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Abstract. The major computational bottleneck in atmospheric chemistry models is the numerical integration of the stiff 

coupled system of kinetic equations describing the chemical evolution of the system as defined by the model chemical 

mechanism (typically over 100 coupled species). We present an adaptive method to greatly reduce the computational cost of 

that numerical integration in global 3-D models while maintaining high accuracy. Most of the atmosphere does not in fact 

require solving for the full chemical complexity of the mechanism, so considerable simplification is possible if one can 15 

recognize the dynamic continuum of chemical complexity required across the atmospheric domain. We do this by 

constructing a limited set of reduced chemical mechanisms (chemical regimes) to cover the range of atmospheric conditions, 

and then pick locally and on the fly which mechanism to use for a given gridbox and time step on the basis of computed 

production and loss rates for individual species. Application to the GEOS-Chem global 3-D model for oxidant-aerosol 

chemistry in the troposphere and stratosphere (full mechanism of 228 species) is presented. We show that 20 chemical 20 

regimes can largely encompass the range of conditions encountered in the model. Results from a 2-year GEOS-Chem 

simulation shows that our method can reduce the computational cost of chemical integration by 30-40% while maintaining 

accuracy better than 1% and with no error growth. Our method retains the full complexity of the original chemical 

mechanism where it is needed, provides the same model output diagnostics (species production and loss rates, reaction rates) 

as the full mechanism, and can accommodate changes in the chemical mechanism or in model resolution without having to 25 

reconstruct the chemical regimes. 

 

1 Introduction 

Accurate representation of atmospheric chemistry is of central importance for air quality and Earth system models (National 

Research Council, 2016) but it is computationally expensive. The complete Master Chemistry Mechanism (MCM, version 30 

3.3, http://mcm.leeds.ac.uk/MCMv3.3.1/) consists of 5,832 species and 16,701 reactions. Atmospheric chemistry models use 
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greatly simplified mechanisms, which still include hundreds of species coupled through production and loss pathways and 

with lifetimes ranging from less than a second to many years. Computing the kinetic temporal evolution of such systems 

involves solving a stiff system of N coupled non-linear ordinary differential equations (ODEs) of the form  
𝑑𝒏#
𝑑𝑡 = 𝑃#(𝒏) − 𝐿#(𝒏)										(1) 35 

where n = (n1, …nK)T is the vector of species concentrations, expressed typically as number densities (e.g., molecules cm-3), 

and K is the number of species in the mechanism. Pi(n) and Li(n) are the production and loss rates of species i that depend on 

the concentrations of other species in the mechanism. Finite-difference solution of the coupled system of ODEs requires an 

implicit scheme to avoid limitation of the time step by the shortest lifetime in the system (Brasseur and Jacob, 2017). 

Implicit schemes involve repeated construction and inversion of the Jacobian matrix (K × K) for the system, and this is 40 

computationally expensive for large K. But the full coupled chemical mechanism may not be needed everywhere in the 

model domain. For example, highly reactive volatile organic compounds (VOCs) have little influence far away from their 

source regions. Here we show that we can obtain a substantial reduction of computational cost in a global 3-D model by 

adaptively adjusting the ensemble of species that actually need to be solved as a coupled system in a given model gridbox. 

We do so with a general algorithm that is readily applicable to any chemical mechanism or numerical solver.  45 

As the simplest example of an implicit scheme, consider the first-order method which approximates Eq. (1) as 

 

where Δt is the time step and si(n(t + Δt)) = Pi(n(t + Δt)) - Li(n (t + Δt)) is the net source evaluated at the end of the time step. 

This defines a vector function f = (f1, …fK)T and an algebraic system f(n(t + Δt)) = 0 that is solved iteratively by the Newton-

Raphson method. The procedure involves iterative calculation and inversion of the K × K Jacobian matrix J = ∂s/∂n. Most 50 

models use higher-order implicit algorithms designed for accuracy and speed, such as the Gear (Gear, 1971; Hindmarsh, 

1983) and Rosenbrock (Sandu et al., 1997; Hairer and Wanner, 1991) solvers, but all require iteratively calculating the 

Jacobian matrix and solving the linear system using a matrix factorization. As a result, the chemical operator that solves for 

the chemical evolution of species concentrations from Eq. (1) is the most expensive component of atmospheric chemistry 

models (Eastham et al., 2018), and this computational cost has been a barrier for inclusion of atmospheric chemistry in Earth 55 

system models (National Research Council, 2012).  

There are various ways to speed up the chemical operator, all involving some loss of accuracy or generality (Brasseur and 

Jacob, 2017). A general approach is to reduce the dimension of the coupled system of ODEs that needs to be solved 

implicitly.  This can be done by simplifying the chemical mechanism to decrease the number of species (Brown-Steiner et al., 

2018; Sportisse and Djouad, 2000), or by isolating long-lived species for which a fast explicit solution scheme is acceptable 60 

( ( )) ( ) ( ) ( ( )) 0 (2)+D = +D - - +D D =i i i if t t n t t n t s t t tn n
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(Young and Boris, 1977). Jacobson (1995) used different subsets of their full mechanism to simulate the urban atmosphere, 

the troposphere, and the stratosphere. Machine learning algorithms have been developed to replace the role of the 

conventional chemical solver; but these methods have only been applied to simple scenarios and are subject to error growth 

as simulation time progresses (Keller and Evans, 2019). 

