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Abstract 17 

The rapidly evolving computational techniques are making a large gap between 18 

scientific aspiration and code implementation in climate modelling. In this work, we 19 

design a simple computing library to bridge the gap and decouple the work of ocean 20 

modelling from parallel computing. This library provides twelve basic operators that 21 

feature user-friendly interfaces, effective programming and implicit parallelism. 22 

Several state-of-art computing techniques, including computing graph and Just-In-Time 23 

compiling are employed to parallelize the seemly serial code and speed up the ocean 24 

models. These operator interfaces are designed using native Fortran programming 25 

language to smooth the learning curve. We further implement a highly readable and 26 

efficient ocean model that contains only 1860 lines of code but achieves a 91% parallel 27 

efficiency in strong scaling and 99% parallel efficiency in weak scaling with 4096 Intel 28 

CPU cores. This ocean model also exhibits excellent scalability on the heterogeneous 29 
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Sunway TaihuLight supercomputer. This work presents a promising alternative tool for 30 

the development of ocean models. 31 

 32 
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1. Introduction 34 

Many earth system models have been developed in the past several decades to improve 35 

the predictive understanding of the earth system (Bonan and Doney, 2018; Collins et 36 

al., 2018; Taylor et al., 2012). These models are becoming increasingly complicated, 37 

and the amount of code has expanded from a few thousand lines to tens of thousands, 38 

or even millions of lines. In terms of software engineering, an increase in code causes 39 

the models to be more difficult to develop and maintain. 40 

 41 

The complexity of these models mainly originates from three aspects. First, more model 42 

components and physical processes have been embedded into the earth system models, 43 

leading to a tenfold increase in the amount of code (e.g., Alexander and Easterbrook, 44 

2015). Second, some heterogeneous and advanced computing platforms (e.g., 45 

Lawrence et al., 2018) have been widely used by the climate modelling community, 46 

resulting in a fivefold increase in the amount of code (e.g., Xu et al., 2015). Last, most 47 

of the model programs need to be rewritten due to the continual development of novel 48 

numerical methods and meshes. The promotion of novel numerical methods and 49 

technologies produced in the fields of computational mathematics and computer 50 

science have been limited in climate science because of the extremely heavy burden 51 

caused by program rewriting and migration. 52 

 53 

Over the next few decades, tremendous computing capacities will be accompanied by 54 

more heterogeneous architectures which are equipped with two or more kinds of cores 55 

or processing elements (Shan, 2006), thus making for a much more sophisticated 56 

computing environment for climate modellers than ever before (Bretherton et al., 2012). 57 

Clearly, transiting the current earth system models to the next generation of computing 58 

environments will be highly challenging and disruptive. Overall, complex codes in 59 

earth system models combined with rapidly evolving computational techniques create 60 

a very large gap between scientific aspiration and code implementation in the climate 61 

modelling community. 62 
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 63 

To reduce the complexity of earth system models and bridge this gap, a universal and 64 

productive computing library is a promising solution. Through establishing an implicit 65 

parallel and platform-independent computing library, the complex models can be 66 

simplified and will no longer need explicit parallelism and transiting, thus effectively 67 

decoupling the development of ocean models from complicated parallel computing 68 

techniques and diverse heterogeneous computing platforms. 69 

 70 

Many efforts have been made to address the complexity of parallel programming for 71 

numerical simulations, such as operator overloading, source-to-source translator and 72 

domain specific language (DSL). Operator overloading supports the customized data 73 

type and provides simple operators and function interfaces to implement the model 74 

algorithm. This technique is widely used because the implementation is straightforward 75 

and easy to understand (Corliss and Griewank, 1994; Walther et al., 2003). However, it 76 

is prone to work inefficiently because overloading execution induces numerous 77 

unnecessary intermediate variables, consuming valuable memory bandwidth resources. 78 

Using a source-to-source translator offers another solution. As indicated by the name, 79 

this method converts one language, which is usually strictly constrained by self-defined 80 

rules, to another (Bae et al., 2013; Lidman et al., 2012). It requires tremendous work to 81 

develop and maintain a robust source-to-source compiler. Furthermore, DSLs can 82 

provide high-level abstraction interfaces that use mathematical notations similar to 83 

those used by domain scientists, so that they can write much more concise and more 84 

straightforward code. Some outstanding DSLs, such as ATMOL (van Engelen, 2001), 85 

ICON DSL (Torres et al., 2013), STELLA (Gysi et al., 2015) and ATLAS (Deconinck 86 

et al., 2017), are used by the numerical model community. Although they seem source-87 

to-source technique, DSLs are newly-defined languages and produce executable 88 

programs instead of target languages. Therefore the new syntax makes it difficult for 89 

the modellers to master the DSLs. In addition, most DSLs are not yet supported by 90 

robust compilers due to their relatively short history. Most of the source-to-source 91 
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translators and DSLs still do not support the rapidly evolving heterogeneous computing 92 

platforms, such as the Chinese Sunway TaihuLight supercomputer which is based on 93 

the homegrown Sunway heterogeneous many-core processors and located at the 94 

National Supercomputing Center in Wuxi. 95 

 96 

Other methods such as COARRAY Fortran and CPP templates provide alternative ways. 97 

Using COARRAY Fortran, a modeller has to control the reading and writing operation 98 

of each image (Mellor-Crummey et al., 2009). In a sense, one has to manipulate the 99 

images in parallel instead of writing serial code. In term of CPP templates, it is usually 100 

suitable for small code and difficult for debugging (Porkoláb et al., 2007). 101 

 102 

Inspired by the philosophy of operator overloading, source-to-source translating and 103 

DSLs, we integrated the advantages of these three methods into a simple computing 104 

library which is called OpenArray. The main contributions of OpenArray are as follows:  105 

• Easy-to-use. The modellers can write simple operator expressions in Fortran to 106 

solve partial differential equations (PDEs). The entire program appears to be 107 

serial and the modellers do not need to know any parallel computing techniques. 108 

We summarized twelve basic generalized operators to support whole 109 

calculations in a particular class of ocean models which use the finite difference 110 

method and staggered grid.  111 

• High efficiency. We adopt some advanced techniques, including intermediate 112 

computation graphing, asynchronous communication, kernel fusion, loop 113 

optimization, and vectorization, to decrease the consumption of memory 114 

bandwidth and improve efficiency. Performance of the programs implemented 115 

by OpenArray is similar to the original but manually optimized parallel program.  116 

• Portability. Currently OpenArray supports both CPU and Sunway platforms. 117 

More platforms including GPU will be supported in the future. The complexity 118 

of cross-platform migration is moved from the models to OpenArray. The 119 

applications based on OpenArray can then be migrated seamlessly to the 120 
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supported platforms. 121 

 122 

Furthermore, we developed a numerical ocean model based on the Princeton Ocean 123 

Model (POM, Blumberg and Mellor, 1987) to test the capability and efficiency of 124 

OpenArray. The new model is called the Generalized Operator Model of the Ocean 125 

(GOMO). Because the parallel computing details are completely hidden, GOMO 126 

consists of only 1860 lines of Fortran code and is more easily understood and 127 

maintained than the original POM. Moreover, GOMO exhibits excellent scalability and 128 

portability on both central processing unit (CPU) and Sunway platforms.  129 

 130 

The remainder of this paper is organized as follows. Section 2 introduces some concepts 131 

and presents the detailed mathematical descriptions of formulating the PDEs into 132 

operator expressions. Section 3 describes the detailed design and optimization 133 

techniques of OpenArray. The implementation of GOMO is described in section 4. 134 

Section 5 evaluates the performances of OpenArray and GOMO. Finally, discussion 135 

and conclusion are given in section 6 and 7, respectively.  136 

 137 

2. Concepts of the Array, Operator, and Abstract Staggered Grid 138 

In this section, we introduce three important concepts in OpenArray: Array, Operator 139 

and Abstract Staggered Grid to illustrate the design of OpenArray. 140 

 141 

2.1 Array 142 

To achieve this simplicity, we designed a derived data type, Array, which inspired our 143 

project name, OpenArray. The new Array data type comprises a series of information, 144 

including a 3-dimensional (3D) array to store data, a pointer to the computational grid, 145 

a Message Passing Interface (MPI) communicator, the size of the halo region and other 146 

information about the data distribution. All the information is used to manipulate the 147 

Array as an object to simplify the parallel computing. In traditional ocean models, 148 

calculations for each grid point and the i, j, and k loops in the horizontal and vertical 149 
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directions are unavoidable. The advantage of taking the Array as an object is the 150 

significant reduction in the number of loop operations in the models, making the code 151 

more intuitive and readable. When using the OpenArray library in a program, one can 152 

use type(Array) to declare new variables. 153 

 154 

2.2 Operator 155 

To illustrate the concept of an operator, we first take a 2-dimensional (2D) continuous 156 

equation solving sea surface elevation as an example: 157 
𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0,                     (1) 158 

where η is the surface elevation, U and V are the zonal and meridional velocities, and 159 

D is the depth of the fluid column. We choose the finite difference method and staggered 160 

Arakawa C grid scheme, which are adopted by most regional ocean models. In Arakawa 161 

C grid, D is calculated at the centers, U component is calculated at the left and right 162 

side of the variable D, V component is calculated at the lower and upper side of the 163 

variable D (Fig. 1). Variables (D, U, V) located at different positions own different sets 164 

of gird increments. Taking the term 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 as an example, we firstly apply linear 165 

interpolation to obtain the D’s value at U point represented by tmpD. Through a 166 

backward difference to the product of tmpD and U, then the discrete expression of 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 167 

can be obtained.  168 

tmpD(i+1,j) = 0.5*(D(i+1,j)+D(i,j))*U(i+1,j),            (2) 169 

and 170 

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝑡𝑡𝑡𝑡𝜕𝜕(𝑖𝑖+1,𝑗𝑗)−𝜕𝜕𝑡𝑡𝑡𝑡𝜕𝜕(𝑖𝑖,𝑗𝑗)
𝑑𝑑𝜕𝜕(𝑖𝑖,𝑗𝑗)∗ = 0.5∗�𝜕𝜕(𝑖𝑖+1,𝑗𝑗)+𝜕𝜕(𝑖𝑖,𝑗𝑗)�∗𝜕𝜕(𝑖𝑖+1,𝑗𝑗)−0.5∗�𝜕𝜕(𝑖𝑖,𝑗𝑗)+𝜕𝜕(𝑖𝑖−1,𝑗𝑗)�∗𝜕𝜕(𝑖𝑖,𝑗𝑗)

𝑑𝑑𝜕𝜕(𝑖𝑖,𝑗𝑗)∗ , (3) 171 

where 𝑑𝑑𝑑𝑑(𝑖𝑖, 𝑗𝑗)∗=0.5*( dx(i,j) + dx(i-1,j) ). 172 

 173 

In this way, the above continuous equation can be discretized into the following form. 174 

