
1

OpenArray v1.0: A Simple Operator Library for the Decoupling of 1

Ocean Modelling and Parallel Computing 2

 3

Xiaomeng Huang1,2,3, Xing Huang1,3, Dong Wang1,3, Qi Wu1, Yi Li3, Shixun Zhang3, 4

Yuwen Chen1, Mingqing Wang1,3, Yuan Gao1, Qiang Tang1, Yue Chen1, Zheng Fang1, 5

Zhenya Song2,4, Guangwen Yang1,3 6

 7
1 Ministry of Education Key Laboratory for Earth System Modeling, Department of 8

Earth System Science, Tsinghua University, Beijing 100084, China 9
2 Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National 10

Laboratory for Marine Science and Technology, Qingdao, 266237, China 11
3 National Supercomputing Center in Wuxi, Wuxi, 214011, China 12
4 First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, 13

China 14

 15

Corresponding author: hxm@tsinghua.edu.cn 16

Abstract 17

The rapidly evolving computational techniques are making a large gap between 18

scientific aspiration and code implementation in climate modelling. In this work, we 19

design a simple computing library to bridge the gap and decouple the work of ocean 20

modelling from parallel computing. This library provides twelve basic operators that 21

feature user-friendly interfaces, effective programming and implicit parallelism. 22

Several state-of-art computing techniques, including computing graph and Just-In-Time 23

compiling are employed to parallelize the seemly serial code and speed up the ocean 24

models. These operator interfaces are designed using native Fortran programming 25

language to smooth the learning curve. We further implement a highly readable and 26

efficient ocean model that contains only 1860 lines of code but achieves a 91% parallel 27

efficiency in strong scaling and 99% parallel efficiency in weak scaling with 4096 Intel 28

CPU cores. This ocean model also exhibits excellent scalability on the heterogeneous 29

2

Sunway TaihuLight supercomputer. This work presents a promising alternative tool for 30

the development of ocean models. 31

 32

Keywords: implicit parallelism, operator, ocean modelling, parallel computing 33

3

1. Introduction 34

Many earth system models have been developed in the past several decades to improve 35

the predictive understanding of the earth system (Bonan and Doney, 2018; Collins et 36

al., 2018; Taylor et al., 2012). These models are becoming increasingly complicated, 37

and the amount of code has expanded from a few thousand lines to tens of thousands, 38

or even millions of lines. In terms of software engineering, an increase in code causes 39

the models to be more difficult to develop and maintain. 40

 41

The complexity of these models mainly originates from three aspects. First, more model 42

components and physical processes have been embedded into the earth system models, 43

leading to a tenfold increase in the amount of code (e.g., Alexander and Easterbrook, 44

2015). Second, some heterogeneous and advanced computing platforms (e.g., 45

Lawrence et al., 2018) have been widely used by the climate modelling community, 46

resulting in a fivefold increase in the amount of code (e.g., Xu et al., 2015). Last, most 47

of the model programs need to be rewritten due to the continual development of novel 48

numerical methods and meshes. The promotion of novel numerical methods and 49

technologies produced in the fields of computational mathematics and computer 50

science have been limited in climate science because of the extremely heavy burden 51

caused by program rewriting and migration. 52

 53

Over the next few decades, tremendous computing capacities will be accompanied by 54

more heterogeneous architectures which are equipped with two or more kinds of cores 55

or processing elements (Shan, 2006), thus making for a much more sophisticated 56

computing environment for climate modellers than ever before (Bretherton et al., 2012). 57

Clearly, transiting the current earth system models to the next generation of computing 58

environments will be highly challenging and disruptive. Overall, complex codes in 59

earth system models combined with rapidly evolving computational techniques create 60

a very large gap between scientific aspiration and code implementation in the climate 61

modelling community. 62

4

 63

To reduce the complexity of earth system models and bridge this gap, a universal and 64

productive computing library is a promising solution. Through establishing an implicit 65

parallel and platform-independent computing library, the complex models can be 66

simplified and will no longer need explicit parallelism and transiting, thus effectively 67

decoupling the development of ocean models from complicated parallel computing 68

techniques and diverse heterogeneous computing platforms. 69

 70

Many efforts have been made to address the complexity of parallel programming for 71

numerical simulations, such as operator overloading, source-to-source translator and 72

domain specific language (DSL). Operator overloading supports the customized data 73

type and provides simple operators and function interfaces to implement the model 74

algorithm. This technique is widely used because the implementation is straightforward 75

and easy to understand (Corliss and Griewank, 1994; Walther et al., 2003). However, it 76

is prone to work inefficiently because overloading execution induces numerous 77

unnecessary intermediate variables, consuming valuable memory bandwidth resources. 78

Using a source-to-source translator offers another solution. As indicated by the name, 79

this method converts one language, which is usually strictly constrained by self-defined 80

rules, to another (Bae et al., 2013; Lidman et al., 2012). It requires tremendous work to 81

develop and maintain a robust source-to-source compiler. Furthermore, DSLs can 82

provide high-level abstraction interfaces that use mathematical notations similar to 83

those used by domain scientists, so that they can write much more concise and more 84

straightforward code. Some outstanding DSLs, such as ATMOL (van Engelen, 2001), 85

ICON DSL (Torres et al., 2013), STELLA (Gysi et al., 2015) and ATLAS (Deconinck 86

et al., 2017), are used by the numerical model community. Although they seem source-87

to-source technique, DSLs are newly-defined languages and produce executable 88

programs instead of target languages. Therefore the new syntax makes it difficult for 89

the modellers to master the DSLs. In addition, most DSLs are not yet supported by 90

robust compilers due to their relatively short history. Most of the source-to-source 91

5

translators and DSLs still do not support the rapidly evolving heterogeneous computing 92

platforms, such as the Chinese Sunway TaihuLight supercomputer which is based on 93

the homegrown Sunway heterogeneous many-core processors and located at the 94

National Supercomputing Center in Wuxi. 95

 96

Other methods such as COARRAY Fortran and CPP templates provide alternative ways. 97

Using COARRAY Fortran, a modeller has to control the reading and writing operation 98

of each image (Mellor-Crummey et al., 2009). In a sense, one has to manipulate the 99

images in parallel instead of writing serial code. In term of CPP templates, it is usually 100

suitable for small code and difficult for debugging (Porkoláb et al., 2007). 101

 102

Inspired by the philosophy of operator overloading, source-to-source translating and 103

DSLs, we integrated the advantages of these three methods into a simple computing 104

library which is called OpenArray. The main contributions of OpenArray are as follows: 105

• Easy-to-use. The modellers can write simple operator expressions in Fortran to 106

solve partial differential equations (PDEs). The entire program appears to be 107

serial and the modellers do not need to know any parallel computing techniques. 108

We summarized twelve basic generalized operators to support whole 109

calculations in a particular class of ocean models which use the finite difference 110

method and staggered grid. 111

• High efficiency. We adopt some advanced techniques, including intermediate 112

computation graphing, asynchronous communication, kernel fusion, loop 113

optimization, and vectorization, to decrease the consumption of memory 114

bandwidth and improve efficiency. Performance of the programs implemented 115

by OpenArray is similar to the original but manually optimized parallel program. 116

• Portability. Currently OpenArray supports both CPU and Sunway platforms. 117

More platforms including GPU will be supported in the future. The complexity 118

of cross-platform migration is moved from the models to OpenArray. The 119

applications based on OpenArray can then be migrated seamlessly to the 120

6

supported platforms. 121

 122

Furthermore, we developed a numerical ocean model based on the Princeton Ocean 123

Model (POM, Blumberg and Mellor, 1987) to test the capability and efficiency of 124

OpenArray. The new model is called the Generalized Operator Model of the Ocean 125

(GOMO). Because the parallel computing details are completely hidden, GOMO 126

consists of only 1860 lines of Fortran code and is more easily understood and 127

maintained than the original POM. Moreover, GOMO exhibits excellent scalability and 128

portability on both central processing unit (CPU) and Sunway platforms. 129

 130

The remainder of this paper is organized as follows. Section 2 introduces some concepts 131

and presents the detailed mathematical descriptions of formulating the PDEs into 132

operator expressions. Section 3 describes the detailed design and optimization 133

techniques of OpenArray. The implementation of GOMO is described in section 4. 134

Section 5 evaluates the performances of OpenArray and GOMO. Finally, discussion 135

and conclusion are given in section 6 and 7, respectively. 136

 137

2. Concepts of the Array, Operator, and Abstract Staggered Grid 138

In this section, we introduce three important concepts in OpenArray: Array, Operator 139

and Abstract Staggered Grid to illustrate the design of OpenArray. 140

 141

2.1 Array 142

To achieve this simplicity, we designed a derived data type, Array, which inspired our 143

project name, OpenArray. The new Array data type comprises a series of information, 144

including a 3-dimensional (3D) array to store data, a pointer to the computational grid, 145

a Message Passing Interface (MPI) communicator, the size of the halo region and other 146

information about the data distribution. All the information is used to manipulate the 147

Array as an object to simplify the parallel computing. In traditional ocean models, 148

calculations for each grid point and the i, j, and k loops in the horizontal and vertical 149

7

directions are unavoidable. The advantage of taking the Array as an object is the 150

significant reduction in the number of loop operations in the models, making the code 151

more intuitive and readable. When using the OpenArray library in a program, one can 152

use type(Array) to declare new variables. 153

 154

2.2 Operator 155

To illustrate the concept of an operator, we first take a 2-dimensional (2D) continuous 156

equation solving sea surface elevation as an example: 157
𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0, (1) 158

where η is the surface elevation, U and V are the zonal and meridional velocities, and 159

D is the depth of the fluid column. We choose the finite difference method and staggered 160

Arakawa C grid scheme, which are adopted by most regional ocean models. In Arakawa 161

C grid, D is calculated at the centers, U component is calculated at the left and right 162

side of the variable D, V component is calculated at the lower and upper side of the 163

variable D (Fig. 1). Variables (D, U, V) located at different positions own different sets 164

of gird increments. Taking the term 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 as an example, we firstly apply linear 165

interpolation to obtain the D’s value at U point represented by tmpD. Through a 166

backward difference to the product of tmpD and U, then the discrete expression of 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 167

can be obtained. 168

tmpD(i+1,j) = 0.5*(D(i+1,j)+D(i,j))*U(i+1,j), (2) 169

and 170

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝑡𝑡𝑡𝑡𝜕𝜕(𝑖𝑖+1,𝑗𝑗)−𝜕𝜕𝑡𝑡𝑡𝑡𝜕𝜕(𝑖𝑖,𝑗𝑗)
𝑑𝑑𝜕𝜕(𝑖𝑖,𝑗𝑗)∗ = 0.5∗�𝜕𝜕(𝑖𝑖+1,𝑗𝑗)+𝜕𝜕(𝑖𝑖,𝑗𝑗)�∗𝜕𝜕(𝑖𝑖+1,𝑗𝑗)−0.5∗�𝜕𝜕(𝑖𝑖,𝑗𝑗)+𝜕𝜕(𝑖𝑖−1,𝑗𝑗)�∗𝜕𝜕(𝑖𝑖,𝑗𝑗)

𝑑𝑑𝜕𝜕(𝑖𝑖,𝑗𝑗)∗ , (3) 171

where 𝑑𝑑𝑑𝑑(𝑖𝑖, 𝑗𝑗)∗=0.5*(dx(i,j) + dx(i-1,j)). 172

 173

In this way, the above continuous equation can be discretized into the following form. 174

𝜂𝜂𝑡𝑡+1(𝑖𝑖,𝑗𝑗)−𝜂𝜂𝑡𝑡−1(𝑖𝑖,𝑗𝑗)
2∗𝑑𝑑𝜕𝜕

+ 0.5∗�𝜕𝜕(𝑖𝑖+1,𝑗𝑗)+𝜕𝜕(𝑖𝑖,𝑗𝑗)�∗𝜕𝜕(𝑖𝑖+1,𝑗𝑗)−0.5∗�𝜕𝜕(𝑖𝑖,𝑗𝑗)+𝜕𝜕(𝑖𝑖−1,𝑗𝑗)�∗𝜕𝜕(𝑖𝑖,𝑗𝑗)
𝑑𝑑𝜕𝜕(𝑖𝑖,𝑗𝑗)∗ +175

 0.5∗�𝜕𝜕(𝑖𝑖,𝑗𝑗+1)+𝜕𝜕(𝑖𝑖,𝑗𝑗)�∗𝜕𝜕(𝑖𝑖,𝑗𝑗+1)−0.5∗�𝜕𝜕(𝑖𝑖,𝑗𝑗)+𝜕𝜕(𝑖𝑖,𝑗𝑗−1)�∗𝜕𝜕(𝑖𝑖,𝑗𝑗)
𝑑𝑑𝜕𝜕(𝑖𝑖,𝑗𝑗)∗ = 0, (4) 176

8

where 𝑑𝑑𝑑𝑑(𝑖𝑖, 𝑗𝑗)∗ =0.5*(dx(i,j) + dx(i-1,j)), 𝑑𝑑𝑑𝑑(𝑖𝑖, 𝑗𝑗)∗ =0.5*(dy(i,j) + dy(i,j-1)), 177

subscripts ηt+1 and ηt-1 denote the surface elevations at the (t+1) time step and (t-1) time 178

step. To simplify the discrete form, we introduce some notation for the differentiation 179