Santillana et al. (2010) combined these ideas in an adaptive algorithm for 3-D models that determines locally at each time 65 

step (“on the fly”) which species in the chemical mechanism need to be solved in the coupled implicit system. This was done 

by computing the local production (Pi) and loss rates (Li) for all species at the beginning of the time step.  Species with either 

Pi or Li above a given threshold were labeled “fast” and solved with an implicit scheme, while the others were labeled “slow” 

and solved with an explicit scheme. The complexity of the chemical system to be solved was thus adapted to the local 

environment. Here ‘fast’ and ‘slow’ refer to the rates in the chemical system, not the species lifetime. For example, short-70 

lived VOCs may be considered slow outside of their source regions because they have negligible influence on other species. 

Whether a species is fast or slow depends on the changing local conditions, hence the need for an adaptive algorithm, The 

adaptive approach does not pre-judge the local environment, unlike in Jacobson (1995), and instead resolves the dynamic 

continuum of complexity encountered in the atmosphere. Santillana et al. (2010) applied their algorithm to the GEOS-Chem 

global 3-D Eulerian chemical transport model (Bey et al., 2001). While the computational savings were promising for the 75 

chemical integration within each gridbox, the need to construct a different system in every single grid box and at every time 

step cancelled out some of the gains and led to only small time-savings when compared to the performance of the standard 

full-chemistry model.  

Here we draw from the approach introduced by Santillana et al. (2010) but use a set of pre-defined chemical regimes to take 

full advantage of the time-savings from the adaptive reduction mechanism algorithm. We start with the objective 80 

identification of a limited number of chemical regimes that encompass the range of atmospheric conditions encountered in 

the model. These regimes are defined by the subset of fast species from the full mechanism that need to be considered in the 

coupled system, and we pre-code the Jacobian matrix and its inverse for each. The model then picks the appropriate 

chemical regime to be solved locally and on the fly. We show that this approach can achieve large computational savings 

without significantly compromising accuracy when implemented in GEOS-Chem. Our method can be adapted to any 85 

mechanism and model, retains the complexity of the full mechanism where it is needed, and preserves full diagnostic 

information on chemical evolution (such as reaction rates, production and loss of individual species, etc.).  

 

2 Model description 

We use the GEOS-Chem 12.0.0 global 3-D model for tropospheric and stratospheric chemistry 90 
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(https://doi.org/10.5281/zenodo.1343547) as demonstration for our algorithm. The model is applied here with a horizontal 

resolution of 4°×5° and 72 pressure levels extending from the surface to 0.01 hPa. It is driven by MERRA2 assimilated 

meteorological data from the NASA Global Modeling and Assimilation System (GMAO). The model includes coupled gas-

phase and aerosol chemistry as described by Sherwen et al. (2016) and Travis et al. (2016) for the troposphere and Eastham 

et al. (2014) for the stratosphere.  The chemical mechanism has 228 species and 724 reactions. Among these species, 143 are 95 

volatile organic compounds (VOCs), 37 are inorganic reactive halogen species, 24 are organic halogen species, and 24 are 

other inorganic and aerosol species. The chemical reactions are integrated using the Rosenbrock solver (Sandu et al., 1997; 

Hairer and Wanner, 1991) generated from the Kinetic PreProcessor 2.2.4 (KPP) (Damian et al., 2002) software. The model 

uses operator splitting between chemistry and transport with a chemistry timestep of 20 minutes (Philip et al 2016). We use 

12 cores with shared memory in the simulations.  100 

The key processes in the KPP chemical operator are as follows. The operator first updates the reaction rate coefficients on 

the basis of temperature, actinic flux, etc. It then passes these reaction rate coefficients together with initial species 

concentrations to the Rosenbrock solver, which solves for the temporal evolution of concentrations over the external 

timestep Δt. In the process, the Rosenbrock solver approximates the solution at multiple internal timesteps, so it needs to 

repeatedly recompute the species production and loss rates, construct the corresponding Jacobian matrix, and solve the linear 105 

system numerically using a matrix factorization. The bulk of the cost in the overall chemical operator is in the repeated 

computation of production/loss rates and in solving the linear system using a matrix factorization. Reducing the number of 

species in the system to be solved can significantly reduce the computational cost.  

