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Abstract 

This article describes a new Earth system model (ESM), the Model for Interdisciplinary Research on Climate, Earth 

System version2 for Long-term simulations (MIROC-ES2L) using a state-of-the-art climate model as the physical core. 

This model embeds a terrestrial biogeochemical component with explicit carbon–nitrogen interaction to account for soil 20 

nutrient control on plant growth and the land carbon sink. The model’s ocean biogeochemical component is largely 

updated to simulate biogeochemical cycles of carbon, nitrogen, phosphorus, iron, and oxygen such that oceanic primary 

productivity can be controlled by multiple nutrient limitations. The ocean nitrogen cycle is coupled with the land 

component via river discharge processes, and external inputs of iron from pyrogenic and lithogenic sources are considered. 

Comparison of a historical simulation with observation studies showed the model could well reproduce the transient 25 

global climate change and carbon cycle as well as the observed large-scale spatial patterns of the land carbon cycle and 

upper-ocean biogeochemistry. The model demonstrated historical human perturbation of the nitrogen cycle through land 

use and agriculture and simulated the resultant impact on the terrestrial carbon cycle. Sensitivity analyses under 

preindustrial conditions revealed that the simulated ocean biogeochemistry could be altered regionally (and substantially) 

by nutrient input from the atmosphere and rivers. Based on an idealized experiment in which CO2 was prescribed to 30 

increase at a rate of 1% per year, the transient climate response (TCR) is estimated to be 1.5 K, i.e., approximately 70% 

that of our previous ESM used in the Coupled Model Intercomparison Project Phase 5 (CMIP5). The cumulative airborne 

fraction (AF) is also reduced by 15% because of the intensified land carbon sink, which results in an airborne fraction 

close to the multimodel mean of the CMIP5 ESMs. The transient climate response to cumulative carbon emission (TCRE) 
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is 1.3 K EgC-1, i.e., slightly smaller than the average of the CMIP5 ESMs, which suggests that “optimistic” future climate 35 

projections will be made by the model. This model and the simulation results contribute to CMIP6. The MIROC-ES2L 

could further improve our understanding of climate–biogeochemical interaction mechanisms, projections of future 

environmental changes, and exploration of our future options regarding sustainable development by evolving the 

processes of climate, biogeochemistry, and human activities in a holistic and interactive manner. 

 40 

1. Introduction 

Originally, global climate projections using climate models were based on simulations using atmosphere-only physical 

models (Manabe et al., 1965). Numerical climate models had evolved through the integration or improvement of 

component models on ocean circulation (Manabe and Bryan, 1969), land hydrological processes (Sellers et al., 1986), sea 

ice dynamics (e.g., Meehl and Washington, 1995), and aerosols (e.g., Takemura et al., 2000), most of which focus on 45 

physical aspects that affect how climate is formed. Cox et al. (2000) attempted to couple a carbon cycle model and a 

climate model to investigate the roles of biophysical and biogeochemical (carbon cycle) feedbacks on climate. Their 

results showed that such interactions are significant in projecting future climate due to processes and feedbacks beyond 

those incorporated in traditional climate models. Models that incorporate biogeochemical processes, such as that by Cox et 

al. (2000), are often called Earth system models (ESMs). Currently, the most comprehensive state-of-the-art ESMs include 50 

component models of the land and ocean carbon cycle, atmospheric chemistry, dynamic vegetation, and other 

biogeochemical cycles (e.g., Watanabe et al., 2011; Collins et al., 2011). 

Among many processes and possible interactions in the Earth system, the carbon cycle and its feedback on climate 

remain the focus of simulation studies using ESMs because of the importance of anthropogenic CO2 as the primary driver 

for climate change and the complexity of the natural carbon cycle that determines its fate. As ESMs simulate explicit 55 

climate–carbon interactions, they can simulate the temporal evolution of atmospheric CO2 concentration and the resultant 

climate change using anthropogenic CO2 emissions as an input (Friedlingstein et al., 2006, 2014). It is also possible to 

make climate projections using prescribed CO2 concentrations, and the diagnosed CO2 fluxes in the simulations can be 

used to calculate the level of anthropogenic CO2 emissions compatible with prescribed CO2 pathways (Jones et al., 2013). 

Furthermore, ESM simulations can be diagnosed in terms of the relationship between anthropogenic CO2 emissions and 60 

global temperature rise, i.e., the so-called transient climate response to cumulative carbon emissions (TCRE) (Allen et al., 

2009; Matthews et al., 2009). The ESMs of the Coupled Model Intercomparison Project Phase 5 (CMIP5) revealed that 

the relationship is approximately linear (Gillett et al., 2013), which facilitates estimation of the total amount of 

anthropogenic CO2 emissions to restrict global warming to below a specific mitigation target. 

The feedback of the carbon cycle on climate is manifested through regulation of the atmospheric CO2 concentration, 65 

which can be decomposed into two feedback processes. The first process is the carbon cycle response to CO2 increase. 

Elevated CO2 concentration accelerates vegetation growth that intensifies the land carbon sink. Additionally, increased 

levels of atmospheric CO2 accelerate CO2 dissolution into the surface water of the ocean, and the absorbed CO2 is 

transported into the deeper ocean via ocean circulation and biological processes. Consequently, an increase of atmospheric 

CO2 triggered by external forcing (e.g., anthropogenic emissions) can be mitigated partly by natural CO2 uptake, forming 70 

a negative feedback loop between atmospheric CO2 concentration and natural carbon uptake, i.e., the so-called CO2–

carbon feedback (Gregory et al., 2009) or carbon–concentration feedback (Boer and Arora et al., 2009). The second 

feedback process is the carbon cycle response to global warming. Global warming induces loss of carbon from the land to 
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the atmosphere by accelerating ecosystem respiration (Arora et al., 2013; Todd-Brown et al., 2014; Friedlingstein et al., 

2014), while ocean surface warming reduces the solubility of CO2 in seawater. Intensification of upper-ocean stratification 75 

and weakening of the biological pump by global warming also prevent effective transport of dissolved carbon into the 

deeper ocean (Frölicher et al., 2015; Yamamoto et al., 2018). Global warming might lead to localized intensification of the 

natural carbon sink (e.g., lengthening of the growing season and exposure of the ocean surface through melting of sea ice). 

However, state-of-the-art ESMs have projected global natural carbon loss due to warming, which suggests a positive 

feedback loop between climate change and natural carbon uptake, i.e., the so-called climate–carbon feedback 80 

(Friedlingstein et al., 2006; Arora et al., 2013). 

Quantification of the strength of the carbon cycle feedbacks and their comparison among ESMs were first made by 

Friedlingstein et al. (2006), who showed that all ESMs agreed with the positive sign of the climate–carbon feedbacks for 

both land and ocean. The latest comparison using CMIP5 ESMs was made by Arora et al. (2013). They found that the 

widest spread between the models was in the land carbon response to CO2 increase, while the second greatest spread was 85 

in the land carbon response to warming. Two of the ESMs in their analysis employed explicit carbon–nitrogen (C–N) 

interactions in the land component for considering the limitation of soil N on land CO2 uptake, and these two models 

showed the smallest land carbon response to CO2 increase. Although it was pointed out later that the lowest response of 

the two C–N models was not necessarily induced by N limitation (Hajima et al., 2014b), the comparison study by Arora et 

al. (2013) aroused interest in terrestrial biogeochemical feedbacks other than the carbon cycle. The importance of N 90 

limitation on the land carbon sink has also been suggested following simulation studies using offline land models (e.g., 

Thornton et al., 2007; Sokolov et al., 2008; Zaehle and Friend, 2010) and diagnostic analyses using the simulation output 

of ESMs (e.g., Wieder et al., 2015). 

Compared with land, the oceans showed better agreement among the CMIP5 ESMs (Arora et al., 2013) in terms of the 

strength of both CO2–carbon and climate–carbon feedbacks. However, the ESMs showed substantial discrepancies in the 95 

spatiotemporal patterns of ocean CO2 uptake, even in historical simulations. In particular, in the Southern Ocean, although 

the models indicated dominance of the region in relation to anthropogenic carbon uptake (Frölicher et al., 2015), the 

seasonality of the atmosphere–ocean CO2 flux and the cumulative values in that region showed divergent patterns among 

the models (Anav et al., 2013; Frölicher et al., 2015; Kessler and Tjiputra, 2016). 

The ecological response of the ocean in ESMs remains far from certain. A benchmark study by Anav et al. (2013) 100 

revealed that all CMIP5 ESMs underestimate net primary productivity (NPP) in the high latitudes of the Northern 

Hemisphere, where seawater temperature and N availability likely limit primary production (e.g., Moore et al., 2013). 

They also found that most models overestimate NPP in the Southern Hemisphere high latitudes, where nutrient supply is 

sufficient because of strong upwelling but iron supply is limited (Moore et al., 2013). Globally, the CMIP5 ESMs simulate 

NPP with different magnitudes, even in the preindustrial condition, and the global NPP response among the models to past 105 

and future climate change is largely divergent (Laufkötter et al., 2015), as is the sinking particle flux (Fu et al., 2016). 

Although such problems regarding oceanic NPP might be attributable partly to inaccurate reproduction of oceanic physical 

fields by the models (Frölicher et al., 2015; Laufkötter et al., 2015), it is critical in simulations to accurately reproduce the 

relative abundances of nutrients in the euphotic zone and their availability to microorganisms. In particular, nutrients in 

the upper ocean are sustained by upwelling from the deeper ocean and inputs from external sources. Some studies suggest 110 

that nutrient availability to marine ecosystems could decline in the future through reduction of nutrient upwelling because 

of intensified stratification (e.g., Ono et al., 2008; Whitney et al., 2013; Yasunaka et al., 2016). Conversely, other studies 

suggest that nutrient supply through atmospheric deposition and river discharge processes could be amplified in the future 
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because of human activities (Gruber and Galloway, 2008; Mahowald et al., 2009) unless robust mitigation policies are 

adopted. Thus, to project the effects of biogeochemical feedback on climate, it is necessary to consider the response of 115 

ecological processes to changing nutrient inputs as well as the physical response. 

On the basis of the above, we previously reviewed the CMIP5 exercises and we discussed the perspective for new ESM 

development (Hajima et al., 2014a). In our ESM development, we prioritized the incorporation of explicit C–N interaction 

in the land biogeochemical component. The terrestrial nitrogen cycle regulates the carbon cycle by modulating soil 

nutrient availability to plants, regulating leaf N concentration and photosynthetic capacity, and changing the C:N ratio in 120 

plants and soils. In particular, CO2 stimulation of plant growth (the so-called CO2 fertilization effect) is the main driver of 

terrestrial CO2–carbon feedback, while N limitation on plant growth might regulate the feedback strength (Arora et al., 

2013; Hajima et al., 2014a; Hajima et al., 2014b). Thus, consideration of C–N coupling in the terrestrial ecosystem in an 

ESM will enable change in the land carbon sink capacity following a change of N dynamics induced by human 

perturbation (e.g., fertilizers) and/or atmospheric N deposition. 125 

For the ocean, the biogeochemical component in our previous model (the MIROC-ESM; Watanabe et al., 2011) was 

unchanged from that used for the first stage of the Coupled Climate Carbon Cycle Model Intercomparison Project 

(C4MIP: Friedlingstein et al., 2006; Yoshikawa et al., 2008). The ocean component simulated C and N cycles only, using 

simple parameterizations of ocean ecosystem dynamics with four types of N tracer and five C tracers (Watanabe et al., 

2011) with fixed C:N ratios of the organic components. Furthermore, the ocean N cycle in the model was isolated from 130 

other subsystems, i.e., there was no N input into the ocean (e.g., biological N fixation, atmospheric N deposition, and 

riverine N input) or flux out of the system (e.g., outgassing and sedimentation). To account for changing inputs of N 

nutrients into the ocean in the simulations, we gave second priority to the coupling of the ocean N cycle to other 

subsystems by incorporating N exchange processes between the ocean and other components in the new ESM. The ocean 

N fixer (i.e., diazotrophs) can be regulated strongly by P availability (Shinozaki et al., 2018); therefore, inclusion of the 135 

ocean P cycle should be adopted together with improvement of the N cycle. Additionally, as the denitrification process is 

strongly regulated by the level of oxygen in seawater, it was also decided to include the oxygen cycle in the new model. 

Inclusion of the oxygen cycle provides potential to project future oceanic deoxygenation that is likely to threaten the 

habitable zone of marine ecosystems, driven by changes in oxygen solubility, mixing, circulation, and respiration due to 

global warming (Oschlies et al., 2018; Yamamoto et al., 2015). 140 

The third priority in developing a new ESM was incorporation of Fe cycle processes. Fe is an essential micronutrient 

for phytoplankton. Thus, any model lacking consideration of the Fe cycle potentially overestimates primary productivity, 

especially in regions in which subsurface macronutrient supply is enhanced but Fe availability is limited, e.g., the main 

oceanic upwelling “high-nutrient, low-chlorophyll” (HNLC) regions (Martin and Gordon, 1988; Moore et al., 2013). 

Similar to the N cycle, the ocean Fe cycle is also an open system. One of its main external sources is dissolved Fe from 145 

continental margins and from hydrothermal vents along mid-ocean ridges (Tagliabue et al., 2017). Thus, continental and 

hydrothermal Fe supply is important in terms of determining the background Fe concentration in seawater. Additionally, 

the ocean Fe cycle is also connected to the land through the atmosphere (Jickells et al., 2005; Mahowald et al., 2009; Ito et 

al., 2019). Fe-containing aerosols are emitted from dry land surfaces, open biomass burning, and fossil fuel combustion, 

and they are delivered to marine ecosystems via dry and wet deposition processes. These processes have been perturbed 150 

by climate change, land use change (LUC), and air pollution (Jickells et al., 2005; Mahowald et al., 2009; Ito et al., 2019). 

Thus, consideration of atmospheric Fe deposition in particular is necessary to reflect the anthropogenic impact on future 

marine ecosystem dynamics via Fe cycle processes. 
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Here, we present a description of a new ESM, the Model for Interdisciplinary Research on Climate, Earth System 

version2 for Long-term simulations (MIROC-ESL2), which considers explicit carbon and nitrogen cycles for land, and 155 

carbon, nitrogen, iron, phosphate, and oxygen cycles for the ocean. In the model, the biogeochemical components are 

coupled interactively with physical climate components, enabling consideration of climate–biogeochemical feedbacks. 

The model description and experimental settings are presented in Sect. 2. The basic performance of the model, evaluated 

by executing a historical simulation and comparison of the results with observation-based studies, is presented in Sect. 3.1. 

To evaluate the sensitivity of the biogeochemical processes, experiments for sensitivity analysis were performed and the 160 

results compared with existing studies. In particular, global temperature response to cumulative anthropogenic CO2 

emissions in the new model was quantified and compared with that of the CMIP5 ESMs to characterize the general 

features of the new model in relation to existing ESMs. The results of the sensitivity analyses are presented in Sect. 3.2. 

Finally, a summary and perspectives obtained from this study are offered in Sect. 4. 