(𝛿𝛿𝑓𝑓𝜕𝜕 , 𝛿𝛿𝑏𝑏
𝜕𝜕) and interpolation (()���𝑓𝑓𝜕𝜕 , ()���𝑏𝑏

𝜕𝜕). The δ and overbar symbols define the 180

differential operator and average operator. The subscript x or y denotes that the 181

operation acts in the x or y direction, and the superscript f or b denotes that the 182

approximation operation is forward or backward. 183

 184

Table 1 lists the detailed definitions of the twelve basic operators. The term var denotes 185

a 3D model variable. All twelve operators for the finite difference calculations are 186

named using three letters in the form [A|D][X|Y|Z][F|B]. The first letter contains two 187

options, A or D, indicating an average or a differential operator. The second letter 188

contains three options, X, Y or Z, representing the direction of the operation. The last 189

letter contains two options, F or B, representing forward or backward operation. The 190

dx, dy and dz are the distances between two adjacent grid points along the x, y and z 191

directions. 192

Using the basic operators, Eq. (4) is expressed as: 193

𝜂𝜂𝑡𝑡+1−𝜂𝜂𝑡𝑡−1
2∗𝑑𝑑𝜕𝜕

+ 𝛿𝛿𝑓𝑓𝜕𝜕(𝐷𝐷�𝑏𝑏𝜕𝜕 ∗ 𝑈𝑈) + 𝛿𝛿𝑓𝑓
𝜕𝜕� 𝐷𝐷�𝑏𝑏

𝜕𝜕 ∗ 𝑉𝑉� = 0 . (5) 194

Thus, 195

𝜂𝜂𝜕𝜕+1 = 𝜂𝜂𝜕𝜕−1 − 2 ∗ 𝑑𝑑𝑑𝑑 ∗ �𝛿𝛿𝑓𝑓𝜕𝜕(𝐷𝐷�𝑏𝑏𝜕𝜕 ∗ 𝑈𝑈) + 𝛿𝛿𝑓𝑓
𝜕𝜕� 𝐷𝐷�𝑏𝑏

𝜕𝜕 ∗ 𝑉𝑉��. (6) 196

Then, Eq. (6) can be easily translated into a line of code using operators (the bottom 197

left panel in Fig. 2). Compared with the pseudo-codes (the right panel), the 198

corresponding implementation by operators is more straightforward and more 199

consistent with the equations. 200

 201

Next, we will use the operators in shallow water equations, which are more complicated 202

than those in the previous case. Assuming that the flow is in hydrostatic balance and 203

that the density and viscosity coefficients are constant, and neglecting the molecular 204

friction, the shallow water equations are: 205

𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0, (7) 206

9

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝑓𝑓𝑉𝑉𝐷𝐷 = −𝑔𝑔𝐷𝐷 𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

+ 𝜇𝜇𝐷𝐷 �𝜕𝜕
2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

�, (8) 207

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑓𝑓𝑈𝑈𝐷𝐷 = −𝑔𝑔𝐷𝐷 𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

+ 𝜇𝜇𝐷𝐷 �𝜕𝜕
2𝜕𝜕

𝜕𝜕𝜕𝜕2
+ 𝜕𝜕2𝜕𝜕

𝜕𝜕𝜕𝜕2
�, (9) 208

where f is the Coriolis parameter, g is the gravitational acceleration, and μ is the 209

coefficient of kinematic viscosity. Using the Arakawa C grid and leapfrog time 210

difference scheme, the discrete forms represented by operators are shown in Eq. (10) ~ 211

Eq. (12). 212
𝜂𝜂𝑡𝑡+1−𝜂𝜂𝑡𝑡−1

2∗𝑑𝑑𝜕𝜕
+ 𝛿𝛿𝑓𝑓𝜕𝜕(𝐷𝐷�𝑏𝑏𝜕𝜕 ∗ 𝑈𝑈) + 𝛿𝛿𝑓𝑓

𝜕𝜕�𝐷𝐷�𝑏𝑏
𝜕𝜕 ∗ 𝑉𝑉� = 0, (10) 213

𝜕𝜕𝑡𝑡+1𝜕𝜕𝑡𝑡+1−𝜕𝜕𝑡𝑡−1𝜕𝜕𝑡𝑡−1
2∗𝑑𝑑𝜕𝜕

+ 𝛿𝛿𝑏𝑏𝜕𝜕� 𝐷𝐷�𝑏𝑏𝜕𝜕 ∗ 𝑈𝑈 ���������� 𝑓𝑓𝜕𝜕 ∗ 𝑈𝑈�𝑓𝑓𝜕𝜕� + 𝛿𝛿𝑓𝑓
𝜕𝜕 �𝐷𝐷�𝑏𝑏

𝜕𝜕 ∗ 𝑉𝑉 ���������
𝑏𝑏
𝜕𝜕 ∗ 𝑈𝑈�𝑏𝑏

𝜕𝜕� − 𝑓𝑓 𝑉𝑉� 𝑓𝑓
𝜕𝜕 ∗ 𝐷𝐷 ������������

 𝑏𝑏
 𝜕𝜕 = −𝑔𝑔 ∗214

𝐷𝐷�𝑏𝑏𝜕𝜕 ∗ 𝛿𝛿𝑏𝑏𝜕𝜕(𝜂𝜂) + 𝜇𝜇 ∗ 𝐷𝐷�𝑏𝑏𝜕𝜕 ∗ �𝛿𝛿𝑏𝑏𝜕𝜕 �𝛿𝛿𝑓𝑓𝜕𝜕(𝑈𝑈𝜕𝜕−1)�+ 𝛿𝛿𝑓𝑓
𝜕𝜕 �𝛿𝛿𝑏𝑏

𝜕𝜕(𝑈𝑈𝜕𝜕−1)��, (11) 215

𝜕𝜕𝑡𝑡+1𝜕𝜕𝑡𝑡+1−𝜕𝜕𝑡𝑡−1𝜕𝜕𝑡𝑡−1
2∗𝑑𝑑𝜕𝜕

+ 𝛿𝛿𝑓𝑓𝜕𝜕�𝐷𝐷�𝑏𝑏𝜕𝜕 ∗ 𝑈𝑈 ���������
𝑏𝑏
𝜕𝜕 ∗ 𝑉𝑉� 𝑏𝑏

𝜕𝜕�+ 𝛿𝛿𝑏𝑏
𝜕𝜕 �𝐷𝐷�𝑏𝑏

𝜕𝜕 ∗ 𝑉𝑉 ��������� 𝑓𝑓
𝜕𝜕 ∗ 𝑉𝑉� 𝑓𝑓

𝜕𝜕� + 𝑓𝑓𝑈𝑈�𝑓𝑓𝜕𝜕 ∗ 𝐷𝐷 �����������
 𝑏𝑏
 𝜕𝜕 = −𝑔𝑔 ∗216

𝐷𝐷�𝑏𝑏
𝜕𝜕 ∗ 𝛿𝛿𝑏𝑏

𝜕𝜕(𝜂𝜂) + 𝜇𝜇 ∗ 𝐷𝐷�𝑏𝑏
𝜕𝜕 ∗ �𝛿𝛿𝑓𝑓𝜕𝜕�𝛿𝛿𝑏𝑏𝜕𝜕(𝑉𝑉𝜕𝜕−1)�+ 𝛿𝛿𝑏𝑏

𝜕𝜕 �𝛿𝛿𝑓𝑓
𝜕𝜕(𝑉𝑉𝜕𝜕−1)�� . (12) 217

As the shallow water equations are solved, spatial average and differential operations 218

are called repeatedly. Implementing these operations is troublesome and thus it is 219

favourable to abstract these common operations from PDEs and encapsulate them into 220

user-friendly, platform-independent, and implicit parallel operators. As shown in Fig. 221

3, we require only 3 lines of code to solve the shallow water equations. This more 222

realistic case suggests that even more complex PDEs can be constructed and solved by 223

following this elegant approach. 224

 225

2.3 Abstract staggered grid 226

Most ocean models are implemented based on the staggered Arakawa grids (Arakawa 227

and Lamb, 1981; Griffies et al., 2000). The variables in ocean models are allocated at 228

different grid points. The calculations that use these variables are performed after 229

several reasonable interpolations or differences. When we call the differential 230

operations on a staggered grid, the difference value between adjacent points should be 231

divided by the grid increment to obtain the final result. Setting the correct grid 232

increment for modellers is troublesome work that is extremely prone to error, especially 233

10

when the grid is nonuniform. Therefore, we propose an abstract staggered grid to 234

support flexible switching of operator calculations among different staggered grids. 235

When the grid information is provided at the initialization phase of OpenArray, a set of 236

grid increments, including horizontal increments (dx(i,j), dy(i,j)) and vertical increment 237

(dz(k)), will be combined with each corresponding physical variable through grid 238

binding. Thus, the operators can implicitly set the correct grid increments for different 239

Array variables, even if the grid is nonuniform. 240

 241

As shown in Fig. 4, the cubes in the (a), (b), (c), and (d) panels are the minimum abstract 242

grid accounting for 1/8 of the volume of the cube in Panel (e). The eight points of each 243

cube are numbered sequentially from 0 to 7, and each point has a set of grid increments, 244

i.e., dx, dy and dz. For example, all the variables of an abstract Arakawa A grid are 245

located at Point 3. For the Arakawa B grid, the horizontal velocity Array (U, V) is 246

located at Point 0, the temperature (T), the salinity (S), and the depth (D) are located at 247

Point 3, and the vertical velocity Array (W) is located at Point 7. For the Arakawa C 248

grid, Array U is located at Point 2 and Array V is located at Point 1. In contrast, for the 249

Arakawa D grid, Array U is located at Point 1 and Array V is located at Point 2. 250

 251

When we call the average and differential operators mentioned in Table 1, for example, 252

on the abstract Arakawa C grid, the position of Array D is Point 3, and the average AXB 253

operator acting on Array D will change the position from Point 3 to Point 1. Since Array 254

U is also allocated at Point 1, the operation AXB(D)*U is allowed. In addition, the 255

subsequent differential operator on Array AXB(D)*U will change the position of Array 256

DXF(AXB(D)*U) from Point 1 to Point 3. 257

 258

The jumping rules of different operators are given in Table 2. Due to the design of the 259

abstract staggered grids, the jumping rules for the Arakawa A, B, C, and D grids are 260

fixed. A change in the position of an array is determined only by the direction of a 261

certain operator acting on that array. 262

11

 263

If users change the Arakawa grid type, first the position information of each physical 264

variable need to be reset (Shown in Fig. 4). Then the discrete form of each equation 265

needs to be redesigned. We take the Eq. (1) switching from Arakawa C grid to Arakawa 266

B grid as an example. The positions of the horizontal velocity Array U and Array V are 267

changed to Point 0, Array η and Array D stay the same. The discrete form is changed 268

from Eq. (4) to Eq. (13), the corresponding implementation by operators is changed 269

from Eq. (6) to Eq. (14). 270

𝜂𝜂𝑡𝑡+1(𝑖𝑖,𝑗𝑗)−𝜂𝜂𝑡𝑡−1(𝑖𝑖,𝑗𝑗)
2∗𝑑𝑑𝜕𝜕

+ 0.25∗�𝜕𝜕(𝑖𝑖+1,𝑗𝑗)+𝜕𝜕(𝑖𝑖,𝑗𝑗)�∗(𝜕𝜕(𝑖𝑖+1,𝑗𝑗)+𝜕𝜕(𝑖𝑖+1,𝑗𝑗+1))−0.25∗�𝜕𝜕(𝑖𝑖,𝑗𝑗)+𝜕𝜕(𝑖𝑖−1,𝑗𝑗)�∗(𝜕𝜕(𝑖𝑖,𝑗𝑗)+𝜕𝜕(𝑖𝑖,𝑗𝑗+1))
𝑑𝑑𝜕𝜕(𝑖𝑖,𝑗𝑗)∗ +271

 0.25∗�𝜕𝜕(𝑖𝑖,𝑗𝑗+1)+𝜕𝜕(𝑖𝑖,𝑗𝑗)�∗(𝜕𝜕(𝑖𝑖,𝑗𝑗+1)+𝜕𝜕(𝑖𝑖+1,𝑗𝑗+1))−0.25∗�𝜕𝜕(𝑖𝑖,𝑗𝑗)+𝜕𝜕(𝑖𝑖,𝑗𝑗−1)�∗(𝜕𝜕(𝑖𝑖,𝑗𝑗)+𝜕𝜕(𝑖𝑖+1,𝑗𝑗))
𝑑𝑑𝜕𝜕(𝑖𝑖,𝑗𝑗)∗ = 0 , 272

 (13) 273

𝜂𝜂𝜕𝜕+1 = 𝜂𝜂𝜕𝜕−1 − 2 ∗ 𝑑𝑑𝑑𝑑 ∗ �𝛿𝛿𝑓𝑓𝜕𝜕� 𝐷𝐷�𝑏𝑏𝜕𝜕 ∗ 𝑈𝑈�𝑓𝑓
𝜕𝜕�+ 𝛿𝛿𝑓𝑓

𝜕𝜕� 𝐷𝐷�𝑏𝑏
𝜕𝜕 ∗ 𝑉𝑉�𝑓𝑓𝜕𝜕��. (14) 274

The position information and jumping rules are used to implicitly check whether the 275

discrete form of an equation is correct. The grid increments are hidden by all the 276

differential operators, thus it makes the code simple and clean. In addition, since the 277

rules are suitable for multiple staggered Arakawa grids, the modellers can flexibly 278

switch the ocean model between different Arakawa grids. Notably, the users of 279

OpenArray should input the correct positions of each array in the initialization phase. 280

The value of the position is an input parameter when declaring an Array. An error will 281

be reported if an operation is performed between misplaced points. 282

 283

Although most of the existing ocean models use finite difference or finite volume 284

methods on structured or semi-structured meshes (e.g., Blumberg and Mellor, 1987; 285

Shchepetkin and McWilliams, 2005), there are still some ocean models using 286

unstructured meshes (e.g., Chen et al., 2003; Korn, 2017), and even the spectral element 287

method (e.g., Levin et al., 2000). In our current work, we design the basic operators 288

only for finite difference and finite volume methods with structured grids. More 289

customized operators for the other numerical methods and meshes will be implemented 290