 

3 The adaptive algorithm for the chemical operator 110 

Our adaptive algorithm determines locally and on the fly what degree of complexity is needed in the chemical mechanism by 

diagnosing all species in the full chemical mechanism as either “fast” or “slow”, and choosing among pre-constructed 

chemical mechanism subsets (“chemical regimes”) which is most appropriate for the local conditions. Here we present (1) 

the definition of fast and slow species and the different treatments for each, and (2) the approach used to pre-construct the 

chemical regimes. 115 

3.1 Definition of fast and slow species 

Following Santillana et al. (2010), we separate atmospheric species as fast or slow based on their production and loss rates in 

Eq. (1) relative to a threshold δ: fast if either Pi(n) ≥ δ or Li(n) ≥ δ, slow if Pi(n) < δ and Li(n) < δ. Concentrations of the fast 

species are integrated as a coupled system with the KPP Rosenbrock solver. Concentrations of slow species are integrated by 

explicit analytical solution of Eq. (1) assuming first-order loss with effective rate coefficient ki  =  Li/ni:. 120 
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Solving for ni(t + Δt) by Eq. (4) incurs negligible computational cost, therefore there is considerable advantage in classifying 

species as slow if this can be done without significant loss in accuracy. We select the threshold δ for species to be classified 

as fast or slow by numerical testing, as described in Section 4, but some basic chemical reasoning is useful. Consider the OH 

radical, which is a central species in atmospheric chemistry mechanisms.  OH has a daytime concentration of the order of 106 125 

molecules cm-3 and a lifetime of the order of a second, implying production and loss rates of the order of 106 molecules cm-3 

s-1. Species with production and loss rates that are orders of magnitude lower than 106 molecules cm-3 s-1 are therefore 

unlikely to influence OH or other species in the coupled mechanism, as these are all to some extent related to OH at least in 

the daytime. So we may expect an appropriate threshold δ to be of the order of 102-103 molecules cm-3 s-1.  Santillana et al. 

(2010) recommended δ = 100 molecules cm-3 s-1 in their algorithm.  130 

One issue with the solution for the slow species by Eq. (4) is that it does not strictly conserve mass, because the loss rate for 

a given species over the time step does not necessarily match the production rate of the product species. This is usually 

inconsequential, but we found in early testing that it resulted in the total mass of reactive halogen species growing slowly 

over time in the stratosphere. To avoid this effect, we treat all 37 reactive inorganic halogen species as fast above 10 km 

altitude. This increases the computation cost of chemical integration by only 4% relative to letting the algorithm set them as 135 

either fast or slow.  

 

3.2 Pre-selecting the chemical regimes 

Instead of building a local chemical mechanism subset at every time step as in Santillana et al. (2010), we greatly improve 

the computational efficiency by pre-selecting a limited number (M) of chemical mechanism subsets (chemical regimes) for 140 

which we pre-define the Jacobian matrix in KPP. We then determine locally which chemical regime to apply on basis of the 

ensemble of species classified as fast.  This approach reduces the computational overhead of repeatedly allocating and 

deallocating memory in the method of Santillana et al. (2010).  

Construction of the chemical regimes can be done objectively by searching for a minimum in the computational cost of the 

chemical operator over the global domain. But some narrowing of the search is necessary. For the 228-species mechanism in 145 

GEOS-Chem, there are in principle 2228-1 possible combinations of species that would form mechanism subsets. The vast 

majority of those combinations make no chemical sense, but diagnosing this objectively would be computationally 

dni
dt

= Pi − kini (3)

ni(t + Δt) =
Pi(t)
ki(t)

+ (ni(t)−
Pi(t)
ki(t)

)e−ki (t )Δt (4)
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unfeasible. Instead, we start by splitting the mechanism species into N different blocks based on similarity of chemical 

behavior. Then we classify a block as fast if at least one species in the block is fast, and slow if all species in the block are 

slow. The chemical regime is defined as the assemblage of fast blocks.  150 

The partitioning of species into blocks can be optimized by minimizing globally the number of fast species (and hence the 

computation cost) for a given threshold δ. We use for this purpose a training dataset from a GEOS-Chem simulation for 2013, 

consisting of the global ensemble of tropospheric and stratospheric gridboxes for the first 10 days of February, May, August, 

and November sampled every 6 hours (160 time steps in total). To reduce the computational cost, we optimize the 

partitioning of species into blocks for each individual timestep, resulting in 160 different partitionings, and we then select the 155 

partitioning that yields the lowest cost function when applied to all timesteps.  

For each gridbox j, we diagnose each individual species i as fast or slow following Section 3.1. We then diagnose the blocks 

as fast or slow with the indicator yi,j = 1 if the block is fast (at least one species in the block is fast) or yi,j = 0 if the block is 

slow (all species in the block are slow).  The fraction Z1 of all species that needs to be treated as fast over the testing domain 

is then given by 160 

 

where = 195408 is the total number of gridboxes in the troposphere and stratosphere (195408 gridboxes, corresponding to 

the 59 lower levels of the model up to the stratopause) multiplied by the total number of species (228 in our case). We seek 

the partitioning of species into blocks that will minimize Z1, and we use for that purpose the simulated annealing algorithm 

(Kirkpatrick et al., 1983). Starting from an arbitrary partitioning of the 228 species into N blocks, and at each iteration of the 165 

algorithm, we randomly move one species from one block to another. If Z1 decreases, this transition is accepted; if not, the 

transition is accepted with a probability controlled by a parameter named temperature that decreases gradually as the 

algorithm proceeds. Among the N blocks, 3 are allocated to the reactive inorganic halogen species, and N-3 are allocated to 

the other species. This forced separation of the reactive inorganic halogen species is because the corresponding blocks are 

imposed to be fast above 10 km altitude (see Section 3.1). Throughout this study, we present the results with lowest cost 170 

function after running the optimization multiple times and using different temperature parameters. 

