fig. 3a). Compared to observations, simulations show reasonable spatial 288	

distribution with a correlation coefficient of 0.63 (p <0.01). Although offline 289	

GC-YIBs model overestimates annual [O3] in southern China while predicts lower 290	

values in western Europe and western U.S., the simulated area-weighted surface [O3] 291	

(45.4 ppbv) is only 6% higher than observations (42.8 ppbv). Predicted summertime 292	

surface [O3] instead shows positive biases in eastern U.S. and Europe (Fig. S1), 293	

consistent with previous evaluations using the GC model (Schiferl and Heald, 2018; 294	

Travis et al., 2016; Yue and Unger, 2018). 295	

 296	

3.2 Changes of surface O3 in online GC-YIBs model  297	

Surface O3 is changed by the coupling of LAI and stomatal conductance (Fig. 4). 298	

Global [O3] shows similar patterns between offline (Fig. 3a) and online (Fig. 4a) 299	

simulations. However, the online GC-YIBs predicts larger [O3] of 0.5-2 ppbv in the 300	

mid-high latitudes of NH, leading to an average enhancement of [O3] by 0.22 ppbv 301	

compared to offline simulations (Fig. 4b). Regionally, some negative changes of 1-2 302	

ppbv can be found at the tropical regions. With sensitivity experiments Online_LAI 303	

and Online_GS (Table. 1), we separate the contributions of LAI and stomatal 304	

conductance changes to Δ[O3]. It is found that Δ[O3] between Online_ALL and 305	

Online_LAI (Fig. 4c) resembles the total Δ[O3] pattern (Fig. 4b), suggesting that 306	

changes in stomatal conductance play the dominant role in regulating surface [O3]. As 307	
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a comparison, Δ[O3] values between Online_ALL and Online_GS show limited 308	

changes globally (by 0.05 ppbv) and moderate changes in tropical regions (Fig. 4d), 309	

mainly because the LAI predicted by YIBs is close to MODIS LAI used in GC (Fig. 310	

2). It is noticed that the average Δ[O3] in Fig. 4b is not equal to the sum of Fig. 4c and 311	

Fig. 4d, because of the non-linear effects. 312	

 313	

We further explore the possible causes of differences in simulated [O3] between online 314	

and offline GC-YIBs models. Fig. 5 shows simulated annual O3 dry deposition 315	

velocity from online GC-YIBs model and its changes in different sensitivity 316	

experiments. The global average velocity is 0.25 cm s-1 with regional maximum of 317	

0.5-0.7 cm s-1 in tropical rainforest (Fig. 5a), especially over Amazon and central 318	

Africa where high ecosystem productivity is observed (Fig. 2). With implementation 319	

of YIBs into GC, simulated dry deposition velocity increases over tropical regions but 320	

decreases in mid-high latitudes of NH (Fig. 5b). Larger dry deposition results in lower 321	

[O3] in the tropics, while smaller dry deposition increases [O3] in boreal regions. Such 322	

spatial patterns are broadly consistent with Δ[O3] in online GC-YIBs (Fig. 4b), 323	

suggesting that changes of dry deposition velocity are the dominant drivers of O3 324	

changes. Both the updated LAI and stomatal conductance influence dry deposition. 325	

Sensitivity experiments further show that changes in dry deposition are mainly driven 326	

by coupled canopy stomatal conductance (Fig. 5c) instead of LAI (Fig. 5d), though 327	

the latter contributes to the enhanced dry deposition in the tropics. 328	

 329	
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The original GC dry deposition scheme applies fixed parameters for stomatal 330	

conductance of a specific land type (Fig. 6). The updated GC-YIBs model instead 331	

calculates stomatal conductance as a function of photosynthesis and environmental 332	

forcings (Equation 1). As a result, predicted dry deposition exhibits discrepancies 333	

among biomes (Fig. 7). For agricultural land and shrub/grassland, the simulated O3 334	

dry deposition velocity for online GC-YIBs model is close to GC model with NMBs 335	

of 3%, -2% and correlation coefficients of 0.96, 0.97, respectively. However, the 336	

simulated dry deposition velocity in online GC-YIBs is lower than GC by 18% for 337	

deciduous forest and 14% coniferous forest, but larger by 17% for Amazon forest. 338	

Such changes match the spatial pattern of dry deposition shown in Fig. 5b. 339	

 340	

Since the changes of O3 dry deposition velocity are mainly found in deciduous forest, 341	

coniferous forest, and amazon forest, we collect data at 9 sites across these three 342	

biomes to evaluate the online GC-YIBs model (Table. 2 and Fig. 6). For the 5 samples 343	

at deciduous forest, the normalized mean error (NME) decreases from 50% in GC 344	

model to 27% in GC-YIBs with lower relative errors in all sites (Fig. 8). Predictions 345	

with the GC-YIBs also show large improvements over coniferous forest, where 6 out 346	

of 9 samples showing lower (decreases from 48% in GC to 35% in GC-YIBs) errors. 347	