12

in our future work. 291

 292

3. Design of OpenArray 293

Through the above operator notations in Table 1, ocean modellers can quickly convert 294

the discrete PDE equations into the corresponding operator expression forms. The main 295

purpose of OpenArray is to make complex parallel programming transparent to the 296

modellers. As illustrated in Fig. 5, we use a computation graph as an intermediate 297

representation, meaning that the operator expression forms written in Fortran will be 298

translated into a computation graph with a particular data structure. In addition, 299

OpenArray will use the intermediate computation graph to analyse the dependency of 300

the distributed data and produce the underlying parallel code. Finally, we use stable and 301

mature compilers, such as the GNU Compiler Collection (GCC), Intel compiler (ICC), 302

and Sunway compiler (SWACC), to generate the executable programs according to 303

different backend platforms. These four steps and some related techniques are described 304

in detail in this section. 305

 306

3.1 Operator expression 307

Although the basic generalized operators listed in Table 1 are only suitable to execute 308

first-order difference, other high-order difference or even more complicated operations 309

can be combined by these basic operators. For example, a second-order difference 310

operation can be expressed as 𝛿𝛿𝑓𝑓𝜕𝜕(𝛿𝛿𝑏𝑏𝜕𝜕(𝑣𝑣𝑣𝑣𝑣𝑣)). Supposing the grid distance is uniform, 311

the corresponding discrete form is [var(i+1,j,k)+var(i-1,j,k) -2* var(i,j,k)] / dx2. In 312

addition, the central difference operation can be expressed as (𝛿𝛿𝑓𝑓𝜕𝜕(𝑣𝑣𝑣𝑣𝑣𝑣) + 𝛿𝛿𝑏𝑏𝜕𝜕(𝑣𝑣𝑣𝑣𝑣𝑣))/2 313

since the corresponding discrete form is [var(i+1,j,k)-var(i-1,j,k)] / 2dx. 314
 315

Using these operators to express the discrete PDE equation, the code and formula are 316

very similar. We call this effect “the self-documenting code is the formula”. Fig. 6 317

shows the one-to-one correspondence of each item in the code and the items in the sea 318

surface elevation equation. The code is very easy to program and understand. Clearly, 319

13

the basic operators and the combined operators greatly simplify the development and 320

maintenance of ocean models. The complicated parallel and optimization techniques 321

are hidden behind these operators. Modellers no longer need to care about details and 322

can escape from the “parallelism swamp”, and can therefore concentrate on the 323

scientific issues. 324

 325

3.2 Intermediate computation graph 326

Considering the example mentioned in Fig. 6, if one needs to compute the term 327

DXF(AXB(D)*u) with the traditional operator overloading method, one first computes 328

AXB(D) and stores the result into a temporary array (named tmp1), and then executes 329

(tmp1*u) and stores the result into a new array, tmp2. The last step is to compute 330

DXF(tmp2) and store the result in a new array, tmp3. Numerous temporary arrays 331

consume a considerable amount of memory, making the efficiency of operator 332

overloading is poor. 333

 334

To solve this problem, we convert an operator expression form into a directed and 335

acyclic graph, which consists of basic data and function nodes, to implement a so-called 336

lazy expression evaluation (Bloss et al., 1988; Reynolds, 1999). Unlike the traditional 337

operator overloading method, we overload all arithmetic functions to generate an 338

intermediate computation graph rather than to obtain the result of each function. This 339

method is widely used in deep learning frameworks, e.g., TensorFlow (Abadi et al., 340

2016) and Theano (Bastien et al., 2012), to improve computing efficiency. Figure 7 341

shows the procedure of parsing the operator expression form of the sea level elevation 342

equation into a computation graph. The input variables in the square boxes include the 343

sea surface elevation (elb), the zonal velocity (u), the meridional velocity (v) and the 344

depth (D). dt2 is a constant equal to 2*dt. The final output is the sea surface elevation 345

at the next time step (elf). The operators in the round boxes have been overloaded in 346

OpenArray. In summary, all the operators provided by OpenArray are functions for the 347

Array calculation, in which the “=” notation is the assignment function, the “-” notation 348

is the subtraction function, the “*” notation is the multiplication function, the “+” 349

14

notation is the addition function, DXF and DYF are the differential functions, and AXF 350

and AYF are the average functions. 351

 352

3.3 Code generation 353

Given a computation graph, we design a lightweight engine to generate the 354

corresponding source code (Fig. 8). Each operator node in the computation graph is 355

called a kernel. The sequence of all kernels in a graph is usually fused into a large kernel 356

function. Therefore, the underlying engine schedules and executes the fused kernel once 357

and obtains the final result directly without any auxiliary or temporary variables. 358

Simultaneously, the scheduling overhead of the computation graph and the startup 359

overhead of the basic kernels can be reduced. 360

 361

Most of the scientific computational applications are limited by the memory bandwidth 362

and cannot fully exploit the computing power of a processor. Fortunately, kernel fusion 363

is an effective optimization method to improve memory locality. When two kernels 364

need to process some data, their fusion holds shared data in the memory. Prior to the 365

kernel fusion, the computation graph is analysed to find the operator nodes that can be 366

fused, and the analysis results are stored in several subgraphs. Users can access to any 367

individual subgraph by assigning the subgraph to an intermediate variable for 368

diagnostic purposes. After being given a series of subgraphs, the underlying engine 369

dynamically generates the corresponding kernel function in C++ using just-in-time (JIT) 370

compilation techniques (Suganuma and Yasue, 2005). The JIT compiler used in 371

OpenArray can fuse numbers of operators into a large compiled kernel. The benefit of 372

fusing operators is to alleviate memory bandwidth limitations and improve performance 373

compared with executing operators one-by-one. In order to generate a kernel function 374

based on a subgraph, we first add the function header and variable definitions according 375

to the name and type in the Array structure. And then we add the loop head through the 376

dimension information. Finally, we perform a depth-first walk on the expression tree to 377

convert data, operators, and assignment nodes into a complete expression including 378

15

load variables, arithmetic operation, and equal symbol with C++ language. 379

 380

Notably, the time to compile a single kernel function is short, but practical applications 381

usually need to be run for thousands of time steps, and the overhead of generating and 382

compiling the kernel functions for the computation graph is extremely high. Therefore, 383

we generate a fusion kernel function only once for each subgraph, and put it into a 384

function pool. Later, when facing the same computation subgraph, we fetch the 385

corresponding fusion kernel function directly from the pool. 386

 387

Since the arrays in OpenArray are distributed among different processing units, and the 388

operator needs to use the data in the neighbouring points, in order to ensure the 389

correctness, it is necessary to check the data consistency before fusion. The use of 390

different data splitting methods for distributed arrays can greatly affect computing 391

performance. The current data splitting method in OpenArray is the widely used block-392

based strategy. Solving PDEs on structured grids often divides the simulated domain 393

into blocks that are distributed to different processing units. However, the differential 394

and average operators always require their neighbouring points to perform array 395

computations. Clearly, ocean modellers have to frequently call corresponding functions 396

to carefully control the communication of the local boundary region. 397

 398

Therefore, we implemented a general boundary management module to implicitly 399

maintain and update the local boundary information so that the modellers no longer 400

need to address the message communication. The boundary management module uses 401

asynchronous communication to update and maintain the data of the boundary region, 402

which is useful for simultaneous computing and communication. These procedures of 403

asynchronous communication are implicitly invoked when calling the basic kernel or 404

the fused kernel to ensure that the parallel details are completely transparent to the 405

modellers. For the global boundary conditions of the limited physical domains, the 406

values at the physical border are always set to zero within the operators and operator 407

16

expressions. In realistic cases, the global boundary conditions are set by a series of 408

functions (e.g., radiation, wall) provided by OpenArray. 409

 410

3.4 Portable program for different backend platforms 411

With the help of dynamic code generation and JIT compilation technology, OpenArray 412

can be migrated to different backend platforms. Several basic libraries, including Boost 413

C++ libraries and Armadillo library, are required. The JIT compilation module is based 414

on Low-Level-Virtual-Machine (LLVM), thus theoretically the module can only be 415

ported to platforms supporting LLVM. If LLVM is not supported, as on the Sunway 416

platform, one can generate the fusion kernels in advance by running the ocean model 417

on an X86 platform. If the target platform is CPUs with acceleration cards, such as GPU 418

clusters, it is necessary to add control statements in the CPU code, including data 419

transmission, calculation, synchronous and asynchronous statements. In addition, the 420

accelerating solution should involve the selection of the best parameters, for example 421

“blockDim” and “gridDim” on GPU platforms. In short, the code generation module of 422

OpenArray also needs to be refactored to be able to generate codes for different backend 423

platforms. The application based on OpenArray can then be migrated seamlessly to the 424

target platform. Currently, we have designed the corresponding source code generation 425

module for Intel CPU and Sunway processors in OpenArray. 426

 427

According to the TOP500 list released in November 2018, the Sunway TaihuLight is 428

ranked third in the world, with a LINPACK benchmark rating of 93 Petaflops provided 429

by Sunway many-core processors (or Sunway CPUs). As shown in Fig. 9, every 430

Sunway CPU includes 260 processing elements (or cores) that are divided into 4 core-431

groups. Each core-group consists of 64 computing processing elements (CPEs) and a 432

management processing element (MPE) (Qiao et al., 2017). CPEs handle large-scale 433

computing tasks and MPE is responsible for the task scheduling and communication. 434

The relationship between MPE and CPE is like that between CPU and many-core 435

accelerator, except for they are fused into a single Sunway processor sharing a unified 436

17

memory space. To make the most of the computing resources of the Sunway TaihuLight, 437

we generate kernel functions for the MPE, which is responsible for the thread control, 438

and CPE, which performs the computations. The kernel functions are fully optimized 439

with several code optimization techniques (Pugh, 1991) such as loop tiling, loop 440

aligning, single-instruction multiple-date (SIMD) vectorization, and function inline. In 441

addition, due to the high memory access latency of CPEs, we accelerate data access by 442

providing instructions for direct memory access in the kernel to transfer data between 443

the main memory and local memory (Fu et al., 2017). 444

 445

4. Implementation of GOMO 446

In this section, we introduce how to implement a numerical ocean model using 447

OpenArray. The most important step is to derive the primitive discrete governing 448

equations in operator expression form, then the following work is completed by 449

OpenArray. 450

 451

The fundamental equations of GOMO are derived from POM. GOMO features a 452

bottom-following, free-surface, staggered Arakawa C grid. To effectively evolve the 453

rapid surface fluctuations, GOMO uses the mode-splitting algorithm inherited from 454

POM to address the fast propagating surface gravity waves and slow propagating 455

internal waves in barotropic (external) and baroclinic (internal) modes, respectively. 456

The details of the continuous governing equations, the corresponding operator 457

expression form and the descriptions of all the variables used in GOMO are listed in 458

the Appendix A, Appendix B, and Appendix C, respectively. 459

 460

Figure 10 shows the basic flow diagram of GOMO. At the beginning, we initialize 461

OpenArray to make all operators suitable for GOMO. After loading the initial values 462

and the model parameters, the distance information is input into the differential 463

operators through grid binding. In the external mode, the main consumption is 464

computing the 2D sea surface elevation η and column-averaged velocity (Ua, Va). In 465

18

the internal mode, 3D array computations predominate in order to calculate baroclinic 466

motions (U, V, W), tracers (T, S, ρ), and turbulence closure scheme (q2, q2l) (Mellor and 467

Yamada, 1982), where (U, V, W) are the velocity fields in the x, y and 𝜎𝜎 directions, (T, 468

S, ρ) are the potential temperature, the salinity and the density. (q2/2, q2l/2) are the 469

turbulence kinetic energy and production of turbulence kinetic energy with turbulence 470

length scale. 471

 472

When the user dives into the GOMO code, the main time stepping loop in GOMO 473

appears to run on a single processor. However, as described above, implicit parallelism 474

is the most prominent feature of the program using OpenArray. The operators in 475

OpenArray, not only the difference and average operators, but also the “+”, “-”, “*”, “/” 476

and “=” operators in the Fortran code, are all overloaded for the special data structure 477

“Array”. The seemly serial Fortran code is implicitly converted to parallel C++ code 478

by OpenArray, and the parallelization is hidden from the modellers. 479

 480

Because the complicated parallel optimization and tuning processes are decoupled from 481

the ocean modelling, we completely implemented GOMO based on OpenArray in only 482

4 weeks, whereas implementation may take several months or even longer when using 483

the MPI or CUDA library. 484

 485

In comparison with the existing POM and its multiple variations, to name a few, Stony 486

Brook Parallel Ocean Model (sbPOM), mpiPOM and POMgpu, GOMO has less code 487

but is more powerful in terms of compatibility. As shown in Table 3, the serial version 488

of POM (POM2k) contains 3521 lines of code. sbPOM and mpiPOM are parallelized 489

using MPI, while POMgpu is based on MPI and CUDA-C. The codes of sbPOM, 490

mpiPOM and POMgpu are extended to 4801, 9680 and 30443 lines. In contrast, the 491

code of GOMO is decreased to 1860 lines. Moreover, GOMO completes the same 492

function as the other approaches while using the least amount of code (Table 4), since 493

the complexity has been transferred to OpenArray, which includes about 11,800 lines 494

19

of codes. 495

 496

In addition, poor portability considerably restricts the use of advanced hardware in 497

oceanography. With the advantages of OpenArray, GOMO is adaptable to different 498

hardware architectures, such as the Sunway processor. The modellers do not need to 499

modify any code when changing platforms, eliminating the heavy burden of 500

transmitting code. As computing platforms become increasingly diverse and complex, 501