Once the blocks have been defined in the above manner, we define the chemical regimes as different assemblages of blocks. 

This yields 2N - 1 possible chemical regimes. Individual gridboxes in the model domain may correspond to any of these 2N – 

1 regimes at any given time depending on which blocks are classified as fast or slow. We need to limit the number of 

regimes to a much smaller number M of most useful regimes in order to keep the compilation of the code manageable. In 175 

fact, as we will see, the bulk of conditions in the model domain can effectively be represented by just a few regimes. 

Z1 =
1
Ω

yi, j
i
∑

j
∑ (5)

Ω
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Gridboxes that do not correspond to any of the M regimes need to be matched to one of the M regimes by moving some 

blocks from slow to fast, which will change the values of the corresponding indicators yi,j from 0 to 1. We check each of the 

M regimes and select the one that needs the least number of moves from slow to fast, and this selection can be pre-defined so 

it does not add extra computational time.  We refer to y*i,j  as the  indicators adjusted by these changes. Thus, the fraction Z2 180 

of species that needs to be treated as fast over the global domain is given by: 

 

where D1 are the gridboxes that can be represented by the M chemical regimes, and D2 are the gridboxes that are represented 

by other regimes and must be matched to the M regimes. At the beginning of each timestep, we pick the chemical regime to 

use for each gridbox on the basis of computed production and loss rates for individual species. A diagram for this process 185 

can be found in Figure 1. 

We tested a range of values from 5 to 20 for the number N of blocks. In this testing we used a threshold δ = 100 molecules 

cm-3 s-1 to partition fast and slow species, following Santillana et al. (2010), and a number M = 20 of chemical regimes (see 

next paragraph for choice of M). Figure 2 shows the fraction of fast species in the global domain (Z2) as a function of N. If N 

is low such that blocks are large, there is more likelihood that a species in a given block will be fast causing all species in the 190 

block to be treated as fast. If N is high, more blocks will need to be moved from slow to fast in order to match the limited 

number M of chemical regimes. For M = 20 we thus find an optimal value N = 12 at which only 40% of the species need to 

be treated as fast in the global tropospheric and stratospheric domain.  

Table 1 lists the species of these 12 blocks. Oxidants such as OH, O3, and NO2 are important under all circumstances so 

block 8 and 9 are fast in most gridboxes. Nonmethane VOCs species often have low concentrations outside of the continental 195 

boundary layer, and very low concentrations in the stratosphere, so the dominant VOC blocks 1-7 are fast in fewer than 40% 

of gridboxes. Anthropogenic VOC species (blocks 4 and 5) are found to be fast in boundary layer and daytime mid-

troposphere (Figure S1-2). Biogenic VOC species have shorter lifetimes, so they are found to be fast only in lower and 

middle troposphere over the land (Figure S3-4).  

This algorithm still has shortcomings. There are some unexpected groupings (such as sulfur species and peroxyacetylnitrate) 200 

and separations (such as HO2 and H2O2). The blocks are constructed by minimizing the number of fast species in the 

optimization, so species tend to be in the same block as long as they are fast or slow simultaneously. For example, isoprene 

products and CFCs are both slow in the stratosphere and clean regions, so they may be assigned into the same group (e.g., 

block 6). In addition, there are still noticeable changes of species groups if we run the simulated annealing algorithm with 

different initializations and choices of the temperature parameter, even though the optimized blocks can generally separate 205 

Z2 =
1
Ω
( yi, j

i
∑

D1
∑ + yi, j

*

i
∑

D2
∑ ) (6)
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the oxidants, anthropogenic VOCs, and biogenic VOCs (Table S1). These two shortcomings may be addressed by 

introducing regularization terms in the cost function to enforce known species relationships. We will implement this in 

follow-up work. 

We tested different numbers of chemical regimes (M) from 3 to 40 for combining the N = 12 blocks, and again selected the 

regimes to minimize the global fraction Z2 of species to be included in the implicit solver. Z2 decreases from 65% to 40% as 210 

M increases from 3 to 20 and flattens at higher values of M (Fig. 3a). This is because 88% of the gridboxes can be 

represented by 20 chemical regimes (Fig. 3b). A larger number of blocks (N > 12) would extend the improvement to higher 

values of M, but the size of M is also limited by considerations of code manageability and compilation speed.  We use 20 

chemical regimes in what follows. 

Table 2 shows the composition of the 20 chemical regimes as defined by the blocks of Table 1. For 72% of the gridboxes in 215 

the troposphere and stratosphere, we only need to solve for fewer than 50% of the species as fast. Only 3.6% of gridboxes 

need to use the full chemistry mechanism, as defined by the 20th regime.  