𝜂𝜂𝑡𝑡+1(𝑖𝑖,𝑗𝑗)−𝜂𝜂𝑡𝑡−1(𝑖𝑖,𝑗𝑗)
2∗𝑑𝑑𝜕𝜕

+ 0.5∗�𝜕𝜕(𝑖𝑖+1,𝑗𝑗)+𝜕𝜕(𝑖𝑖,𝑗𝑗)�∗𝜕𝜕(𝑖𝑖+1,𝑗𝑗)−0.5∗�𝜕𝜕(𝑖𝑖,𝑗𝑗)+𝜕𝜕(𝑖𝑖−1,𝑗𝑗)�∗𝜕𝜕(𝑖𝑖,𝑗𝑗)
𝑑𝑑𝜕𝜕(𝑖𝑖,𝑗𝑗)∗ +175 

                                   0.5∗�𝜕𝜕(𝑖𝑖,𝑗𝑗+1)+𝜕𝜕(𝑖𝑖,𝑗𝑗)�∗𝜕𝜕(𝑖𝑖,𝑗𝑗+1)−0.5∗�𝜕𝜕(𝑖𝑖,𝑗𝑗)+𝜕𝜕(𝑖𝑖,𝑗𝑗−1)�∗𝜕𝜕(𝑖𝑖,𝑗𝑗)
𝑑𝑑𝜕𝜕(𝑖𝑖,𝑗𝑗)∗ = 0,      (4) 176 
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where 𝑑𝑑𝑑𝑑(𝑖𝑖, 𝑗𝑗)∗ =0.5*( dx(i,j) + dx(i-1,j) ), 𝑑𝑑𝑑𝑑(𝑖𝑖, 𝑗𝑗)∗ =0.5*( dy(i,j) + dy(i,j-1) ), 177 

subscripts ηt+1 and ηt-1 denote the surface elevations at the (t+1) time step and (t-1) time 178 

step. To simplify the discrete form, we introduce some notation for the differentiation 179 

(𝛿𝛿𝑓𝑓𝜕𝜕 ,  𝛿𝛿𝑏𝑏
𝜕𝜕 ) and interpolation ( ( )���𝑓𝑓𝜕𝜕 , ( )���𝑏𝑏

𝜕𝜕 ). The δ and overbar symbols define the 180 

differential operator and average operator. The subscript x or y denotes that the 181 

operation acts in the x or y direction, and the superscript f or b denotes that the 182 

approximation operation is forward or backward.  183 

 184 

Table 1 lists the detailed definitions of the twelve basic operators. The term var denotes 185 

a 3D model variable. All twelve operators for the finite difference calculations are 186 

named using three letters in the form [A|D][X|Y|Z][F|B]. The first letter contains two 187 

options, A or D, indicating an average or a differential operator. The second letter 188 

contains three options, X, Y or Z, representing the direction of the operation. The last 189 

letter contains two options, F or B, representing forward or backward operation. The 190 

dx, dy and dz are the distances between two adjacent grid points along the x, y and z 191 

directions. 192 

Using the basic operators, Eq. (4) is expressed as: 193 

𝜂𝜂𝑡𝑡+1−𝜂𝜂𝑡𝑡−1
2∗𝑑𝑑𝜕𝜕

+ 𝛿𝛿𝑓𝑓𝜕𝜕( 𝐷𝐷�𝑏𝑏𝜕𝜕 ∗ 𝑈𝑈) + 𝛿𝛿𝑓𝑓
𝜕𝜕� 𝐷𝐷�𝑏𝑏

𝜕𝜕 ∗ 𝑉𝑉� = 0 .                          (5) 194 

Thus, 195 

𝜂𝜂𝜕𝜕+1 = 𝜂𝜂𝜕𝜕−1 − 2 ∗ 𝑑𝑑𝑑𝑑 ∗ �𝛿𝛿𝑓𝑓𝜕𝜕( 𝐷𝐷�𝑏𝑏𝜕𝜕 ∗ 𝑈𝑈) + 𝛿𝛿𝑓𝑓
𝜕𝜕� 𝐷𝐷�𝑏𝑏

𝜕𝜕 ∗ 𝑉𝑉��.                  (6) 196 

Then, Eq. (6) can be easily translated into a line of code using operators (the bottom 197 

left panel in Fig. 2). Compared with the pseudo-codes (the right panel), the 198 

corresponding implementation by operators is more straightforward and more 199 

consistent with the equations. 200 

 201 

Next, we will use the operators in shallow water equations, which are more complicated 202 

than those in the previous case. Assuming that the flow is in hydrostatic balance and 203 

that the density and viscosity coefficients are constant, and neglecting the molecular 204 

friction, the shallow water equations are: 205 

𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0,               (7) 206 
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𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝑓𝑓𝑉𝑉𝐷𝐷 = −𝑔𝑔𝐷𝐷 𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

+ 𝜇𝜇𝐷𝐷 �𝜕𝜕
2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

�,       (8) 207 

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑓𝑓𝑈𝑈𝐷𝐷 = −𝑔𝑔𝐷𝐷 𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

+ 𝜇𝜇𝐷𝐷 �𝜕𝜕
2𝜕𝜕

𝜕𝜕𝜕𝜕2
+ 𝜕𝜕2𝜕𝜕

𝜕𝜕𝜕𝜕2
�,       (9) 208 

where f is the Coriolis parameter, g is the gravitational acceleration, and μ is the 209 

coefficient of kinematic viscosity. Using the Arakawa C grid and leapfrog time 210 

difference scheme, the discrete forms represented by operators are shown in Eq. (10) ~ 211 

Eq. (12).  212 
𝜂𝜂𝑡𝑡+1−𝜂𝜂𝑡𝑡−1

2∗𝑑𝑑𝜕𝜕
+ 𝛿𝛿𝑓𝑓𝜕𝜕( 𝐷𝐷�𝑏𝑏𝜕𝜕 ∗ 𝑈𝑈) + 𝛿𝛿𝑓𝑓

𝜕𝜕�𝐷𝐷�𝑏𝑏
𝜕𝜕 ∗ 𝑉𝑉� = 0,         (10) 213 

𝜕𝜕𝑡𝑡+1𝜕𝜕𝑡𝑡+1−𝜕𝜕𝑡𝑡−1𝜕𝜕𝑡𝑡−1
2∗𝑑𝑑𝜕𝜕

+ 𝛿𝛿𝑏𝑏𝜕𝜕� 𝐷𝐷�𝑏𝑏𝜕𝜕 ∗ 𝑈𝑈 ���������� 𝑓𝑓𝜕𝜕 ∗ 𝑈𝑈�𝑓𝑓𝜕𝜕� + 𝛿𝛿𝑓𝑓
𝜕𝜕 �𝐷𝐷�𝑏𝑏

𝜕𝜕 ∗ 𝑉𝑉 ���������
𝑏𝑏
𝜕𝜕 ∗ 𝑈𝑈�𝑏𝑏

𝜕𝜕� − 𝑓𝑓 𝑉𝑉� 𝑓𝑓
𝜕𝜕 ∗ 𝐷𝐷 ������������

 𝑏𝑏
 𝜕𝜕 = −𝑔𝑔 ∗214 

𝐷𝐷�𝑏𝑏𝜕𝜕 ∗ 𝛿𝛿𝑏𝑏𝜕𝜕(𝜂𝜂) + 𝜇𝜇 ∗ 𝐷𝐷�𝑏𝑏𝜕𝜕 ∗ �𝛿𝛿𝑏𝑏𝜕𝜕 �𝛿𝛿𝑓𝑓𝜕𝜕(𝑈𝑈𝜕𝜕−1)�+ 𝛿𝛿𝑓𝑓
𝜕𝜕 �𝛿𝛿𝑏𝑏

𝜕𝜕(𝑈𝑈𝜕𝜕−1)��,                     (11) 215 

𝜕𝜕𝑡𝑡+1𝜕𝜕𝑡𝑡+1−𝜕𝜕𝑡𝑡−1𝜕𝜕𝑡𝑡−1
2∗𝑑𝑑𝜕𝜕

+ 𝛿𝛿𝑓𝑓𝜕𝜕�𝐷𝐷�𝑏𝑏𝜕𝜕 ∗ 𝑈𝑈 ���������
𝑏𝑏
𝜕𝜕 ∗ 𝑉𝑉� 𝑏𝑏

𝜕𝜕�+ 𝛿𝛿𝑏𝑏
𝜕𝜕 �𝐷𝐷�𝑏𝑏

𝜕𝜕 ∗ 𝑉𝑉 ��������� 𝑓𝑓
𝜕𝜕 ∗ 𝑉𝑉� 𝑓𝑓

𝜕𝜕� + 𝑓𝑓𝑈𝑈�𝑓𝑓𝜕𝜕 ∗ 𝐷𝐷 �����������
 𝑏𝑏
 𝜕𝜕 = −𝑔𝑔 ∗216 

𝐷𝐷�𝑏𝑏
𝜕𝜕 ∗  𝛿𝛿𝑏𝑏

𝜕𝜕(𝜂𝜂) + 𝜇𝜇 ∗ 𝐷𝐷�𝑏𝑏
𝜕𝜕 ∗ �𝛿𝛿𝑓𝑓𝜕𝜕�𝛿𝛿𝑏𝑏𝜕𝜕(𝑉𝑉𝜕𝜕−1)�+ 𝛿𝛿𝑏𝑏

𝜕𝜕 �𝛿𝛿𝑓𝑓
𝜕𝜕(𝑉𝑉𝜕𝜕−1)�� .       (12) 217 

As the shallow water equations are solved, spatial average and differential operations 218 

are called repeatedly. Implementing these operations is troublesome and thus it is 219 

favourable to abstract these common operations from PDEs and encapsulate them into 220 

user-friendly, platform-independent, and implicit parallel operators. As shown in Fig. 221 

3, we require only 3 lines of code to solve the shallow water equations. This more 222 

realistic case suggests that even more complex PDEs can be constructed and solved by 223 

following this elegant approach. 224 

 225 

2.3 Abstract staggered grid 226 

Most ocean models are implemented based on the staggered Arakawa grids (Arakawa 227 

and Lamb, 1981; Griffies et al., 2000). The variables in ocean models are allocated at 228 

different grid points. The calculations that use these variables are performed after 229 

several reasonable interpolations or differences. When we call the differential 230 

operations on a staggered grid, the difference value between adjacent points should be 231 

divided by the grid increment to obtain the final result. Setting the correct grid 232 

increment for modellers is troublesome work that is extremely prone to error, especially 233 
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when the grid is nonuniform. Therefore, we propose an abstract staggered grid to 234 

support flexible switching of operator calculations among different staggered grids. 235 

When the grid information is provided at the initialization phase of OpenArray, a set of 236 

grid increments, including horizontal increments (dx(i,j), dy(i,j)) and vertical increment 237 

(dz(k)), will be combined with each corresponding physical variable through grid 238 

binding. Thus, the operators can implicitly set the correct grid increments for different 239 