GOMO becomes more powerful and attractive than the machine-dependent models. 502

 503

5. Results 504

In this section, we first evaluate the basic performance of OpenArray using benchmark 505

tests on a single CPU platform. After checking the correctness of GOMO through an 506

ideal seamount test case, we use GOMO to further test the scalability and efficiency of 507

OpenArray. 508

 509

5.1 Benchmark testing 510

We choose two typical PDEs and their implementations from Rodinia v3.1, which is a 511

benchmark suite for heterogeneous computing (Che et al., 2009), as the original version. 512

For comparison, we re-implement these two PDEs using OpenArray. In addition, we 513

added two other test cases. As shown in Table 5, the 2D continuity equation is used to 514

solve sea surface height, and its continuous form is shown in Eq. (1). The 2D heat 515

diffusion equation is a parabolic PDE that describes the distribution of heat over time 516

in a given region. Hotspot is a thermal simulation used for estimating processor 517

temperature on structured grids (Che et al., 2009; Huang et al., 2006). We tested one 518

2D case (Hotspot2D) and one 3D case (Hotspot3D) of this program. The average 519

runtime for 100 iterations is taken as the performance metric. All tests are executed on 520

a single workstation with an Intel Xeon E5-2650 CPU. The experimental results show 521

that the performance of OpenArray versions is comparable to the original versions. 522

 523

20

5.2 Validation tests of GOMO 524

The seamount problem proposed by Beckman and Haidvogel is a widely used ideal test 525

case for regional ocean models (Beckmann and Haidvogel, 1993). It is a stratified 526

Taylor column problem, which simulates the flow over an isolated seamount with a 527

constant salinity and a reference vertical temperature stratification. An eastward 528

horizontal current of 0.1 m/s is added at model initialization. The southern and northern 529

boundaries are closed. If the Rossby number is small, an obvious anticyclonic 530

circulation is trapped by the mount in the deep water. 531

 532

Using the seamount test case, we compare GOMO and sbPOM results. The 533

configurations of both models are exactly the same. Figure 11 shows that GOMO and 534

sbPOM both capture the anticyclonic circulation at 3500 metres depth. The shaded plot 535

shows the surface elevation, and the array plot shows the current at 3500 metres. Figure 536

11(a), 11(b), and 11(c) are the results of GOMO, sbPOM, and the difference (GOMO-537

sbPOM), respectively. The differences in the surface elevation and deep currents 538

between the two models are negligible (Fig. 11(c)). 539

 540

5.3 The weak and strong scalability of GOMO 541

The seamount test case is used to compare the performance of sbPOM and GOMO in 542

a parallel environment. We use the X86 cluster at National Supercomputing Center in 543

Wuxi of China, which provides 5000 Intel Xeon E5-2650 v2 CPUs for our account at 544

most. Figure 12(a) shows the result of a strong scaling evaluation, in which the model 545

size is fixed at 2048×2048×50. The dashed line indicates the ideal speedup. For the 546

largest parallelisms with 4096 processes, GOMO and sbPOM achieve 91% and 92% 547

parallel efficiency, respectively. Figure 12(b) shows the weak scalability of sbPOM and 548

GOMO. In the weak scaling test, the model size for each process is fixed at 128×128×50, 549

and the number of processes is gradually increased from 16 to 4096. Taking the 550

performance of 16 processes as a baseline, we determine that the parallel efficiencies 551

of GOMO and sbPOM using 4096 processes are 99.0% and 99.2%, respectively. 552

21

 553

5.4 Testing on the Sunway platform 554

We also test the scalability of GOMO on the Sunway platform. Supposing that the 555

baseline is the runtime of GOMO at 10000 Sunway cores with a grid size of 556

4096×4096×50, the parallel efficiency of GOMO can still reach 85% at 150000 cores, 557

as shown in Fig. 13. However, we notice that the scalability declines sharply when the 558

number of cores exceeds 150000. There are two reasons leading to this decline. First, 559

the block size assigned to each core decreases as the number of cores increases, causing 560

more communication during boundary region updating. Second, some processes cannot 561

be accelerated even though more computing resources are available; for example, the 562

time spent on creating the computation graph, generating the fusion kernels, and 563

compiling the JIT cannot be reduced. Even though the fusion-kernel codes are 564

generated and compiled only once at the beginning of a job, it consumes about 2 565

minutes. In a sense, OpenArray performs better when processing large-scale data, and 566

GOMO is more suitable for high-resolution scenarios. In the future, we will further 567

optimize the communication and graph-creating modules to improve the efficiency for 568

large-scale cores. 569

 570

6. Discussion 571

As we mentioned in Section 1, the advantages of OpenArray are easy-to-use, high 572

efficiency and portability. Using OpenArray, the modellers without any parallel 573

computing skill and experience can write simple operator expressions in Fortran to 574

implement complex ocean models. The ocean models can be run on any CPU and 575

Sunway platforms which have deployed the OpenArray library. We call this effect 576

“write once, run everywhere”. Other similar libraries (e.g., ATMOL, ICON DSL, and 577

STELLA, COARRAY) require the users to manually control the boundary 578

communication and task scheduling to some extent. In contrast, OpenArray implements 579

completely implicit parallelism with user-friendly interfaces and programming 580

languages. 581

22

 582

However, there are still several problems to be solved in the development of OpenArray. 583

The first issue is computational efficiency. Once a variable is in one of the processor 584

registers or in the highest speed cache, it should be used as much as possible before 585

being replaced. In fact, we should never to move variables more than once each 586

timestep. The memory consumption brought by overloading techniques is usually high 587

due to the unnecessary variable moving and unavoidable cache missing. The current 588

efficiency and scalability of GOMO are close to sbPOM, since we have adopted a series 589

of optimization methods, such as memory pool, graph computing, JIT compilation, and 590

vectorization, to alleviate the requirement of memory bandwidth. However, we have to 591

admit that we cannot fully solve the memory bandwidth limited problem at present. We 592

think that time skewing is a cache oblivious algorithm for stencil computations (Frigo 593

and Strumpen, 2005), since it can exploit temporal locality optimally throughout the 594

entire memory hierarchy. In addition, the polyhedral model may be another potential 595

approach, which uses an abstract mathematical representation based on integer 596

polyhedral, to analyze and optimize the memory access pattern of a program. 597

 598

The second issue is that the current OpenArray version cannot support customized 599

operators. When modellers try out another higher-order advection or any other 600

numerical scheme, the twelve basic operators provided by OpenArray are not abundant. 601

We consider using a template mechanism to support the customized operators. The 602

rules of operations are defined in a template file, where the calculation form of each 603

customized operator is described by a regular expression. If users want to add a 604

customized operator, they only need to append a regular expression into the template 605

file. 606

 607

OpenArray and GOMO will continue to be developed, and the following three key 608

improvements are planned for the following years. 609

 610

23

First, we are developing the GPU version of OpenArray. During the development, the 611

principle is to keep hot data staying in GPU memory or directly swapping between 612

GPUs and avoid returning data to the main CPU memory. NVLink provides high 613

bandwidth and outstanding scalability for GPU-to-CPU or GPU-to-GPU 614

communication, and addresses the interconnect issue for multi-GPU and multi-615

GPU/CPU systems. 616

 617

Second, the data Input/Output is becoming a bottleneck of earth system models as the 618

resolution increases rapidly. At present we encapsulate the PnetCDF library to provide 619

simple I/O interfaces, such as load operation and store operation. A climate fast 620

input/output (CFIO) library (Huang et al., 2014) will be implemented into OpenArray 621

in the next few years. The performance of CFIO is approximately 220% faster than 622

PnetCDF because of the overlapping of I/O and computing. CFIO will be merged into 623

the future version of OpenArray and the performance is expected to be further improved. 624

 625

Finally, as most of the ocean models, GOMO also faces the load imbalance issue. We 626

are adding the more effective load balance schemes, including space-filling curve 627

(Dennis, 2007) and curvilinear orthogonal grids, into OpenArray in order to reduce the 628

computational cost on land points. 629

 630

OpenArray is a product of collaboration between oceanographers and computer 631

scientists. It plays an important role to simplify the porting work on the Sunway 632

TaihuLight supercomputer. We believe that OpenArray and GOMO will continue to be 633

maintained and upgraded. We aim to promote it to the model community as a 634

development tool for future numerical models. 635

 636

7. Conclusion 637

In this paper, we design a simple computing library (OpenArray) to decouple ocean 638

modelling and parallel computing. OpenArray provides twelve basic operators that are 639

24

abstracted from PDEs and extended to ocean model governing equations. These 640

operators feature user-friendly interfaces and an implicit parallelization ability. 641

Furthermore, some state-of-art optimization mechanisms, including computation 642

graphing, kernel fusion, dynamic source code generation and JIT compiling, are applied 643

to boost the performance. The experimental results prove that the performance of a 644

program using OpenArray is comparable to that of well-designed programs using 645

Fortran. Based on OpenArray, we implement a numerical ocean model (GOMO) with 646

high productivity, enhanced readability and excellent scalable performance. Moreover, 647

GOMO shows high scalability on both CPU and the Sunway platform. Although more 648

realistic tests are needed, OpenArray may signal the beginning of a new frontier in 649

future ocean modelling through ingesting basic operators and cutting-edge computing 650

techniques. 651

 652

Code availability. The source codes of OpenArray v1.0 is available at 653

https://github.com/hxmhuang/OpenArray, and the user manual of OpenArray can be 654

accessed at https://github.com/hxmhuang/OpenArray/tree/master/doc. GOMO is 655

available at https://github.com/hxmhuang/GOMO. 656

 657

Appendix A: Continuous governing equations 658

The equations governing the baroclinic (internal) mode in GOMO are the 3-659

dimensional hydrostatic primitive equations. 660

 𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎

= 0, (A1) 661

 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎

− 𝑓𝑓𝑉𝑉𝐷𝐷 + 𝑔𝑔𝐷𝐷 𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

= 𝜕𝜕
𝜕𝜕𝜎𝜎
�𝐾𝐾𝑀𝑀
𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎
� +662

𝑔𝑔𝜕𝜕2

𝜌𝜌0

𝜕𝜕
𝜕𝜕𝜕𝜕 ∫

0
𝜎𝜎 𝜌𝜌𝑑𝑑𝜎𝜎′ −

𝑔𝑔𝜕𝜕
𝜌𝜌0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ∫

0
𝜎𝜎 𝜎𝜎′

𝜕𝜕𝜌𝜌
𝜕𝜕𝜎𝜎′

𝑑𝑑𝜎𝜎′ + 𝐹𝐹𝑢𝑢, (A2) 663

 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎

+ 𝑓𝑓𝑈𝑈𝐷𝐷 + 𝑔𝑔𝐷𝐷 𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

= 𝜕𝜕
𝜕𝜕𝜎𝜎
�𝐾𝐾𝑀𝑀
𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎
� +664

𝑔𝑔𝜕𝜕2

𝜌𝜌0

𝜕𝜕
𝜕𝜕𝜕𝜕 ∫

0
𝜎𝜎 𝜌𝜌𝑑𝑑𝜎𝜎′ −

𝑔𝑔𝜕𝜕
𝜌𝜌0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ∫

0
𝜎𝜎 𝜎𝜎′

𝜕𝜕𝜌𝜌
𝜕𝜕𝜎𝜎′

𝑑𝑑𝜎𝜎′ + 𝐹𝐹𝑣𝑣, (A3) 665

 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎

= 𝜕𝜕
𝜕𝜕𝜎𝜎
�𝐾𝐾𝐻𝐻

𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎
� + 𝐹𝐹𝜕𝜕 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜎𝜎
, (A4) 666

25

 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎

= 𝜕𝜕
𝜕𝜕𝜎𝜎
�𝐾𝐾𝐻𝐻

𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎
� + 𝐹𝐹𝜕𝜕, (A5) 667

 𝜌𝜌 = 𝜌𝜌(𝑇𝑇, 𝑆𝑆,𝑝𝑝), (A6) 668

 𝜕𝜕𝑞𝑞2𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝑞𝑞2𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝑞𝑞2𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝑞𝑞2

𝜕𝜕𝜎𝜎
= 𝜕𝜕

𝜕𝜕𝜎𝜎
�𝐾𝐾𝑞𝑞
𝜕𝜕
𝜕𝜕𝑞𝑞2

𝜕𝜕𝜎𝜎
�+ 2𝐾𝐾𝑀𝑀

𝜕𝜕
��𝜕𝜕𝜕𝜕

𝜕𝜕𝜎𝜎
�
2

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎
�
2
� +669

2𝑔𝑔
𝜌𝜌0
𝐾𝐾𝐻𝐻

𝜕𝜕𝜌𝜌
𝜕𝜕𝜎𝜎
− 2𝜕𝜕𝑞𝑞3

𝐵𝐵1𝑙𝑙
+ 𝐹𝐹𝑞𝑞2, (A7) 670

 𝜕𝜕𝑞𝑞2𝑙𝑙𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝑞𝑞2𝑙𝑙𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝑞𝑞2𝑙𝑙𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝑞𝑞2𝑙𝑙
𝜕𝜕𝜎𝜎

= 𝜕𝜕
𝜕𝜕𝜎𝜎
�𝐾𝐾𝑞𝑞
𝜕𝜕
𝜕𝜕𝑞𝑞2𝑙𝑙
𝜕𝜕𝜎𝜎

� + 𝐸𝐸1𝑙𝑙 �
𝐾𝐾𝑀𝑀
𝜕𝜕
��𝜕𝜕𝜕𝜕

𝜕𝜕𝜎𝜎
�
2

+671

�𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎
�
2
� + 𝑔𝑔𝑔𝑔3

𝜌𝜌0
𝐾𝐾𝐻𝐻

𝜕𝜕𝜌𝜌
𝜕𝜕𝜎𝜎
�𝑊𝑊� − 𝜕𝜕𝑞𝑞3

𝐵𝐵1
+ 𝐹𝐹𝑞𝑞2𝑙𝑙, (A8) 672

 673

where 𝐹𝐹𝑢𝑢, 𝐹𝐹𝑣𝑣, 𝐹𝐹𝑞𝑞2, and 𝐹𝐹𝑞𝑞2𝑙𝑙 are horizontal kinematic viscosity terms of u, v, 𝑞𝑞2, and 674