Figure 4 shows the distribution of these 20 chemical regimes globally and for different altitudes, and the corresponding 

percentage of fast species that needs to be included in the chemical solver. In continental surface air where VOC emissions 

are concentrated, we find that over 80% of species generally need to be included. This percentage is reduced to 20-60% over 220 

the ocean and < 20% over Antarctica. At 5 km altitude, we find a distinct boundary between the daytime and nighttime 

hemisphere; the daytime chemistry is more active, and the percentage of fast species is higher in the daytime (40-60%) than 

at night (10%-30%). At 15 km altitude the extratropics are in the stratosphere, where non-methane VOC chemistry is largely 

absent, but the model still needs to solve 30-40% species as fast because of the halogens. Deep convection over tropical 

continents delivers short-lived VOCs and their oxidation products to the upper troposphere, so that a large number of species 225 

needs to be treated as fast in the convective outflow where and when it occurs. The importance of deep convective outflow 

for global atmospheric chemistry has been pointed out in a number of studies (Prather and Jacob, 1997; Bechara et al., 2010; 

Schroeder et al., 2014), and emphasizes the advantage of reducing the mechanism adaptively on the fly rather than with pre-

set geographic boundaries.  

 230 

4 Error analysis 

Here we quantify the errors in our adaptive reduced mechanism method by comparison with a standard GEOS-Chem 

simulation for the troposphere and stratosphere (version 12.0.0) including full chemistry (228 species). The comparison is 

conducted for a 1-month simulation to examine the sensitivity to the rate threshold δ, and for a 2-year simulation to evaluate 
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the stability of the method. In both cases, we use the Relative Root Mean Square (RRMS) metric as given by Sandu et al. 235 

(1997) to characterize the error: 

 (8)  

Where and are the concentrations for species i and gridbox j in the reduced and full chemical mechanisms, and 

the sum is over the Qi gridboxes where is greater than a threshold a. Here we use a = 1×106 molecules cm-3 as in Eller 
et al. (2009) and Santillana et al. (2010). 240 

A critical parameter to select in the algorithm is the rate threshold δ separating fast and slow species on the basis of their 

production and loss rates. A high threshold decreases the number of fast species and hence speeds up the computation but at 

the expense of accuracy. We tested different rate thresholds ranging from 10 to 5000 molecules cm-3 s-1 in a 1-month GEOS-

Chem simulation starting on August 1 2013.  Figure 5 shows the median RRMS error for all species on September 1 and the 

increased computational performance for different rate thresholds δ. The best range for δ is between 100 and 1000 molecules 245 

cm-3 s-1, where the median RRMS error is below 1% and the improvement in computational performance is in the 30-40% 

range. 

Figure S5 further shows the distribution of RRMS errors over all species for different rate thresholds δ. The 90th percentile 

RRMS error stays below 5% if δ ≤ 1000 molecules cm-3 s-1 but exceeds 10% for δ = 5000 molecules cm-3 s-1. The 99th 

percentile RRMS error is less than 20% for δ ≤ 1000 molecules cm-3 s-1 but rises to 80% for δ = 5000 molecules cm-3 s-1. The 250 

largest errors are usually from the tropospheric halogen species (Fig. S6). When near the day-night terminator, the sharp 

transition of production and loss rates is not properly captured by the first-order explicit equations, resulting in high relative 

errors.  

Figure 6 shows the time evolution over two years of simulation of the median RRMS error for all species and also for the 

selected species OH, ozone, sulfate, and NO2. The median RRMS for all species is 0.2%, 0.5%, and 0.8% for rate thresholds 255 

δ of 100, 500, and 1000 molecules cm-3 s-1 respectively.  There is no error growth over time. Among the four representative 

species, the RRMS is highest for NO2, ranging from 1.0% to 2.0% for δ ranging from 100 to 1000 molecules cm-3 s-1. For 

OH, ozone and sulfate, the RRMSs are below 0.3% in call cases. Figure 7 displays the spatial distribution of the relative 

error on the last day of the 2-year simulation, using a rate threshold δ of 500 molecules cm-3 s-1 as an example. The relative 

errors are below 0.5% everywhere for O3, OH, and sulfate. The error for NO2 reaches 1-10% at high latitudes, but this is still 260 

well within other systematic sources of errors in estimating NO2 concentrations (Silvern et al., 2018). Results for rate 

thresholds δ of 100 and 1000 molecules cm-3 s-1 can be found in Figure S7-8. Running the optimizing algorithm may produce 

different groupings of species (e.g. Table S1), but they show similar errors.  

  
RRMSi =

1
Qi

(
ni, j

reduced − ni, j
full

ni, j
full )2

j=1

Qi

∑

ni, j
reduced ni, j

full

ni, j
full
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5 Conclusions 

We have presented an adaptive method to speed up the temporal integration of chemical mechanisms in global atmospheric 265 

chemistry models. This integration (“chemical operator”) involves the implicit solution of a stiff coupled system of ordinary 

differential equations (ODEs) representing the kinetic evolution of individual species in the mechanism. With typical 

mechanisms including over 100 coupled species, this chemical integration is the principal computational bottleneck in 

atmospheric chemistry models and hinders the adoption of detailed atmospheric chemistry in Earth system models. 