Array variables, even if the grid is nonuniform. 240 

 241 

As shown in Fig. 4, the cubes in the (a), (b), (c), and (d) panels are the minimum abstract 242 

grid accounting for 1/8 of the volume of the cube in Panel (e). The eight points of each 243 

cube are numbered sequentially from 0 to 7, and each point has a set of grid increments, 244 

i.e., dx, dy and dz. For example, all the variables of an abstract Arakawa A grid are 245 

located at Point 3. For the Arakawa B grid, the horizontal velocity Array (U, V) is 246 

located at Point 0, the temperature (T), the salinity (S), and the depth (D) are located at 247 

Point 3, and the vertical velocity Array (W) is located at Point 7. For the Arakawa C 248 

grid, Array U is located at Point 2 and Array V is located at Point 1. In contrast, for the 249 

Arakawa D grid, Array U is located at Point 1 and Array V is located at Point 2.  250 

 251 

When we call the average and differential operators mentioned in Table 1, for example, 252 

on the abstract Arakawa C grid, the position of Array D is Point 3, and the average AXB 253 

operator acting on Array D will change the position from Point 3 to Point 1. Since Array 254 

U is also allocated at Point 1, the operation AXB(D)*U is allowed. In addition, the 255 

subsequent differential operator on Array AXB(D)*U will change the position of Array 256 

DXF(AXB(D)*U) from Point 1 to Point 3. 257 

 258 

The jumping rules of different operators are given in Table 2. Due to the design of the 259 

abstract staggered grids, the jumping rules for the Arakawa A, B, C, and D grids are 260 

fixed. A change in the position of an array is determined only by the direction of a 261 

certain operator acting on that array. 262 
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 263 

If users change the Arakawa grid type, first the position information of each physical 264 

variable need to be reset (Shown in Fig. 4). Then the discrete form of each equation 265 

needs to be redesigned. We take the Eq. (1) switching from Arakawa C grid to Arakawa 266 

B grid as an example. The positions of the horizontal velocity Array U and Array V are 267 

changed to Point 0, Array η and Array D stay the same. The discrete form is changed 268 

from Eq. (4) to Eq. (13), the corresponding implementation by operators is changed 269 

from Eq. (6) to Eq. (14). 270 

𝜂𝜂𝑡𝑡+1(𝑖𝑖,𝑗𝑗)−𝜂𝜂𝑡𝑡−1(𝑖𝑖,𝑗𝑗)
2∗𝑑𝑑𝜕𝜕

+ 0.25∗�𝜕𝜕(𝑖𝑖+1,𝑗𝑗)+𝜕𝜕(𝑖𝑖,𝑗𝑗)�∗(𝜕𝜕(𝑖𝑖+1,𝑗𝑗)+𝜕𝜕(𝑖𝑖+1,𝑗𝑗+1))−0.25∗�𝜕𝜕(𝑖𝑖,𝑗𝑗)+𝜕𝜕(𝑖𝑖−1,𝑗𝑗)�∗(𝜕𝜕(𝑖𝑖,𝑗𝑗)+𝜕𝜕(𝑖𝑖,𝑗𝑗+1))
𝑑𝑑𝜕𝜕(𝑖𝑖,𝑗𝑗)∗ +271 

                                   0.25∗�𝜕𝜕(𝑖𝑖,𝑗𝑗+1)+𝜕𝜕(𝑖𝑖,𝑗𝑗)�∗(𝜕𝜕(𝑖𝑖,𝑗𝑗+1)+𝜕𝜕(𝑖𝑖+1,𝑗𝑗+1))−0.25∗�𝜕𝜕(𝑖𝑖,𝑗𝑗)+𝜕𝜕(𝑖𝑖,𝑗𝑗−1)�∗(𝜕𝜕(𝑖𝑖,𝑗𝑗)+𝜕𝜕(𝑖𝑖+1,𝑗𝑗))
𝑑𝑑𝜕𝜕(𝑖𝑖,𝑗𝑗)∗ = 0 ,  272 

                   (13) 273 

𝜂𝜂𝜕𝜕+1 = 𝜂𝜂𝜕𝜕−1 − 2 ∗ 𝑑𝑑𝑑𝑑 ∗ �𝛿𝛿𝑓𝑓𝜕𝜕� 𝐷𝐷�𝑏𝑏𝜕𝜕 ∗ 𝑈𝑈�𝑓𝑓
𝜕𝜕�+ 𝛿𝛿𝑓𝑓

𝜕𝜕� 𝐷𝐷�𝑏𝑏
𝜕𝜕 ∗  𝑉𝑉�𝑓𝑓𝜕𝜕��.              (14) 274 

The position information and jumping rules are used to implicitly check whether the 275 

discrete form of an equation is correct. The grid increments are hidden by all the 276 

differential operators, thus it makes the code simple and clean. In addition, since the 277 

rules are suitable for multiple staggered Arakawa grids, the modellers can flexibly 278 

switch the ocean model between different Arakawa grids. Notably, the users of 279 

OpenArray should input the correct positions of each array in the initialization phase. 280 

The value of the position is an input parameter when declaring an Array. An error will 281 

be reported if an operation is performed between misplaced points. 282 

 283 

Although most of the existing ocean models use finite difference or finite volume 284 

methods on structured or semi-structured meshes (e.g., Blumberg and Mellor, 1987; 285 

Shchepetkin and McWilliams, 2005), there are still some ocean models using 286 

unstructured meshes (e.g., Chen et al., 2003; Korn, 2017), and even the spectral element 287 

method (e.g., Levin et al., 2000). In our current work, we design the basic operators 288 

only for finite difference and finite volume methods with structured grids. More 289 

customized operators for the other numerical methods and meshes will be implemented 290 
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in our future work. 291 

 292 

3. Design of OpenArray 293 

Through the above operator notations in Table 1, ocean modellers can quickly convert 294 

the discrete PDE equations into the corresponding operator expression forms. The main 295 

purpose of OpenArray is to make complex parallel programming transparent to the 296 

modellers. As illustrated in Fig. 5, we use a computation graph as an intermediate 297 

representation, meaning that the operator expression forms written in Fortran will be 298 

translated into a computation graph with a particular data structure. In addition, 299 

OpenArray will use the intermediate computation graph to analyse the dependency of 300 

the distributed data and produce the underlying parallel code. Finally, we use stable and 301 

mature compilers, such as the GNU Compiler Collection (GCC), Intel compiler (ICC), 302 

and Sunway compiler (SWACC), to generate the executable programs according to 303 

different backend platforms. These four steps and some related techniques are described 304 

in detail in this section. 305 

 306 

3.1 Operator expression  307 

Although the basic generalized operators listed in Table 1 are only suitable to execute 308 

first-order difference, other high-order difference or even more complicated operations 309 

can be combined by these basic operators. For example, a second-order difference 310 

operation can be expressed as 𝛿𝛿𝑓𝑓𝜕𝜕(𝛿𝛿𝑏𝑏𝜕𝜕(𝑣𝑣𝑣𝑣𝑣𝑣)). Supposing the grid distance is uniform, 311 

the corresponding discrete form is [var(i+1,j,k)+var(i-1,j,k) -2* var(i,j,k) ] / dx2. In 312 

addition, the central difference operation can be expressed as (𝛿𝛿𝑓𝑓𝜕𝜕(𝑣𝑣𝑣𝑣𝑣𝑣) + 𝛿𝛿𝑏𝑏𝜕𝜕(𝑣𝑣𝑣𝑣𝑣𝑣))/2 313 

since the corresponding discrete form is [var(i+1,j,k)-var(i-1,j,k)] / 2dx.  314 
 315 

Using these operators to express the discrete PDE equation, the code and formula are 316 

very similar. We call this effect “the self-documenting code is the formula”. Fig. 6 317 

shows the one-to-one correspondence of each item in the code and the items in the sea 318 

surface elevation equation. The code is very easy to program and understand. Clearly, 319 
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the basic operators and the combined operators greatly simplify the development and 320 

maintenance of ocean models. The complicated parallel and optimization techniques 321 

are hidden behind these operators. Modellers no longer need to care about details and 322 

can escape from the “parallelism swamp”, and can therefore concentrate on the 323 

scientific issues. 324 

 325 

3.2 Intermediate computation graph 326 

Considering the example mentioned in Fig. 6, if one needs to compute the term 327 

DXF(AXB(D)*u) with the traditional operator overloading method, one first computes 328 

AXB(D) and stores the result into a temporary array (named tmp1), and then executes 329 

(tmp1*u) and stores the result into a new array, tmp2. The last step is to compute 330 

DXF(tmp2) and store the result in a new array, tmp3. Numerous temporary arrays 331 

consume a considerable amount of memory, making the efficiency of operator 332 

overloading is poor.    333 

 334 

To solve this problem, we convert an operator expression form into a directed and 335 

acyclic graph, which consists of basic data and function nodes, to implement a so-called 336 

lazy expression evaluation (Bloss et al., 1988; Reynolds, 1999). Unlike the traditional 337 

operator overloading method, we overload all arithmetic functions to generate an 338 

intermediate computation graph rather than to obtain the result of each function. This 339 

method is widely used in deep learning frameworks, e.g., TensorFlow (Abadi et al., 340 

2016) and Theano (Bastien et al., 2012), to improve computing efficiency. Figure 7 341 

shows the procedure of parsing the operator expression form of the sea level elevation 342 

equation into a computation graph. The input variables in the square boxes include the 343 

sea surface elevation (elb), the zonal velocity (u), the meridional velocity (v) and the 344 

depth (D). dt2 is a constant equal to 2*dt. The final output is the sea surface elevation 345 

at the next time step (elf). The operators in the round boxes have been overloaded in 346 

OpenArray. In summary, all the operators provided by OpenArray are functions for the 347 

Array calculation, in which the “=” notation is the assignment function, the “-” notation 348 

is the subtraction function, the “*” notation is the multiplication function, the “+” 349 
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notation is the addition function, DXF and DYF are the differential functions, and AXF 350 

and AYF are the average functions. 351 

 352 

3.3 Code generation 353 

Given a computation graph, we design a lightweight engine to generate the 354 

corresponding source code (Fig. 8). Each operator node in the computation graph is 355 

called a kernel. The sequence of all kernels in a graph is usually fused into a large kernel 356 

function. Therefore, the underlying engine schedules and executes the fused kernel once 357 

and obtains the final result directly without any auxiliary or temporary variables. 358 