 165 

2. Methods 

2.1. Model configurations 

To comprehensively describe the MIROC-ES2L structure (Fig. 1), we first present the physical core of MIROC5.2, 

which is an updated version of MIROC5 used in CMIP5. Only a brief summary is presented here because a detailed 

description on the modeling of MIROC5 can be found in Watanabe et al. (2010) and an account of a simulation study 170 

performed by MIROC5.2 can be found in Tatebe et al. (2018). Additionally, a description of MIROC6, which shares 

almost the same structure and many of the characteristics of MIROC5.2, except for the atmospheric spatial resolution and 

cumulus treatments, can be found in Tatebe et al. (2019). In this paper, description of the land and ocean biogeochemistry 

is presented in detail because those two components represent the main modifications from the previous version of the 

ESM (i.e., the MIROC-ESM; Watanabe et al., 2011). 175 
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Figure 1 

Schematic of component models in the new MIROC-ES2L Earth system model, the biogeochemical/biophysical 180 

interactions, and external forcing. The physical core of the model is MIROC5.2, which comprises an atmospheric climate 

model (CCSR-NIES AGCM or MIROC-AGCM) with an aerosol module (SPRINTARS), an ocean physical model 

(COCO) with a sea ice model, and a land physical model (MATSIRO) with a river submodel. The land biogeochemistry 

component (VISIT-e) simulates carbon and nitrogen cycles with an LUC submodel, and the ocean biogeochemistry 

component (OECO) simulates the cycles of carbon, nitrogen, iron, phosphorus, and oxygen.  185 

Color-boxed arrows indicate external forcing. Solid (dashed) black arrows represent biogeochemical (physical) variables 

exchanged between the component models (the exchanges of physical variables are almost same as MIROC-ESM; see 

Table 1 of Watanabe et al., 2011). Variables in square brackets represent the prognostic biogeochemical cycles and 

aerosol species (black carbon, BC; organic matter, OM; sulfate (including precursors), SU; dust, DU; sea salt, SA). Names 

of exchanged variables within parentheses are diagnosed variables, i.e., ocean–land riverine P flux diagnosed from the N 190 

flux, and simulated land and ocean N2O fluxes used for diagnostic purposes. 

 

 

 

2.1.1. Physical core 195 

The MIROC5.2 physical core comprises component models of the atmosphere, ocean, and land. The atmospheric 

model is based on a spectral dynamical core, originally named the Center for Climate System Research–National Institute 

for Environmental Studies atmospheric general circulation model (CCSR-NIES AGCM; Numaguti et al., 1997), which is 

coupled interactively with an aerosol component model called the Spectral Radiation-Transport Model for Aerosol 
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Species (SPRINTARS; Takemura et al., 2000, 2005). For the ocean, the CCSR Ocean Component (COCO) model 200 

(Hasumi, 2006) is used in conjunction with a sea ice component model. For land, the Minimal Advanced Treatments of 

Surface Interaction and Runoff (MATSIRO) model (Takata et al., 2003) is coupled to simulate the atmosphere–land 

boundary conditions and freshwater input into the ocean. Considering the application possibility of the ESM to long-term 

climate simulations of more than hundreds of years, e.g., paleoclimate studies (Ohgaito et al., 2013; Yamamoto et al., 

2019), the horizontal resolution of the atmosphere is set to have T42 spectral truncation, which is approximately 2.8° 205 

intervals for latitude and longitude. The vertical resolution is 40 layers up to 3 hPa with a hybrid σ–p coordinate, as in 

MIROC5. The horizontal coordination for the ocean is changed from the bipolar system employed in MIROC5 to a 

tripolar system in MIROC5.2 that is divided horizontally into 360 × 256 grids. (To the south of 63°N, the longitudinal grid 

spacing is 1° and the meridional spacing becomes fine near the Equator. In the central Arctic Ocean, the grid spacing is 

finer than 1° because of the tripolar system.) The vertical levels increase from 44 to 62 with a hybrid σ–z coordinate 210 

system. For land, the same horizontal resolution as used for the atmosphere is employed; the vertical soil structure of the 

model has six layers down to the depth of 14 m. Subgrid fractions for two land use types (agriculture plus managed 

pasture and others) are considered for the physical processes. 

For the AGCM, the schemes used for the dynamical core, radiation, cumulus convection, and cloud microphysics are 

mostly the same as in MIROC5; the major update of processes mainly concerns the aerosol module. The version used here 215 

treats atmospheric organic matter (OM) as one of the prognostic variables, and emission of primary OM and precursors for 

secondary OM are diagnosed in the component. For land, the scheme for subgrid snow distribution is replaced by one 

incorporating a physically based approach (Nitta et al., 2014; Tatebe et al., 2019), and wetland formed temporarily in the 

snowmelt season is newly considered to reduce the warm bias in temperature in the European region during spring–

summer (Nitta et al., 2017; Tatebe et al., 2019). The ocean and sea ice components are mostly the same as in MIROC5. 220 

 

2.1.2. Land biogeochemical processes 

The model of the land ecosystem/biogeochemistry component in MIROC-ES2L is the Vegetation Integrative SImulator 

for Trace gases model (VISIT; Ito and Inatomi, 2012a). This model simulates carbon and nitrogen dynamics on land 

(schematics can be found in Ito and Oikawa 2002 for the carbon cycle and Supplementary Fig. 1 for the nitrogen cycle). It 225 

has been used for ecological studies of site–global scale (e.g., Ito and Inatomi, 2012b), impact assessments of climate 

change (e.g., Warszawski et al., 2013; Ito et al., 2016), prior to CO2 flux inversion studies (e.g., Maksyutov et al., 2013; 

Niwa et al., 2017), and in contemporary assessments of CO2, CH4, and N2O emissions in the Global Carbon Projects (Le 

Quéré et al., 2016; Saunois et al., 2016; Tian et al., 2018). The early version of the model (Sim-CYCLE; Ito and Oikawa, 

2002) was actually used as the land carbon cycle component in the first stage of the C4MIP project (Friedlingstein et al., 230 

2006; Yoshikawa et al., 2008). The model covers major processes relevant to the global carbon cycle. Photosynthesis or 

gross primary productivity (GPP) is simulated based on the Monsi–Saeki theory (Monsi and Saeki, 1953), which provides 

a conventional scheme to simulate leaf-level photosynthesis in a semiempirical manner and for upscaling to canopy-level 

primary productivity. The allocation of photosynthate between carbon pools in vegetation (e.g., leaf, stem, and root) is 

regulated dynamically following phenological stages. Transfer of vegetation carbon into litter/soil pools is simulated using 235 

constant turnover rates and, in deciduous forests, seasonal leaf shedding occurs at the end of the growing period. The 

model focuses on biogeochemical processes and it does not explicitly simulate dynamic change in vegetation composition; 

therefore, the biogeochemical processes are simulated under a fixed biome distribution (Supplementary Fig. 2). The 

carbon stored in litter (i.e., foliage, stem, and root litter) and humus (i.e., active, slow, and passive) pools is decomposed 
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and released as CO2 into the atmosphere under the influence of soil water and temperature. Further details on the carbon 240 

cycle processes in the model can be found in Ito and Oikawa (2002). 

For the nitrogen cycle, the model considers two major nitrogen influxes into the ecosystem: biological nitrogen fixation 

(BNF) simulated based on the scheme of Cleveland et al. (1999) and external nitrogen sources such as fertilizer and 

atmospheric nitrogen deposition, which are prescribed in the forcing data. The fluxes of nitrogen out of the land ecosystem 

are simulated through N2 and N2O production during nitrification and denitrification in soils, based on the scheme of 245 

Parton et al. (1996), leaching of inorganic nitrogen from soils, which is affected by the amount of soil nitrate and runoff 

rate, and NH3 volatilization from soils (Lin et al., 2000; Thornley, 1998). Within the vegetation–soil system, organic 

nitrogen in the soil is supplied from litter fall, whereas inorganic nitrogen is released through soil decomposition processes 

(soil mineralization) and stored as two chemical forms (NO3- and NH4+). Inorganic nitrogen is taken up by plants, 

allocated to two vegetation pools (canopy and structural pools), and immobilized into a microbe pool. Finally, mineral 250 

nitrogen is lost via biotic/abiotic processes as mentioned above. 

Although the original land component model covers most major carbon/nitrogen processes, for the purposes of 

inclusion in the new ESM and making fully coupled climate–carbon/nitrogen projections, the land model was modified for 

this study (hereafter, the modified version is called VISIT-e). First, the modified model represents the close interaction 

between carbon and nitrogen in plants. This is because the original model has only loose interaction between these two 255 

cycles and thus it cannot predict precisely the nitrogen limitation on primary productivity. To achieve this, the 

photosynthetic capacity in VISIT-e is modified to be controlled by the amount of nitrogen in leaves (leaf nitrogen 

concentration), which is determined by the balance between the nitrogen demand of plants and potential supply from the 

soil. Thus, if sufficient inorganic nitrogen is not available for plants, leaf nitrogen concentration is gradually lowered, 

which reduces photosynthetic capacity and the plant production rate. This process is required to simulate the observed 260 

down-regulation in elevated CO2 experiments (e.g., Norby et al., 2010; Zaehle et al., 2014). Other modifications regarding 

the nitrogen cycle are described in Appendix A. 

Second, although the original VISIT incorporates LUC and associated CO2 emission processes, to take full advantage 

of the latest LUC forcing dataset (Land-use harmonization 2; Ma et al., 2019), additional LUC-related processes have 

been newly introduced in VISIT-e. The model assumes five types of land cover (each represented on a separate tile) in 265 

each land grid box (i.e., primary vegetation, secondary vegetation, urban, cropland, and pasture) with the same structure of 

carbon/nitrogen pools. All processes are calculated separately for each tile (i.e., no lateral interaction) and then the 

variables in the tile are summed after weighting by the areal fraction of each land use type. The LUC impact is modeled 

assuming two types of land use impact on the biogeochemistry. The first impact considers status-driven LUC processes, 

which affect land biogeochemistry even when the areal fractions of the tiles are fixed. For example, even when a 270 

simulation is conducted with fixed areal fractions (e.g., a spin-up run under 1850 conditions), crop harvesting, nitrogen 

fixation by N-fixing crops, and the decay of OM in product pools occur. The second type of land use impact includes 

transition-driven processes that happen only when areal changes occur among the tiles. For example, when an areal 

fraction is changed within a year (e.g., conversion of forest to urban land use), carbon and nitrogen in the harvested 

biomass are translocated between product pools. When cropland is abandoned and the area is reclassified as secondary 275 

forest, the apparent mean mass density of secondary forest is first diluted because of the increase in the less-vegetated area, 

and then secondary forest starts regrowth toward a new stabilization state. Further detailed description on LUC modeling 

is given in Appendix A. 
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The land ecosystem component runs with a daily time step in the ESM. It has fixed spatial distribution patterns of 12 

vegetation categories (see Supplementary Fig. 2), and the land biogeochemistry is affected by daily averaged atmospheric 280 

conditions (CO2 concentration, downward shortwave radiation, air temperature, and air pressure) and land abiotic 

conditions (soil water, soil temperature, and runoff rate as the base flow) simulated by the physical core of the ESM. In 

turn, daily averaged land variables simulated by VISIT-e are used by other components of the ESM (Fig. 1). For example, 

the simulated leaf area index (LAI) is referenced in the physical core of the model to simulate physical dynamics on the 

land surface (e.g., evapotranspiration, albedo, and surface roughness). Furthermore, the rate of net atmosphere–land CO2 285 

flux is used in the calculation of the atmospheric CO2 concentration, and inorganic N leached from the soil is transported 

by rivers and subsequently used as an input of N nutrients to the ocean ecosystem. The chemical state of N in rivers is 

assumed conserved during transportation, and biogeochemical processes such as outgassing or sedimentation in freshwater 

systems are neglected in the present model. Additionally, although the model can simulate terrestrial carbon loss by 

erosion and dissolution of organic carbon, these processes are not activated to close the global mass conservation of 290 

carbon and nitrogen. Finally, although N2O and NH3 emissions are simulated, the emission fluxes are considered only for 

diagnostic purposes and they do not produce any change in the atmospheric radiation balance or air quality. 

 

2.1.3. Ocean biogeochemical processes 

The new ocean biogeochemical component model OECO2 (see Supplementary Fig. 3 for a schematic), is a nutrient–295 

phytoplankton–zooplankton–detritus-type model that is an extension of the previous model (Watanabe et al., 2011). 

Although only an overview of OECO2 is presented here, a detailed description can be found in Appendix B. 

In OECO2, ocean biogeochemical dynamics are simulated with 13 biogeochemical tracers. Three of them are 

associated with cycles of macronutrients (nitrate and phosphate) and a micronutrient (dissolved Fe). The model has four 

organic tracers of “ordinary” nondiazotrophic phytoplankton, diazotrophic phytoplankton (nitrogen fixer), zooplankton, 300 

and particulate detritus. All OM in these four tracers is assumed to have identical nutrient, oxygen, and micronutrient iron 

composition following the Redfield ratio of C:N:P:O = 106:16:1:138 (Takahashi et al., 1985) and C:Fe = 150:10-3 (Gregg 

et al., 2003). Four other tracers are associated with carbon and/or calcium, i.e., dissolved inorganic carbon (DIC), total 

alkalinity, calcium, and calcium carbonate. The two other tracers are oxygen and nitrous oxide. 

The nitrogen cycle in OECO2 is similar to that in the previous version (Yoshikawa et al., 2008; Watanabe et al., 2011), 305 

except the new model accounts for nitrogen influxes such as nitrogen deposition from the atmosphere (as external forcing), 

input of inorganic nitrogen from land via rivers, and BNF by diazotrophic phytoplankton (Fig. 1). Additionally, 

denitrification is also modeled as the dominant process of oceanic nitrogen loss, with explicit distinction between the 

gaseous forms of N2O and N2 (see below for nitrogen fixation and denitrification processes). Loss of nitrogen through the 

sedimentation process is also considered. The phosphorus cycle is newly embedded in the model to represent strong 310 

phosphorous limitation on the growth of diazotrophic phytoplankton. The structure of the phosphorus cycle is generally 

similar to that of nitrogen except in two respects: 1) the riverine input of phosphate is the only process that introduces 

phosphorus into the ocean and 2) there is no process of outgassing from the ocean, unlike the denitrification process in the 

nitrogen cycle. As the land ecosystem model cannot simulate the phosphorus cycle, the flux of phosphorous from rivers is 

diagnosed from the nitrogen flux, assuming that the phosphate brought to the river mouth satisfies the N:P ratio of 16:1, 315 

similar to the Redfield ratio. 
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The structure of the ocean iron cycle is also similar to that of nitrogen, except the following processes are modeled as 

iron input into the ocean. Two major sources of iron deposition from the atmosphere are included in the new model: 

lithogenic and pyrogenic sources. Mineral dust emission is diagnosed by the aerosol component module, depending on the 

near-surface wind speed, soil dryness, and bare ground cover, while iron emitted from biomass burning and the 320 

consumption of fossil fuel and biofuel follows external forcing. The latter emission dataset used in this study is shown in 

Supplementary Fig. 4. The iron emissions from pyrogenic sources are estimated based on the iron content and emissions 

of particulate matter (Ito et al., 2018). A shift from coal to oil combustion is considered in relation to shipping (Fletcher, 

1997; Endresen et al., 2007). The iron content of mineral dust is prescribed at 3.5% (Duce and Tindale, 1991). The iron 

deposition from biomass burning is calculated from black carbon (BC) deposition and a ratio of 0.04 gFe gBC-1 in fine 325 

particles at emission (Ito 2011). The emission, transportation, and deposition processes are simulated explicitly by the 

atmospheric aerosol component. The iron from different sources has different solubility in seawater and thus different 

amounts of iron are available for phytoplankton. The solubility of iron is prescribed at 79% for oil combustion, 11% for 

coal combustion, and 18% for biomass burning (Ito, 2013). The solubility of iron for mineral dust is prescribed at 2% 

(Jickells et al., 2005). 330 

In addition to the Fe input from the atmosphere, recent studies suggest contributions of Fe supply from sediment and 

hydrothermal vents to ecosystem activities (Tagliabue et al., 2017). The contributions of these two natural Fe sources to 

the determination of atmospheric CO2 concentration and export production are similar to or greater than that of dust 

(Tagliabue et al., 2014). Therefore, these three Fe sources are also considered in the new ESM (Appendix B). 