Our method takes advantage of the fact that different regions of the atmosphere need different levels of detail in the chemical 270 

mechanism, and that greatly reduced mechanisms can be used in most of the atmosphere.  We do this reduction locally and 

on the fly by choosing from a portfolio of pre-selected reduced chemical mechanisms (chemical regimes) on the basis of 

species production and loss rates, distinguishing between “fast” species that need to be in the coupled mechanism and “slow” 

species that can be solved explicitly. Our method has six advantages over other methods proposed to speed up the chemical 

computation: (1) It does not sacrifice the complexity of the chemical mechanism where it is needed, while greatly 275 

simplifying it over much of the world where it is not. (2) It conserves all of the meaningful diagnostic information of the 

chemical system, such as production and loss rates of species and families, and individual reaction rates. (3) It can be 

tailored to achieve the level of simplification that one wishes. (4) It is robust against small mechanistic changes, as these may 

not alter the choice of chemical regimes or may be accommodated by minor tweaking of the regimes (new species may be 

assigned to their most appropriate groups on the basis of chemical logic). (5) It is robust against increases in model 280 

resolution, where source gridboxes (e.g., urban areas) may simply default to the full mechanism. (6) If an adjoint is available 

for the full chemical solver, then it can also be used in our method since the software code of the full chemical solver (e.g. 

KPP) is retained.  

We applied the method to the GEOS-Chem global 3-D model for oxidant-aerosol chemistry in the troposphere and 

stratosphere. The full chemical mechanism in GEOS-Chem has 228 coupled species. We developed an objective numerical 285 

method to pre-select the reduced chemical regimes on the basis of time slices of full-mechanism model results. We showed 

that 20 regimes could cover efficiently the range of atmospheric conditions encountered in the model. We then pick 

appropriate regimes for the chemical operator on the fly by comparing the local production and loss rates of individual 

model species to a threshold δ. Values of δ in the range 100-1000 molecules cm-3 maintain an accuracy better than 1% 

relative to a model simulation with the full mechanism and decrease the computational cost of the chemical solver by 32-290 

41%. Comparison testing with a 2-year global GEOS-Chem simulation for the troposphere and stratosphere including the 

full mechanism shows errors of less than 1% for critical species and no significant error growth over the two years.   

The performance tests presented here were for a single-node implementation of GEOS-Chem using 12 CPUs in a shared-

memory Open Message Passing (Open-MP) parallel environment. High-performance GEOS-Chem (GCHP) simulations can 



11 
 

also be conducted in massively parallel environments with Message Passing Interface (MPI) communication between nodes 295 

and domain decomposition across nodes by groups of columns (Eastham et al., 2018). In principle, the chemical operator 

scales perfectly across nodes because it does not need to exchange information between columns (Long et al., 2015). 

However, differences in computational costs between columns (due to differences in chemical regimes) could result in load 

imbalance between nodes, degrading performance. In the current implementation of GCHP, the MPI domain decomposition 

is by clustered geographical columns in order to minimize exchange of information across nodes in the advection operator 300 

(Eastham et al., 2018). Such a decomposition would penalize our approach since different geographical domains may have 

different computational loads for chemistry (e.g., oceanic vs. continental regions). This could be corrected by using different 

MPI domain decompositions for different model operators, and tailoring the domain decomposition for the chemical operator 

to balance the number of fast species across nodes. Such an approach is used for example in the NCAR Community Earth 

System Model (CESM) where different domain decompositions are done for advection (clustered geographical regions) and 305 

for radiation (number of daytime columns). 

Several improvements could be made to our method. (1) The blocks of species used to construct the reduced chemical 

mechanisms are optimized to minimize the number of fast species but are not always chemically logical, which could be 

improved by applying prior regularization constraints to the optimization.  (2) Optimization in the definition of the reduced 

mechanisms could take into account not only the number of species but also their lifetimes that affect the stiffness of the 310 

system. (3) Separation between fast and slow species could take into account species lifetimes, because species with long 

lifetimes but high loss rates (such as methane or CO) can be solved explicitly. (4) Mass conservation in the explicit solution 

could be enforced to enable more species (in particular stratospheric halogens) to be treated explicitly when they play little 

role in the coupled system. (5) Besides removing the slow species from the implicit chemical operator, we could also remove 

unimportant reactions, which would reduce the cost in updating the production/loss rates and the Jacobian matrix. These 315 

improvements will be the target of future work. 

Code availability. The standard GEOS-Chem code is available through https://doi.org/10.5281/zenodo.1343547. The 

updates for the adaptive mechanism can be found at https://doi.org/10.7910/DVN/IM5TM4. 
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Table 1. Partitioning of GEOS-Chem chemical species into N = 12 blocksa.  400 

Block Type of speciesb Number 
of species 

Species % gridboxes 
where fastc  

1 Aromatics 21 CH2I2 LBRO2H LBRO2N LTRO2H LTRO2N SO4H2 
IMAE BENZ TOLU TRO2 BRO2 CH2Cl2 IMAO3 RA3P 
RP PP IPMN GLYX A3O2 PO2 R4N1 

33.4 

2 Organic nitrates 7 INDIOL SO4H1 PPN IONITA N RCO3 R4N2 39.3 
3 Isoprene, terpenes 30 CH2ICl LISOPOH LISOPNO3 MONITA OCS CHBr3 

CHCl3 HCFC22 PRPN HPALD HONIT RIPB RIPA 
LIMO MONITS ISOPNB CH3CHOO MVKN PRN1 
MONITU CH2OO PROPNN ISOP OLND OLNN 
HC5OO ISN1 HC5 RIO2 INO2 