For amazon forest, the GC-YIBs model significantly improves the prediction at one 348	

site (117.9°E, 4.9°N) where the original error of -0.17 cm s-1 is limited to only 0.03 349	

cm s-1. However, the new model does not improve the prediction at the other amazon 350	

forest site. Overall, the simulated daytime O3 dry deposition velocities in online 351	
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GC-YIBs model are closer to observations than those in GC model with smaller NME 352	

(27% vs. 35%), root-mean-square errors (RMSE, 0.19 vs. 0.24) and higher correlation 353	

coefficients (0.85 vs. 0.76). Such improvements consolidate our strategies in updating 354	

GC model to the fully coupled GC-YIBs model. 355	

 356	

3.3 Assessment of global O3 damages to vegetation 357	

An important feature of GC-YIBs is the inclusion of online vegetation damages by 358	

surface O3. Here, we quantify the global O3 damages to GPP and LAI by conducting 359	

Online_ALL_HS and Online_ALL_LS simulations (Fig. 9). Due to O3 damaging, 360	

annual GPP declines from -2% (low sensitivity) to -5% (high sensitivity) on the global 361	

scale. Regionally, O3 decreases GPP as high as 11% in the eastern U.S. and up to 15% 362	

in eastern China at the high sensitivity (Figs. 9a, b). Such strong damages are related 363	

to (i) high ambient [O3] due to anthropogenic emissions and (ii) large stomatal 364	

conductance due to active ecosystem productivity in monsoon areas. The O3 effects 365	

are moderate in tropical areas, where stomatal conductance is also high while [O3] is 366	

very low (Fig. 4a) due to limited anthropogenic emissions. Furthermore, O3-induced 367	

GPP reductions are also small in western U.S. and western Asia. Although [O3] is high 368	

over these semi-arid regions (Fig. 4a), the drought stress decreases stomatal 369	

conductance and consequently constrains the O3 uptake. The damages to LAI (Figs. 370	

9c, d) generally follow the pattern of GPP reductions (Figs. 9a, b) but with lower 371	

magnitude. These results are slightly different from our previous studies which used 372	

prescribed LAI and/or surface [O3] in the simulations (Yue and Unger, 2014, 2015). 373	

 374	
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4 Conclusions and discussion 375	

The terrestrial biosphere and atmospheric chemistry interact through a series of 376	

feedbacks (Green et al., 2017). Among biosphere-chemistry interactions, dry 377	

deposition plays a key role in the exchange of compounds and acts as an important 378	

sink for several air pollutants (Verbeke et al., 2015). However, dry deposition is 379	

simply parameterized in most of current CTMs (Hardacre et al., 2015). For all 380	

chemical species considered in GC model, stomatal resistance cR  is simply 381	

calculated as the function of minimum stomatal resistance and meteorological 382	

forcings. Such parameterization not only induces biases, but also ignores the 383	

feedbacks from biosphere-chemistry interactions. For example, recent studies 384	

revealed that O3-induced damages to vegetation could reduce stomatal conductance 385	

and in turn alter ambient O3 level (Sadiq et al., 2017; Zhou et al., 2018). In this study, 386	

we implement YIBs into the GC model with fully interactive surface O3 and terrestrial 387	

biosphere. The dynamically predicted LAI and stomatal conductance from YIBs are 388	

instantly provided to GC, meanwhile the prognostic O3 simulated by GC is 389	

simultaneously affecting vegetation biophysics in YIBs. With these updates, simulated 390	

daytime O3 dry deposition velocities in GC-YIBs are closer to observations than those 391	

in original GC model.  392	

 393	

An earlier study updated dry deposition scheme in the Community Earth System 394	

Model (CESM) by implementing the leaf and stomatal resistances (Val Martin et al., 395	