Simultaneously, the scheduling overhead of the computation graph and the startup 359 

overhead of the basic kernels can be reduced. 360 

 361 

Most of the scientific computational applications are limited by the memory bandwidth 362 

and cannot fully exploit the computing power of a processor. Fortunately, kernel fusion 363 

is an effective optimization method to improve memory locality. When two kernels 364 

need to process some data, their fusion holds shared data in the memory. Prior to the 365 

kernel fusion, the computation graph is analysed to find the operator nodes that can be 366 

fused, and the analysis results are stored in several subgraphs. Users can access to any 367 

individual subgraph by assigning the subgraph to an intermediate variable for 368 

diagnostic purposes. After being given a series of subgraphs, the underlying engine 369 

dynamically generates the corresponding kernel function in C++ using just-in-time (JIT) 370 

compilation techniques (Suganuma and Yasue, 2005). The JIT compiler used in 371 

OpenArray can fuse numbers of operators into a large compiled kernel. The benefit of 372 

fusing operators is to alleviate memory bandwidth limitations and improve performance 373 

compared with executing operators one-by-one. In order to generate a kernel function 374 

based on a subgraph, we first add the function header and variable definitions according 375 

to the name and type in the Array structure. And then we add the loop head through the 376 

dimension information. Finally, we perform a depth-first walk on the expression tree to 377 

convert data, operators, and assignment nodes into a complete expression including 378 
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load variables, arithmetic operation, and equal symbol with C++ language. 379 

 380 

Notably, the time to compile a single kernel function is short, but practical applications 381 

usually need to be run for thousands of time steps, and the overhead of generating and 382 

compiling the kernel functions for the computation graph is extremely high. Therefore, 383 

we generate a fusion kernel function only once for each subgraph, and put it into a 384 

function pool. Later, when facing the same computation subgraph, we fetch the 385 

corresponding fusion kernel function directly from the pool.  386 

 387 

Since the arrays in OpenArray are distributed among different processing units, and the 388 

operator needs to use the data in the neighbouring points, in order to ensure the 389 

correctness, it is necessary to check the data consistency before fusion. The use of 390 

different data splitting methods for distributed arrays can greatly affect computing 391 

performance. The current data splitting method in OpenArray is the widely used block-392 

based strategy. Solving PDEs on structured grids often divides the simulated domain 393 

into blocks that are distributed to different processing units. However, the differential 394 

and average operators always require their neighbouring points to perform array 395 

computations. Clearly, ocean modellers have to frequently call corresponding functions 396 

to carefully control the communication of the local boundary region. 397 

 398 

Therefore, we implemented a general boundary management module to implicitly 399 

maintain and update the local boundary information so that the modellers no longer 400 

need to address the message communication. The boundary management module uses 401 

asynchronous communication to update and maintain the data of the boundary region, 402 

which is useful for simultaneous computing and communication. These procedures of 403 

asynchronous communication are implicitly invoked when calling the basic kernel or 404 

the fused kernel to ensure that the parallel details are completely transparent to the 405 

modellers. For the global boundary conditions of the limited physical domains, the 406 

values at the physical border are always set to zero within the operators and operator 407 
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expressions. In realistic cases, the global boundary conditions are set by a series of 408 

functions (e.g., radiation, wall) provided by OpenArray. 409 

 410 

3.4 Portable program for different backend platforms 411 

With the help of dynamic code generation and JIT compilation technology, OpenArray 412 

can be migrated to different backend platforms. Several basic libraries, including Boost 413 

C++ libraries and Armadillo library, are required. The JIT compilation module is based 414 

on Low-Level-Virtual-Machine (LLVM), thus theoretically the module can only be 415 

ported to platforms supporting LLVM. If LLVM is not supported, as on the Sunway 416 

platform, one can generate the fusion kernels in advance by running the ocean model 417 

on an X86 platform. If the target platform is CPUs with acceleration cards, such as GPU 418 

clusters, it is necessary to add control statements in the CPU code, including data 419 

transmission, calculation, synchronous and asynchronous statements. In addition, the 420 

accelerating solution should involve the selection of the best parameters, for example 421 

“blockDim” and “gridDim” on GPU platforms. In short, the code generation module of 422 

OpenArray also needs to be refactored to be able to generate codes for different backend 423 

platforms. The application based on OpenArray can then be migrated seamlessly to the 424 

target platform. Currently, we have designed the corresponding source code generation 425 

module for Intel CPU and Sunway processors in OpenArray. 426 

 427 

According to the TOP500 list released in November 2018, the Sunway TaihuLight is 428 

ranked third in the world, with a LINPACK benchmark rating of 93 Petaflops provided 429 

by Sunway many-core processors (or Sunway CPUs). As shown in Fig. 9, every 430 

Sunway CPU includes 260 processing elements (or cores) that are divided into 4 core-431 

groups. Each core-group consists of 64 computing processing elements (CPEs) and a 432 

management processing element (MPE) (Qiao et al., 2017). CPEs handle large-scale 433 

computing tasks and MPE is responsible for the task scheduling and communication. 434 

The relationship between MPE and CPE is like that between CPU and many-core 435 

accelerator, except for they are fused into a single Sunway processor sharing a unified 436 
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memory space. To make the most of the computing resources of the Sunway TaihuLight, 437 

we generate kernel functions for the MPE, which is responsible for the thread control, 438 

and CPE, which performs the computations. The kernel functions are fully optimized 439 

with several code optimization techniques (Pugh, 1991) such as loop tiling, loop 440 

aligning, single-instruction multiple-date (SIMD) vectorization, and function inline. In 441 

addition, due to the high memory access latency of CPEs, we accelerate data access by 442 

providing instructions for direct memory access in the kernel to transfer data between 443 

the main memory and local memory (Fu et al., 2017). 444 

 445 

4. Implementation of GOMO 446 

In this section, we introduce how to implement a numerical ocean model using 447 

OpenArray. The most important step is to derive the primitive discrete governing 448 

equations in operator expression form, then the following work is completed by 449 

OpenArray. 450 

 451 

The fundamental equations of GOMO are derived from POM. GOMO features a 452 

bottom-following, free-surface, staggered Arakawa C grid. To effectively evolve the 453 

rapid surface fluctuations, GOMO uses the mode-splitting algorithm inherited from 454 

POM to address the fast propagating surface gravity waves and slow propagating 455 

internal waves in barotropic (external) and baroclinic (internal) modes, respectively. 456 

The details of the continuous governing equations, the corresponding operator 457 

expression form and the descriptions of all the variables used in GOMO are listed in 458 

the Appendix A, Appendix B, and Appendix C, respectively. 459 

 460 

Figure 10 shows the basic flow diagram of GOMO. At the beginning, we initialize 461 

OpenArray to make all operators suitable for GOMO. After loading the initial values 462 

and the model parameters, the distance information is input into the differential 463 

operators through grid binding. In the external mode, the main consumption is 464 

computing the 2D sea surface elevation η and column-averaged velocity (Ua, Va). In 465 
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the internal mode, 3D array computations predominate in order to calculate baroclinic 466 

motions (U, V, W), tracers (T, S, ρ), and turbulence closure scheme (q2, q2l) (Mellor and 467 

Yamada, 1982), where (U, V, W) are the velocity fields in the x, y and 𝜎𝜎 directions, (T, 468 

S, ρ) are the potential temperature, the salinity and the density. (q2/2, q2l/2) are the 469 

turbulence kinetic energy and production of turbulence kinetic energy with turbulence 470 

length scale. 471 

 472 

When the user dives into the GOMO code, the main time stepping loop in GOMO 473 

appears to run on a single processor. However, as described above, implicit parallelism 474 

is the most prominent feature of the program using OpenArray. The operators in 475 

OpenArray, not only the difference and average operators, but also the “+”, “-”, “*”, “/” 476 

and “=” operators in the Fortran code, are all overloaded for the special data structure 477 

“Array”. The seemly serial Fortran code is implicitly converted to parallel C++ code 478 

by OpenArray, and the parallelization is hidden from the modellers. 479 

 480 

Because the complicated parallel optimization and tuning processes are decoupled from 481 

the ocean modelling, we completely implemented GOMO based on OpenArray in only 482 

4 weeks, whereas implementation may take several months or even longer when using 483 

the MPI or CUDA library. 484 

 485 

In comparison with the existing POM and its multiple variations, to name a few, Stony 486 

Brook Parallel Ocean Model (sbPOM), mpiPOM and POMgpu, GOMO has less code 487 

but is more powerful in terms of compatibility. As shown in Table 3, the serial version 488 

of POM (POM2k) contains 3521 lines of code. sbPOM and mpiPOM are parallelized 489 

using MPI, while POMgpu is based on MPI and CUDA-C. The codes of sbPOM, 490 

mpiPOM and POMgpu are extended to 4801, 9680 and 30443 lines. In contrast, the 491 

code of GOMO is decreased to 1860 lines. Moreover, GOMO completes the same 492 

function as the other approaches while using the least amount of code (Table 4), since 493 

the complexity has been transferred to OpenArray, which includes about 11,800 lines 494 
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of codes. 495 

 496 

In addition, poor portability considerably restricts the use of advanced hardware in 497 

oceanography. With the advantages of OpenArray, GOMO is adaptable to different 498 

hardware architectures, such as the Sunway processor. The modellers do not need to 499 

modify any code when changing platforms, eliminating the heavy burden of 500 

transmitting code. As computing platforms become increasingly diverse and complex, 501 

GOMO becomes more powerful and attractive than the machine-dependent models. 502 

 503 

5. Results 504 

In this section, we first evaluate the basic performance of OpenArray using benchmark 505 

tests on a single CPU platform. After checking the correctness of GOMO through an 506 

ideal seamount test case, we use GOMO to further test the scalability and efficiency of 507 

OpenArray.  508 

 509 

5.1 Benchmark testing 510 

We choose two typical PDEs and their implementations from Rodinia v3.1, which is a 511 

benchmark suite for heterogeneous computing (Che et al., 2009), as the original version. 512 

For comparison, we re-implement these two PDEs using OpenArray. In addition, we 513 

added two other test cases. As shown in Table 5, the 2D continuity equation is used to 514 

solve sea surface height, and its continuous form is shown in Eq. (1). The 2D heat 515 

diffusion equation is a parabolic PDE that describes the distribution of heat over time 516 

in a given region. Hotspot is a thermal simulation used for estimating processor 517 

temperature on structured grids (Che et al., 2009; Huang et al., 2006). We tested one 518 

2D case (Hotspot2D) and one 3D case (Hotspot3D) of this program. The average 519 

runtime for 100 iterations is taken as the performance metric. All tests are executed on 520 

a single workstation with an Intel Xeon E5-2650 CPU. The experimental results show 521 

that the performance of OpenArray versions is comparable to the original versions. 522 

 523 
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5.2 Validation tests of GOMO 524 

The seamount problem proposed by Beckman and Haidvogel is a widely used ideal test 525 

case for regional ocean models (Beckmann and Haidvogel, 1993). It is a stratified 526 

Taylor column problem, which simulates the flow over an isolated seamount with a 527 

constant salinity and a reference vertical temperature stratification. An eastward 528 

horizontal current of 0.1 m/s is added at model initialization. The southern and northern 529 

boundaries are closed. If the Rossby number is small, an obvious anticyclonic 530 

circulation is trapped by the mount in the deep water. 531 

 532 

Using the seamount test case, we compare GOMO and sbPOM results. The 533 

configurations of both models are exactly the same. Figure 11 shows that GOMO and 534 

sbPOM both capture the anticyclonic circulation at 3500 metres depth. The shaded plot 535 

shows the surface elevation, and the array plot shows the current at 3500 metres. Figure 536 