Ocean ecosystem dynamics are simulated based on the nutrient cycles of nitrate, phosphorous, and iron. Nutrient 335 

concentration, in conjunction with the controls of seawater temperature and availability of light, regulates the primary 

productivity of the two types of phytoplankton. The model assumes that diazotrophic phytoplankton can prosper in regions 

in which phosphate is available but nitrate concentration is small (<0.05 µmol L-1). In the model, zooplankton is assumed 

to be independent of abiotic conditions (e.g., seawater temperature) and dependent on biotic conditions (phytoplankton 

and zooplankton concentrations), as in the previous model. The denitrification process is modeled to occur only in suboxic 340 

waters (<5 µmol L-1) (Schmittner et al., 2008) and it is suppressed in water with low nitrate concentration (<1 µmol L-1). 

Detritus contains nitrate, phosphorus, iron, and carbon, most of which is remineralized while sinking downward. The 

detritus that reaches the ocean floor is removed from the system; however, a fraction of OM in the sediment is assumed to 

return to the bottom layer of the water column at a constant rate in each location (Kobayashi and Oka, 2018). 

The ocean carbon cycle is formed by atmosphere–ocean CO2 exchange, inorganic carbon chemistry, OM dynamics 345 

driven by marine ecosystem activities, and transportation and reallocation processes of ocean carbon within the interior. 

The formulations of atmosphere–ocean gas exchange, carbon chemistry, and related parameters follow protocols from the 

Ocean Model Intercomparison Project (OMIP; Orr et al., 2017). Production of DIC and total alkalinity is controlled by 

changes in inorganic nutrients and CaCO3, following Keller et al. (2012). 

Finally, the flux of dimethyl sulfide (DMS) from the ocean, which is produced by plankton and is a precursor of 350 

atmospheric sulfate aerosols, is diagnosed in the original aerosol module from the surface downward shortwave radiation 

flux. In MIROC-ES2L, this emission scheme is modified and the flux is calculated from the sea surface DMS 

concentration that is diagnosed from the simulated surface water chlorophyll concentrations and the corresponding mixed-

layer depth (Appendix B). In the present model, this is the only pathway via which ocean biogeochemistry affects climate 

if the model is driven by prescribed CO2 concentration (Fig. 1). This modification of the DMS emission scheme increases 355 

the sulfate aerosol amount, particularly over high-latitude oceans during winter and in regions in which strong surface 
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wind speed occurs. Solar irradiance of the surface decreases in such regions; however, this effect is not sufficiently 

significant to change the mean physical climate states. 

 

2.2. Experiments, forcing, and metrics 360 

2.2.1. Experiments and forcing 

To evaluate the performance and sensitivities of MIROC-ES2L, we conducted 4 groups of experiments comprising 11 

experiments in total (Tables 1 and 2). The first group was a control run that comprised two types of experiment: a normal 

control run (CTL) in which the external forcing was set to preindustrial conditions and an alternative control run (CTL-D) 

used for sensitivity analysis of the ocean biogeochemistry, which is described later. 365 

The second group, used for historical simulations, comprised three types of experiment during the period 1850–2014. 

All three experiments were driven by the Coupled Model Intercomparison Project Phase 6 (Eyring et al., 2016) official 

forcing datasets (version 6.2.1; details on forcing datasets used in the simulations are summarized in Appendix C), and the 

CO2 concentration was prescribed in the simulations (i.e., so-called concentration-driven experiments). The first 

comprised a conventional historical simulation (HIST), and the simulation result is used for direct comparison with 370 

observation-based studies to evaluate model performance. The second was a special experiment named HIST-NOLUC, 

which was designed to evaluate the impact of LUC on the climate and biogeochemistry. In this experiment, land use and 

agricultural management (fertilizer application) were fixed at preindustrial levels. This experimental configuration is the 

same as the LUMIP experiment in CMIP6 named land-noLu (Lawrence et al., 2016). The third experiment (HIST-BGC) 

was the same as HIST, except that the CO2 increase only affects the carbon cycle processes (named in C4MIP of CMIP6 375 

as hist-bgc; Jones et al., 2016). Thus, there was no CO2-induced global warming in the experiment. 

The third experimental group was used to evaluate the climate and carbon cycle feedbacks. This group comprised three 

types of idealized experiment, following experimental designs proposed by Eyring et al. (2016) and Jones et al. (2016). In 

the three experiments, CO2 concentration was prescribed to increase at the rate of 1.0% per year from the preindustrial 

state throughout the 140-year period (i.e., the concentration finally reached a value of approximately 1140 ppmv), while 380 

other external forcing was maintained at the preindustrial condition. The three experiments were configured as follows: (1) 

1PPY: a normal experiment in which both climate and biogeochemical processes respond to the CO2 increase; (2) 1PPY-

BGC: the same as 1PPY but the prescribed CO2 increase affects only the carbon cycle processes; and (3) 1PPY-RAD: the 

same as 1PPY but the CO2 increase affects only atmospheric radiation processes. In 1PPY-BGC, carbon cycle processes 

respond to the CO2 increase without CO2-induced global warming; thus, the result of this simulation is used to quantify 385 

CO2–carbon feedback. In 1PPY-RAD, as there is no direct CO2 stimulation on the carbon cycle, climate change is the only 

cause of carbon cycle variation relative to the preindustrial control (CTL). Thus, this simulation result is used to evaluate 

climate–carbon feedback (Arora et al., 2013; Schwinger et al., 2014). 

The final group comprised a set of experiments to evaluate ocean biogeochemistry, focusing mainly on the processes 

newly introduced in MIROC-ES2L. This group comprised three types of experiment. The first experiment (NO-NR) was 390 

configured similarly to the CTL run, except the ocean component did not receive any riverine N input. Through this 

experiment, the impact of riverine N on ocean biogeochemistry could be evaluated. The second experiment (NO-NRD) 

was the same as NO-NR, except atmospheric N deposition additionally had no effect on ocean biogeochemistry. By 

evaluating the difference between NO-NR and NO-NRD, the impact of nitrogen deposition on ocean biogeochemistry 

could be evaluated. The final experiment (NO-FD) was configured with atmospheric Fe deposition onto the ocean surface 395 
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switched off. To detect slight signals of ocean biogeochemistry arising from switching off the three processes (i.e., 

riverine N, N deposition, and Fe deposition), it was necessary to maintain consistency in the ocean physical fields between 

these experiments because a slight difference of the ocean physical fields produces perturbation on ocean biogeochemistry. 

In MIROC-ES2L, ocean DMS emission is the feedback process of ocean biogeochemistry on the atmospheric physical 

processes; thus, biogeochemical change induced by the switching-off manipulations must change the DMS emission, 400 

which leads to inconsistency in the physical fields between the experiments. To avoid this occurrence, the DMS emission 

scheme in all three experiments was reverted to that used in the original aerosol component model, which is independent 

of the ocean ecosystem state (Appendix B). Similarly, the special control run (CTL-D), which was based on CTL, also had 

the DMS emission scheme changed to the same as NO-NR, NO-NRD, and NO-FD. 

To conduct the experiments described above, preindustrial spin-up was performed in advance. Land and ocean 405 

biogeochemical components were decoupled from the ESM, and the spin-up run was conducted for 3000 years for the 

ocean component and 30,000 years for land, by prescribing model-derived physical fields and other external forcing for 

the component models. In the final phase of the spin-up procedure, continuous spin-up, forced by the 1850-year condition 

of CMIP6 forcing, was performed for the entire system for 2483 years (Supplementary Fig. 5). All the experiments listed 

in Table 1 were initiated from the final condition of this spin-up procedure. 410 

 

Table 1 

Summary of experimental details. 

 

 415 

Experimental Group Experiment Purpose Configurations Duration [yrs]

Control CTL Control run CO2 conc. and other forcings are fixed at
pre-industrial level 165

CTL-D Control run for NO-NR, NO-NRD, and
NO-FD

Same as CTL, but DMS emission follows the
scheme of original aerosol module 100

Historical HIST Evaluation of model performance Following CMIP6-DECK historical run 165 (1850-2014)

HIST-NOLUC Evaluation of land-use change impact on
carbon cycle

LUC and fertilizer are fixed at pre-industrial
level 165 (1850-2014)

HIST-BGC Evaluation of response of carbon cycle to
CO2 increase

Same as HIST but only biogeochemical
processes "see" the CO2 increase 165 (1850-2014)

1%CO2 1PPY Evaluation of sensitivities of climate and
carbon Prescribed CO2 increased with 1.0 [% yr-1] 140

1PPY-BGC Evaluation of response of carbon cycle to
CO2 increase

Same as 1PPY but only biogeochemical
processes "see" the CO2 increase 140

1PPY-RAD Evaluation of response of carbon cycle to
climate change

Same as 1PPY but only atmospheric
radiative processes "see" the CO2 increase 140

OBGC NO-NR Evaluation of impacts of riverine N to
ocean

Same as CTL-D but ocean is not impacted by
riverine N 100

NO-NRD Evaluation of impacts of deposition N to
ocean, by combining NO-NR

Same as NO-NR but ocean is not impacted
by N deposition 100

NO-FD Evaluation of impacts of deposition Fe to
ocean

Same as CTL-D but ocean is not impacted by
Fe deposition 100
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Table 2 420 

Biogeochemical configurations in experiments, summarized as biogeochemical process settings. Bold characters 

represent the major differences between experiments within an experimental group. 

 

*If the biogeochemical process in an experiment was affected by CO2, climate, or land use change, the letter “O” is 

present; otherwise, the symbol “–” is used. 425 

†If the ocean biogeochemistry process detected fluxes of riverine nitrogen, atmospheric nitrogen deposition, or 

atmospheric iron deposition, the letter “O” is present; otherwise, the symbol “–” is used. 

‡The TypeA DMS emission scheme is the default scheme in MIROC-ES2L, where DMS emission is simulated as 

being dependent on the ocean biogeochemical states and the mixed-layer depth. TypeB is a scheme employed in the 

original aerosol component model in which DMS emission is calculated independently of ocean biogeochemical states. 430 

 

2.2.2. Evaluation of climate and carbon cycle response to CO2 

To evaluate the climate and carbon cycle response to CO2 increase, we used the metrics of transient climate response 

(TCR), airborne fraction of CO2 (AF), and TCRE, which have been previously used to characterize the entire climate–

carbon cycle response to CO2 increase in other models (Matthews et al., 2009; Hajima et al., 2012; Gillett et al., 2013). 435 

Similar analysis is made in this study and the result is presented in Sect. 3.2. 

First, TCRE is defined as the ratio of global mean near-surface air temperature change (T) to cumulative anthropogenic 

carbon emission (CE) at the level of doubled CO2 concentration from the preindustrial state (hereafter, 2xCO2PI): 

TCRE = T/CE,  (1) 

which can be written as follows: 440 

Experimental Group Experiments DMS scheme‡

CO2 Climate LUC River N Dep. N Dep. Fe

Control CTL – – – O O O TypeA
CTL-D – – – O O O TypeB

Historical HIST O O O O O O TypeA
HIST-NOLUC O O – O O O TypeA

HIST-BGC O – O O O O TypeA

1%CO2 1PPY O O – O O O TypeA
1PPY-BGC O O – O O O TypeA
1PPY-RAD O – – O O O TypeA

OBGC NO-NR – – – – O O TypeB
NO-NRD – – – – – O TypeB
NO-FD – – – O O – TypeB

Impact on Land/Ocean BGC* Impact	on	Ocean	BGC†
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TCRE = (CA/CE) × (T/CA), (2) 

where CA is the atmospheric carbon increase until reaching 2xCO2PI. The first term on the right-hand side (CA/CE) is 

identical to the definition of the cumulative airborne fraction of anthropogenic carbon emission: 

CA/CE = AF.  (3) 

The second factor (T/CA) can be represented by TCR as follows: 445 

T/CA = TCR/CA,  (4) 

given that TCR is defined as T at 2xCO2PI. Thus, Eq. 2 can be expressed as follows: 

TCRE = AF × (TCR/CA).  (5) 

The result of the 1PPY simulation was used to evaluate TCRE, TCR, and AF. As CA is prescribed in the simulation, 

CE can be diagnosed by CE = CA + CL + CO, where CL and CO represent the change in land and ocean carbon storage, 450 

respectively. As shown by Matthews et al. (2009), AF summarizes the carbon cycle response to anthropogenic CE; the 

second term in Eq. 5 (TCR/CA) captures the global temperature response to CO2 increase in the models; and TCRE thus 

summarizes the two, i.e., the global temperature response to anthropogenic CO2 emission in the model. 

To evaluate the strength of carbon cycle feedbacks in the model, the feedback strength is quantified by the so-called β 

and γ quantities (Friedlingstein et al., 2006; Arora et al., 2013). The former is a feedback parameter for CO2–carbon 455 

feedback (carbon cycle response to atmospheric CO2 increase), which can be calculated as follows: 

βL = (CL1PPY-BGC - CLCTL)/CA1PPY , (6) 

βO = (CO1PPY-BGC - COCTL)/CA1PPY , (7) 

where subscripts L and O represent land and ocean, respectively, and the superscripts represent the experiment used for 

the calculation. 460 

The quantity γ is a feedback parameter for climate–carbon feedback (carbon cycle response to climate change), which 

can be calculated using the results of the 1PPY-RAD and CTL simulations: 

γL = (CL1PPY-RAD - CLCTL)/T1PPY-RAD, (8) 

γO = (CO1PPY-RAD - COCTL)/T1PPY-RAD.  (9) 

 465 

 

3. Results and discussion 

3.1. Model performance in historical simulation 

3.1.1. Global climate: atmosphere and ocean physical fields 

To evaluate the physical fields reproduced by MIROC-ES2L, the temporal evolutions of the global mean net radiation 470 

balance at the top of atmosphere (TOA) and anomalies of near-surface air temperature (SAT), sea surface temperature 

(SST), and upper-ocean (0–700 m) temperature were compared with observation datasets; the results are shown in Fig. 2. 

The model simulates a reasonably steady state of net TOA radiation balance in the CTL run, showing a trend of -4.6 × 10-5 
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W m-2 yr-1 during the 165-year period. When comparing net TOA radiation balance of the HIST simulation with satellite 

measurement (CERES EBAF-TOA edition 4.0, constrained by in situ measurements; Loeb et al., 2012, 2018), the model 475 

result is -0.63 W m-2 (negative means net incoming radiation) during 2001–2010, which is within the range of -0.5 ± 0.43 

W m-2 estimated by Loeb et al. (2012) for the corresponding period (Fig. 2a). 

Following the net increase of incoming radiation, the SAT anomaly increases in the latter half of the 20th century (Fig. 