2014). Compared to that work, the magnitudes of Δ[O3] in our simulations are smaller 396	
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in northern America, eastern Europe, and southern China. This might be because the 397	

original dry deposition scheme in the GC model (see validation in Fig. 7) is better 398	

than that in CESM, leaving limited potentials for improvements. In GC, the leaf 399	

cuticular resistance ( luR ) is dependent on LAI (Gao and Wesely, 1995), while the 400	

original calculation of luR  in CESM does not include LAI (Wesely, 1989). In 401	

addition, differences in the canopy schemes for stomatal conductance between YIBs 402	

and Community Land Model (CLM) may cause different responses in dry deposition, 403	

which is changed by -0.12 to 0.16 cm s-1 in GC-YIBs but much larger by -0.15 to 0.25 404	

cm s-1 in CESM (Val Martin et al., 2014). Moreover, the GC-YIBs is driven with 405	

prescribed reanalysis while CESM dynamically predicts climatic variables. 406	

Perturbations of meteorology in response to terrestrial properties may further magnify 407	

the variations in atmospheric components in CESM.  408	

 409	

Although we implement YIBs into GC with fully interactive surface O3 and terrestrial 410	

biosphere, it should be noted that considerable limits still exist and further 411	

developments are required for GC-YIBs. (1) Atmospheric nitrogen alters plant growth 412	

and further influences both the sources and sinks of surface O3 through surface–413	

atmosphere exchange processes (Zhao et al., 2017). However, the YIBs model 414	

currently utilizes a fixed nitrogen level and does not include an interactive nitrogen 415	

cycle, which may induce uncertainties in simulating carbon fluxes. (2) The current 416	

GC-YIBs is limited to a low resolution due to slow computational speed and high 417	

computational costs for long-term integrations. The GC model, even at the 2°×2.5° 418	
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resolution, takes days to simulate 1 model year due to comprehensive 419	

parameterizations of physical and chemical processes. Such low speed constrains 420	

long-term spin up required by dynamical vegetation models. (3) Validity of Δ[O3], 421	

especially those at high latitudes in NH, cannot be directly evaluated due to a lack of 422	

measurements. Although changes of dry deposition show improvements in GC-YIBs, 423	

the ultimate effects on surface [O3] remain unclear within the original GC framework.  424	

 425	

Despite these deficits, the development of GC-YIBs provides a unique tool for 426	

studying biosphere-chemistry interactions. In the future, we will extend our 427	

applications in: (1) Air pollution impacts on biosphere, including both O3 and aerosol 428	

effects. The GC-YIBs model can predict atmospheric aerosols, which affect both 429	

direct and diffuse radiation through the Rapid Radiative Transfer Model for GCMs 430	

(RRTMG) in the GC module (Schiferl and Heald, 2018). The diffuse fertilization 431	

effects in the YIBs model have been fully evaluated (Yue and Unger, 2018), and as a 432	

result we can quantify the impacts of aerosols on terrestrial ecosystems. (2) Multiple 433	

schemes for BVOC emissions. The YIBs model incorporates both MEGAN (Guenther 434	

et al., 2006) and photosynthesis-dependent (Unger, 2013) isoprene emission schemes 435	

(Yue and Unger, 2015). The two schemes within the GC-YIBs framework can be used 436	

and compared for simulations of BVOC and consequent air pollution (e.g., O3, 437	

secondary organic aerosols). (3) Biosphere-chemistry feedbacks to air pollution. The 438	

effects of air pollution on the biosphere include changes in stomatal conductance, LAI, 439	

and BVOC emissions, which in turn modify the sources and sinks of atmospheric 440	
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components. Only a few studies have quantified these feedbacks for O3-vegetation 441	

interactions (Sadiq et al., 2017; Zhou et al., 2018). We can explore the full 442	

biosphere-chemistry coupling for both O3 and aerosols using the GC-YIBs model in 443	

the future. 444	

 445	

Code availability 446	

The YIBs model was developed by Xu Yue and Nadine Unger with code sharing at 447	
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 684	

Table 1 Summary of simulations using the GC-YIBs model 685	

Name Scheme Ozone effects 

Offline Monthly prescribed MODIS LAI  

Original dry deposition scheme 

No 

Online_LAI Daily dynamically predicted LAI 

Original dry deposition scheme 

No 

Online_GS Monthly prescribed MODIS LAI 

Hourly predicted stomatal conductance 

No 

Online_ALL Daily dynamically predicted LAI 

Hourly predicted stomatal conductance  

No 

Online_ALL_HS Daily dynamically predicted LAI 

Hourly predicted stomatal conductance  

Hourly predicted [O3] by GC model 

 

High 

Online_ALL_LS Daily dynamically predicted LAI 

Hourly predicted stomatal conductance  

Hourly predicted [O3] by GC model 

 

Low 

 686	
 687	
 688	
 689	
 690	
 691	
 692	
 693	
 694	
 695	
 696	
 697	
 698	
 699	
 700	
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Table.2 List of measurement sites used for dry deposition evaluation 702	

Land type Longitude Latitude Season Vd (daytime, 
cm s-1) 