11(a), 11(b), and 11(c) are the results of GOMO, sbPOM, and the difference (GOMO-537 

sbPOM), respectively. The differences in the surface elevation and deep currents 538 

between the two models are negligible (Fig. 11(c)).  539 

   540 

5.3 The weak and strong scalability of GOMO 541 

The seamount test case is used to compare the performance of sbPOM and GOMO in 542 

a parallel environment. We use the X86 cluster at National Supercomputing Center in 543 

Wuxi of China, which provides 5000 Intel Xeon E5-2650 v2 CPUs for our account at 544 

most. Figure 12(a) shows the result of a strong scaling evaluation, in which the model 545 

size is fixed at 2048×2048×50. The dashed line indicates the ideal speedup. For the 546 

largest parallelisms with 4096 processes, GOMO and sbPOM achieve 91% and 92% 547 

parallel efficiency, respectively. Figure 12(b) shows the weak scalability of sbPOM and 548 

GOMO. In the weak scaling test, the model size for each process is fixed at 128×128×50, 549 

and the number of processes is gradually increased from 16 to 4096. Taking the 550 

performance of 16 processes as a baseline, we determine that the parallel efficiencies 551 

of GOMO and sbPOM using 4096 processes are 99.0% and 99.2%, respectively. 552 
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 553 

5.4 Testing on the Sunway platform 554 

We also test the scalability of GOMO on the Sunway platform. Supposing that the 555 

baseline is the runtime of GOMO at 10000 Sunway cores with a grid size of 556 

4096×4096×50, the parallel efficiency of GOMO can still reach 85% at 150000 cores, 557 

as shown in Fig. 13. However, we notice that the scalability declines sharply when the 558 

number of cores exceeds 150000. There are two reasons leading to this decline. First, 559 

the block size assigned to each core decreases as the number of cores increases, causing 560 

more communication during boundary region updating. Second, some processes cannot 561 

be accelerated even though more computing resources are available; for example, the 562 

time spent on creating the computation graph, generating the fusion kernels, and 563 

compiling the JIT cannot be reduced. Even though the fusion-kernel codes are 564 

generated and compiled only once at the beginning of a job, it consumes about 2 565 

minutes. In a sense, OpenArray performs better when processing large-scale data, and 566 

GOMO is more suitable for high-resolution scenarios. In the future, we will further 567 

optimize the communication and graph-creating modules to improve the efficiency for 568 

large-scale cores. 569 

 570 

6. Discussion 571 

As we mentioned in Section 1, the advantages of OpenArray are easy-to-use, high 572 

efficiency and portability. Using OpenArray, the modellers without any parallel 573 

computing skill and experience can write simple operator expressions in Fortran to 574 

implement complex ocean models. The ocean models can be run on any CPU and 575 

Sunway platforms which have deployed the OpenArray library. We call this effect 576 

“write once, run everywhere”. Other similar libraries (e.g., ATMOL, ICON DSL, and 577 

STELLA, COARRAY) require the users to manually control the boundary 578 

communication and task scheduling to some extent. In contrast, OpenArray implements 579 

completely implicit parallelism with user-friendly interfaces and programming 580 

languages. 581 
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 582 

However, there are still several problems to be solved in the development of OpenArray. 583 

The first issue is computational efficiency. Once a variable is in one of the processor 584 

registers or in the highest speed cache, it should be used as much as possible before 585 

being replaced. In fact, we should never to move variables more than once each 586 

timestep. The memory consumption brought by overloading techniques is usually high 587 

due to the unnecessary variable moving and unavoidable cache missing. The current 588 

efficiency and scalability of GOMO are close to sbPOM, since we have adopted a series 589 

of optimization methods, such as memory pool, graph computing, JIT compilation, and 590 

vectorization, to alleviate the requirement of memory bandwidth. However, we have to 591 

admit that we cannot fully solve the memory bandwidth limited problem at present. We 592 

think that time skewing is a cache oblivious algorithm for stencil computations (Frigo 593 

and Strumpen, 2005), since it can exploit temporal locality optimally throughout the 594 

entire memory hierarchy. In addition, the polyhedral model may be another potential 595 

approach, which uses an abstract mathematical representation based on integer 596 

polyhedral, to analyze and optimize the memory access pattern of a program. 597 

 598 

The second issue is that the current OpenArray version cannot support customized 599 

operators. When modellers try out another higher-order advection or any other 600 

numerical scheme, the twelve basic operators provided by OpenArray are not abundant. 601 

We consider using a template mechanism to support the customized operators. The 602 

rules of operations are defined in a template file, where the calculation form of each 603 

customized operator is described by a regular expression. If users want to add a 604 

customized operator, they only need to append a regular expression into the template 605 

file. 606 

 607 

OpenArray and GOMO will continue to be developed, and the following three key 608 

improvements are planned for the following years.  609 

 610 
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First, we are developing the GPU version of OpenArray. During the development, the 611 

principle is to keep hot data staying in GPU memory or directly swapping between 612 

GPUs and avoid returning data to the main CPU memory. NVLink provides high 613 

bandwidth and outstanding scalability for GPU-to-CPU or GPU-to-GPU 614 

communication, and addresses the interconnect issue for multi-GPU and multi-615 

GPU/CPU systems.  616 

 617 

Second, the data Input/Output is becoming a bottleneck of earth system models as the 618 

resolution increases rapidly. At present we encapsulate the PnetCDF library to provide 619 

simple I/O interfaces, such as load operation and store operation. A climate fast 620 

input/output (CFIO) library (Huang et al., 2014) will be implemented into OpenArray 621 

in the next few years. The performance of CFIO is approximately 220% faster than 622 

PnetCDF because of the overlapping of I/O and computing. CFIO will be merged into 623 

the future version of OpenArray and the performance is expected to be further improved.  624 

 625 

Finally, as most of the ocean models, GOMO also faces the load imbalance issue. We 626 

are adding the more effective load balance schemes, including space-filling curve 627 

(Dennis, 2007) and curvilinear orthogonal grids, into OpenArray in order to reduce the 628 

computational cost on land points. 629 

 630 

OpenArray is a product of collaboration between oceanographers and computer 631 

scientists. It plays an important role to simplify the porting work on the Sunway 632 

TaihuLight supercomputer. We believe that OpenArray and GOMO will continue to be 633 

maintained and upgraded. We aim to promote it to the model community as a 634 

development tool for future numerical models. 635 

 636 

7. Conclusion 637 

In this paper, we design a simple computing library (OpenArray) to decouple ocean 638 

modelling and parallel computing. OpenArray provides twelve basic operators that are 639 
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abstracted from PDEs and extended to ocean model governing equations. These 640 

operators feature user-friendly interfaces and an implicit parallelization ability. 641 

Furthermore, some state-of-art optimization mechanisms, including computation 642 

graphing, kernel fusion, dynamic source code generation and JIT compiling, are applied 643 

to boost the performance. The experimental results prove that the performance of a 644 

program using OpenArray is comparable to that of well-designed programs using 645 

Fortran. Based on OpenArray, we implement a numerical ocean model (GOMO) with 646 

high productivity, enhanced readability and excellent scalable performance. Moreover, 647 

GOMO shows high scalability on both CPU and the Sunway platform. Although more 648 

realistic tests are needed, OpenArray may signal the beginning of a new frontier in 649 

future ocean modelling through ingesting basic operators and cutting-edge computing 650 

techniques. 651 

 652 

Code availability. The source codes of OpenArray v1.0 is available at 653 

https://github.com/hxmhuang/OpenArray, and the user manual of OpenArray can be 654 

accessed at https://github.com/hxmhuang/OpenArray/tree/master/doc. GOMO is 655 

available at https://github.com/hxmhuang/GOMO. 656 

 657 

Appendix A: Continuous governing equations 658 

The equations governing the baroclinic (internal) mode in GOMO are the 3-659 

dimensional hydrostatic primitive equations. 660 

 𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
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𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎

= 0, (A1) 661 
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+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎

− 𝑓𝑓𝑉𝑉𝐷𝐷 + 𝑔𝑔𝐷𝐷 𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

= 𝜕𝜕
𝜕𝜕𝜎𝜎
�𝐾𝐾𝑀𝑀
𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎
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𝑔𝑔𝜕𝜕2
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎
� + 𝐹𝐹𝜕𝜕 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜎𝜎
, (A4) 666 
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 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
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𝜕𝜕
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𝜕𝜕𝜎𝜎
�
2

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎
�
2
� +669 

2𝑔𝑔
𝜌𝜌0
𝐾𝐾𝐻𝐻

𝜕𝜕𝜌𝜌
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𝐵𝐵1𝑙𝑙
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 𝜕𝜕𝑞𝑞2𝑙𝑙𝜕𝜕
𝜕𝜕𝜕𝜕
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+ 𝜕𝜕𝜕𝜕𝑞𝑞2𝑙𝑙𝜕𝜕
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+ 𝜕𝜕𝜕𝜕𝑞𝑞2𝑙𝑙
𝜕𝜕𝜎𝜎
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𝜕𝜕𝜎𝜎
�𝐾𝐾𝑞𝑞
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𝜕𝜕𝑞𝑞2𝑙𝑙
𝜕𝜕𝜎𝜎
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𝜕𝜕𝜎𝜎
�
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�𝜕𝜕𝜕𝜕
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�
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𝜌𝜌0
𝐾𝐾𝐻𝐻

𝜕𝜕𝜌𝜌
𝜕𝜕𝜎𝜎
�𝑊𝑊� − 𝜕𝜕𝑞𝑞3

𝐵𝐵1
+ 𝐹𝐹𝑞𝑞2𝑙𝑙, (A8) 672 

 673 

where 𝐹𝐹𝑢𝑢, 𝐹𝐹𝑣𝑣, 𝐹𝐹𝑞𝑞2, and 𝐹𝐹𝑞𝑞2𝑙𝑙 are horizontal kinematic viscosity terms of u, v, 𝑞𝑞2, and 674 

𝑞𝑞2𝑙𝑙, respectivly. 𝐹𝐹𝜕𝜕 and 𝐹𝐹𝜕𝜕 are horizontal diffusion terms of T and S respectivly. 𝑊𝑊�  675 

is the wall proximity function. 676 

 𝐹𝐹𝑢𝑢 = 𝜕𝜕
𝜕𝜕𝜕𝜕
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𝜕𝜕𝜕𝜕
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+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
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𝜕𝜕𝜕𝜕
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𝜕𝜕𝜕𝜕
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 𝐹𝐹𝑞𝑞2 = 𝜕𝜕
𝜕𝜕𝜕𝜕
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𝜕𝜕𝜕𝜕
), (A13) 681 
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𝜕𝜕𝜕𝜕
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𝜕𝜕𝜕𝜕