𝑞𝑞2𝑙𝑙, respectivly. 𝐹𝐹𝜕𝜕 and 𝐹𝐹𝜕𝜕 are horizontal diffusion terms of T and S respectivly. 𝑊𝑊� 675

is the wall proximity function. 676

 𝐹𝐹𝑢𝑢 = 𝜕𝜕
𝜕𝜕𝜕𝜕

(2𝐴𝐴𝑀𝑀𝐷𝐷
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

) + 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐴𝐴𝑀𝑀𝐷𝐷(𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
)�, (A9) 677

 𝐹𝐹𝑣𝑣 = 𝜕𝜕
𝜕𝜕𝜕𝜕

(2𝐴𝐴𝑀𝑀𝐷𝐷
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

) + 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐴𝐴𝑀𝑀𝐷𝐷(𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
)�, (A10) 678

 𝐹𝐹𝜕𝜕 = 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝐻𝐻𝐻𝐻
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

) + 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝐻𝐻𝐻𝐻
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

), (A11) 679

 𝐹𝐹𝜕𝜕 = 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝐻𝐻𝐻𝐻
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

) + 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝐻𝐻𝐻𝐻
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

), (A12) 680

 𝐹𝐹𝑞𝑞2 = 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝑀𝑀𝐻𝐻
𝜕𝜕𝑞𝑞2

𝜕𝜕𝜕𝜕
) + 𝜕𝜕

𝜕𝜕𝜕𝜕
(𝐴𝐴𝑀𝑀𝐻𝐻

𝜕𝜕𝑞𝑞2

𝜕𝜕𝜕𝜕
), (A13) 681

 𝐹𝐹𝑞𝑞2𝑙𝑙 = 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝑀𝑀𝐻𝐻
𝜕𝜕𝑞𝑞2𝑙𝑙
𝜕𝜕𝜕𝜕

) + 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝑀𝑀𝐻𝐻
𝜕𝜕𝑞𝑞2𝑙𝑙
𝜕𝜕𝜕𝜕

), (A14) 682

𝑊𝑊� = 1 + 𝑔𝑔2𝑙𝑙
𝜅𝜅
� 1
𝜂𝜂−𝑧𝑧

+ 1
H−𝑧𝑧

�. (A15) 683

The equations governing the barotropic (external) mode in GOMO are obtained by 684

vertically integrating the baroclinic equations. 685

 𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝐴𝐴𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝐴𝐴𝜕𝜕
𝜕𝜕𝜕𝜕

= 0, (A16) 686

 𝜕𝜕𝜕𝜕𝐴𝐴𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕(𝜕𝜕𝐴𝐴)2𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝐴𝐴𝜕𝜕𝐴𝐴𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝑓𝑓𝑉𝑉𝐴𝐴𝐷𝐷 + 𝑔𝑔𝐷𝐷 𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

= 𝐹𝐹�𝑢𝑢𝑎𝑎 − 𝑤𝑤𝑤𝑤(0) +687

𝑤𝑤𝑤𝑤(−1) − 𝑔𝑔𝜕𝜕
𝜌𝜌0
∫0−1 ∫

0
𝜎𝜎 �𝐷𝐷

𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜎𝜎′ 𝜕𝜕𝜌𝜌

𝜕𝜕𝜎𝜎
� 𝑑𝑑𝜎𝜎′𝑑𝑑𝜎𝜎 + 𝐺𝐺𝑢𝑢𝑎𝑎 , (A17) 688

 𝜕𝜕𝜕𝜕𝐴𝐴𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝐴𝐴𝜕𝜕𝐴𝐴𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕(𝜕𝜕𝐴𝐴)2𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑓𝑓𝑈𝑈𝐴𝐴𝐷𝐷 + 𝑔𝑔𝐷𝐷 𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

= 𝐹𝐹�𝑣𝑣𝑎𝑎 − 𝑤𝑤𝑣𝑣(0) +689

26

𝑤𝑤𝑣𝑣(−1) − 𝑔𝑔𝜕𝜕
𝜌𝜌0
∫0−1 ∫

0
𝜎𝜎 �𝐷𝐷

𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜎𝜎′ 𝜕𝜕𝜌𝜌

𝜕𝜕𝜎𝜎
� 𝑑𝑑𝜎𝜎′𝑑𝑑𝜎𝜎 + 𝐺𝐺𝑣𝑣𝑎𝑎, (A18) 690

 691

where 𝐹𝐹�𝑢𝑢𝑎𝑎 and 𝐹𝐹�𝑣𝑣𝑎𝑎 are the horizontal kinematic viscosity terms of 𝑈𝑈𝐴𝐴 and 𝑉𝑉𝐴𝐴 692

respectivly. 𝐺𝐺𝑢𝑢𝑎𝑎 and 𝐺𝐺𝑣𝑣𝑎𝑎 are the dispersion terms of 𝑈𝑈𝐴𝐴 and 𝑉𝑉𝐴𝐴 respectivly. The 693

subscript ’A’ denotes vertical integration. 694

 695

 𝐹𝐹�𝑢𝑢𝑎𝑎 = 𝜕𝜕
𝜕𝜕𝜕𝜕
�2𝐻𝐻(𝐴𝐴𝐴𝐴𝑀𝑀) 𝜕𝜕𝜕𝜕𝐴𝐴

𝜕𝜕𝜕𝜕
� + 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝐻𝐻(𝐴𝐴𝐴𝐴𝑀𝑀) �𝜕𝜕𝜕𝜕𝐴𝐴

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕𝐴𝐴

𝜕𝜕𝜕𝜕
��, (A19) 696

 𝐹𝐹�𝑣𝑣𝑎𝑎 = 𝜕𝜕
𝜕𝜕𝜕𝜕
�2𝐻𝐻(𝐴𝐴𝐴𝐴𝑀𝑀) 𝜕𝜕𝜕𝜕𝐴𝐴

𝜕𝜕𝜕𝜕
� + 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝐻𝐻(𝐴𝐴𝐴𝐴𝑀𝑀) �𝜕𝜕𝜕𝜕𝐴𝐴

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕𝐴𝐴

𝜕𝜕𝜕𝜕
��, (A20) 697

 𝐺𝐺𝑢𝑢𝑎𝑎 = 𝜕𝜕2(𝜕𝜕𝐴𝐴)2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝜕𝜕2𝜕𝜕𝐴𝐴𝜕𝜕𝐴𝐴𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

− 𝐹𝐹�𝑢𝑢𝑎𝑎 −
𝜕𝜕2(𝜕𝜕2)𝐴𝐴𝜕𝜕

𝜕𝜕𝜕𝜕2
− 𝜕𝜕2(𝜕𝜕𝜕𝜕)𝐴𝐴𝜕𝜕

𝜕𝜕𝜕𝜕2
+ (𝐹𝐹𝑢𝑢)𝐴𝐴, (A21) 698

 𝐺𝐺𝑣𝑣𝑎𝑎 = 𝜕𝜕2𝜕𝜕𝐴𝐴𝜕𝜕𝐴𝐴𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝜕𝜕2(𝜕𝜕𝐴𝐴)2𝜕𝜕
𝜕𝜕𝜕𝜕2

− 𝐹𝐹�𝑣𝑣𝑎𝑎 −
𝜕𝜕2(𝜕𝜕𝜕𝜕)𝐴𝐴𝜕𝜕

𝜕𝜕𝜕𝜕2
− 𝜕𝜕2(𝜕𝜕2)𝐴𝐴𝜕𝜕

𝜕𝜕𝜕𝜕2
+ (𝐹𝐹𝑣𝑣)𝐴𝐴, (A22) 699

 𝑈𝑈𝐴𝐴 = ∫0−1 𝑈𝑈𝑑𝑑𝜎𝜎, (A23) 700

 𝑉𝑉𝐴𝐴 = ∫0−1 𝑉𝑉𝑑𝑑𝜎𝜎, (A24) 701

 (𝑈𝑈2)𝐴𝐴 = ∫0−1 𝑈𝑈
2𝑑𝑑𝜎𝜎, (A25) 702

 (𝑈𝑈𝑉𝑉)𝐴𝐴 = ∫0−1 𝑈𝑈𝑉𝑉𝑑𝑑𝜎𝜎, (A26) 703

 (𝑉𝑉2)𝐴𝐴 = ∫0−1 𝑉𝑉
2𝑑𝑑𝜎𝜎, (A27) 704

 (𝐹𝐹𝑢𝑢)𝐴𝐴 = ∫0−1 𝐹𝐹𝑢𝑢𝑑𝑑𝜎𝜎, (A28) 705

 (𝐹𝐹𝑣𝑣)𝐴𝐴 = ∫0−1 𝐹𝐹𝑣𝑣𝑑𝑑𝜎𝜎, (A29) 706

 𝐴𝐴𝐴𝐴𝑀𝑀 = ∫0−1 (𝐴𝐴𝑀𝑀)𝑑𝑑𝜎𝜎. (A30) 707

 708

Appendix B: Discrete governing equations 709

The discrete governing equations of baroclinic (internal) mode expressed by operators 710

are shown as below: 711

 𝜂𝜂𝑡𝑡+1−𝜂𝜂𝑡𝑡−1

2𝑑𝑑𝜕𝜕𝑖𝑖
+ 𝛿𝛿𝑓𝑓𝜕𝜕(𝐷𝐷𝑏𝑏

𝜕𝜕
𝑈𝑈) + 𝛿𝛿𝑓𝑓

𝜕𝜕(𝐷𝐷𝑏𝑏
𝜕𝜕
𝑉𝑉) + 𝛿𝛿𝑓𝑓𝑧𝑧(𝑊𝑊) = 0, (B1) 712

27

 (𝜕𝜕𝑏𝑏
𝑥𝑥
𝜕𝜕)𝑡𝑡+1−(𝜕𝜕𝑏𝑏

𝑥𝑥
𝜕𝜕)𝑡𝑡−1

2𝑑𝑑𝜕𝜕𝑖𝑖
+ 𝛿𝛿𝑏𝑏𝜕𝜕 �(𝐷𝐷𝑏𝑏

𝜕𝜕
𝑈𝑈)𝑓𝑓

𝜕𝜕
𝑈𝑈𝑓𝑓
𝜕𝜕
� + 𝛿𝛿𝑓𝑓

𝜕𝜕 �(𝐷𝐷𝑏𝑏
𝜕𝜕
𝑉𝑉)𝑏𝑏

𝜕𝜕
𝑈𝑈𝑏𝑏
𝜕𝜕
� +713

𝛿𝛿𝑓𝑓𝑧𝑧(𝑊𝑊𝑏𝑏
𝜕𝜕
𝑈𝑈𝑏𝑏
𝑧𝑧
) − (𝑓𝑓𝑉𝑉𝑓𝑓

𝜕𝜕
𝐷𝐷)

𝑏𝑏

𝜕𝜕
− (𝑓𝑓𝑉𝑉𝑓𝑓

𝜕𝜕
𝐷𝐷)

𝑏𝑏

𝜕𝜕
+ 𝑔𝑔𝐷𝐷𝑏𝑏

𝜕𝜕
𝛿𝛿𝑏𝑏𝜕𝜕(𝜂𝜂) = 𝛿𝛿𝑏𝑏𝑧𝑧 �

𝐾𝐾𝑀𝑀𝑏𝑏
𝑥𝑥

(𝜕𝜕𝑏𝑏
𝑥𝑥

)𝑡𝑡+1
𝛿𝛿𝑓𝑓𝑧𝑧(𝑈𝑈𝜕𝜕+1)� +714

𝑔𝑔(𝜕𝜕𝑏𝑏
𝑥𝑥

)2

𝜌𝜌0
∫0𝜎𝜎 �𝛿𝛿𝑏𝑏

𝜕𝜕(𝜌𝜌𝑏𝑏
𝑧𝑧)− 𝜎𝜎 𝛿𝛿𝑏𝑏

𝑥𝑥(𝜕𝜕)

𝜕𝜕𝑏𝑏
𝑥𝑥 𝛿𝛿𝑏𝑏𝑧𝑧(𝜌𝜌𝑏𝑏

𝜕𝜕)� 𝑑𝑑𝜎𝜎′ + 𝐹𝐹𝑢𝑢, (B2) 715

 (𝜕𝜕𝑏𝑏
𝑦𝑦
𝜕𝜕)𝑡𝑡+1−(𝜕𝜕𝑏𝑏

𝑦𝑦
𝜕𝜕)𝑡𝑡−1

2𝑑𝑑𝜕𝜕𝑖𝑖
+ 𝛿𝛿𝑓𝑓𝜕𝜕 �(𝐷𝐷𝑏𝑏

𝜕𝜕
𝑈𝑈)𝑏𝑏

𝜕𝜕
𝑉𝑉𝑏𝑏
𝜕𝜕
� + 𝛿𝛿𝑏𝑏

𝜕𝜕 �(𝐷𝐷𝑏𝑏
𝜕𝜕
𝑉𝑉)𝑓𝑓

𝜕𝜕
𝑉𝑉𝑓𝑓
𝜕𝜕
� +716

𝛿𝛿𝑓𝑓𝑧𝑧(𝑊𝑊𝑏𝑏
𝜕𝜕
𝑉𝑉𝑏𝑏
𝑧𝑧
) + (𝑓𝑓𝑈𝑈𝑓𝑓

𝜕𝜕
𝐷𝐷)

𝑏𝑏

𝜕𝜕
+ (𝑓𝑓𝑈𝑈𝑓𝑓

𝜕𝜕
𝐷𝐷)