2b). The warming trend during 1951–2011 is simulated as 0.1 K per decade, which is consistent with that of HadCRUT4 

(version 4.6; Morice et al., 2012), i.e., 0.11 K per decade (Stocker et al., 2013). Observation datasets of SST (HadSST 480 

version 3.1.1; Kennedy et al., 2011) and upper-ocean temperature (Levitus et al., 2012) clearly display increasing trends in 

the corresponding period, which are successfully reproduced by the model (Fig. 2c and 2d). In addition to the warming 

trend in the latter half of the 20th century, the model captures the slowdown of SAT increase both in the 1950s and in the 

1960s. These changes are likely induced by increased anthropogenic aerosol emissions and resultant cooling through 

indirect aerosol effects, together with cooling attributable to large volcanic eruptions in the 1960s (Wilcox et al., 2013; 485 

Nozawa et al., 2005). However, distinct deviations of the model results from HadCRUT4 are found for SAT and SST, in 

the 1860s and particularly in the 1900s. This might be due to inevitable asynchronization between the simulation and 

observations on the phasing of the internal variability of climate, as identified by Kosaka et al., 2016. They reported that 

there should have been four major cooling events due to tropical Pacific variability in the 20th century, one of which was 

found in the 1900s. They also reported the other three events were around 1940, 1970, and 2000; however, discrepancies 490 

arising from these three events are not so evident in this study, likely because of the single ensemble simulation. The 

model also exhibits short-term response of the TOA radiation balance following episodic volcanic events (Fig. 2a, vertical 

dashed lines), with resultant cooling of SAT and SST (Fig. 2a–c) and further propagation into the deeper ocean with 

extended cooling duration (Fig. 2d). Overall, the historical SAT increase in MIROC-ES2L, taking the difference between 

the averages of 1850–1900 and 2003–2012, is 0.69 K, while the HadCRUT4-based estimate by Stocker et al. (2013) is 495 

0.78 K for the corresponding period. The model shows good performance in reproducing global physical fields. This is 

likely attributable to the inherited robust performance of the physical core of the model (MIROC5.2) because MIROC-

ES2L has only two feedback pathways of biophysical processes on climate (DMS emission from the ocean and terrestrial 

processes associated with LAI dynamics) when the model is driven by a prescribed CO2 concentration. Both processes are 

likely to change the physical fields locally. 500 

In addition to the radiation/temperature responses against historical external forcing, we briefly describe here the El 

Niño–Southern Oscillation (ENSO) and Atlantic meridional overturning circulation (AMOC) strength in MIROC-ES2L, 

both of which can affect interannual–multidecadal carbon cycle processes (Zickfeld et al., 2008; Pérez et al., 2013; 

Friedlingstein 2015). In the HIST experiment, the standard deviation of monthly SST anomaly in the Niño-3 region (5°S–

5°N; 90°–150°W) was 1.57 K in 1950–2009, which is larger than that of HadSST (0.94 K). This unrealistically large 505 

ENSO amplitude tends to influence the simulated interannual global temperature variability (Fig. 2b), which is suggestive 

of further effect on the interannual variability in biogeochemical fields (e.g., CO2 flux in the tropics). The AMOC intensity, 

quantified by the North Atlantic Deep Water transport across 26.5°N, was approximately 13 Sv (1 Sv = 106 m3 s-1) as the 

1850–2014 average, which is smaller than the observational estimates of 17.2 Sv (McCarthy et al., 2015). In the HIST run, 

the AMOC strength was weakened at a rate of 0.01 Sv yr-1 (i.e., reduction of 1.7 Sv during the 165 years of HIST), which 510 

seems slightly smaller than the recent estimate of AMOC weakening of 3 ± 1 Sv from the mid-twentieth century (Caesar 

et al., 2018). 
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Figure 2 515 

Comparison of HIST simulation results by MIROC-ES2L with observations: anomalies of (a) net radiation balance at 

the top of the atmosphere (TOA; upward positive), (b) global mean surface air temperature, (c) global mean sea surface 
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temperature, and (d) global mean ocean temperature at 0–700 m depth. Black, red, and blue lines represent historical 

simulations, historical observations, and pi-control simulations, respectively. Vertical dashed lines represent the timing of 

major volcanic eruptions (i.e., Krakatau (1883), Santa Maria (1902), Agung (1963), El Chichon (1982), and Pinatubo 520 

(1991)). In panel (a), the simulation results are presented as anomalies from the 1850–2014 average of the CTL run. In 

panels (b), (c), and (d), the results are presented as the anomalies from the 1961–1990 averages. Observation data for the 

radiation balance were obtained from the global product of CERES EBAF-TOA edition 4.0. Observation data for SAT and 

SST were obtained from HadCRUT4 (Morice et al., 2012) version 4.6 and HadSST (Kennedy et al., 2011) version 3.1.1, 

respectively. Ocean temperature anomaly, updated from Levitus et al. (2012), is used to compare ocean temperature at 0–525 

700 m depth during the period 1955–2014. 

 

Hereafter, we present an overview of the performance of the mean state of the physical fields, atmosphere, and 

land/ocean basic variables of the model in comparison with various observational-based data. The variables examined here 

are SAT, precipitation, SST, sea ice concentration, land snow cover, and mixed-layer depth, all of which are representative 530 

physical states associated with biogeochemical processes. The mixed-layer depth is defined as the depth at which the 

potential density becomes larger than that of the sea surface by 0.125 kg m-3. Fig. 3 shows the climatology of SAT (air 

temperature at 2 m height) averaged over 1989–2009 for annual, December–February (DJF), and June–August (JJA) 

means and the biases in comparison with the ERA-Interim dataset (Dee et al., 2011). The comparison suggests that the 

model performs well (biases <2°C) over the tropics and most of the global area in terms of both annual mean and 535 

seasonality. However, obvious warm biases exist over the Southern Ocean and Antarctica. This is a general tendency of 

CMIP5-class models, and both MIROC5 (Watanabe et al., 2010) and MIROC6 (Tatebe et al., 2019) also suffer this 

problem. The warm bias in the Southern Ocean can be attributed mainly to poor representation of cloud radiative 

processes (Bodas-Salcedo et al., 2012; Williams et al., 2013; Hyder et al., 2018), but also to poor representations of the 

mixed-layer depth and deep convection in the open ocean attributable to the lack of modeled mesoscale processes in the 540 

Antarctic Circumpolar Current (Tatebe et al., 2019). A related warm bias in SST over the Southern Ocean is also 

confirmed, which is discussed later. 

Figure 4 shows the precipitation distribution in the HIST experiment in comparison with the Global Precipitation 

Climatology Project (GPCP) dataset (Adler et al., 2003). Generally, the precipitation distribution is reasonably well 

represented in the model. The Intertropical Convergence Zone is reproduced well in the experiment, except that the 545 

simulated South Pacific Convergence Zone is shifted equatorward relative to the GPCP, which is the so-called double 

Intertropical Convergence Zone syndrome (Bellucci et al., 2010). Over continental areas, the model is effective in 

capturing the spatial pattern of both the annual mean precipitation and the seasonality. However, positive precipitation 

biases are evident in some land tropical regions such as central Africa, South/Southeast Asia, and South America. 

Additionally, arid and semiarid regions of central Asia, Australia, and the western side of North America also show 550 

positive precipitation bias although it is unclear in the bias map (see Supplementary Fig. 6 for the comparison with the 

absolute precipitation rate of GPCP). 

When projecting future climate change, it is important for a model to reproduce the observed climatological patterns of 

key physical variables, as suggested by Ohgaito and Abe-Ouchi (2009). The biogeochemical tracers are also affected by 

the representation of the physical fields. Figure 5 presents the modeled SST and its bias with respect to the World Ocean 555 

Atlas 2013 (WOA 2013; Locarnini et al., 2013). Generally, the model performs well, confirmed by the large extent of the 

area with minimal bias (colored white in Fig. 5). However, obvious bias is evident, e.g., the warm bias in the Southern 



 

18 

Ocean, as already explained above (Fig. 3). A cold bias is also evident over the western North Pacific Ocean, which is 

attributable to the lack of narrow and swift western boundary currents owing to the coarse horizontal resolution in the 

ocean parts of the present ESM. 560 

The model performance in simulating sea ice concentration and snow cover over land for both March and September is 

shown in Fig. 6, in comparison with observational data (Special Sensor Microwave Imager (SSM/I; Kaleschke et al., 

2001) for sea ice concentration and Moderate-resolution Imaging Spectroradiometer (MODIS; Hall et al., 2006) for snow 

cover. Sea ice extent in the Northern Hemisphere is represented well for both months, although the summertime 

concentration minimum is slightly smaller than observed. In the Southern Hemisphere, however, the sea ice extent is 565 

unrealistically underestimated because of the persistent warm bias described above. The extent of the snow-covered area is 

also well represented, likely owing to the updated scheme for subgrid snow representation (Nitta et al., 2014; Tatebe et al., 

2019). However, the fine structure of the snow cover is lost in the simulation, which is likely attributable to the coarse 

resolution of the modeled atmosphere and land. The reasonable performance in reproducing land snow seasonality in the 

boreal region is important for land biogeochemistry as well as the physical climate because snowmelt (accumulation) and 570 

leaf flush (shedding) processes are mutually associated (Supplementary Fig. 7). 

Figure 7 shows the mixed-layer depth in comparison with the Mixed-Layer dataset of Argo, Grid Point Value 

(MILA_GPV; Hosoda et al., 2010). The HIST simulation captures well both the spatial pattern and the seasonality change 

in mixed-layer depth. In the Northern Hemisphere winter, the structure of the deep mixed layer over the western North 

Pacific is consistent with observations; however, the actual depth is overestimated owing to the lack of mesoscale eddies. 575 

The deep mixed layer in the subarctic North Atlantic is also consistent with observations, except there is less deep water 

formed in the Labrador Sea. Additionally, the shallow mixed layer in low latitudes is generally captured well by the 

simulation, and the depth that is maintained at around 100 m over the Southern Ocean is consistent with observations. In 

austral winter, MILA_GPV shows the mixed layer develops to more than 200 m over the Indian Ocean and the Pacific 

sector of the Southern Ocean, whereas it is shallow (around 50 m) in the tropics and the Northern Hemisphere (Fig. 7d). 580 

The model captures the general pattern in austral winter, although the extent of the simulated deeper mixed-layer depth of 

more than 200 m in the Southern Ocean is larger than that of MILA_GPV (Fig. 7c). 
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 585 

 

Figure 3 

Air temperature at 2 m height (°C) in the HIST simulation presented as 1989–2009 climatology and the bias compared 

with the ERA-Interim dataset (Dee et al., 2011) for (a) and (b) annual, (c) and (d) DJF, and (e) and (f) JJA means. 

 590 
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Figure 4 

Precipitation distributions (mm d-1) in the HIST simulation and biases relative to GPCP dataset, (Adler et al., 2003) for 595 

(a) and (b) annual, (c) and (d) DJF, and (e) and (f) JJA means averaged over 1981–2000. 
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Figure 5 600 

SST (°C) in the HIST simulation presented as 1955–2012 climatology and the bias in comparison with WOA2013 

(Locarnini et al., 2013) for (a) and (b) annual, (c) and (d) JFM, and (e) and (f) JAS means. 
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Figure 6 605 

Northern Hemisphere sea ice concentration and land snow fraction (%) in the HIST simulation presented as 2003–2013 

climatology and in comparison with SSM/I (Kaleschke et al., 2001) and MODIS (Hall et al., 2006) data for (a) and (b) 

March and (c) and (d) September. 
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 610 

 

Figure 7 

Mixed-layer depth (m) in the HIST simulation presented as 2000–2010 climatology and comparison with MILA_GPV 

data set (Hosoda et al., 2010) for (a) and (b) JFM and (c) and (d) JAS means. 

 615 

 

3.1.2. Global carbon budget 

Simulated net CO2 uptake by land and ocean in cumulative values (i.e., changes in total carbon of land and ocean) is 

shown in Fig. 8a and 8b, respectively. For land, the CTL run shows slight reduction of carbon of 7.6 PgC during the 165 

years (i.e., 4.6 PgC per century), which is within the acceptable range for the CMIP6 exercise (10 PgC per century; Jones 620 

et al., 2016). The dashed gray line in Fig. 8a is the result from HIST-NOLUC and shows a natural land carbon sink in 

MIROC-ES2L of 200 PgC during 1850–2014. This is comparable with the estimate of 185 ± 50 PgC by Le Quéré et al. 

(2018) for the same period (vertical gray bar in Fig. 8a), which was obtained from multiple offline terrestrial ecosystem 

models with fixed land use. Additionally, LUC is one of the factors that change drastically the historical land carbon 

amount because positive (negative) LUC emission is linked directly with reduction (increase) of land carbon. Based on 625 

bookkeeping methods, Le Quéré et al. (2018) estimated the cumulative CE derived from LUC during 1850–2014 as 195 ± 

75 PgC, whereas the simulated cumulative emission by MIROC-ES2L that is diagnosed by the difference in land carbon 

amount between HIST-NOLUC and HIST is 156 PgC. 

Through being affected by both environmental changes and LUCs, MIROC-ES2L demonstrates in the HIST simulation 

that land carbon is reduced by approximately 60 PgC from the beginning of the simulation up until the middle of the 20th 630 

century (black line in Fig. 8a). This reduction should reflect LUC during this period because HIST-NOLUC does not show 

such a trend of decrease in the corresponding period (dashed gray line in Fig. 8a). From the 1960s, the model shows 

continuous carbon sequestration on land, which results in positive net CO2 uptake of 2.4 PgC yr-1 in the 2000s (Table 3). 

This continuous increase in the latter half of the 20th century is due to the combined effects of CO2 fertilization, 
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vegetation recovery associated with LUC, and the increase of nitrogen input via deposition and the use of fertilizer. This is 635 

displayed clearly in Fig. 8c, where the historical land carbon change is decomposed into the responses to (1) CO2 increase 

(blue line, diagnosed by “HIST-NOLUC + HIST-BGC – HIST”; see Table 2), (2) climate change (red line, by “HIST – 

HIST-BGC”), and (3) LUC (green line, by “HIST – HIST-NOLUC”). In the latter half of the 20th century, land carbon 

sequestration accelerated by CO2 stimulation is clear, while climate change and the resultant terrestrial carbon loss also 

become evident. Additionally, land carbon reduction induced by LUC is slightly weakened in the corresponding period. 640 

During the historical period, MIROC-ES2L simulates total land carbon change (CL) of 44 PgC. This number drops to 

within the independent estimate range of -10 ± 90 PgC (vertical black bar in Fig. 8a), where estimation uncertainties take 

into account both the terrestrial natural carbon sink and LUC emission (calculated as (!LUC2 + !SINK2)0.5, where !LUC and 

!SINK represent the uncertainty range of LUC emission and the land sink, respectively, in Le Quéré et al., 2018). The 

possible range for CL can be changed if we estimate it as the residual of other global carbon budgets (i.e., CL = FF - CA - 645 

CO, where FF is the cumulative fossil fuel carbon emission). Using the estimated ranges of FF, CA, and CO reported by 

Le Quéré et al. (2018) (i.e., 400 ± 20, 235 ± 5, and 150 ± 20 PgC respectively; the budget imbalance of 25 PgC is ignored 

here), the CL range is suggested to be 15 ± 29 PgC. In this case, the result of MIROC-ES2L (44 PgC) is still within the 

estimation boundaries although it is at the upper end of the suggested range. 

For the ocean, the model shows an increase in carbon accumulation in the CTL run (Fig. 8b). This is partly because of 650 

carbon removal by the sedimentation process that is newly introduced into MIROC-ES2L. In this process, an amount of 

carbon is extracted from the ocean bottom, which should be compensated by an equivalent input of carbon from the 

atmosphere through gas exchange processes. In the CTL run, the rate of carbon extracted from the ocean bottom is 0.068 

PgC yr-1 (Table 4), which suggests that the process removes 11 PgC throughout the entire simulation period of CTL (165 

years). It is noted that Cias et al. (2013) suggested that the ocean was a net source of CO2 in the preindustrial era to an 655 

amount of 0.7 PgC yr-1, whereas our model shows it as a net sink in the same condition. This is likely attributable to the 

lack of a process of riverine carbon input in our model. For example, Cias et al. (2013) estimated that the ocean obtains an 

external carbon input of 0.9 PgC yr-1from rivers, of which 0.2 PgC yr-1 is removed by ocean sedimentation and 0.7 PgC yr-

1 is lost from the ocean to the atmosphere via gaseous exchange. The sedimentation process cannot explain all the increase 

of oceanic carbon in the CTL run (30 PgC). Therefore, the remainder should be attributed to other reasons, e.g., the 660 

shortness of the spin-up period or imperfect mass conservation in the ocean biogeochemical component. 

The HIST run shows the cumulative carbon uptake by the ocean, which is driven predominantly by CO2 increase (Fig. 

8b and 8d). In comparison with land, ocean carbon shows a relatively small response to climate change (red line in Fig. 

8d), which is consistent with analysis of the carbon cycle feedback in an idealized scenario (Arora et al., 2013). 