Citation 

Deciduous 
forest 

80.9°W 44.3°N summer 0.92 (Padro et 
al., 1991)   winter 0.28 

72.2°W 42.7°N summer 0.61 (Munger et 
al., 1996)   winter 0.28 

75.2°W 43.6°N summer 0.82 
Amazon 

forest 
61.8°W 10.1°S wet 1.1 (Rummel et 

al., 2007) 
117.9°E 4.9°N wet 1.0 (Fowler et 

al., 2011) 
Coniferous 

forest 
3.4°W 55.3°N spring 0.58 (Coe et al., 

1995) 
 66.7°W 54.8°N summer 0.26 (Munger et 

al., 1996) 
 11.1°E 60.4°N spring 0.31 (Hole et al., 

2004)    summer 0.48 
   autumn 0.2 
   winter 0.074 
 8.4°E 56.3°N spring 0.68 (Mikkelsen 

et al., 2004)    summer 0.8 
   autumn 0.83 

 703	

 704	
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 705	

Figure 1 Diagram of the GC-YIBs global carbon-chemistry model. Processes with 706	

red fonts are implemented in this study. Processes with blue dashed box will be 707	

developed in the future. 708	
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 709	

Figure 2 Annual gross primary productivity (GPP) and leaf area index (LAI) from 710	

simulations (a, b), observations (c, d), and their differences (e, f) averaged for period 711	

of 2010-2012. Global area-weighted GPP and LAI are shown on the title brackets. 712	

The correlation coefficients (R) and global normalized mean biases (NMB) are shown 713	

in the bottom figures. 714	

 715	
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 716	

Figure 3 Annual surface O3 concentrations ([O3]) from simulations (a), observations 717	

(b), and their differences (c) averaged for period of 2010-2012. Global area-weighted 718	

surface [O3] over grids with available observations are shown on the title brackets. 719	

The correlation coefficient (R) and global normalized mean biases (NMB) are shown 720	

in the bottom figures with indication of grid numbers (N) used for statistics. 721	

 722	
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 723	

Figure 4 Simulated annual surface [O3] from online GC-YIBs model (a) and its 724	

changes (b-d) relative to offline simulations. Changes of [O3] are caused by (b) jointly 725	

coupled LAI and stomatal conductance (Online_ALL – Offline), (c) coupled stomatal 726	

conductance alone (Online_ALL – Online_LAI), and (d) coupled LAI alone 727	

(Online_ALL – Online_GS). Global area-weighted [O3] or Δ[O3] are shown in the 728	

figures. 729	
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 730	

Figure 5 Simulated annual O3 dry deposition velocity from online GC-YIBs model (a) 731	

and its changes caused by coupled LAI and stomatal conductance (b-d) averaged for 732	

period of 2010-2012. The changes of dry deposition velocity are driven by (b) 733	

coupled LAI and stomatal conductance (Online_ALL – Offline), (c) coupled stomatal 734	

conductance alone (Online_ALL – Online_LAI), and (d) coupled LAI alone 735	

(Online_ALL – Online_GS). Global area-weighted annual O3 dry deposition velocity 736	

and changes are shown in the figures. 737	
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 739	

Figure 6 The major dry deposition type at each grid cell in GC model. Black dots 740	

indicate the locations of measurement sites used in evaluation (Table 2). DF, CF, AL, 741	

SG, AF represent deciduous forest, coniferous forest, agricultural land, 742	

shrub/grassland, and amazon forest, respectively. 743	

 744	

 745	

 746	
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 747	

Figure 7 Comparisons of annual O3 dry deposition velocity between online GC-YIBs 748	

and GC models for different land types, including (a) Deciduous forest, (b) 749	

Coniferous forest, (c) Agricultural land, (d) Shrub/grassland, and (e) Amazon forest. 750	

The box plots of dry deposition velocity simulated by online GC-YIBs (blue) and GC 751	

models (red) for different land types are shown in (f). Each point in (a)-(e) represents 752	

annual O3 dry deposition velocity at one grid point averaged for period of 2010-2012. 753	

The red lines indicate linear regressions between predictions from GC-YIBs and GC 754	

models. The regression fit, correlation coefficient (R), and normalized mean biases 755	

(NMB) are shown on each panel. 756	
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 757	

Figure 8 Comparison between observed and simulated O3 dry deposition velocity at 758	

observational sites. The different marker types represent different land types. The blue 759	

and red markers represent the simulation results from online GC-YIBs and GC 760	

models, respectively. The blue and red lines indicate linear regressions between 761	

simulations and observations. The regression fits, root-mean-square errors (RMSE), 762	

normalized mean errors (NME) and correlation coefficients for GC-YIBs (blue) and 763	

GC (red) models are also shown. 764	
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 765	

Figure 9 Percentage changes in (a, b) GPP and (c, d) LAI caused by O3 damaging 766	

effects with (a, c) low and (b, d) high sensitivities. Both changes of GPP and LAI are 767	

averaged for 2010–2012.  768	
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