13.9 

4 Alkanes, alkenes, 
acetone 

12 MSA MAP ETP SO4 ATOOH C2H6 ATO2 ACTA ACET 
ETO2 PRPE ALD2 

41.4 

5 Higher alkanes, 
methyl ethyl ketone 

14 CH3I RB3P CH3Cl ALK4 R4P C3H8 EOH B3O2 KO2 
MGLY R4O2 HAC RCHO MEK 

36.5 

6 Halocarbons, 
isoprene products 

55 CH2IBr ISN1OA ISN1OG LVOCOA LVOC PYAC 
SOAMG DHDN CH3CCl3 H1301 H2402 PMNN CCl4 
CFC11 CFC12 CFC113 CFC114 CFC115 H1211 
IEPOXD CH2Br2 HCFC123 HCFC141b HCFC142b 
CH3Br DHPCARP IAP HPC52O2 MOBA ISNP MAOP 
MRP RIPD ETHLN ISNOHOO NPMN MOBAOO 
DIBOO ISNOOB INPN MACRNO2 MVKOO GAOO 
MGLYOO MGLOO MAN2 ISNOOA ISOPNDO2 
MACROO MACRN MAOPO2 LIMO2 ISOPNBO2 
ISOPND NMAO3 

10.2 

7 Secondary organic 
aerosol 

25 LXRO2H LXRO2N SOAGX SOAIE SOAME DHDC 
IEPOXA IEPOXB XRO2 XYLE PIP HC187 VRP 
DHMOB MTPA MTPO ROH IEPOXOO HCOOH PIO2 
GLYC VRO2 MRO2 MACR MVK 

15.6 

8 Sulfur, 
peroxyacetylnitrate 

15 CO2 N2O DMS HNO4 HNO2 PAN MP H CH4 H2O2 
MCO3 SO2 CO O1D O 

95.9 

9 Oxidants 12 MPN N2O5 HNO3 CH2O MO2 O3 NO HO2 NO3 NO2 
H2O OH 

100.0 

10 Iodine reservoirs 13 AERI ISALA ISALC I2O4 I2O3 IBr INO HI ICl ClNO2 
BrSALC BrSALA I2 

69.5 

11 Bromine and chlorine 
inorganic species 

11 ClOO BrCl Br2 BrNO3 HOBr HOCl ClNO3 Cl HBr ClO 
HCl 

99.9 

12 Bromine and iodine 
radicals 

13 I2O2 BrNO2 Cl2O2 IONO OIO OClO HOI IONO2 Cl2 I 
IO BrO Br 

85.0 

aThe full GEOS-Chem mechanism has 228 species. The full names of these acronyms can be found at 

http://wiki.seas.harvard.edu/geos-chem/index.php/Species_in_GEOS-Chem. Results in Column 2-4 are obtained using data 

from the first 10 days of February, May, August, and November sampled every 6 hours.  
bQualitative descriptor of the most important species in the block. 
cGlobal percentage of GEOS-Chem model gridboxes in the troposphere and stratosphere where the block is treated as fast. 405 

Values are for August 1 2013 sampled every 6 hours. 
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Table 2. Composition and frequency of the 20 chemical regimes in the adaptive algorithma.  

Regime # 

Block 

% fast species b % gridboxesc 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0 0 0 0 0 0 0 0 1 0 0 0 5.6 0.1 

2 0 0 0 0 0 0 0 0 1 0 1 0 10.3 3.9 

3 0 0 0 0 0 0 0 0 1 0 1 1 15.8 0.1 

4 0 0 0 0 0 0 0 1 1 0 1 0 18.4 5.4 

5 0 1 0 0 0 0 0 1 1 0 1 0 21.4 2.2 

6 0 0 0 0 0 0 0 1 1 0 1 1 23.9 0.5 

7 0 1 0 0 0 0 0 1 1 0 1 1 26.9 0.2 

8 0 1 0 1 0 0 0 1 1 0 1 0 26.9 1.1 

9 0 0 0 0 0 0 0 1 1 1 1 1 29.5 46.3 

10 0 0 0 1 0 0 0 1 1 0 1 1 29.5 0.5 

11 0 0 0 1 0 0 0 1 1 1 1 1 35.0 3.3 

12 0 0 0 1 1 0 0 1 1 0 1 1 35.5 0.7 

13 0 1 0 1 1 0 0 1 1 0 1 1 38.5 2.4 

14 1 1 0 1 1 0 0 1 1 0 1 1 47.4 5.2 

15 1 1 0 1 1 0 0 1 1 1 1 1 53.0 12.7 

16 1 1 0 1 1 0 1 1 1 0 1 1 58.1 1.7 

17 1 1 1 1 1 0 1 1 1 1 1 1 76.5 3.7 

18 1 1 1 1 1 1 1 1 1 0 1 0 88.9 2.3 

19 1 1 1 1 1 1 1 1 1 0 1 1 94.4 4.4 

20 1 1 1 1 1 1 1 1 1 1 1 1 100.0 3.6 

 410 
aThe chemical regimes are defined by the ensemble of fast species that need to be treated as a coupled system with implicit 

solution in the chemical operator. The species are assembled into blocks as listed in Table 1, and here we identify the blocks 

treated as fast in the chemical regime (1 ≡ fast, 0 ≡ slow). 
bPercentage of the 228 species in the GEOS-Chem chemical mechanism treated as fast in the chemical regime. 
cGlobal percentage of GEOS-Chem tropospheric and stratospheric gridboxes for which the chemical regime is selected. 415 

Values are for August 1 2013 sampled every 6 hour. 
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 420 
Figure 1. The diagram for calculating the cost function Z2. 