(𝐴𝐴𝑀𝑀𝐻𝐻
𝜕𝜕𝑞𝑞2𝑙𝑙
𝜕𝜕𝜕𝜕

), (A14) 682 

𝑊𝑊� = 1 + 𝑔𝑔2𝑙𝑙
𝜅𝜅
� 1
𝜂𝜂−𝑧𝑧

+ 1
H−𝑧𝑧

�.  (A15) 683 

The equations governing the barotropic (external) mode in GOMO are obtained by 684 

vertically integrating the baroclinic equations. 685 
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𝜕𝜕𝜕𝜕

= 𝐹𝐹�𝑢𝑢𝑎𝑎 − 𝑤𝑤𝑤𝑤(0) +687 

𝑤𝑤𝑤𝑤(−1) − 𝑔𝑔𝜕𝜕
𝜌𝜌0
∫0−1 ∫

0
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𝜕𝜕𝜎𝜎
� 𝑑𝑑𝜎𝜎′𝑑𝑑𝜎𝜎 + 𝐺𝐺𝑢𝑢𝑎𝑎 , (A17) 688 
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𝑤𝑤𝑣𝑣(−1) − 𝑔𝑔𝜕𝜕
𝜌𝜌0
∫0−1 ∫

0
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𝜕𝜕𝜎𝜎
� 𝑑𝑑𝜎𝜎′𝑑𝑑𝜎𝜎 + 𝐺𝐺𝑣𝑣𝑎𝑎, (A18) 690 

 691 

where 𝐹𝐹�𝑢𝑢𝑎𝑎  and 𝐹𝐹�𝑣𝑣𝑎𝑎  are the horizontal kinematic viscosity terms of 𝑈𝑈𝐴𝐴  and 𝑉𝑉𝐴𝐴 692 

respectivly. 𝐺𝐺𝑢𝑢𝑎𝑎  and 𝐺𝐺𝑣𝑣𝑎𝑎  are the dispersion terms of 𝑈𝑈𝐴𝐴  and 𝑉𝑉𝐴𝐴  respectivly. The 693 

subscript ’A’ denotes vertical integration. 694 

 695 

 𝐹𝐹�𝑢𝑢𝑎𝑎 = 𝜕𝜕
𝜕𝜕𝜕𝜕
�2𝐻𝐻(𝐴𝐴𝐴𝐴𝑀𝑀) 𝜕𝜕𝜕𝜕𝐴𝐴

𝜕𝜕𝜕𝜕
� + 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝐻𝐻(𝐴𝐴𝐴𝐴𝑀𝑀) �𝜕𝜕𝜕𝜕𝐴𝐴

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕𝐴𝐴

𝜕𝜕𝜕𝜕
��, (A19) 696 

 𝐹𝐹�𝑣𝑣𝑎𝑎 = 𝜕𝜕
𝜕𝜕𝜕𝜕
�2𝐻𝐻(𝐴𝐴𝐴𝐴𝑀𝑀) 𝜕𝜕𝜕𝜕𝐴𝐴

𝜕𝜕𝜕𝜕
� + 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝐻𝐻(𝐴𝐴𝐴𝐴𝑀𝑀) �𝜕𝜕𝜕𝜕𝐴𝐴

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕𝐴𝐴

𝜕𝜕𝜕𝜕
��, (A20) 697 

 𝐺𝐺𝑢𝑢𝑎𝑎 = 𝜕𝜕2(𝜕𝜕𝐴𝐴)2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝜕𝜕2𝜕𝜕𝐴𝐴𝜕𝜕𝐴𝐴𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

− 𝐹𝐹�𝑢𝑢𝑎𝑎 −
𝜕𝜕2(𝜕𝜕2)𝐴𝐴𝜕𝜕

𝜕𝜕𝜕𝜕2
− 𝜕𝜕2(𝜕𝜕𝜕𝜕)𝐴𝐴𝜕𝜕

𝜕𝜕𝜕𝜕2
+ (𝐹𝐹𝑢𝑢)𝐴𝐴, (A21) 698 

 𝐺𝐺𝑣𝑣𝑎𝑎 = 𝜕𝜕2𝜕𝜕𝐴𝐴𝜕𝜕𝐴𝐴𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝜕𝜕2(𝜕𝜕𝐴𝐴)2𝜕𝜕
𝜕𝜕𝜕𝜕2

− 𝐹𝐹�𝑣𝑣𝑎𝑎 −
𝜕𝜕2(𝜕𝜕𝜕𝜕)𝐴𝐴𝜕𝜕

𝜕𝜕𝜕𝜕2
− 𝜕𝜕2(𝜕𝜕2)𝐴𝐴𝜕𝜕

𝜕𝜕𝜕𝜕2
+ (𝐹𝐹𝑣𝑣)𝐴𝐴, (A22) 699 

 𝑈𝑈𝐴𝐴 = ∫0−1 𝑈𝑈𝑑𝑑𝜎𝜎, (A23) 700 

 𝑉𝑉𝐴𝐴 = ∫0−1 𝑉𝑉𝑑𝑑𝜎𝜎, (A24) 701 

 (𝑈𝑈2)𝐴𝐴 = ∫0−1 𝑈𝑈
2𝑑𝑑𝜎𝜎, (A25) 702 

 (𝑈𝑈𝑉𝑉)𝐴𝐴 = ∫0−1 𝑈𝑈𝑉𝑉𝑑𝑑𝜎𝜎, (A26) 703 

 (𝑉𝑉2)𝐴𝐴 = ∫0−1 𝑉𝑉
2𝑑𝑑𝜎𝜎, (A27) 704 

 (𝐹𝐹𝑢𝑢)𝐴𝐴 = ∫0−1 𝐹𝐹𝑢𝑢𝑑𝑑𝜎𝜎, (A28) 705 

 (𝐹𝐹𝑣𝑣)𝐴𝐴 = ∫0−1 𝐹𝐹𝑣𝑣𝑑𝑑𝜎𝜎, (A29) 706 

 𝐴𝐴𝐴𝐴𝑀𝑀 = ∫0−1 (𝐴𝐴𝑀𝑀)𝑑𝑑𝜎𝜎. (A30) 707 

 708 

Appendix B: Discrete governing equations 709 

The discrete governing equations of baroclinic (internal) mode expressed by operators 710 

are shown as below:  711 

 𝜂𝜂𝑡𝑡+1−𝜂𝜂𝑡𝑡−1

2𝑑𝑑𝜕𝜕𝑖𝑖
+ 𝛿𝛿𝑓𝑓𝜕𝜕(𝐷𝐷𝑏𝑏

𝜕𝜕
𝑈𝑈) + 𝛿𝛿𝑓𝑓

𝜕𝜕(𝐷𝐷𝑏𝑏
𝜕𝜕
𝑉𝑉) + 𝛿𝛿𝑓𝑓𝑧𝑧(𝑊𝑊) = 0, (B1) 712 
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 (𝜕𝜕𝑏𝑏
𝑥𝑥
𝜕𝜕)𝑡𝑡+1−(𝜕𝜕𝑏𝑏

𝑥𝑥
𝜕𝜕)𝑡𝑡−1

2𝑑𝑑𝜕𝜕𝑖𝑖
+ 𝛿𝛿𝑏𝑏𝜕𝜕 �(𝐷𝐷𝑏𝑏

𝜕𝜕
𝑈𝑈)𝑓𝑓

𝜕𝜕
𝑈𝑈𝑓𝑓
𝜕𝜕
� + 𝛿𝛿𝑓𝑓

𝜕𝜕 �(𝐷𝐷𝑏𝑏
𝜕𝜕
𝑉𝑉)𝑏𝑏

𝜕𝜕
𝑈𝑈𝑏𝑏
𝜕𝜕
� +713 

𝛿𝛿𝑓𝑓𝑧𝑧(𝑊𝑊𝑏𝑏
𝜕𝜕
𝑈𝑈𝑏𝑏
𝑧𝑧
) − (𝑓𝑓𝑉𝑉𝑓𝑓

𝜕𝜕
𝐷𝐷)

𝑏𝑏

𝜕𝜕
− (𝑓𝑓𝑉𝑉𝑓𝑓

𝜕𝜕
𝐷𝐷)

𝑏𝑏

𝜕𝜕
+ 𝑔𝑔𝐷𝐷𝑏𝑏

𝜕𝜕
𝛿𝛿𝑏𝑏𝜕𝜕(𝜂𝜂) = 𝛿𝛿𝑏𝑏𝑧𝑧 �

𝐾𝐾𝑀𝑀𝑏𝑏
𝑥𝑥

(𝜕𝜕𝑏𝑏
𝑥𝑥

)𝑡𝑡+1
𝛿𝛿𝑓𝑓𝑧𝑧(𝑈𝑈𝜕𝜕+1)� +714 

𝑔𝑔(𝜕𝜕𝑏𝑏
𝑥𝑥

)2

𝜌𝜌0
∫0𝜎𝜎 �𝛿𝛿𝑏𝑏

𝜕𝜕(𝜌𝜌𝑏𝑏
𝑧𝑧)− 𝜎𝜎  𝛿𝛿𝑏𝑏

𝑥𝑥(𝜕𝜕)

𝜕𝜕𝑏𝑏
𝑥𝑥 𝛿𝛿𝑏𝑏𝑧𝑧(𝜌𝜌𝑏𝑏

𝜕𝜕)� 𝑑𝑑𝜎𝜎′ + 𝐹𝐹𝑢𝑢, (B2) 715 

 (𝜕𝜕𝑏𝑏
𝑦𝑦
𝜕𝜕)𝑡𝑡+1−(𝜕𝜕𝑏𝑏

𝑦𝑦
𝜕𝜕)𝑡𝑡−1

2𝑑𝑑𝜕𝜕𝑖𝑖
+ 𝛿𝛿𝑓𝑓𝜕𝜕 �(𝐷𝐷𝑏𝑏

𝜕𝜕
𝑈𝑈)𝑏𝑏

𝜕𝜕
𝑉𝑉𝑏𝑏
𝜕𝜕
� + 𝛿𝛿𝑏𝑏

𝜕𝜕 �(𝐷𝐷𝑏𝑏
𝜕𝜕
𝑉𝑉)𝑓𝑓

𝜕𝜕
𝑉𝑉𝑓𝑓
𝜕𝜕
� +716 

𝛿𝛿𝑓𝑓𝑧𝑧(𝑊𝑊𝑏𝑏
𝜕𝜕
𝑉𝑉𝑏𝑏
𝑧𝑧
) + (𝑓𝑓𝑈𝑈𝑓𝑓

𝜕𝜕
𝐷𝐷)

𝑏𝑏

𝜕𝜕
+ (𝑓𝑓𝑈𝑈𝑓𝑓

𝜕𝜕
𝐷𝐷)