𝑏𝑏

𝜕𝜕
+ 𝑔𝑔𝐷𝐷𝑏𝑏

𝜕𝜕
𝛿𝛿𝑏𝑏
𝜕𝜕(𝜂𝜂) = 𝛿𝛿𝑏𝑏𝑧𝑧 �

𝐾𝐾𝑀𝑀𝑏𝑏
𝑦𝑦

(𝜕𝜕𝑏𝑏
𝑦𝑦

)𝑡𝑡+1
𝛿𝛿𝑓𝑓𝑧𝑧(𝑉𝑉𝜕𝜕+1)� +717

𝑔𝑔(𝜕𝜕𝑏𝑏
𝑦𝑦

)2

𝜌𝜌0
∫0𝜎𝜎 �𝛿𝛿𝑏𝑏

𝜕𝜕(𝜌𝜌𝑏𝑏
𝑧𝑧)− 𝜎𝜎 𝛿𝛿𝑏𝑏

𝑦𝑦(𝜕𝜕)

𝜕𝜕𝑏𝑏
𝑦𝑦 𝛿𝛿𝑏𝑏𝑧𝑧(𝜌𝜌𝑏𝑏

𝜕𝜕)� 𝑑𝑑𝜎𝜎′ + 𝐹𝐹𝑣𝑣, (B3) 718

 (𝜕𝜕𝜕𝜕)𝑡𝑡+1−(𝜕𝜕𝜕𝜕)𝑡𝑡−1

2𝑑𝑑𝜕𝜕𝑖𝑖
+ 𝛿𝛿𝑓𝑓𝜕𝜕(𝑇𝑇𝑏𝑏

𝜕𝜕
𝑈𝑈𝐷𝐷𝑏𝑏

𝜕𝜕
) + 𝛿𝛿𝑓𝑓

𝜕𝜕(𝑇𝑇𝑏𝑏
𝜕𝜕
𝑉𝑉𝐷𝐷𝑏𝑏

𝜕𝜕
) + 𝛿𝛿𝑓𝑓𝑧𝑧(𝑇𝑇𝑏𝑏

𝑧𝑧
𝑊𝑊) =719

𝛿𝛿𝑏𝑏𝑧𝑧 �
𝐾𝐾𝐻𝐻
𝜕𝜕𝑡𝑡+1

𝛿𝛿𝑓𝑓𝑧𝑧(𝑇𝑇𝜕𝜕+1)� + 𝐹𝐹𝜕𝜕 + 𝛿𝛿𝑓𝑓𝑧𝑧𝑅𝑅, (B4) 720

 (𝜕𝜕𝜕𝜕)𝑡𝑡+1−(𝜕𝜕𝜕𝜕)𝑡𝑡−1

2𝑑𝑑𝜕𝜕𝑖𝑖
+ 𝛿𝛿𝑓𝑓𝜕𝜕(𝑆𝑆𝑏𝑏

𝜕𝜕
𝑈𝑈𝐷𝐷𝑏𝑏

𝜕𝜕
) + 𝛿𝛿𝑓𝑓

𝜕𝜕(𝑆𝑆𝑏𝑏
𝜕𝜕
𝑉𝑉𝐷𝐷𝑏𝑏

𝜕𝜕
) + 𝛿𝛿𝑓𝑓𝑧𝑧(𝑆𝑆𝑏𝑏

𝑧𝑧
𝑊𝑊) =721

𝛿𝛿𝑏𝑏𝑧𝑧 �
𝐾𝐾𝐻𝐻
𝜕𝜕𝑡𝑡+1

𝛿𝛿𝑓𝑓𝑧𝑧(𝑆𝑆𝜕𝜕+1)� + 𝐹𝐹𝜕𝜕, (B5) 722

 𝜌𝜌 = 𝜌𝜌(𝑇𝑇, 𝑆𝑆,𝑝𝑝), (B6) 723

 (𝑞𝑞2𝜕𝜕)𝑡𝑡+1−(𝑞𝑞2𝜕𝜕)𝑡𝑡−1

2𝑑𝑑𝜕𝜕𝑖𝑖
 + 𝛿𝛿𝑓𝑓𝜕𝜕(𝑈𝑈𝑏𝑏

𝑧𝑧
𝑞𝑞2𝑏𝑏

𝜕𝜕
𝐷𝐷𝑏𝑏
𝜕𝜕

) + 𝛿𝛿𝑓𝑓
𝜕𝜕(𝑉𝑉𝑏𝑏

𝑧𝑧
𝑞𝑞2𝑏𝑏

𝜕𝜕
𝐷𝐷𝑏𝑏
𝜕𝜕

) +724

 𝛿𝛿𝑓𝑓𝑧𝑧(𝑊𝑊𝑞𝑞2)𝑏𝑏
𝑧𝑧

= 𝛿𝛿𝑏𝑏𝑧𝑧 �
𝐾𝐾𝑞𝑞𝑓𝑓

𝑧𝑧

𝜕𝜕𝑡𝑡+1
𝛿𝛿𝑓𝑓𝑧𝑧(𝑞𝑞2)𝜕𝜕+1� + 2𝐾𝐾𝑀𝑀

𝜕𝜕
��𝛿𝛿𝑏𝑏𝑧𝑧(𝑈𝑈𝑓𝑓

𝜕𝜕
)�
2

+ �𝛿𝛿𝑏𝑏𝑧𝑧(𝑉𝑉𝑓𝑓
𝜕𝜕

)�
2
� +725

2𝑔𝑔
𝜌𝜌0
𝐾𝐾𝐻𝐻𝛿𝛿𝑏𝑏𝑧𝑧(𝜌𝜌) − 2𝜕𝜕𝑞𝑞3

𝐵𝐵1𝑙𝑙
+ 𝐹𝐹𝑞𝑞2, (B7) 726

 (𝑞𝑞2𝑙𝑙𝜕𝜕)𝑡𝑡+1−(𝑞𝑞2𝑙𝑙𝜕𝜕)𝑡𝑡−1

2𝑑𝑑𝜕𝜕𝑖𝑖
+ 𝛿𝛿𝑓𝑓𝜕𝜕(𝑈𝑈𝑏𝑏

𝑧𝑧
𝑞𝑞2𝑙𝑙𝑏𝑏

𝜕𝜕
𝐷𝐷𝑏𝑏
𝜕𝜕

) + 𝛿𝛿𝑓𝑓
𝜕𝜕(𝑉𝑉𝑏𝑏

𝑧𝑧
𝑞𝑞2𝑙𝑙𝑏𝑏

𝜕𝜕
𝐷𝐷𝑏𝑏
𝜕𝜕

) +727

𝛿𝛿𝑓𝑓𝑧𝑧(𝑊𝑊𝑞𝑞2𝑙𝑙)𝑏𝑏
𝑧𝑧

= 𝛿𝛿𝑏𝑏𝑧𝑧 �
𝐾𝐾𝑞𝑞𝑓𝑓

𝑧𝑧

𝜕𝜕𝑡𝑡+1
𝛿𝛿𝑓𝑓𝑧𝑧(𝑞𝑞2𝑙𝑙)𝜕𝜕+1� + 𝑙𝑙𝐸𝐸1

𝐾𝐾𝑀𝑀
𝜕𝜕
��𝛿𝛿𝑏𝑏𝑧𝑧(𝑈𝑈𝑓𝑓

𝜕𝜕
)�
2

+ �𝛿𝛿𝑏𝑏𝑧𝑧(𝑉𝑉𝑓𝑓
𝜕𝜕

)�
2
�𝑊𝑊� +728

𝑙𝑙𝑔𝑔1𝑔𝑔3𝑔𝑔
𝜌𝜌0

𝐾𝐾𝐻𝐻𝛿𝛿𝑏𝑏𝑧𝑧(𝜌𝜌)𝑊𝑊� − 𝜕𝜕𝑞𝑞3

𝐵𝐵1
+ 𝐹𝐹𝑞𝑞2𝑙𝑙, (B8) 729

 730

where 𝐹𝐹𝑢𝑢, 𝐹𝐹𝑣𝑣, 𝐹𝐹𝑞𝑞2, and 𝐹𝐹𝑞𝑞2𝑙𝑙 are horizontal kinematic viscosity terms of u, v, 𝑞𝑞2, and 731

𝑞𝑞2𝑙𝑙, respectivly. 𝐹𝐹𝜕𝜕 and 𝐹𝐹𝜕𝜕 are horizontal diffusion terms of T and S respectivly. 732

28

𝐹𝐹𝑢𝑢 = 𝛿𝛿𝑏𝑏𝜕𝜕�2𝐴𝐴𝑀𝑀𝐷𝐷𝛿𝛿𝑓𝑓𝜕𝜕(𝑈𝑈𝜕𝜕−1)� + 𝛿𝛿𝑓𝑓
𝜕𝜕 �(𝐴𝐴𝑀𝑀𝑏𝑏

𝜕𝜕
)
𝑏𝑏

𝜕𝜕
(𝐷𝐷𝑏𝑏

𝜕𝜕
)𝑏𝑏
𝜕𝜕
�𝛿𝛿𝑏𝑏𝜕𝜕(𝑉𝑉)𝜕𝜕−1 + 𝛿𝛿𝑏𝑏

𝜕𝜕(𝑈𝑈)𝜕𝜕−1��, (B9) 733

𝐹𝐹𝑣𝑣 = 𝛿𝛿𝑏𝑏
𝜕𝜕�2𝐴𝐴𝑀𝑀𝐷𝐷𝛿𝛿𝑓𝑓

𝜕𝜕(𝑉𝑉𝜕𝜕−1)� + 𝛿𝛿𝑓𝑓𝜕𝜕 �(𝐴𝐴𝑀𝑀𝑏𝑏
𝜕𝜕

)
𝑏𝑏

𝜕𝜕
(𝐷𝐷𝑏𝑏

𝜕𝜕
)𝑏𝑏
𝜕𝜕
�𝛿𝛿𝑏𝑏𝜕𝜕(𝑉𝑉)𝜕𝜕−1 + 𝛿𝛿𝑏𝑏

𝜕𝜕(𝑈𝑈)𝜕𝜕−1��, (B10) 734

𝐹𝐹𝜕𝜕 = 𝛿𝛿𝑓𝑓𝜕𝜕 �𝐴𝐴𝐻𝐻𝑏𝑏
𝜕𝜕
𝐻𝐻𝑏𝑏
𝜕𝜕
𝛿𝛿𝑏𝑏𝜕𝜕(𝑇𝑇𝜕𝜕−1)�+ 𝛿𝛿𝑓𝑓

𝜕𝜕 �𝐴𝐴𝐻𝐻𝑏𝑏
𝜕𝜕
𝐻𝐻𝑏𝑏
𝜕𝜕
𝛿𝛿𝑏𝑏
𝜕𝜕(𝑇𝑇𝜕𝜕−1)�, (B11) 735

𝐹𝐹𝜕𝜕 = 𝛿𝛿𝑓𝑓𝜕𝜕 �(𝐴𝐴𝐻𝐻𝑏𝑏
𝜕𝜕
𝐻𝐻𝑏𝑏
𝜕𝜕
𝛿𝛿𝑏𝑏𝜕𝜕(𝑆𝑆𝜕𝜕−1)� + 𝛿𝛿𝑓𝑓

𝜕𝜕 �𝐴𝐴𝐻𝐻𝑏𝑏
𝜕𝜕
𝐻𝐻𝑏𝑏
𝜕𝜕
𝛿𝛿𝑏𝑏
𝜕𝜕(𝑆𝑆𝜕𝜕−1)�, (B12) 736

𝐹𝐹𝑞𝑞2 = 𝛿𝛿𝑓𝑓𝜕𝜕 �(𝐴𝐴𝑀𝑀𝑏𝑏
𝜕𝜕

)
𝑏𝑏

𝑧𝑧
𝐻𝐻𝑏𝑏
𝜕𝜕
𝛿𝛿𝑏𝑏𝜕𝜕(𝑞𝑞2)𝜕𝜕−1� + 𝛿𝛿𝑓𝑓

𝜕𝜕 �𝐴𝐴𝑀𝑀𝑏𝑏
𝜕𝜕

𝑏𝑏

𝑧𝑧
𝐻𝐻𝑏𝑏
𝜕𝜕
𝛿𝛿𝑏𝑏
𝜕𝜕(𝑞𝑞2)𝜕𝜕−1�, (B13) 737

𝐹𝐹𝑞𝑞2𝑙𝑙 = 𝛿𝛿𝑓𝑓𝜕𝜕 �(𝐴𝐴𝑀𝑀𝑏𝑏
𝜕𝜕

)
𝑏𝑏

𝑧𝑧
𝐻𝐻𝑏𝑏
𝜕𝜕
𝛿𝛿𝑏𝑏𝜕𝜕(𝑞𝑞2𝑙𝑙)𝜕𝜕−1� + 𝛿𝛿𝑓𝑓

𝜕𝜕 �𝐴𝐴𝑀𝑀𝑏𝑏
𝜕𝜕

𝑏𝑏

𝑧𝑧
𝐻𝐻𝑏𝑏
𝜕𝜕
𝛿𝛿𝑏𝑏
𝜕𝜕(𝑞𝑞2𝑙𝑙)𝜕𝜕−1�. (B14) 738

 739

The discrete governing equations of barotropic (external) mode expressed by operators 740