Furthermore, the model shows weak or almost no response against LUC (green line in Fig. 8d), although the ocean 665 

component in the model actually receives increased nitrogen input from rivers attributable to LUC and agriculture (Fig. 9, 

Table 4). This suggests that the increase of riverine nitrogen input due to LUC and agriculture would not induce 

significant global-scale impact on ocean carbon uptake in the historical period. The model simulates cumulative carbon 

uptake of 163 PgC for 1850–2014, which is within the range of 150 ± 20 PgC (vertical black bar in Fig. 8b) reported by 

Le Quéré et al. (2018). 670 

Overall, MIROC-ES2L qualitatively captures the temporal evolution of carbon dynamics in the historical period; the 

cumulative carbon uptake by both land and ocean is within the range of the estimates by Le Quéré et al. (2018). However, 

the model might overestimate net carbon uptake by the land and/or ocean or underestimate LUC emissions. This is 

because the cumulative fossil fuel emission, diagnosed from the simulated atmosphere–land/ocean CO2 fluxes and 
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prescribed CO2 concentration change (FF = CA + CL + CO; Appendix D), was 447 PgC, i.e., larger than the estimate of 675 

400 ± 20 PgC of Le Quéré et al. (2018). Additionally, this speculation is also supported by the diagnosed CO2 

concentration at the end of the HIST run (Appendix D); the diagnosed concentration is 376 ppmv, which is lower (by 22 

ppmv) than that actually monitored. We note, however, the likely biases in land/ocean carbon uptake, suggested by the 

larger diagnosed emission/lower diagnosed CO2 concentration, could be alleviated partially if the model were driven by 

anthropogenic CO2 emissions. This is because in emission-driven mode, the relatively stronger land/ocean carbon uptake 680 

leads to lower atmospheric CO2 concentration, which could weaken the land and ocean sink through negative CO2–carbon 

feedback. Indeed, in emission-driven mode, the atmospheric CO2 concentration in the historical run (“esm-historical”, 

Jones et al., 2016) is simulated to be 384 ppmv in 2014 (as an average of three ensemble experiments; data not shown but 

available via the Earth System Grid Federation servers), which is closer to the actual level monitored (but still lower by 14 

ppmv). Additionally, in emission-driven mode, land and ocean are mutually interlinked via the atmospheric CO2 685 

concentration; thus, strong bias of CO2 flux in one component can be modulated by the other. This mechanism might 

reduce the bias of CO2 fluxes of land and ocean simultaneously, or it might exacerbate CO2 flux by imposing the flux bias 

of one onto the other. For more detail, simulations and multimodel analyses based on emission-driven configurations are 

necessary, as designed in C4MIP (Jones et al., 2016). 

 690 

 

 

 

Figure 8 
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Land and ocean carbon change (i.e., cumulative net carbon uptake by land and ocean) in historical simulations. Upper 695 

panels present simulation results of historical (HIST, black lines), historical without land-use change (HIST-NOLUC, 

dashed gray), historical without climate change (HIST-BGC, dashed red), and control (CTL, dashed blue) runs. For land 

calculation, carbon amount change in product pools for land use is considered. Vertical bars represent uncertainty ranges 

estimated from Le Quéré et al. (2018). Black bars correspond to HIST (1850–2014) run result, and gray bar represents the 

uncertainty range for natural carbon sink of land, which corresponds to HIST-NOLUC run in this study. In the lower 700 

panels, the HIST run result is shown again (black lines) together with the decomposed response of land/ocean carbon 

driven only by CO2 increase (dashed blue), climate change (dashed red), and LUC (dashed green). Note that the ocean in 

MIROC-ES2L considers carbon removal via sedimentation process onto ocean floor; thus, the model exhibits continuous 

carbon uptake, even in the CTL experiment. 

 705 

Table 3 

Key variables of global land biogeochemistry: preindustrial condition (average of 10 years) and the 2000s in the 

historical run (HIST). 

*1: Net carbon uptake is calculated as the net ecosystem productivity minus the carbon emissions from product pools 

for land use. 710 

*2: BNF by agriculture is also included. 

*3: Net nitrogen uptake is calculated by annual changes in total nitrogen storage. 

 

 Preindustrial 2000s 

Gross primary productivity (PgC yr-1) 108.8 123.8 

Net primary productivity (PgC yr-1) 57.7 67.2 

Heterotrophic respiration (PgC yr-1) 56.7 59.4 

Net carbon uptake*1 (PgC yr-1) 0.2 2.4 

Vegetation carbon (PgC) 537.9 543.3 

Soil organic carbon (PgC) 1481.9 1491.0 

   

Biological fixation*2 (TgN yr-1) 97.1 135.9 

Deposition (TgN yr-1) 19.6  65.5 

Fertilizer (TgN yr-1) 0.0 114.0 

N2 emission (TgN yr-1) 70.1 110.8 
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N2O emission (TgN yr-1) 9.4 13.7 

NH3 emission (TgN yr-1) 1.9 19.5 

N leaching (TgN yr-1) 16.6 33.4 

Net ecosystem nitrogen uptake*3 (TgN yr-1) 3.2 37.0 

Vegetation nitrogen (PgN) 4.0 3.9 

Soil total nitrogen (PgN) 75.0 75.3 
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Table 4 

Key global ocean biogeochemical fluxes and concentrations under preindustrial control simulation and the 2000s. 

 

 Preindustrial 2000s 

Net primary productivity (PgC yr-1) 28.3 28.6 

Sinking particulate organic carbon at 100 m (PgC yr-1) 7.8 7.9 

Nitrogen fixation (TgN yr-1) 129.1 125.9 

Nitrogen deposition (TgN yr-1) 14.2 35.2 

Riverine nitrogen input (TgN yr-1) 17.5 33.9 

Denitrification (TgN yr-1) 142.2 164.5 

N2O emission (TgN yr-1) 4.5 4.4 

Nitrogen flux into the sediment (TgN yr-1) 0.012 0.013 

N cycle imbalance (TgN yr-1) 14.1 26.1 

Atmosphere–ocean CO2 flux (PgC yr-1) -0.15 -2.37 

Carbon flux into sediment (PgC yr-1) 0.068 0.073 

Mean O2 concentration (mmol m-3)  191 189.9 

Hypoxic volume (1015 m3; [O2] < 80 mmol m-3)  34.2 34.3 

Suboxic volume (1015 m3; [O2] < 5 mmol m-3) 2.3 2.7 
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 720 

3.1.3. Global nitrogen budget 

MIROC-ES2L can simulate the global nitrogen cycle under interaction with climate and the carbon cycle, and the 

global N budget of land and ocean in the HIST simulation is shown in Fig. 9 as component fluxes. Comparison of the 

terrestrial nitrogen budget in the 2000s with the preindustrial condition (Table 3) reveals the annual inputs of nitrogen via 

deposition and fertilizer, which are controlled by forcing data, increase to 65.5 and 114 TgN yr-1, respectively. 725 

Additionally, BNF is also increased by 40% (39 TgN yr-1), which is caused by areal expansion of agriculture for N-fixing 

crops (Fig. 9, Supplementary Fig. 8). Previous studies have shown similar levels of increase. For example, Gruber and 

Galloway (2008) reported a value of 35 TgN yr-1, and the absolute magnitude of agricultural BNF in the present-day 

condition was estimated as 50–70 TgN yr-1 by Herridge et al. (2008) and 40 TgN yr-1 by Galloway et al. (2008). 

For terrestrial nitrogen efflux, Gruber and Galloway (2008) reported N2 emission in the unperturbed state was 100 TgN 730 

yr-1, i.e., larger than found in this study (72 TgN yr-1). However, in the present-day condition, they estimated the absolute 

magnitude of N2 emission as 115 TgN yr-1, which is reasonably close to our model result (111 TgN yr-1). MIROC-ES2L 

simulates the historical increase of N2O emission from soil as 4.3 TgN yr-1 from the preindustrial condition to the 2000s, 

which is comparable with the estimate of approximately 4 TgN yr-1 for 1861–2015 derived from a model comparison 

study (Tian et al., 2018). However, the absolute magnitude of terrestrial N2O emission fluxes in preindustrial and present-735 

day conditions are likely overestimated (Table 3; Hashimoto, 2012). 

Although it is difficult to obtain observation-based estimates on how much nitrogen was accumulated by the land 

ecosystem in the historical period, the model demonstrates net nitrogen uptake by land in the 2000s as 37 TgN yr-1 (Table 

3). This positive uptake is likely caused by increased total nitrogen input into the land ecosystem. In addition to the 

increasing N input, the net positive N uptake by land is likely accelerated by the increased nitrogen demand by plants and 740 

soils that have higher C:N ratios under elevated CO2 concentrations. This is because the net increase of land N uptake is 

also found in 1PPY-BGC (Supplementary Table 1), even though the N inputs such as BNF, fertilizer, deposition, and 

climate condition in the 1PPY-BGC simulation are almost unchanged from the CTL run. This suggests that atmospheric 

CO2 increase in HIST has changed the C:N ratios in plants and soil and hence stimulated ecosystem nitrogen demand. The 

model demonstrates nitrogen loss by LUC at a rate of >50 TgN yr-1 (Fig. 9). It is because the harvested biomass in the 745 

model is translocated to product pools, and the nitrogen contained in the biomass is assumed lost with implicit chemical 

form, together with carbon loss as CO2. 

Compared with land, the model simulates relatively stable dynamics of the oceanic nitrogen budget but with larger 

interannual variation (Fig. 9b). In the 2000s, oceanic BNF is simulated as 126 TgN yr-1, which is almost at the same level 

(slightly below) that of the preindustrial state, i.e., 129 TgN yr-1 (Table 4). This number is close to previously reported 750 

estimates of approximately 130 TgN yr-1 (Eugster and Gruber, 2012). The invariant behavior of BNF in the model 

suggests that the historical change in nitrogen input into the ocean is attributable primarily to two external sources: 

deposition and riverine input. Nitrogen deposition into the ocean, which is prescribed in the forcing data, shows an 

increase from 14 TgN yr-1 in the preindustrial condition to 35 TgN yr-1 in the 2000s. Riverine nitrogen input at river mouth 

is shown to increase from 17.5 TgN yr-1 in the preindustrial condition to 33.9 TgN yr-1 in the 2000s (Table 4; this is 755 

discussed further in Sect. 3.1.5 and Sect. 3.2.3). In this study, the gross nitrogen input into the ocean in the present-day 

condition is simulated as 195 TgN yr-1. The value is reasonably close to the estimate of 200 TgN yr-1 by Wang et al. 

(2019) and that of 209 TgN yr-1 by Galloway et al. (2004); however, it is smaller than other published estimates (e.g., 294 
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TgN yr-1; Codispoti et al. (2001) and 270 TgN yr-1; Gruber and Galloway (2008)). Denitrification, the main source of 

ocean nitrogen loss, is simulated as 142 TgN yr-1 for the preindustrial condition and 165 TgN yr-1 for the 2000s. These 760 

values are within the wide range of total denitrification rate estimated by previous studies, i.e., 145–450 TgN yr-1 (Eugster 

and Gruber, 2012). It should be noted that the present model used in this study does not include sedimentary 

denitrification. Thus, the expected N flux by sedimentary denitrification is imposed on water-column denitrification, and 

the rate of water-column denitrification is likely overestimated. Overall, the model exhibits oceanic N imbalance of 26.1 

TgN yr-1 in the present-day condition (Fig. 9, Table 4). 765 

 

 

 

Figure 9 

Rate of change of global nitrogen budget in (a) land and (b) ocean in the HIST simulation. Solid lines represent the 770 

nitrogen input into the land/ocean and dashed lines represent its fate. Positive (negative) values mean flux into (out of) the 

land/ocean. In panel (a), BNF (black line) considers both natural and agricultural fluxes. LUC (dashed orange line) is an 

emission derived from the decay of biomass in the LUC-product pools. Other gases (yellow line) represent the sum of 

NH3 emission and flux from abiotic sources. For the ocean, denitrification (purple line) includes both N2 and N2O 

emissions. The rate of nitrogen loss by the sedimentation process onto the ocean floor is not shown in the figure because 775 

of the small size of the flux (<0.015 TgN yr-1). All nitrogen gas emissions are diagnosed and thus have no effect on the 

radiative balance in the atmosphere or on air quality change. 

 

 

3.1.4. Land biogeochemistry 780 

Model performance in relation to land biogeochemistry is evaluated based on the spatial distributions of three 

fundamental variables of the land carbon cycle in comparison with observation-based products. First, GPP in the HIST 

simulation is compared with the global product by Jung et al. (2011) (Fig. 10a–c). The model simulates high productivity 

(>2000 gC m-2) in the tropical forests of central Africa, Southeast Asia, and Southern America, although the productivity 

in these regions is generally still underestimated in comparison with the observation-based product. This underestimation 785 

is likely attributable to the use of the parameter values of photosynthetic capacities (KPSAT1 and KPSAT2 in Appendix A) 

from Kattge et al. (2009). This is because Kattge et al. (2009) also showed such substantial depression of photosynthetic 
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capacity in the tropics. The model captures well the moderate productivity of vegetation in savanna regions such as the 

eastern side of South America and the marginal region surrounding central Africa. Moderate GPP is also found in the 

Northern Hemisphere in the region 20°–45°N, where a large proportion of land cover is dominated by both natural and 790 

agricultural vegetation (Supplementary Fig. 2). The GPP gradient from moderate to lower GPP in boreal to tundra regions 

of Eurasia and North America is captured well by the model. The model estimates global GPP at 124 PgC yr-1 in the 2000s 

(Table 3), which is within the range of 106–140 PgC yr-1 produced by the CMIP5 ESMs and is reasonably close to the 

value of 119 PgC yr-1 derived from an observation product (1986–2005 average; Jung et al., 2011). The simulated GPP 

seasonality is also compared with that of Jung et al. (2011) (Supplementary Fig. 9). It reveals a reasonable summertime 795 

peak and the seasonality of GPP in the extratropical Northern/Southern Hemisphere, where vegetation phenology is 

controlled primarily by air temperature. However, the region around 40°N displays a longer growing season than that of 

Jung et al. (2011), and the tropics (20°S–20°N) show less seasonality, suggesting room for improvement of the phenology-

related processes and surface climate fields in the corresponding region/biome types. 

To evaluate the simulated vegetation carbon, we compare the model results of forest carbon, not total vegetation carbon, 800 

with those of Kindermann et al. (2008) (Fig. 10d–f). The model reproduces the reasonably high density of biomass in 

tropical forests, although the values are smaller than the observation product (Fig. 10f). This is attributable partly to the 

underestimation of GPP in this region, as described above. In high-latitude regions of the Northern Hemisphere (around 

50°N), the model overestimates biomass density, particularly in terms of the evergreen coniferous forests that extend 

across western Siberia and North America. GPP in these regions is captured reasonably well by the model (Fig. 10a and 805 

10b), and thus the overestimation of boreal forest biomass is likely due to the underestimated turnover rate of forest 

carbon. Slight overestimation of biomass is also found in the region where intensive cultivation has occurred, i.e., Europe, 

Southeast–East Asia, and eastern America. The model estimates global vegetation carbon content including all types of 

vegetation at 543 PgC (Table 3). 

In Fig. 10g–i, the model results of soil organic carbon (SOC) are compared with two different types of SOC products: 810 

harmonized soil property values for broadscale modeling (WISE30sec) by Batjes (2016) and the Northern Circumpolar 

Soil Carbon Database version 2 (NCSCDv2) by Hugelius et al. (2013). The former is a global dataset that represents soil 

column SOC down to the depth of 2 m, whereas the latter targets only the high-latitudinal region of the Northern 

Hemisphere at different soil depths (~1, ~2, and ~3 m). Comparison with WISE30sec confirms that the model successfully 

captures the spatial distribution of lower carbon accumulation in arid and tropical regions and higher SOC in boreal 815 

regions in the Northern Hemisphere. However, the simulated zonal mean SOC in the boreal regions is about half that of 

WISE30sec (Fig. 10i). This is likely attributable to different treatment of frozen carbon in deeper soils in permafrost 

regions, i.e., WISE30sec covers the total SOC down to 2 m depth including frozen carbon, while the model does not 

consider the frozen carbon and instead simulates only upper SOC as litter form and lower SOC as humus. The model 

result in the boreal region is comparable with the NCSCDv2 estimation for 1 m depth. We note, as mentioned by Todd-820 

Brown et al. (2012), large uncertainty remains in the estimation of SOC amount, especially in boreal regions. Globally, 

SOC is simulated as 1491 PgC (Table 3) in this study, which is smaller than the value of 2060 ± 215 PgC of WISE30sec 

(Batjes, 2016) but comparable with the range of 890–1660 PgC, as estimated by Todd-Brown et al. (2012) based on the 

Harmonized World Soil Database v1.2 (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012). 