𝑏𝑏

𝜕𝜕
+ 𝑔𝑔𝐷𝐷𝑏𝑏

𝜕𝜕
𝛿𝛿𝑏𝑏
𝜕𝜕(𝜂𝜂) = 𝛿𝛿𝑏𝑏𝑧𝑧 �

𝐾𝐾𝑀𝑀𝑏𝑏
𝑦𝑦

(𝜕𝜕𝑏𝑏
𝑦𝑦

)𝑡𝑡+1
𝛿𝛿𝑓𝑓𝑧𝑧(𝑉𝑉𝜕𝜕+1)� +717 

𝑔𝑔(𝜕𝜕𝑏𝑏
𝑦𝑦

)2

𝜌𝜌0
∫0𝜎𝜎 �𝛿𝛿𝑏𝑏

𝜕𝜕(𝜌𝜌𝑏𝑏
𝑧𝑧)− 𝜎𝜎  𝛿𝛿𝑏𝑏

𝑦𝑦(𝜕𝜕)

𝜕𝜕𝑏𝑏
𝑦𝑦 𝛿𝛿𝑏𝑏𝑧𝑧(𝜌𝜌𝑏𝑏

𝜕𝜕)� 𝑑𝑑𝜎𝜎′ + 𝐹𝐹𝑣𝑣, (B3) 718 

 (𝜕𝜕𝜕𝜕)𝑡𝑡+1−(𝜕𝜕𝜕𝜕)𝑡𝑡−1

2𝑑𝑑𝜕𝜕𝑖𝑖
+ 𝛿𝛿𝑓𝑓𝜕𝜕(𝑇𝑇𝑏𝑏

𝜕𝜕
𝑈𝑈𝐷𝐷𝑏𝑏

𝜕𝜕
) + 𝛿𝛿𝑓𝑓

𝜕𝜕(𝑇𝑇𝑏𝑏
𝜕𝜕
𝑉𝑉𝐷𝐷𝑏𝑏

𝜕𝜕
) + 𝛿𝛿𝑓𝑓𝑧𝑧(𝑇𝑇𝑏𝑏

𝑧𝑧
𝑊𝑊) =719 

𝛿𝛿𝑏𝑏𝑧𝑧 �
𝐾𝐾𝐻𝐻
𝜕𝜕𝑡𝑡+1

𝛿𝛿𝑓𝑓𝑧𝑧(𝑇𝑇𝜕𝜕+1)� + 𝐹𝐹𝜕𝜕 + 𝛿𝛿𝑓𝑓𝑧𝑧𝑅𝑅, (B4) 720 

 (𝜕𝜕𝜕𝜕)𝑡𝑡+1−(𝜕𝜕𝜕𝜕)𝑡𝑡−1

2𝑑𝑑𝜕𝜕𝑖𝑖
+ 𝛿𝛿𝑓𝑓𝜕𝜕(𝑆𝑆𝑏𝑏

𝜕𝜕
𝑈𝑈𝐷𝐷𝑏𝑏

𝜕𝜕
) + 𝛿𝛿𝑓𝑓

𝜕𝜕(𝑆𝑆𝑏𝑏
𝜕𝜕
𝑉𝑉𝐷𝐷𝑏𝑏

𝜕𝜕
) + 𝛿𝛿𝑓𝑓𝑧𝑧(𝑆𝑆𝑏𝑏

𝑧𝑧
𝑊𝑊) =721 

𝛿𝛿𝑏𝑏𝑧𝑧 �
𝐾𝐾𝐻𝐻
𝜕𝜕𝑡𝑡+1

𝛿𝛿𝑓𝑓𝑧𝑧(𝑆𝑆𝜕𝜕+1)� + 𝐹𝐹𝜕𝜕, (B5) 722 

 𝜌𝜌 = 𝜌𝜌(𝑇𝑇, 𝑆𝑆,𝑝𝑝), (B6) 723 

 (𝑞𝑞2𝜕𝜕)𝑡𝑡+1−(𝑞𝑞2𝜕𝜕)𝑡𝑡−1

2𝑑𝑑𝜕𝜕𝑖𝑖
    +   𝛿𝛿𝑓𝑓𝜕𝜕(𝑈𝑈𝑏𝑏

𝑧𝑧
𝑞𝑞2𝑏𝑏

𝜕𝜕
𝐷𝐷𝑏𝑏
𝜕𝜕

) + 𝛿𝛿𝑓𝑓
𝜕𝜕(𝑉𝑉𝑏𝑏

𝑧𝑧
𝑞𝑞2𝑏𝑏

𝜕𝜕
𝐷𝐷𝑏𝑏
𝜕𝜕

)   +724 

  𝛿𝛿𝑓𝑓𝑧𝑧(𝑊𝑊𝑞𝑞2)𝑏𝑏
𝑧𝑧

= 𝛿𝛿𝑏𝑏𝑧𝑧 �
𝐾𝐾𝑞𝑞𝑓𝑓

𝑧𝑧

𝜕𝜕𝑡𝑡+1
𝛿𝛿𝑓𝑓𝑧𝑧(𝑞𝑞2)𝜕𝜕+1�   +   2𝐾𝐾𝑀𝑀

𝜕𝜕
��𝛿𝛿𝑏𝑏𝑧𝑧(𝑈𝑈𝑓𝑓

𝜕𝜕
)�
2

+ �𝛿𝛿𝑏𝑏𝑧𝑧(𝑉𝑉𝑓𝑓
𝜕𝜕

)�
2
�   +725 

2𝑔𝑔
𝜌𝜌0
𝐾𝐾𝐻𝐻𝛿𝛿𝑏𝑏𝑧𝑧(𝜌𝜌) − 2𝜕𝜕𝑞𝑞3

𝐵𝐵1𝑙𝑙
+ 𝐹𝐹𝑞𝑞2, (B7) 726 

 (𝑞𝑞2𝑙𝑙𝜕𝜕)𝑡𝑡+1−(𝑞𝑞2𝑙𝑙𝜕𝜕)𝑡𝑡−1

2𝑑𝑑𝜕𝜕𝑖𝑖
+ 𝛿𝛿𝑓𝑓𝜕𝜕(𝑈𝑈𝑏𝑏

𝑧𝑧
𝑞𝑞2𝑙𝑙𝑏𝑏

𝜕𝜕
𝐷𝐷𝑏𝑏
𝜕𝜕

) + 𝛿𝛿𝑓𝑓
𝜕𝜕(𝑉𝑉𝑏𝑏

𝑧𝑧
𝑞𝑞2𝑙𝑙𝑏𝑏

𝜕𝜕
𝐷𝐷𝑏𝑏
𝜕𝜕

) +727 

𝛿𝛿𝑓𝑓𝑧𝑧(𝑊𝑊𝑞𝑞2𝑙𝑙)𝑏𝑏
𝑧𝑧

= 𝛿𝛿𝑏𝑏𝑧𝑧 �
𝐾𝐾𝑞𝑞𝑓𝑓

𝑧𝑧

𝜕𝜕𝑡𝑡+1
𝛿𝛿𝑓𝑓𝑧𝑧(𝑞𝑞2𝑙𝑙)𝜕𝜕+1� + 𝑙𝑙𝐸𝐸1

𝐾𝐾𝑀𝑀
𝜕𝜕
��𝛿𝛿𝑏𝑏𝑧𝑧(𝑈𝑈𝑓𝑓

𝜕𝜕
)�
2

+ �𝛿𝛿𝑏𝑏𝑧𝑧(𝑉𝑉𝑓𝑓
𝜕𝜕

)�
2
�𝑊𝑊� +728 

𝑙𝑙𝑔𝑔1𝑔𝑔3𝑔𝑔
𝜌𝜌0

𝐾𝐾𝐻𝐻𝛿𝛿𝑏𝑏𝑧𝑧(𝜌𝜌)𝑊𝑊� − 𝜕𝜕𝑞𝑞3

𝐵𝐵1
+ 𝐹𝐹𝑞𝑞2𝑙𝑙, (B8) 729 

 730 

where 𝐹𝐹𝑢𝑢, 𝐹𝐹𝑣𝑣, 𝐹𝐹𝑞𝑞2, and 𝐹𝐹𝑞𝑞2𝑙𝑙 are horizontal kinematic viscosity terms of u, v, 𝑞𝑞2, and 731 

𝑞𝑞2𝑙𝑙, respectivly. 𝐹𝐹𝜕𝜕 and 𝐹𝐹𝜕𝜕 are horizontal diffusion terms of T and S respectivly. 732 
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𝐹𝐹𝑢𝑢 = 𝛿𝛿𝑏𝑏𝜕𝜕�2𝐴𝐴𝑀𝑀𝐷𝐷𝛿𝛿𝑓𝑓𝜕𝜕(𝑈𝑈𝜕𝜕−1)� + 𝛿𝛿𝑓𝑓
𝜕𝜕 �(𝐴𝐴𝑀𝑀𝑏𝑏

𝜕𝜕
)
𝑏𝑏

𝜕𝜕
(𝐷𝐷𝑏𝑏

𝜕𝜕
)𝑏𝑏
𝜕𝜕
�𝛿𝛿𝑏𝑏𝜕𝜕(𝑉𝑉)𝜕𝜕−1 + 𝛿𝛿𝑏𝑏

𝜕𝜕(𝑈𝑈)𝜕𝜕−1��,  (B9) 733 

𝐹𝐹𝑣𝑣 = 𝛿𝛿𝑏𝑏
𝜕𝜕�2𝐴𝐴𝑀𝑀𝐷𝐷𝛿𝛿𝑓𝑓

𝜕𝜕(𝑉𝑉𝜕𝜕−1)� + 𝛿𝛿𝑓𝑓𝜕𝜕 �(𝐴𝐴𝑀𝑀𝑏𝑏
𝜕𝜕

)
𝑏𝑏

𝜕𝜕
(𝐷𝐷𝑏𝑏

𝜕𝜕
)𝑏𝑏
𝜕𝜕
�𝛿𝛿𝑏𝑏𝜕𝜕(𝑉𝑉)𝜕𝜕−1 + 𝛿𝛿𝑏𝑏

𝜕𝜕(𝑈𝑈)𝜕𝜕−1��, (B10) 734 

𝐹𝐹𝜕𝜕 = 𝛿𝛿𝑓𝑓𝜕𝜕 �𝐴𝐴𝐻𝐻𝑏𝑏
𝜕𝜕
𝐻𝐻𝑏𝑏
𝜕𝜕
𝛿𝛿𝑏𝑏𝜕𝜕(𝑇𝑇𝜕𝜕−1)�+ 𝛿𝛿𝑓𝑓

𝜕𝜕 �𝐴𝐴𝐻𝐻𝑏𝑏
𝜕𝜕
𝐻𝐻𝑏𝑏
𝜕𝜕
𝛿𝛿𝑏𝑏
𝜕𝜕(𝑇𝑇𝜕𝜕−1)�,  (B11) 735 

𝐹𝐹𝜕𝜕 = 𝛿𝛿𝑓𝑓𝜕𝜕 �(𝐴𝐴𝐻𝐻𝑏𝑏
𝜕𝜕
𝐻𝐻𝑏𝑏
𝜕𝜕
𝛿𝛿𝑏𝑏𝜕𝜕(𝑆𝑆𝜕𝜕−1)� + 𝛿𝛿𝑓𝑓

𝜕𝜕 �𝐴𝐴𝐻𝐻𝑏𝑏
𝜕𝜕
𝐻𝐻𝑏𝑏
𝜕𝜕
𝛿𝛿𝑏𝑏
𝜕𝜕(𝑆𝑆𝜕𝜕−1)�, (B12) 736 

𝐹𝐹𝑞𝑞2   = 𝛿𝛿𝑓𝑓𝜕𝜕 �(𝐴𝐴𝑀𝑀𝑏𝑏
𝜕𝜕

)
𝑏𝑏

𝑧𝑧
𝐻𝐻𝑏𝑏
𝜕𝜕
𝛿𝛿𝑏𝑏𝜕𝜕(𝑞𝑞2)𝜕𝜕−1�   + 𝛿𝛿𝑓𝑓

𝜕𝜕 �𝐴𝐴𝑀𝑀𝑏𝑏
𝜕𝜕

𝑏𝑏

𝑧𝑧
𝐻𝐻𝑏𝑏
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𝜕𝜕(𝑞𝑞2)𝜕𝜕−1�, (B13) 737 
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𝜕𝜕