are shown as below: 741

 𝜂𝜂𝑡𝑡+1−𝜂𝜂𝑡𝑡−1

2𝑑𝑑𝜕𝜕𝑑𝑑
+ 𝛿𝛿𝑓𝑓𝜕𝜕(𝐷𝐷𝑏𝑏

𝜕𝜕
 𝑈𝑈𝐴𝐴) + 𝛿𝛿𝑓𝑓

𝜕𝜕(𝐷𝐷𝑏𝑏
𝜕𝜕

 𝑉𝑉𝐴𝐴) = 0, (B15) 742

 (𝜕𝜕𝑏𝑏
𝑥𝑥
𝜕𝜕𝐴𝐴)𝑡𝑡+1−(𝜕𝜕𝑏𝑏

𝑥𝑥
𝜕𝜕𝐴𝐴)𝑡𝑡−1

2𝑑𝑑𝜕𝜕𝑑𝑑
+ 𝛿𝛿𝑏𝑏𝜕𝜕 �(𝐷𝐷𝑏𝑏

𝜕𝜕
𝑈𝑈𝐴𝐴)𝑓𝑓

𝜕𝜕
(𝑈𝑈𝐴𝐴)𝑓𝑓

𝜕𝜕
� + 𝛿𝛿𝑓𝑓

𝜕𝜕 �(𝐷𝐷𝑏𝑏
𝜕𝜕
𝑉𝑉𝐴𝐴)𝑏𝑏

𝜕𝜕
(𝑈𝑈𝐴𝐴)𝑏𝑏

𝜕𝜕
� −743

�𝑓𝑓𝐴𝐴(𝑉𝑉𝐴𝐴)𝑓𝑓
𝜕𝜕
𝐷𝐷�

𝑏𝑏

𝜕𝜕

− �𝑓𝑓(𝑉𝑉𝐴𝐴)𝑓𝑓
𝜕𝜕
𝐷𝐷�

𝑏𝑏

𝜕𝜕

+ 𝑔𝑔𝐷𝐷𝑏𝑏
𝜕𝜕
𝛿𝛿𝑏𝑏𝜕𝜕(𝜂𝜂) = 𝛿𝛿𝑏𝑏𝜕𝜕�2(𝐴𝐴𝐴𝐴𝑀𝑀)𝐷𝐷𝛿𝛿𝑓𝑓𝜕𝜕[(𝑈𝑈𝐴𝐴)𝜕𝜕−1]� +744

𝛿𝛿𝑓𝑓
𝜕𝜕 ��(𝐴𝐴𝐴𝐴𝑀𝑀)𝑏𝑏

𝜕𝜕
�
𝑏𝑏

𝜕𝜕

(𝐷𝐷𝑏𝑏
𝜕𝜕

)𝑏𝑏
𝜕𝜕
�𝛿𝛿𝑏𝑏𝜕𝜕(𝑉𝑉𝐴𝐴) + 𝛿𝛿𝑏𝑏

𝜕𝜕(𝑈𝑈𝐴𝐴)�
𝜕𝜕−1

� + 𝜙𝜙𝜕𝜕, (B16) 745

 (𝜕𝜕𝑏𝑏
𝑦𝑦
𝜕𝜕𝐴𝐴)𝑡𝑡+1−(𝜕𝜕𝑏𝑏

𝑦𝑦
𝜕𝜕𝐴𝐴)𝑡𝑡−1

2𝑑𝑑𝜕𝜕𝑑𝑑
+ 𝛿𝛿𝑓𝑓𝜕𝜕 �(𝐷𝐷𝑏𝑏

𝜕𝜕
𝑈𝑈𝐴𝐴)𝑏𝑏

𝜕𝜕
(𝑉𝑉𝐴𝐴)𝑏𝑏

𝜕𝜕
�+ 𝛿𝛿𝑏𝑏

𝜕𝜕 �(𝐷𝐷𝑏𝑏
𝜕𝜕
𝑉𝑉𝐴𝐴)𝑓𝑓

𝜕𝜕
(𝑉𝑉𝐴𝐴)𝑓𝑓

𝜕𝜕
� +746

�𝑓𝑓𝐴𝐴(𝑈𝑈𝐴𝐴)𝑓𝑓
𝜕𝜕
𝐷𝐷�

𝑏𝑏

𝜕𝜕

+ �𝑓𝑓(𝑈𝑈𝐴𝐴)𝑓𝑓
𝜕𝜕
𝐷𝐷�

𝑏𝑏

𝜕𝜕

+ 𝑔𝑔𝐷𝐷𝑏𝑏
𝜕𝜕
𝛿𝛿𝑏𝑏
𝜕𝜕(𝜂𝜂) = 𝛿𝛿𝑏𝑏

𝜕𝜕�2(𝐴𝐴𝐴𝐴𝑀𝑀)𝐷𝐷𝛿𝛿𝑓𝑓
𝜕𝜕[(𝑉𝑉𝐴𝐴)𝜕𝜕−1]� +747

𝛿𝛿𝑓𝑓𝜕𝜕 ��(𝐴𝐴𝐴𝐴𝑀𝑀)𝑏𝑏
𝜕𝜕
�
𝑏𝑏

𝜕𝜕

(𝐷𝐷𝑏𝑏
𝜕𝜕

)𝑏𝑏
𝜕𝜕
�𝛿𝛿𝑏𝑏𝜕𝜕(𝑉𝑉𝐴𝐴) + 𝛿𝛿𝑏𝑏

𝜕𝜕(𝑈𝑈𝐴𝐴)�
𝜕𝜕−1

� + 𝜙𝜙𝜕𝜕, (B17) 748

 749

where 750

 𝜙𝜙𝜕𝜕 = −𝑊𝑊𝑈𝑈(0) + 𝑊𝑊𝑈𝑈(−1) − 𝑔𝑔(𝜕𝜕𝑏𝑏
𝑥𝑥

)2

𝜌𝜌0
∫0−1 ��∫

0
𝜎𝜎 𝛿𝛿𝑏𝑏

𝜕𝜕(𝜌𝜌)𝑏𝑏
𝑧𝑧
𝑑𝑑𝜎𝜎′� 𝑑𝑑𝜎𝜎� +751

29

𝑔𝑔𝜕𝜕𝑏𝑏
𝑥𝑥
𝛿𝛿𝑏𝑏
𝑥𝑥𝜕𝜕

𝜌𝜌0
∫0−1 ��∫

0
𝜎𝜎 𝜎𝜎𝑏𝑏

𝑧𝑧𝛿𝛿𝑏𝑏𝑧𝑧(𝜌𝜌𝑏𝑏
𝜕𝜕)� 𝑑𝑑𝜎𝜎� + 𝐺𝐺𝜕𝜕, (B18) 752

 𝜙𝜙𝜕𝜕 = −𝑊𝑊𝑉𝑉(0) + 𝑊𝑊𝑉𝑉(−1) − 𝑔𝑔(𝜕𝜕𝑏𝑏
𝑦𝑦

)2

𝜌𝜌0
∫0−1 ��∫

0
𝜎𝜎 𝛿𝛿𝑏𝑏

𝜕𝜕(𝜌𝜌)𝑏𝑏
𝑧𝑧
𝑑𝑑𝜎𝜎′� 𝑑𝑑𝜎𝜎� +753

𝑔𝑔𝜕𝜕𝑏𝑏
𝑦𝑦
𝛿𝛿𝑏𝑏
𝑦𝑦𝜕𝜕

𝜌𝜌0
∫0−1 ��∫

0
𝜎𝜎 𝜎𝜎𝑏𝑏

𝑧𝑧𝛿𝛿𝑏𝑏𝑧𝑧(𝜌𝜌𝑏𝑏
𝜕𝜕)� 𝑑𝑑𝜎𝜎� + 𝐺𝐺𝜕𝜕. (B19) 754

 755
 756

30

Appendix C: Descriptions of symbols 757

The description of each symbol in the governing equations is list as below: 758

Table C1. Descriptions of symbols 759

Symbol Description

η Free surface elevation

H Bottom topography

ua, va Vertical average velocity in x, y direction, respectively

U, V, W Velocity in x, y, σ direction, respectively

D Fluid column depth

f The Coriolis parameter

g The gravitational acceleration

ρ0 Constant density

ρ Situ density

T Potential temperature

S Salinity

R Surface solar radiation incident

q2/2 Turbulence kinetic energy

l Turbulence length scale

q2l/2 Production of turbulence kinetic energy and turbulence

length scale

dti Time step of baroclinic mode

dte Time step of barotropic mode

dx Grid increment in x direction

dy Grid increment in y direction

AM Horizontal kinematic viscosity

AH Horizontal heat diffusivity

KM Vertical kinematic viscosity

KH Vertical mixing coefficient of heat and salinity

Kq Vertical mixing coefficient of turbulence kinetic energy

760

31

Author contributions. Xiaomeng Huang led the project of OpenArray and the writing 761

of this paper, DW, QW, SZ and Xing Huang designed OpenArray. Xing Huang, DW, 762

QW, SZ, MW, YG, and QT implemented and tested GOMO. All coauthors contributed 763

to the writing of this paper. 764

 765

Competing interests. The authors declare that they have no conflict of interest. 766

 767

Acknowledgements. Xiaomeng Huang is supported by a grant from the State’s Key 768

Project of Research and Development Plan (2016YFB0201100), the National Natural 769

Science Foundation of China (41776010), and Center for High Performance Computing 770

and System Simulation of Pilot National Laboratory for Marine Science and 771

Technology (Qingdao). Xing Huang is supported by a grant from the State’s Key 772

Project of Research and Development Plan (2018YFB0505000). Shixun Zhang is 773

supported by a grant from the State’s Key Project of Research and Development Plan 774

(2017YFC1502200) and Qingdao National Laboratory for Marine Science and 775

Technology (QNLM2016ORP0108). Zhenya Song is supported by National Natural 776

Science Foundation of China (U1806205) and AoShan Talents Cultivation Excellent 777

Scholar Program Supported by Qingdao National Laboratory for Marine Science and 778

Technology (2017ASTCP-ES04). 779

 780

References 781

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, 782

S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, 783

D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y. and 784

Zheng, X.: TensorFlow: A System for Large-Scale Machine Learning, in 12th 785

{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 786

16), pp. 265–283, {USENIX} Association, Savannah, GA. [online] Available from: 787

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi, 788

2016. 789

32

Alexander, K. and Easterbrook, S. M.: The software architecture of climate models: A 790

graphical comparison of CMIP5 and EMICAR5 configurations, Geosci. Model Dev., 791

8(4), 1221–1232, doi:10.5194/gmd-8-1221-2015, 2015. 792

Arakawa, A. and Lamb, V. R.: A Potential Enstrophy and Energy Conserving Scheme 793

for the Shallow Water Equations, Mon. Weather Rev., doi:10.1175/1520-794

0493(1981)109<0018:APEAEC>2.0.CO;2, 1981. 795

Bae, H., Mustafa, D., Lee, J. W., Aurangzeb, Lin, H., Dave, C., Eigenmann, R. and 796

Midkiff, S. P.: The Cetus source-to-source compiler infrastructure: Overview and 797

evaluation, in International Journal of Parallel Programming., 2013. 798

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I. J., Bergeron, A., 799

Bouchard, N., Warde-Farley, D. and Bengio, Y.: Theano: new features and speed 800

improvements, CoRR, abs/1211.5 [online] Available from: 801

http://arxiv.org/abs/1211.5590, 2012. 802

Beckmann, A. and Haidvogel, D. B.: Numerical simulation of flow around a tall 803

isolated seamount. Part I: problem formulation and model accuracy, J. Phys. 804

Oceanogr., 23(8), 1736–1753, doi:10.1175/1520-805

0485(1993)023<1736:NSOFAA>2.0.CO;2, 1993. 806

Bloss, A., Hudak, P. and Young, J.: Code optimizations for lazy evaluation, Lisp Symb. 807

Comput., doi:10.1007/BF01806169, 1988. 808

Blumberg, A. F. and Mellor, G. L.: A description of a three-dimensional coastal ocean 809

circulation model, , (January 1987), 1–16, doi:10.1029/CO004p0001, 1987. 810

Bonan, G. B. and Doney, S. C.: Climate, ecosystems, and planetary futures: The 811

challenge to predict life in Earth system models, Science (80-.)., 812

doi:10.1126/science.aam8328, 2018. 813

Bretherton, C., Balaji, V. and Delworth, T. et al: A National Strategy for Advancing 814

Climate Modeling, National Academies Press., 2012. 815

Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S. H. and Skadron, K.: 816

Rodinia: A benchmark suite for heterogeneous computing, in Proceedings of the 817

2009 IEEE International Symposium on Workload Characterization, IISWC 2009., 818

33

2009. 819

Chen, C., Liu, H. and Beardsley, R. C.: An unstructured grid, finite-volume, three-820

dimensional, primitive equations ocean model: Application to coastal ocean and 821

estuaries, J. Atmos. Ocean. Technol., doi:10.1175/1520-822

0426(2003)020<0159:AUGFVT>2.0.CO;2, 2003. 823

Collins, M., Minobe, S., Barreiro, M., Bordoni, S., Kaspi, Y., Kuwano-Yoshida, A., 824

Keenlyside, N., Manzini, E., O’Reilly, C. H., Sutton, R., Xie, S. P. and Zolina, O.: 825

Challenges and opportunities for improved understanding of regional climate 826

dynamics, Nat. Clim. Chang., 8(2), 101–108, doi:10.1038/s41558-017-0059-8, 2018. 827

Corliss, G. and Griewank, A.: Operator Overloading as an Enabling Technology for 828

Automatic Differentiation, 1994. 829

Deconinck, W., Bauer, P., Diamantakis, M., Hamrud, M., Kühnlein, C., Maciel, P., 830

Mengaldo, G., Quintino, T., Raoult, B., Smolarkiewicz, P. K. and Wedi, N. P.: Atlas : 831

A library for numerical weather prediction and climate modelling, Comput. Phys. 832

Commun., 220, 188–204, doi:10.1016/j.cpc.2017.07.006, 2017. 833

Dennis, J. M.: Inverse space-filling curve partitioning of a global ocean model, Proc. - 834