 825 
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Figure 10 

Comparison of carbon flux and storage of the land ecosystem between the HIST simulation by MIROC-ES2L and an 830 

observation-based dataset. Upper panels show comparison of GPP (gC m-2 yr-1) averaged over 1982–2011: (a) model 

result, (b) FluxNet-MTE of Jung et al. (2011), and (c) zonally averaged distributions. Middle rows show vegetation carbon 

(gC m-2): (d) model result of forest carbon (obtained by masking the total vegetation carbon where forest coverage is <5%), 

(e) forest carbon estimated by Kindermann et al. (2008), and (f) zonally averaged distributions, where solid black and red 

lines represent forest carbon, and the dashed thin line is the total vegetation carbon simulated by the model. Lower panels 835 

show SOC (gC m-2): (g) model result, (h) observation-based product of harmonized soil property values for broadscale 

modeling (WISE30sec) by Batjes (2016), and (i) zonally averaged distributions, in which the model result and WISE30sec 

are shown by black and red lines, respectively. Blue, green, and light blue lines in panel (h) are NCSCDv2 by Hugelius et 

al. (2013), which is an independent estimate of SOC in the high-latitude region of the Northern Hemisphere at different 

soil depths (blue: 0–1 m, green: 0–2 m, and light blue: 0–3m). 840 

 

3.1.5. Ocean biogeochemistry 

In this section, we evaluate the simulated surface and vertical distributions of nitrate, phosphate, dissolved Fe, NPP, 

oxygen, DIC, and alkalinity against observations (Fig. 11). Additionally, ocean CO2 flux is also compared with 

observation-based estimation (Fig. 12). The observations comprise the World Ocean Atlas 2013 (WOA2013; Garcia et al., 845 

2014a, 2014b) for macronutrients and oxygen, GEOTRACES dataset (updated to its 2015 version; Tagliabue et al., 2012) 

for dissolved iron, Global Ocean Data Analysis Project version 2 (GLODAPv2; Lauvset et al., 2016) for DIC and 

alkalinity, and SeaWiFS (Behrenfeld and Falkowski, 1997) satellite observations for NPP. 
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Owing to the long spin-up, the drift in global averaged concentrations of biogeochemical tracers becomes close to zero. 

The linear drift of dissolved oxygen, NO3, and Alk-DIC over the final 250 years of the spin-up is less than 3% kyr-1 850 

(Supplementary Table 3). This small bias is significant in providing results on ocean biogeochemistry and carbon cycle 

feedbacks that are quantitatively more correct (Séférian et al., 2016). 

The simulated surface distributions of nitrate and phosphate are generally in agreement with the WOA2013 datasets 

(Fig. 11a and 11b). The surface macronutrient concentrations in HNLC regions (e.g., the Southern Ocean, North Pacific 

Ocean, and eastern equatorial Pacific Ocean) are higher than produced by the ocean biogeochemical component of our 855 

previous model (Watanabe et al., 2011) and they are more consistent with the observed values. This increase of 

macronutrients in HNLC regions is reasonable because the implementation of the iron cycle and the iron limitation on 

phytoplankton growth can reduce macronutrient utilization in these regions. Ocean circulation also influences the 

distribution of nutrient concentrations. In the Southern Ocean, the deep mixed-layer depths simulated by the model can 

cause overestimation of nutrient entrainment to the surface and thus produce high nutrient bias (Fig. 7). The simulated 860 

global mean vertical profile of nitrate concentrations compare reasonably well with observed values likely because the 

ocean circulation is represented adequately (Fig. 11a). To check the influence of ocean circulation on the tracer 

distributions, we compared the apparent oxygen utilization (AOU) between the model and observations (Supplementary 

Fig. 10). Although the model captures the observed AOU distributions, the strong and deep AMOC causes 

underestimation of AOU values in the Atlantic Ocean deep water. The largest bias is underestimation in the North Pacific 865 

Ocean, which is caused by the strong deep circulation of the Pacific Ocean. It should be noted that the difficulty of 

simulating the Pacific Ocean deep circulation appears to be a general problem in present coarse-resolution models 

(Hasumi et al., 2010). Model–data agreement of vertical nitrate concentrations is also the result of the near balance 

between nitrogen cycle sources (i.e., nitrogen fixation, atmospheric nitrogen deposition, and riverine nitrogen input) and 

sinks (i.e., denitrification, N2O emission, and sedimentary loss) over the long spin-up period. 870 

The concentration of dissolved iron in the open ocean is highest in the subtropical North Atlantic Ocean and in the 

Arabian Sea (Fig. 11c), which is consistent with the pattern observed in GEOTRACES. Such high concentrations are 

caused by enhanced dust deposition from the Sahara Desert. In the remainder of the open ocean, dissolved iron 

concentrations are generally <0.2 µmol m-3, especially in HNLC regions. The model captures well the main observed 

patterns in the surface ocean. The very high iron concentrations (>1 µmol m-3) both observed and simulated along coasts 875 

and over continental margins are the result of iron input from sediment. The average simulated dissolved Fe concentration 

in the surface ocean (0–100 m) is 0.39 µmol m-3, which is lower than observed (0.52 µmol m-3) but within the range of the 

iron model intercomparison project (FeMIP; Tagliabue et al., 2016). One factor not accounted for in our model is the 

variation in the solubility of iron in aerosols, which depends not only on the source chemical composition but also on 

atmospheric processing during transport (Ito et al., 2019). Consideration of different degrees of atmospheric Fe processing 880 

could reduce the overestimations of dissolved Fe concentration in the North Atlantic Ocean and North Pacific Ocean (Ito 

et al., accepted). Our model also neglects variations in sedimentary iron flux. Observations found iron release or burial in 

sediment is dependent on the oxygen concentration of bottom water (Noffke et al., 2012), ambient temperature (Sanz-

Lázaro et al., 2011), and amount of OM that reaches the sea floor and is remineralized therein (Elrod et al., 2004). To 

simulate more realistic iron distributions, these processes should be considered in future studies. 885 

Reproducing the spatial pattern of nutrient limitation on phytoplankton growth is crucial for accurate prediction of 

primary production and for reflecting in the simulations the consequences of ongoing anthropogenic perturbations to 

oceanic nutrient cycles (Moore et al., 2013). The model reasonably reproduces the HNLC regions because of the iron 
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limitation in the subarctic North Pacific Ocean, the equatorial Pacific Ocean, and the Southern Ocean (Supplementary Fig. 

11), although the subarctic North Pacific Ocean and the equatorial Pacific Ocean have larger HNLC zones than observed 890 

upwelling regions. This is likely because of underestimation of surface iron concentrations and/or a relatively high half-

saturation constant for iron uptake (Appendix B). Nitrogen limitation occurs throughout much of the low-latitude surface 

ocean where nitrogen supply from the subsurface is relatively slow. 

Based on the distribution pattern of nutrients and the limitations, annual NPP is simulated as 28.6 PgC yr-1 (Table 4). 

This value is lower than a satellite-based estimate of 35–78 PgC yr-1 (Carr et al., 2006) and it is also lower than the range 895 

of 30.9–78.7 PgC yr-1 derived from the CMIP5 models (Bopp et al., 2013). This is likely attributable to the high half-

saturation constant for iron uptake, as mentioned above. Although intense primary productivity in coastal regions is not 

resolved by the coarse grid, the modeled NPP agrees with the basin-scale patterns of observation-based NPP. The values 

of both modeled and observed NPP are high in regions of equatorial upwelling, the North Atlantic Ocean, and the 

Southern Ocean north of the polar front, whereas they are low in subtropical gyres (Fig. 11g). Global export production is 900 

estimated as 7.9 PgC yr-1, which is the upper bound of the CMIP5 models (4.9–7.9 PgC yr-1; Bopp et al., 2013). 

Simulated surface distribution of dissolved oxygen compares reasonably well with observations (not shown). This is 

because the surface oxygen concentration is close to its solubility value and it is strongly constrained by SST. At depth, 

oxygen minimum zones in the eastern equatorial Pacific Ocean, eastern tropical Atlantic Ocean, Arabian Sea, and Bay of 

Bengal are reproduced well (Fig. 11f). However, the model produces oxygen concentration values higher than observed; 905 

thus, it underestimates the hypoxic volume ([O2] < 80 mmol m-3) by a factor of three in comparison with data-based 

estimates (Bianchi et al., 2012). Note that existing global ocean biogeochemical models have difficulty in reproducing 

oxygen minimum zones owing to their coarse resolution and simple globally tuned parameterizations of vertical fluxes of 

OM (Cocco et al., 2013; Bopp et al., 2013). The positive bias in oxygen might be driven by wintertime mixing in the 

Southern Ocean and the North Pacific Ocean that is too intense (Fig. 7), which transports too much oxygen from the 910 

surface to depth. 

The model also captures the global-scale patterns of observed DIC and alkalinity (Fig. 11d and 11e). High values of 

these tracers in subtropical gyres (and in the Southern Ocean for DIC) are found in the model output and observations. 

Salinity bias as well as parameterization of calcium carbonate production in the model can contribute to the alkalinity bias. 

Overestimation of alkalinity in subtropical gyres leads to overestimation of DIC because alkalinity affects the ocean’s 915 

capacity to take up and store atmospheric CO2. 

Figure 12a shows the simulated annual mean air–sea CO2 fluxes for the period 1985–2014 with observational estimates 

by Landschützer et al. (2014). Generally, the simulated spatial pattern is consistent with the data-derived estimates. The 

strongest carbon source to the atmosphere is found in the equatorial Pacific Ocean and the most intense carbon sink is 

found in the North Atlantic Ocean. Model outgassing is weaker than the observational estimate in the North Pacific and 920 

equatorial Indian oceans. The model–data discrepancies are pronounced in the seasonal cycle of air–sea CO2 fluxes in the 

Southern Ocean and the North Atlantic Ocean (Fig. 12b and 12c). In the Southern Ocean, the model simulates an opposite 

CO2 flux seasonal phase, which could be driven by the bias in SST variability (Kessler and Tjiputra, 2016). In the North 

Atlantic Ocean, although the simulated seasonal phasing of CO2 fluxes agrees with the observational estimate, the 

amplitude is overestimated. The processes driving the seasonal cycle should be investigated in future studies because 925 

simulating a proper regional seasonal cycle of air–sea CO2 fluxes is important for future projection (Kessler and Tjiputra, 

2016; Goris et al., 2018). 
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Figure 11 930 

Comparison between model output and observations for key oceanic biogeochemical tracers. Simulated annual mean 

surface (a) nitrate, (b) phosphate, (c) DIC, (d) alkalinity, (e) dissolved oxygen at 500 m depth, and (f) surface NPP for the 

2000s are compared with observations from the WOA2013 (Garcia et al., 2014a, 2014b) and GLODAPv2 datasets 

(Lauvset et al., 2016), as well as SeaWiFS (Behrenfeld and Falkowski, 1997) satellite observations. Left and central 

panels show horizontal distributions of model output and observations. Right panels show vertical distributions of model 935 

output (red lines) and observations (black lines). 
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Figure 12 

(a) Annual mean air–sea CO2 fluxes from (left column) the model and (right column) observational estimates adopted 940 

from Landschützer et al. (2014). Seasonal cycle of air–sea CO2 fluxes for (b) the Southern Ocean and (c) the North 

Atlantic Ocean. Red lines represent the model for the period 1985–2014 and black lines represent the observation-based 

estimates of Landschützer et al. (2014). Southern Ocean: 45–70°S and North Atlantic Ocean: 30°–70°N. 
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3.2.Sensitivity analysis 

3.2.1. Sensitivity of land biogeochemistry 

To evaluate the sensitivities of modeled land biogeochemistry, we focus on GPP and its response to external forcing in 

the terrestrial system because this carbon flux is the primary driver of land carbon input. GPP change was calculated by 

taking the difference of the 2005–2014 averages between the HIST and CTL runs. Then, as diagnosed in Fig. 8c, the GPP 950 

change was decomposed into the response to (1) CO2 increase, (2) climate change, and (3) LUC and agricultural change 

(Fig. 13) based on the simulation results of HIST, HIST-NOLUC, and HIST-BGC (Tables 1 and 2). Additionally, the GPP 

changes were further decomposed into the contributions from non-crop (i.e., contribution of primary/secondary vegetation, 

urban, and pasture) and crop tiles by weighting the GPP of each tile by their areal fractions on a grid. 

Fig. 13d–f shows that CO2 increase in the historical period is the main driver of change in the land carbon cycle and 955 

that the CO2 fertilization effect prevails over most land areas except desert regions. Conversely, GPP response to climate 

change shows both positive and negative signs (Fig. 13g–i) with relatively smaller magnitudes. Mid–high-latitude regions 

of the Northern Hemisphere show positive change in GPP that is likely attributable to lengthening of the vegetation 

growth season, enhanced plant growth following accelerated soil mineralization due to warming, and other mechanisms 

(e.g., soil water increase via precipitation and permafrost melting). In semiarid regions (i.e., Africa, South Asia, Northern 960 
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Australia, and the eastern side of South America), GPP shows slight reduction. As these regions have less precipitation in 

comparison with the tropics, the reduction in GPP is likely associated with precipitation change. 

In addition to the responses to CO2 increase and climate change, the model demonstrates spatial variation in the 

response of GPP to LUC (Fig. 13j). Historical LUC reduces the non-crop GPP contribution (Fig. 13k), while the crop 

contribution is enhanced (Fig. 13l). In the tropics, LUC reduces the non-crop GPP but weakly increases crop GPP, which 965 

results in net negative reduction of GPP as grid averages (Fig. 13j). Meanwhile, regions with intensive agriculture with 

nitrogen fertilizer input (e.g., Western Europe, East Asia, and parts of North America) show net positive change of GPP as 

grid averages, where increases in the crop contribution overcome reductions in the non-crop contribution (Fig. 13k and 

12l). In the model, the crop contribution to GPP can be intensified by the following: 1) increasing the areal fraction of the 

crop tile following LUC forcing; 2) changing the vegetation type from natural vegetation to crop, whereby the latter has 970 

higher photosynthetic capacity than natural plant functional types (given as parameters that relate photosynthetic capacity 

with leaf nitrogen concentration, Appendix A); 3) applying nitrogen fertilizer to crop tiles; and 4) increasing nitrogen 

input via nitrogen-fixing crops, which is considered in the model as a subcategory of crop tiles. Indeed, the total area of 

cropland increases in the 20th century in the HIST simulation (Supplementary Fig. 2), which is reflected by the model 

producing an increase of nitrogen input via fertilizer application and biological fixation on the global scale (Fig. 9a). 975 

By responding to CO2 increase, climate change, and LUC, most land areas show increased GPP in the historical period 

(Fig. 13a) and regions with intensive agriculture show greater increase in GPP than induced solely by the CO2 fertilization 

effect (Fig. 13a and 13d). This suggests modeled GPP is sensitive to land use and agricultural management forcing in 

addition to the increase of CO2, and that this might be one of the reasons for the slowing of LUC-induced land carbon 

reduction in the latter half of the 20th century in the HIST simulation (green line in Fig. 8c). 980 
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Figure 13 

(Upper row) Changes in GPP (gC m-2 yr-1) in HIST derived by taking the difference of the 2005–2014 averages of GPP 

between HIST and CTL. (Second row) GPP response to CO2 increase diagnosed from simulation results of HIST, HIST-985 

NOLUC, and HIST-BGC. (Third row) GPP response to climate change diagnosed by taking the difference between the 

simulation results of HIST and HIST-BGC. (Lower row) GPP response to LUC obtained by taking the difference between 

HIST and HIST-NOLUC. GPP changes in each left-hand panel are further decomposed into contributions from (middle 

panels) non-crop tiles (primary vegetation, secondary vegetation, urban, and pasture) and (right-hand panels) crop tiles. 