)
𝑏𝑏

𝑧𝑧
𝐻𝐻𝑏𝑏
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 739 

The discrete governing equations of barotropic (external) mode expressed by operators 740 

are shown as below:  741 

 𝜂𝜂𝑡𝑡+1−𝜂𝜂𝑡𝑡−1

2𝑑𝑑𝜕𝜕𝑑𝑑
+ 𝛿𝛿𝑓𝑓𝜕𝜕(𝐷𝐷𝑏𝑏

𝜕𝜕
  𝑈𝑈𝐴𝐴) + 𝛿𝛿𝑓𝑓

𝜕𝜕(𝐷𝐷𝑏𝑏
𝜕𝜕

  𝑉𝑉𝐴𝐴) = 0, (B15) 742 

 (𝜕𝜕𝑏𝑏
𝑥𝑥
𝜕𝜕𝐴𝐴)𝑡𝑡+1−(𝜕𝜕𝑏𝑏

𝑥𝑥
𝜕𝜕𝐴𝐴)𝑡𝑡−1

2𝑑𝑑𝜕𝜕𝑑𝑑
+ 𝛿𝛿𝑏𝑏𝜕𝜕 �(𝐷𝐷𝑏𝑏

𝜕𝜕
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𝜕𝜕
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𝜕𝜕
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𝜕𝜕 �(𝐷𝐷𝑏𝑏
𝜕𝜕
𝑉𝑉𝐴𝐴)𝑏𝑏

𝜕𝜕
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𝜕𝜕
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 749 

where  750 

 𝜙𝜙𝜕𝜕 = −𝑊𝑊𝑈𝑈(0) + 𝑊𝑊𝑈𝑈(−1) − 𝑔𝑔(𝜕𝜕𝑏𝑏
𝑥𝑥

)2
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𝑔𝑔𝜕𝜕𝑏𝑏
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𝜕𝜕)� 𝑑𝑑𝜎𝜎� + 𝐺𝐺𝜕𝜕. (B19) 754 

 755 
  756 
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Appendix C: Descriptions of symbols 757 

The description of each symbol in the governing equations is list as below: 758 

Table C1. Descriptions of symbols 759 

Symbol Description 

η Free surface elevation 

H Bottom topography 

ua, va Vertical average velocity in x, y direction, respectively 

U, V, W Velocity in x, y, σ direction, respectively 

D Fluid column depth 

f The Coriolis parameter 

g The gravitational acceleration  

ρ0 Constant density  

ρ Situ density 

T Potential temperature 

S Salinity 

R Surface solar radiation incident 

q2/2 Turbulence kinetic energy 

l Turbulence length scale 

q2l/2 Production of turbulence kinetic energy and turbulence 

length scale 

dti Time step of baroclinic mode 

dte Time step of barotropic mode 

dx Grid increment in x direction 

dy Grid increment in y direction 

AM Horizontal kinematic viscosity 

AH Horizontal heat diffusivity 

KM Vertical kinematic viscosity  

KH Vertical mixing coefficient of heat and salinity 

Kq Vertical mixing coefficient of turbulence kinetic energy 

760 
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Tables 912 

Table 1. Definitions of the twelve basic operators 913 

Notations Discrete Form Basic Operator 

𝑣𝑣𝑣𝑣𝑣𝑣����� 𝑓𝑓𝜕𝜕 [ var(i,j,k)   +  var(i+1,j,k) ] / 2 AXF 

𝑣𝑣𝑣𝑣𝑣𝑣����� 𝑏𝑏𝜕𝜕 [ var(i,j,k)   +  var(i-1,j,k) ] / 2 AXB 

𝑣𝑣𝑣𝑣𝑣𝑣����� 𝑓𝑓
𝜕𝜕 [ var(i,j,k)   +  var(i,j+1,k) ] / 2 AYF 

𝑣𝑣𝑣𝑣𝑣𝑣����� 𝑏𝑏
𝜕𝜕 [ var(i,j,k)   +  var(i,j-1,k) ] / 2 AYB 

𝑣𝑣𝑣𝑣𝑣𝑣����� 𝑓𝑓𝑧𝑧  [ var(i,j,k)   +  var(i,j,k+1) ] / 2 AZF 

𝑣𝑣𝑣𝑣𝑣𝑣����� 𝑏𝑏𝑧𝑧  [ var(i,j,k)   +  var(i,j,k-1) ] / 2 AZB 

𝛿𝛿𝑓𝑓𝜕𝜕(𝑣𝑣𝑣𝑣𝑣𝑣) [ var(i+1,j,k) -   var(i,j,k) ] / dx(i,j) DXF 

𝛿𝛿𝑏𝑏𝜕𝜕(𝑣𝑣𝑣𝑣𝑣𝑣) [ var(i,j,k)   -   var(i-1,j,k) ] / dx(i-1,j) DXB 

𝛿𝛿𝑓𝑓
𝜕𝜕(𝑣𝑣𝑣𝑣𝑣𝑣) [ var(i,j+1,k) -   var(i,j,k) ] / dy(i,j) DYF 

𝛿𝛿𝑏𝑏
𝜕𝜕(𝑣𝑣𝑣𝑣𝑣𝑣) [ var(i,j,k)   -   var(i,j-1,k) ] / dy(i,j-1) DYB 

𝛿𝛿𝑓𝑓𝑧𝑧(𝑣𝑣𝑣𝑣𝑣𝑣) [ var(i,j,k+1) -   var(i,j,k) ] / dz(k) DZF 

𝛿𝛿𝑏𝑏𝑧𝑧(𝑣𝑣𝑣𝑣𝑣𝑣) [ var(i,j,k)   -   var(i,j,k-1) ] / dz(k-1) DZB 
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Table 2 ．The jumping rules of an operator acting on an Array  916 

The initial position  

of var 

The position of 

[A|D]X[F|B] (var) 

The position of 

 [A|D]Y[F|B] (var) 

The position of 

 [A|D]Z[F|B] (var) 

0 1 2 4 

1 0 3 5 

2 3 0 6 

3 2 1 7 

4 5 6 0 

5 4 7 1 

6 7 4 2 

7 6 5 3 
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Table 3. Comparing GOMO with several variations of the POM 919 

Model Lines of code Method Computing Platforms 

POM2k 3521 Serial CPU 

sbPOM 4801 MPI CPU 

mpiPOM 9685 MPI CPU 

POMgpu 30443 MPI + CUDA GPU 

GOMO 1860 OpenArray CPU, Sunway 
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Table. 4. Comparison of the amount of code for different functions 922 

Functions 
Lines of code 

POM2k sbPOM GOMO 

Solve for η 16 72 1 

Solve for Ua 75 183 11 

Solve for Va 75 183 11 

Solve for W 36 90 3 

Solve for q2 and q2l 318 854 162 

Solve for T or S 178 234 71 

Solve for U 118 230 50 

Solve for V 118 230 50 
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Table 5. Four benchmark tests 925 

Benchmark Dimensions Grid Size 
OpenArray 

version (seconds) 

Original 

version(seconds) 

Continuity equation 2D 8192×8192 7.22  7.10 

Heat diffusion equation 

Hotspot2D 

2D 

2D 

8192×8192 

8192×8192 

6.20  

11.37  

6.34 

11.21 

Hotspot3D 3D 512×512×8 0.96  1.01 
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Figures 928 

 929 

 930 
Figure 1. Arrangement of variables in the staggered Arakawa C grid. 931 
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 933 

 934 

Figure 2. Implementation of Eq. (6) by basic operators. The elf and elb are the surface 935 

elevations at times (t+1) and (t-1) respectively.  936 
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 938 
Figure 3. Implementation of the shallow water equations by basic operators. elf, el and 939 

elb denote sea surface elevations at times (t+1), t and (t-1), respectively. Uf, U and Ub 940 

denote the zonal velocity at times (t+1), t and (t-1), respectively. Vf, V and Vb denote 941 

the meridional velocity at times (t+1), t and (t-1), respectively. aam denotes the 942 

viscosity coefficient.  943 
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 945 

Figure 4. The schematic diagram of the relative positions of the variables on the 946 

abstract staggered grid and the jumping procedures among the grid points. 947 
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 949 
Figure 5. The workflow of OpenArray. 950 
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 952 
Figure 6. The effect of “The self-documenting code is the formula” illustrated by the 953 

sea surface elevation equation. 954 
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 956 

Figure 7. Parsing the operator expression form into the computation graph. 957 
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 959 

Figure 8. The schematic diagram of kernel fusion. 960 
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 962 

 963 

Figure 9. The MPE-CPEs hybrid architecture of the Sunway processor. Every Sunway 964 

processor includes 4 Core-groups (CGs) connected by the Network on Chip (NoC). 965 

Each CG consists of a management processing element (MPE), 64 computing 966 

processing elements (CPEs) and a memory controller (MC). The Sunway processor 967 

uses the system interface (SI) to connect with outside devices. 968 
  969 
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 970 
Figure 10. Flow diagram of GOMO 971 
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  973 
Figure 11. Comparison of the surface elevation (shaded) and currents at 3500 metres 974 

depth (vector) between GOMO and sbPOM on the 4th model day. (a) GOMO, (b) 975 

sbPOM, (c) GOMO-sbPOM. 976 
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 978 

Figure 12. Performance comparison between sbPOM and GOMO on the X86 cluster. 979 

(a) The strong scaling result; vertical axis denotes the speedup relative to 16 processes 980 

in a single node. (b) The weak scaling result. 981 
  982 
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  983 

Figure 13. Parallel efficiency of GOMO on the Sunway platform. 984 

 985 
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