21st Int. Parallel Distrib. Process. Symp. IPDPS 2007; Abstr. CD-ROM, 1–10, 835

doi:10.1109/IPDPS.2007.370215, 2007. 836

van Engelen, R. a.: ATMOL: A Domain-Specific Language for Atmospheric Modeling, 837

J. Comput. Inf. Technol., 9(4), 289–303, doi:10.2498/cit.2001.04.02, 2001. 838

Frigo, M. and Strumpen, V.: Cache oblivious stencil computations, , 361, 839

doi:10.1145/1088149.1088197, 2005. 840

Fu, H., He, C., Chen, B., Yin, Z., Zhang, Z., Zhang, W., Zhang, T., Xue, W., Liu, W., 841

Yin, W. and others: 18.9-Pflops nonlinear earthquake simulation on Sunway 842

TaihuLight: enabling depiction of 18-Hz and 8-meter scenarios, in Proceedings of 843

the International Conference for High Performance Computing, Networking, Storage 844

and Analysis., 2017. 845

Griffies, S. M., Böning, C., Bryan, F. O., Chassignet, E. P., Gerdes, R., Hasumi, H., 846

Hirst, A., Treguier, A.-M. and Webb, D.: Developments in ocean climate modelling, 847

34

Ocean Model., 2(3–4), 123–192, doi:10.1016/S1463-5003(00)00014-7, 2000. 848

Gysi, T., Osuna, C., Fuhrer, O., Bianco, M. and Schulthess, T. C.: STELLA: A Domain-849

specific Tool for Structured Grid Methods in Weather and Climate Models, Proc. Int. 850

Conf. High Perform. Comput. Networking, Storage Anal. - SC ’15, 1–12, 851

doi:10.1145/2807591.2807627, 2015. 852

Huang, W., Ghosh, S., Velusamy, S., Sankaranarayanan, K., Skadron, K. and Stan, M. 853

R.: HotSpot: A compact thermal modeling methodology for early-stage VLSI design, 854

IEEE Trans. Very Large Scale Integr. Syst., doi:10.1109/TVLSI.2006.876103, 2006. 855

Huang, X. M., Wang, W. C., Fu, H. H., Yang, G. W., Wang, B. and Zhang, C.: A fast 856

input/output library for high-resolution climate models, Geosci. Model Dev., 7(1), 857

93–103, doi:10.5194/gmd-7-93-2014, 2014. 858

Korn, P.: Formulation of an unstructured grid model for global ocean dynamics, J. 859

Comput. Phys., 339, 525–552, doi:10.1016/j.jcp.2017.03.009, 2017. 860

Lawrence, B. N., Rezny, M., Budich, R., Bauer, P., Behrens, J., Carter, M., Deconinck, 861

W., Ford, R., Maynard, C., Mullerworth, S., Osuna, C., Porter, A., Serradell, K., 862

Valcke, S., Wedi, N. and Wilson, S.: Crossing the chasm: How to develop weather 863

and climate models for next generation computers?, Geosci. Model Dev., 864

doi:10.5194/gmd-11-1799-2018, 2018. 865

Levin, J. G., Iskandarani, M. and Haidvogel, D. B.: A nonconforming spectral element 866

ocean model, Int. J. Numer. Methods Fluids, 34(6), 495–525, doi:10.1002/1097-867

0363(20001130)34:6<495::AID-FLD68>3.0.CO;2-K, 2000. 868

Lidman, J., Quinlan, D. J., Liao, C. and McKee, S. A.: ROSE::FTTransform - A source-869

to-source translation framework for exascale fault-tolerance research, Proc. Int. Conf. 870

Dependable Syst. Networks, (June), doi:10.1109/DSNW.2012.6264672, 2012. 871

Mellor-Crummey, J., Adhianto, L., Scherer III, W. N. and Jin, G.: A New Vision for 872

Coarray Fortran, in Proceedings of the Third Conference on Partitioned Global 873

Address Space Programing Models, p. 5:1--5:9, ACM, New York, NY, USA., 2009. 874

Mellor, G. L.: Users guide for a three-dimensional, primitive equation, numerical ocean 875

model (June 2003 version), Prog. Atmos. Ocean. Sci, Princet. Univ., (October), 53, 876

35

2003. 877

Mellor, G. L. and Yamada, T.: Development of a turbulence closure model for 878

geophysical fluid problems, Rev. Geophys., doi:10.1029/RG020i004p00851, 1982. 879

Porkoláb, Z., Mihalicza, J. and Sipos, Á.: Debugging C++ template metaprograms, , 880

255, doi:10.1145/1173706.1173746, 2007. 881

Pugh, W.: Uniform Techniques for Loop Optimization, in Proceedings of the 5th 882

International Conference on Supercomputing, pp. 341–352, ACM, New York, NY, 883

USA., 1991. 884

Qiao, F., Zhao, W., Yin, X., Huang, X., Liu, X., Shu, Q., Wang, G., Song, Z., Li, X., 885

Liu, H., Yang, G. and Yuan, Y.: A Highly Effective Global Surface Wave Numerical 886

Simulation with Ultra-High Resolution, in International Conference for High 887

Performance Computing, Networking, Storage and Analysis, SC., 2017. 888

Reynolds, J. C.: Theories of Programming Languages, Cambridge University Press, 889

New York, NY, USA., 1999. 890

Shan, A.: Heterogeneous Processing: A Strategy for Augmenting Moore’s Law, Linux 891

J., 2006(142). Available from: http://dl.acm.org/citation.cfm?id=1119128.1119135, 892

2006. 893

Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system 894

(ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic 895

model, Ocean Model., doi:10.1016/j.ocemod.2004.08.002, 2005. 896

Suganuma, T. and Yasue, T.: Design and evaluation of dynamic optimizations for a 897

Java just-in-time compiler, ACM Trans. …, doi:10.1145/1075382.1075386, 2005. 898

Taylor, K. E., Stouffer, R. J. and Meehl, G. A.: An overview of CMIP5 and the 899

experiment design, Bull. Am. Meteorol. Soc., 93(4), 485–498, doi:10.1175/BAMS-900

D-11-00094.1, 2012. 901

Torres, R., Linardakis, L., Kunkel, J. and Ludwig, T.: ICON DSL: A Domain-Specific 902

Language for climate modeling, Sc13.Supercomputing.Org [online] Available from: 903

http://sc13.supercomputing.org/sites/default/files/WorkshopsArchive/pdfs/wp127s1904

.pdf, 2013. 905

36

Walther, A., Griewank, A. and Vogel, O.: ADOL-C: Automatic Differentiation Using 906

Operator Overloading in C++, PAMM, doi:10.1002/pamm.200310011, 2003. 907

Xu, S., Huang, X., Oey, L. Y., Xu, F., Fu, H., Zhang, Y. and Yang, G.: POM.GPU-v1.0: 908

A GPU-based princeton ocean model, Geosci. Model Dev., doi:10.5194/gmd-8-909

2815-2015, 2015. 910

 911

37

Tables 912

Table 1. Definitions of the twelve basic operators 913

Notations Discrete Form Basic Operator

𝑣𝑣𝑣𝑣𝑣𝑣����� 𝑓𝑓𝜕𝜕 [var(i,j,k) + var(i+1,j,k)] / 2 AXF

𝑣𝑣𝑣𝑣𝑣𝑣����� 𝑏𝑏𝜕𝜕 [var(i,j,k) + var(i-1,j,k)] / 2 AXB

𝑣𝑣𝑣𝑣𝑣𝑣����� 𝑓𝑓
𝜕𝜕 [var(i,j,k) + var(i,j+1,k)] / 2 AYF

𝑣𝑣𝑣𝑣𝑣𝑣����� 𝑏𝑏
𝜕𝜕 [var(i,j,k) + var(i,j-1,k)] / 2 AYB

𝑣𝑣𝑣𝑣𝑣𝑣����� 𝑓𝑓𝑧𝑧 [var(i,j,k) + var(i,j,k+1)] / 2 AZF

𝑣𝑣𝑣𝑣𝑣𝑣����� 𝑏𝑏𝑧𝑧 [var(i,j,k) + var(i,j,k-1)] / 2 AZB

𝛿𝛿𝑓𝑓𝜕𝜕(𝑣𝑣𝑣𝑣𝑣𝑣) [var(i+1,j,k) - var(i,j,k)] / dx(i,j) DXF

𝛿𝛿𝑏𝑏𝜕𝜕(𝑣𝑣𝑣𝑣𝑣𝑣) [var(i,j,k) - var(i-1,j,k)] / dx(i-1,j) DXB

𝛿𝛿𝑓𝑓
𝜕𝜕(𝑣𝑣𝑣𝑣𝑣𝑣) [var(i,j+1,k) - var(i,j,k)] / dy(i,j) DYF

𝛿𝛿𝑏𝑏
𝜕𝜕(𝑣𝑣𝑣𝑣𝑣𝑣) [var(i,j,k) - var(i,j-1,k)] / dy(i,j-1) DYB

𝛿𝛿𝑓𝑓𝑧𝑧(𝑣𝑣𝑣𝑣𝑣𝑣) [var(i,j,k+1) - var(i,j,k)] / dz(k) DZF

𝛿𝛿𝑏𝑏𝑧𝑧(𝑣𝑣𝑣𝑣𝑣𝑣) [var(i,j,k) - var(i,j,k-1)] / dz(k-1) DZB

 914
 915

38

Table 2 ．The jumping rules of an operator acting on an Array 916

The initial position

of var

The position of

[A|D]X[F|B] (var)

The position of

 [A|D]Y[F|B] (var)

The position of

 [A|D]Z[F|B] (var)

0 1 2 4

1 0 3 5

2 3 0 6

3 2 1 7

4 5 6 0

5 4 7 1

6 7 4 2

7 6 5 3

 917
 918

39

Table 3. Comparing GOMO with several variations of the POM 919

Model Lines of code Method Computing Platforms

POM2k 3521 Serial CPU

sbPOM 4801 MPI CPU

mpiPOM 9685 MPI CPU

POMgpu 30443 MPI + CUDA GPU

GOMO 1860 OpenArray CPU, Sunway

 920
 921

40

Table. 4. Comparison of the amount of code for different functions 922

Functions
Lines of code

POM2k sbPOM GOMO

Solve for η 16 72 1

Solve for Ua 75 183 11

Solve for Va 75 183 11

Solve for W 36 90 3

Solve for q2 and q2l 318 854 162

Solve for T or S 178 234 71

Solve for U 118 230 50

Solve for V 118 230 50

 923
 924

41

Table 5. Four benchmark tests 925

Benchmark Dimensions Grid Size
OpenArray

version (seconds)

Original

version(seconds)

Continuity equation 2D 8192×8192 7.22 7.10

Heat diffusion equation

Hotspot2D

2D

2D

8192×8192

8192×8192

6.20

11.37

6.34

11.21

Hotspot3D 3D 512×512×8 0.96 1.01

 926
 927

42

Figures 928

 929

 930
Figure 1. Arrangement of variables in the staggered Arakawa C grid. 931

 932

43

 933

 934

Figure 2. Implementation of Eq. (6) by basic operators. The elf and elb are the surface 935

elevations at times (t+1) and (t-1) respectively. 936
 937

44

 938
Figure 3. Implementation of the shallow water equations by basic operators. elf, el and 939

elb denote sea surface elevations at times (t+1), t and (t-1), respectively. Uf, U and Ub 940

denote the zonal velocity at times (t+1), t and (t-1), respectively. Vf, V and Vb denote 941

the meridional velocity at times (t+1), t and (t-1), respectively. aam denotes the 942

viscosity coefficient. 943
 944

45

 945

Figure 4. The schematic diagram of the relative positions of the variables on the 946

abstract staggered grid and the jumping procedures among the grid points. 947
 948

46

 949
Figure 5. The workflow of OpenArray. 950

 951

47

 952
Figure 6. The effect of “The self-documenting code is the formula” illustrated by the 953

sea surface elevation equation. 954

 955

48

 956

Figure 7. Parsing the operator expression form into the computation graph. 957
 958

49

 959

Figure 8. The schematic diagram of kernel fusion. 960
 961

50

 962

 963

Figure 9. The MPE-CPEs hybrid architecture of the Sunway processor. Every Sunway 964

processor includes 4 Core-groups (CGs) connected by the Network on Chip (NoC). 965

Each CG consists of a management processing element (MPE), 64 computing 966

processing elements (CPEs) and a memory controller (MC). The Sunway processor 967

uses the system interface (SI) to connect with outside devices. 968
 969

51

 970
Figure 10. Flow diagram of GOMO 971

 972

52

 973
Figure 11. Comparison of the surface elevation (shaded) and currents at 3500 metres 974

depth (vector) between GOMO and sbPOM on the 4th model day. (a) GOMO, (b) 975

sbPOM, (c) GOMO-sbPOM. 976
 977

53

 978

Figure 12. Performance comparison between sbPOM and GOMO on the X86 cluster. 979

(a) The strong scaling result; vertical axis denotes the speedup relative to 16 processes 980

in a single node. (b) The weak scaling result. 981
 982

54

 983

Figure 13. Parallel efficiency of GOMO on the Sunway platform. 984

 985

	Abstract
	1. Introduction
	2. Concepts of the Array, Operator, and Abstract Staggered Grid
	2.1 Array
	2.2 Operator
	2.3 Abstract staggered grid

	3. Design of OpenArray
	3.1 Operator expression
	3.2 Intermediate computation graph
	3.3 Code generation
	3.4 Portable program for different backend platforms

	4. Implementation of GOMO
	5. Results
	5.1 Benchmark testing
	5.2 Validation tests of GOMO
	5.3 The weak and strong scalability of GOMO
	5.4 Testing on the Sunway platform

	6. Discussion
	7. Conclusion
	Appendix A: Continuous governing equations
	Appendix B: Discrete governing equations
	Appendix C: Descriptions of symbols
	References
	Tables
	Figures