 990 

3.2.2. Sensitivity of ocean biogeochemistry 

In this section, we investigate the sensitivity of oceanic NPP to external nutrient inputs from atmospheric deposition 

and river discharge processes under preindustrial conditions because these processes are newly incorporated into the ESM. 

Through combination of the simulation results of CTL-D, NO-NR, NO-NRD, and NO-FD (Tables 1 and 2), the impacts of 
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nutrient input on both nutrient concentration and primary productivity are analyzed (Fig. 14 for N input assessment and 995 

Fig. 15 for Fe), and the spatial patterns of simulated nutrient limitation on NPP in the four experiments are examined (Fig. 

16). Here, NO3, Fe, and PO4 limitation is diagnosed using the equations NO3/(kN + NO3), Fe/(kFe + Fe), and PO4/(kP + 

PO4), respectively, as simulated in MIROC-ES2L (Equation (B17)); Fig. 16 presents the strength of each limitation 

visualized by the intensity of each of the three primary colors (red, blue, and green). In the simulations, because changes 

in NPP and surface nutrient concentrations continued to change over several decades following the abrupt switching-off 1000 

manipulation, the average over the final 10 years is used for the following analysis. The rapid response of NPP to changes 

in nutrient input is consistent with that found in previous research (Somes et al., 2016). 

First, the impacts of riverine N input on the surface nutrient concentration and NPP are assessed by subtracting the 

zero-input scenario NO-NR from the control experiment CTL-D (Tables 1 and 2). Surface NPP is increased by riverine N 

input (by >10 gC m-3 yr-1) in coastal areas such as the North Brazil Shelf and Gulf of Mexico (Fig. 14a). In comparison 1005 

with the pattern of distribution of nutrient limitation (Fig. 16a and 16b), it is clear that strong NPP increase in the open 

ocean occurs mainly in the Atlantic Ocean, which is under an N-limited condition. Conversely, NPP decreases in Fe-

limited regions because the NPP increase in N-limited regions consumes surface dissolved Fe. Surface NO3 concentrations 

increase only slightly in N-limited regions because NO3 is immediately consumed locally by phytoplankton. Remarkable 

increase in surface NO3 concentrations is found in Fe-limited regions such as the Kara Sea, North Atlantic Ocean, Hudson 1010 

Bay, and Subantarctic Ocean. Global NPP increases by 0.7 PgC yr-1 (by 2.5% in comparison with NO-NR). This value is 

comparable with the finding of da Cunha et al. (2007), who estimated a 5% increase in primary production due to riverine 

nutrient input. Note that nutrient retention in estuarine areas is not considered in our model. Thus, most nitrogen supplied 

from river mouths can easily be conveyed to the open ocean. Given that a recent modeling study estimated that 

approximately 75% of riverine nitrogen globally escapes from shelf areas to the open ocean (Sharples et al., 2016), our 1015 

results on the impact of riverine N on NPP should be viewed as an upper limit for the estimation. 

Second, the effects of atmospheric N deposition on surface nutrient concentration and NPP are evaluated by subtracting 

the zero-input scenario NO-NRD from the NO-NR experiment (Tables 1 and 2). Similar to riverine N input, atmospheric 

N deposition causes an increase of NPP in N-limited regions and a global increase in NO3 (Figs. 14b, 16a, and 16c). 

According to deposition flux, significant changes in NPP are found in coastal areas and low-latitude regions of the Pacific 1020 

Ocean. Global NPP increases by 0.3 PgC yr-1 (by 1% in comparison with NO-NR), which is consistent with previous 

estimates (Duce et al., 2008; Moore et al., 2013). 
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 1025 

Figure 14 

Changes in (left) surface nitrate, (center) dissolved iron, and (right) NPP driven by nitrogen input from (a) rivers (CTL-

D - NO-NR) and (b) atmospheric deposition (NO-NR - NO-NRD). 

 

Finally, changes in surface nutrient concentration and NPP, driven by atmospheric Fe deposition, are calculated by 1030 

subtracting the zero-input scenario NO-FD from the control experiment CTL-D (Tables 1 and 2). In contrast to N input, 

atmospheric Fe deposition causes an increase of NPP in Fe-limited regions and a decrease in N-limited regions (Figs. 15, 

16a, and 16d). Significant Fe increase is found in N-limited regions. Global NPP and export production increase by 1.8 

and 0.8 PgC yr-1, respectively (by 6.7% and 11%, respectively, in comparison with NO-FD). These percentage increases 

are consistent with previous estimations by Moore et al. (2013). However, the sensitivity of export production to Fe 1035 

deposition from dust is higher than reported by Tagliabue et al. (2014), who estimated export production increases by 

0.06–0.11 PgC yr-1. Therefore, it seems difficult to obtain robust sensitivity both of iron and of the biological cycle to iron 

input because of the high uncertainty regarding the iron cycle among models. Although nitrogen input from both 

deposition and rivers has little effect on the spatial patterns of distribution of nutrient limitation (Fig. 16a–c), iron input 

from the atmosphere changes the pattern in low-latitude regions from iron limitation to nitrogen limitation (Fig. 16a and 1040 

16d). 

 

 

 

Figure 15 1045 
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Changes in (left) surface dissolved iron, (center) nitrate, and (right) NPP driven by dissolved iron input from dust 

(CTL-D - NO-FD). 

 

 

 1050 

 

Figure 16 

Limiting nutrient map for phytoplankton for (a) CTL-D, (b) NO-NR, (c) NO-NRD, and (d) NO-FD. Shading indicates 

limiting nutrient(s), e.g., red: N limitation, blue: Fe limitation, green: P limitation, magenta: N and Fe limitation, cyan: Fe 

and P limitation, and yellow: P and N limitation (see bottom color triangle). Circles in (a) represent observed limiting 1055 

nutrients from nutrient addition experiments (Moore et al., 2013). 
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Here, we examine model sensitivity against global inputs of both N and Fe into the ocean through atmospheric 

deposition and river discharge in the preindustrial condition. We note, however, these two types of nutrient input have 

increased significantly since the preindustrial era because of human activities (Duce et al., 2008; Seitzinger et al., 2010; 1060 

Krishnamurthy et al., 2010). Additionally, ongoing nutrient input increase can lead to future increase in biological 

production, which might partly negate the production decrease driven by global warming. Conversely, the resultant 

increase in export of OM would accelerate CO2-induced ocean acidification and warming-induced deoxygenation in 

subsurface waters, which leads to major environmental pressures. Thus, the combined effects of global warming and 

anthropogenic nutrient input on ocean biogeochemical cycles should be explored in the future. 1065 

 

3.2.3. Sensitivity of riverine nitrogen 

The coupling of land and ocean ecosystems via riverine nitrogen is one of the new features of MIROC-ES2L, and the 

potential impact of the process on ocean biogeochemistry has already been examined and discussed in Sect. 3.2.2. Here, 

we examine the response of river nitrogen loading itself against anthropogenic forcing by comparing the results of the 1070 

CTL, HIST-NOLUC, and HIST simulations. 

As mentioned in Sect. 3.1.3, the global flux of riverine nitrogen input into the ocean is simulated at 17.5 TgN yr-1 in the 

CTL experiment (Table 4), and the flux is almost doubled in the 2000s at 33.9 TgN yr-1 in the HIST run. This number is 

larger than previous estimates of 19–25 TgN yr-1 for the present-day condition (Smith et al., 2003; Mayorga et al., 2010; 

Dumont et al., 2005). This overestimation might be caused by the inability of the model to simulate all forms of nitrogen 1075 

in rivers. For example, the model simulates only dissolved inorganic nitrogen (DIN) flux; thus, the expected nitrogen flux 

with non-DIN forms (e.g., dissolved organic and particulate matter) might be partly imposed on the DIN flux in the 

simulations. Indeed, global total nitrogen flux, including DIN, dissolved organic nitrogen, and particulate nitrogen is 

estimated at 37–66 TgN yr-1 (Beusen et al., 2016; Mayorga et al., 2010; Boyer et al., 2006; Seitzinger et al., 2005), which 

is closer to the result of MIROC-ES2L. 1080 

Another possible reason for the above overestimation is precipitation bias, which results in overestimation of BNF on 

land. As mentioned in Sect. 3.1.1, the model has positive precipitation bias on land in arid/desert regions (Supplementary 

Fig. 6). As the scheme for natural BNF flux employed in MIROC-ES2L is modeled to be controlled by the actual 

evapotranspiration rate (Cleveland et al., 1999), the precipitation bias in arid regions could easily lead to overestimation of 

the BNF flux and increase of riverine nitrogen loading. This is also evident when decomposing the global riverine flux 1085 

into river basins and comparing the findings with a previous study by Dumont et al. (2005) (Fig. 17). MIROC-ES2L 

overestimates the DIN fluxes of large rivers such as the Amazon, Mississippi, and Yangtze rivers, even in the CTL 

experiment, in which all anthropogenic forcings are fixed at preindustrial levels. This suggests the necessity of 

improvement of the baseline flux of riverine nitrogen in the model. For more in-depth discussion, it will be necessary to 

simulate explicitly the organic and particulate nitrogen fluxes in rivers, and it might be necessary to simulate the explicit 1090 

sedimentary and chemical-reaction processes in freshwater and coastal zone systems. 

In Fig. 17, the difference between the results of CTL and HIST-NOLUC mainly reflect the change induced by nitrogen 

deposition (and historical climate change) (Table 2), and the model demonstrates that deposition has increased N fluxes in 

many rivers. Additionally, the difference between HIST-NOLUC and HIST demonstrates the impact of LUC and 

agricultural management change (Table 2), and regions that have intensive agriculture within their watersheds (e.g., the 1095 
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basins of the Mississippi, Indus, Yellow, and Yangtze rivers) are simulated as strongly affected by the forcing change. The 

DIN discharge in each river is not always smaller in HIST-NOLUC than in HIST. This is because LAI in HIST-NOLUC 

is different to that in HIST, which sometimes is accompanied by slight change in the surface climate via biophysical 

feedback. If soil temperature is slightly warmer in HIST-NOLUC than in HIST, the soil mineralization rate in HIST-

NOLUC should be accelerated and thus the DIN loadings of rivers could be increased. This simulated trend in the 1100 

historical period is qualitatively consistent with previous studies (Gruber and Galloway, 2008). Furthermore, the model 

simulates the global riverine flux to be increased by 16.4 TgN yr-1 in the historical period. This value is quantitatively 

consistent with previous estimates, e.g., 16 TgN yr-1 by Dumont et al. (2005) for DIN flux, and 18 and 19 TgN yr-1 by 

Beusen et al. (2016) and by Green et al. (2004), respectively, for total N flux. Although bias exists in the magnitude of 

riverine nitrogen flux both globally and locally, we confirm the model can qualitatively capture the changes in riverine 1105 

nitrogen flux during the historical period. 

 

 

 

Figure 17 1110 

Simulated and observed DIN load per river basin: sorted by simulated (a) first 10 largest rivers and (b) second 10 

largest rivers. Vertical gray bars represent observations (Dumont et al., 2005); blue, green, and yellow bars correspond to 

the results of the HIST, HIST-NOLUC, and CTL experiments, respectively. 

 

3.2.4. TCR, AF, and TCRE 1115 

Here, the model sensitivity of the global climate–carbon cycle against CO2 increase is analyzed by calculating TCR, AF, 

and TCRE from the results of the 1PPY, 1PPY-BGC, and 1PPY-RAD experiments (see Sect. 2.2.2 for the method). These 
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quantities summarize the total performance of the climate, carbon cycle, and coupled climate–carbon cycle system in the 

models, which enables us to compare them with existing ESMs. 

The TCR, AF, and TCRE derived from the 1PPY simulation are displayed in Table 5���! �������	��1120 


�. The TCR of MIROC-ES2L is 1.5 K, which is lower than the multimodel mean of the CMIP5 ESMs but within the 

range of spread (1.8 ± 0.5 K; Gillet et al., 2013). Compared with our previous ESM (i.e., MIROC-ESM; Watanabe et al., 

2011), the TCR has decreased by 32% because of the replacement of the physical core of the ESM from the MIROC3-

based model to that of MIROC5 (Watanabe et al., 2010). The value of AF, which is a quantity that characterizes the 

carbon cycle response in an ESM but is dependent on TCR, was simulated at 0.61 in MIROC-ESM. This value is reduced 1125 

to 0.52 in MIROC-ES2L, i.e., the new model has a stronger carbon sink than the previous version. The value of AF in the 

new model is of similar magnitude to the CMIP5 model average (0.53 ± 0.06; Gillet et al., 2013). The lowered TCR and 

the moderate AF cause the new model to have moderate TCRE (1.3 K EgC-1), which is smaller than that of the CMIP5 

model average (1.6 ± 0.5 K EgC-1) by 19%. Using TCRE, we can approximate the value of CE until the global 

temperature exceeds a specific mitigation target; CE for the 2°C warming target should be approximately 1540 PgC for 1130 

MIROC-ES2L, 910 PgC for MIROC-ESM, and 950–1820 PgC for the CMIP5 models. 

 

 

Table 5 

Comparison of TCR, AF, and TCRE between MIROC-ES2L, MIROC-ESM, MIROC5.2, and CMIP5 ESMs in the 1135 

1PPY simulation. For MIROC-ES2L, both TCR and AF are calculated based on 20-year means of T2, CL, and CO 

centered on the 70th year of the 1PPY simulation (i.e., the time when the CO2 concentration is doubled from the 

preindustrial condition), and TCRE is calculated based on TCR and AF. Numbers for the CMIP5-ESMs were obtained 

from Gillett et al. (2013) and are presented as the multimodel mean ± 1σ. 

 1140 

 TCR (K) AF (–) TCRE (K EgC-1) 

MIROC-ES2L  

(This study) 
1.5 0.52 1.3 

MIROC-ESM  

(Watanabe et al., 2011; Gillett et al., 2013) 
2.2 0.61 2.2 

MIROC5.2  

(Tatebe et al., 2018) 

1.6 – – 

CMIP5  

(Gillett et al., 2013) 
1.8 ± 0.5 0.53 ± 0.06 1.6 ± 0.5 
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To further explore why AF is lowered in MIROC-ES2L, the strengths of the carbon cycle feedbacks were analyzed 

using the 1PPY-BGC and 1PPY-RAD simulation results (Table 6), and the findings were compared with the CMIP5 

ESMs (Arora et al., 2013). The strength of CO2–carbon feedback (β) of land is simulated to be 0.52 PgC PgC-1, which is 1145 

slightly higher than the CMIP5 model average (0.43 ± 0.21 PgC PgC-1) and larger than that of MIROC-ESM by 48%. The 

strength of oceanic CO2–carbon feedback in the CMIP5 ESMs displays less spread among the models (0.38 ± 0.03 PgC 

PgC-1) and the result of MIROC-ES2L is within this spread (0.35 PgC PgC-1). The absolute magnitude of the climate–

carbon feedback (γ) for land and ocean in MIROC-ES2L is -71 and -4.5 PgC K-1, respectively, both of which are less 

negative than the result of MIROC-ESM by 20% for land and 63% for ocean. Consequently, the land γ in MIROC-ES2L 1150 

is within the range of the CMIP5 ESMs (-58 ± 29 PgC K-1), while the ocean γ is slightly larger than the upper range of the 

CMIP5 ESMs (-7.8 ± 2.9 PgC K-1). 