 

Concentrations of species in gridbox j,
denoted as nj = { ni,j, i is for species}

Convert to yj = { yi,j }, where yi,j=1 if the block is fast
or yi,j=0 if the block is slow. A fast block means at 
least one species in the block is fast.

The number of fast species
is calculated as

If yj can be represented by
the M chemical regimes

If yj cannot be represented
by the M chemical regimes

For each of the M chemical regimes, check
if yj can be represented by this chemical
regime after moving some blocks from
slow to fast. If it can, calculate the number
of moves needed. We refer to y*i,j as the  
indicators adjusted by these changes.

Identify the chemical regime that needs the
least number of moves, and the number of
fast species is calculated as

Diagram for calculating the cost function Z2

yi, j
i
∑

yi, j
*

i
∑
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Figure 2. Minimum of cost function Z2 (global fraction of chemical species treated as fast) as a function of the number N of 

blocks used to group the species for mechanism reduction. Values were computed using the GEOS-Chem troposphere + 425 

stratosphere simulation on the first days of February, April, August and November 2013, over 24 hours and sampled every 6 

hours. Shaded area shows the standard deviation of the cost function minimum computed for each sample.  
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 430 

 
Figure 3. Speed-up of the chemical computation as a function of the number M of chemical mechanism subsets (chemical 

regimes) used in the coupled implicit solver of the GEOS-Chem model for adaptive simulation of the troposphere and 

stratosphere. Top: Minimum of cost function Z2 (global fraction of chemical species treated as fast) as a function of the 

number of chemical regimes. Bottom: Percentage of model gridboxes that can be represented by the M chemical regimes 435 

without adjustment (see Equation 5 and related text). Dashed lines show the values for M = 20. For both panels, results are 

for the first 10 days of February, May, August, and November sampled every 6 hours (shaded area denotes one standard 

deviation of results sampled every 6 hours).   
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Figure 4. Chemical mechanism complexity needed in different regions of the atmosphere. The Figure identifies the chemical 440 

regime from Table 2 needed to simulate a given GEOS-Chem gridbox on August 1 2013 at 0 and 12 GMT. The percentage 

of the 228 species treated as fast (requiring coupled implicit solution) in that chemical regime is shown on the colorbar and 

more details are in Tables 1 and 2. Results are shown for different altitudes and using a threshold δ of 100 molecules cm-3 s-1.  
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Figure 5.  Performance and accuracy of the adaptive chemical mechanism reduction method for different rate thresholds δ 445 

(molecules cm-3 s-1) to separate fast and slow species. The performance is measured by the reduction in computing processor 

unit (CPU) time for the chemical operator, and the accuracy is measured by the median relative root mean square (RRMS) 

error for species concentrations relative to a global GEOS-Chem simulation for the troposphere and stratosphere using the 

full chemical mechanism (228 species treated as fast).  The second x axis gives the global fraction of species that need to be 

treated as fast depending on the value of δ. The number of blocks (N) is 12 and the number of chemical regimes (M) is 20.  450 

  

0 10 100 500 1000 5000
Rate threshold δ (molecules cm−3 s−1)

100% 53% 40% 35% 33% 30%

0.0

0.5

1.0

1.5

2.0

2.5

M
ed

ia
n 

R
R

M
S

 e
rr

or
 (%

)

Fraction of species treated as fast (%)

M = 20, N = 12

-40

-30

-20

-10

0

C
P

U
 ti

m
e 

re
du

ct
io

n 
(%

)

Performance and accuracy for different rate thresholds δ



22 
 

 

 

Figure 6. Accuracy of the adaptive reduced chemistry mechanism algorithm over a two-year GEOS-Chem simulation (see 

text). The accuracy is measured by the 24-hour mean RRMS error on the end day of each month relative to a simulation 455 

including the full chemical mechanism. Rate thresholds δ of (a) 100, (b) 500 and (c) 1000 molecules cm-3 s-1 are used to 

partition the fast and slow species in the reduced mechanism. Results are shown for the median RRMS across all 228 species 

of the full mechanism and more specifically for ozone, OH, NO2, and sulfate.  
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Figure 7. Relative error from the adaptive mechanism reduction method after two years of simulation in the GEOS-Chem 460 

global 3-D model for tropospheric-stratospheric chemistry. The figure shows relative differences of 24-h average OH, ozone, 

sulfate and NO2 concentrations relative to the full-chemistry simulation on the last day of the two-year simulation (2013-

2014). The relative error for surface NO2 can be up to ±10% in polar regions. The calculation uses a rate threshold δ = 500 

molecules cm-3 s-1 to partition the species between fast and slow. The number of blocks (N) is 12 and the number of chemical 

regimes (M) is 20.  465 

 