As the quantities β and γ have different units, it is difficult to conclude which feedback process contributes most to the 

AF change. To compare them with the same unit, we used the quantity “u” proposed by Gregory et al. (2009). This 

quantity, which is defined as uβ = β and uγ = γ × T/CA, has the unit PgC PgC-1, and it can relate the carbon cycle feedback 1155 

parameters to AF, as AF = 1/(1 + uβL + uβO + uγL + uγO) (see Appendix E for the derivation). When comparing the u 

quantities of MIROC-ES2L with the CMIP5 models (Fig. 18), it is evident that the ocean component of MIROC-ES2L is 

less sensitive than the previous model for both CO2–carbon and climate–carbon feedbacks. These two changes almost 

counteract each other; thus, the ocean component does not explain the reduced AF in the new model (Table 5). For land, 

the climate–carbon feedback (uγ) in MIROC-ES2L is intermediate, while MIROC-ESM was one of the most sensitive 1160 

models of the CMIP5 ESMs. Additionally, the magnitude of the land CO2–carbon feedback (uβ) is increased from 

MIROC-ESM to MIROC-ES2L by 48% (uβ = β). Therefore, the land component is the main cause for the lower AF, 

making the magnitude of both the CO2–carbon and the climate–carbon feedbacks more positive and less negative, 

respectively, i.e., strengthening the land carbon sink. 

 1165 

Table 6 

Comparison of CO2-carbon and climate–carbon feedback parameters between MIROC-ES2L, MIROC-ESM, and the 

CMIP5 ESMs. As presented in Arora et al. (2013), TCR, AF, and TCRE are calculated at the time when CO2 

concentration is quadrupled from the preindustrial condition (i.e., the 140th year in the 1PPY simulation) by taking the 

anomaly from the CTL run. Numbers of CMIP5 ESMs were obtained from Arora et al. (2013) and are presented as the 1170 

multimodel mean ± 1σ. 

 β land  

(PgC PgC-1) 

β ocean 

(PgC PgC-1) 

γ land  

(PgC K-1) 

γ ocean  

(PgC K-1) 

MIROC-ES2L (This study) 0.52 0.35 �71 �4.5 

MIROC-ESM (Watanabe et al., 2011; Arora et al., 2013) 0.35 0.39 �89 �12 

CMIP5 (Arora et al., 2013) 0.43 ± 0.21 0.38 ± 0.03 �58 ± 29 �7.8 ± 2.9 
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 1175 

Figure 18 

Comparison of strength of CO2–carbon and climate–carbon feedbacks between MIROC-ES2L and the CMIP5 models 

evaluated using the 1PPY, 1PPY-BGC, and 1PPY-RAD experiments. Vertical solid and dotted black bars represent 

MIROC-ES2L and MIROC-ESM, respectively, and the horizontal bars represent the range of the CMIP5 ESMs (mean ± 

1.65σ). To compare the two types of feedback strength with the same unit, land and ocean carbon storage change were 1180 

both normalized by dividing the atmospheric carbon change, which corresponds to the “u” quantity proposed by Gregory 

et al. (2009): CE = CA (1 + uβ + uγ), where uβ = β, uγ = γ × α. If u > 0 (u < 0), the feedback sign is negative (positive). The 

calculations were based on the anomaly from the CTL run at the time of quadrupled CO2 concentration from the 

preindustrial condition (i.e., the 140th year of the 1PPY, 1PPY-BGC, and 1PPY-RAD simulations). 

 1185 

 

 

 

4. Summary and conclusions 

In this study, a new Earth system model (MIROC-ES2L) was developed using a state-of-the-art climate model 1190 

(MIROC5.2) as the physical core. This new ESM embeds a terrestrial biogeochemical component with explicit carbon–

nitrogen interaction (VISIT-e) that accounts for the nutrient limitation of nitrogen on plant growth and therefore the 

change in the land carbon fluxes. Additionally, the ocean biogeochemical component (OECO2) is largely updated to 

simulate the biogeochemical cycles of carbon, nitrogen, phosphorus, iron, and oxygen such that oceanic primary 

productivity in the model is now controlled by multiple nutrient limitations. As a new challenge, land and ocean nitrogen 1195 

cycles were coupled via river discharge processes; thus, marine productivity is now also affected by the riverine nitrogen 

input. Furthermore, iron-related processes such as emission, atmospheric transport, deposition, and utilization in the 

marine ecosystem are newly included to represent the micronutrient limitation on phytoplankton productivity. This is 

necessary to reproduce the HNLC regions and simulate ecosystem variability in response to changes in external iron 

inputs. 1200 
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To evaluate the performance of the new model, a historical simulation following CMIP6 protocols and forcing datasets 

was performed for the 1850–2014 period, and the results were compared with observation-based products. The model 

reasonably reproduces the global changes in net TOA radiation balance, SAT, SST and upper-ocean temperature. 

Considering the few biophysical feedbacks on climate in the model, the MIROC-ES2L’s good performance in simulating 

the physical fields is inherited from its original climate model (MIROC5.2), although persistent problems remain such as 1205 

the warm bias in the Southern Ocean, as found in some climate models. Global carbon and nitrogen budgets in the 

historical simulation were also examined and discussed by comparing the results with existing studies. The model 

successfully captured the observation-based estimates of contemporary air–sea and air–land carbon fluxes in terms of 

cumulative values. The component fluxes of global nitrogen between land, atmosphere, and ocean are also reasonably 

reproduced by the model. The spatial distributions of fundamental variables of the land carbon cycle were also assessed 1210 

through comparison with observation-based products, and the model produced reasonable patterns for primary 

productivity, forest carbon, and SOC. The spatial patterns of oceanic macro- and micronutrients, total inorganic carbon, 

alkalinity, oxygen, primary productivity, and oceanic CO2 flux were all captured well in the historical simulation. 

To assess the global climate–carbon cycle feedback in MIROC-ES2L, a sensitivity analysis was performed in which 

atmospheric CO2 concentration was prescribed to increase by 1% yr-1. Then, the values of TCR, AF, and TCRE were 1215 

calculated and compared with those of the CMIP5 ESMs. TCR in the new model is reduced to 1.5 K, which is 

approximately 70% of the previous model used for CMIP5, through the replacement of the physical core from the 

MIROC3-based model to that of MIROC5.2. AF is also reduced by 15%. Further feedback analysis of the carbon cycle 

revealed that most of the AF reduction should be attributable to the intensified land carbon sink in the new model, which 

results in a level of AF that is close to the average of the CMIP5 ESMs. TCRE, which is a quantity that aggregates the 1220 

temperature response as a result of the entire climate–carbon cycle processes against anthropogenic CO2 emissions, is 1.3 

K EgC-1 in MIROC-ES2L. This is reduced from the value seen in the model used for CMIP5 by 32% and it is slightly 

smaller than the multimodel mean of the CMIP5 ESMs. Thus, MIROC-ES2L might be an “optimistic” model in terms of 

simulating global climate and carbon cycle change, considering that some CMIP6-class models are likely to have higher 

climate sensitivity (Voosen et al., 2019). A multimodal comparison on feedback strengths using CMIP6 ESMs is 1225 

necessary to clarify whether the climate and carbon cycle sensitivities in MIROC-ES2L are realistic, and to establish 

constraints on each feedback process based on observations (e.g., Wenzel et al., 2016; Goris et al., 2018). 

In the new model, the terrestrial nitrogen cycle processes and the interaction with the carbon cycle are modeled 

explicitly. By performing several types of simulation, it was demonstrated clearly that agricultural management such as 

fertilizer application has changed the carbon cycle (GPP) in the historical period, which suggests that the nitrogen cycle in 1230 

the model alters the land carbon cycle. The model simulated the change in the total land carbon content during 1850–2014 

at 44 PgC, which is within the estimated range of Le Quéré et al. (2018). However, historical terrestrial carbon change is 

highly uncertain because the change is processed by multiple responses against the external forcing of CO2, LUC, and 

climate change, each of which has its own estimation uncertainty. Thus, as performed in this study, decomposition of the 

impact of these forcings in historical simulations and in multimodel comparisons would be helpful in specifying the 1235 

processes that produce the large simulation spread of the land carbon budget among the ESMs. Furthermore, although we 

confirmed that the nitrogen cycle alters the carbon cycle in the model, this study did not quantify the extent to which the 

soil nutrient deficit could down-regulate plant growth and reduce the natural carbon sink. For this, a sensitivity analysis 

associated with carbon–nitrogen interaction is planned in CMIP6 (Jones et al., 2016), and the multimodel comparison 

study will reveal the strength of the carbon–nitrogen feedback in MIROC-ES2L relative to other CMIP6-class ESMs. 1240 
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In the new model, the ocean nitrogen cycle is modified to be an open system and thus the model can reflect the 

influences of external sources of nitrogen via atmospheric deposition and river discharge. Our sensitivity analyses under 

the preindustrial condition suggested minor contributions of these two external sources to primary productivity on the 

global scale. However, regions in which primary productivity is constrained by nitrogen availability showed a strong 

positive NPP response to the relaxation of nitrogen limitation. It accelerates the use of other nutrients within the marine 1245 

ecosystem in such regions and it reduces iron and phosphorus availability in other regions. Furthermore, by switching on 

the process of iron deposition into the ocean, the model showed an increase of approximately 7% in primary production 

under the preindustrial condition, which suggests that iron input has a relatively stronger impact than nitrogen. Coupling 

of iron cycle processes in the model led to successful reproduction of HNLC regions, and it will enable the model to 

project future biogeochemical changes induced by anthropogenic iron emissions associated with the use of fossil fuels and 1250 

biomass burning. We note, however, as an atmospheric chemistry module is not included in MIROC-ES2L, the 

atmospheric chemical reaction of iron-containing aerosols is ignored and the iron solubility to seawater is simply assumed 

constant. Considering the relatively strong impact of iron deposition on marine primary productivity in the model, we need 

further detailed evaluation and modification of the iron cycle processes in terms of both aerosol transport and marine 

biogeochemical responses. 1255 

In addition to such improvements in terms of the iron cycle, other factors should also be improved/extended in the ESM 

for future simulation study. First, a freshwater biogeochemistry module is required. In the present model, the chemical 

form of riverine nitrogen is assumed inorganic, but actual river flow contains OM and particulate matter that undergo 

biogeochemical processing during transport. Thus, inclusion of the transport of organic/inorganic matter and the modeling 

of freshwater biogeochemistry might be necessary. This conclusion is supported by the sensitivity analysis that showed 1260 

relatively strong regional-scale impact of riverine nitrogen on marine primary productivity, although the global-scale 

impact was demonstrated to be minor. Second, MIROC-ES2L can simulate natural emissions of nitrous oxide; however, 

the emissions did not change the radiative balance in the atmosphere. Nitrous oxide is one of the strongest greenhouse 

gases with a long lifetime. As diagnosed in this study, future nitrous oxide emissions could be controlled by land use and 

agriculture, as well as climate change. Therefore, full coupling of the nitrous oxide cycle with other associated 1265 

atmospheric chemical processes should be incorporated in the next-generation ESM, together with the methane cycle, as 

suggested in previous studies (e.g., Collins et al., 2018). Third, a mechanistic model for the denitrification process in 

ocean sediment should be included in a future model. The present model simulates only the denitrification rate of water 

column, and the flux from sediment is likely imposed on the water-column denitrification. As the timescale of the 

sedimentary process is likely longer than that of water-column denitrification, explicit modeling of sedimentary 1270 

denitrification will be important, particularly for long-term simulations over timescales of millennia. Finally, we partly 

demonstrated the importance of external sources of nutrients for marine productivity, although its evaluation was 

performed under the preindustrial condition. As anthropogenic nutrient inputs under that condition are much smaller than 

under the present-day condition and could be amplified or mitigated in the future, a similar set of sensitivity simulations 

should be undertaken for present-day and future conditions. 1275 

ESMs represent powerful tools to investigate interactions between climate, biogeochemistry, and human activities, and 

they have facilitated climate projections and quantifications of future emissions of greenhouse gases for achieving climate 

change mitigation goals. Such models are also valuable for examining how Earth system components might respond to 

different levels of mitigation policies/scenarios spanning from the business-as-usual scenario to one employing intensive 

measures such as geoengineering techniques. Furthermore, state-of-the-art ESMs can reproduce some of the dominant 1280 

long-term environmental changes on Earth that are becoming evident/doubted in association with climate change, e.g., 
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ocean acidification and hypoxia, global nitrogen loading, air pollution, and habitable zone changes in ecosystems. ESMs 

can simulate such problems and their interactions in a holistic and consistent manner. Such simulations have potential to 

elucidate sustainable ways to mitigate climate change with less environmental stress. To support such applications, further 

efforts should be made to improve ESMs and to constrain model performance in collaboration with observation studies. 1285 

 

5. Appendices 

Appendix A. Land ecosystem/biogeochemical component 

A.1 Nitrogen cycle 

The structure of carbon and nitrogen compartments and the flux calculations in VISIT-e mostly follow the original 1290 

version of the model (Ito and Inatomi, 2012a). For N cycle and LUC processes, some major changes were brought to 

VISIT-e to couple the model with MIROC-ES2L; the details are described below. 

 

A.1.1. N compartment structure in VISIT-e 

Terrestrial N dynamics in VISIT are simulated based on three major compartment groups of N storage: vegetation N 1295 

(NVEG), soil organic matter (NSOM), and soil inorganic matter (NIOM). The component NVEG is composed of canopy N 

(NCAN) and storage N (NSTG): 

NVEG = NCAN + NSTG.  

The mass conservation equations for NCAN and NSTG are as follows: 

dNCAN/dt = FNSBNF, CAN + FNUPTK, CAN + FNRALC � FNMORT, CAN,  (A1) 1300 

dNSTG/dt = FNSBNF, STG + FNUPTK, STG + FNWTHD � FNMORT, STG, (A2) 

where FN represents nitrogen flux, and the subscripts SBNF, UPTK, RALC, WTHD, and MORT represent symbiotic 

biological N fixation, N uptake by plants, reallocation of storage N to the canopy, withdrawal of canopy N to storage, and 

loss of N by mortality, respectively. In this study, biological N input into vegetation (represented by FNSBNF) is modified 

from the original model; the detail is described in Sect. A.1.2. 1305 

The component NSOM is composed of the three nitrogen pools of litter (NLIT), humus (NHUM), and microbes (NLIT): 

NSOM = NLIT + NHUM + NMCR. (A3) 

The N conservation equations for the pools are as follows: 

dNLIT/dt = FNMORT, CAN + FNMORT, STG + FNNBNF � FN HUMF � FNMNRL, LIT,  (A4) 

dNHUM/dt = FNHUMF + FNMORT, MCR � FNMNRL, HUM, (A5) 1310 

dNMCR/dt = FNIMBL � FNMORT, MCR,  (A6) 
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where subscripts NBNF, HUMF, MNRL, and IMBL represent nonsymbiotic BNF, humification of litter, mineralization of 

litter/humus, and immobilization by microbes, respectively. The components FNNBNF and FNHUMF are new components of 

flux, which are described in Sect. A.1.2 and Sect. A.1.3, respectively. 

The inorganic nitrogen is assumed to consist of N pools of NH4+ (NNH4) and NO3- (NNO3): 1315 

NIOM = NNH4 + NNO3. (A7) 

The budget equation for NNH4 is as follows:  

dNNH4/dt = FNDEPO, NH4 + FNFRTL, NH4 + FNMNRL, LIT + FNMNRL, HUM    

                      � FNUPTK, NH4 � FNIMBL � FNN2ON � FNNTRF � FNNH3V � FNALOS, NH4, (A8) 

where subscripts DEPO, FRTL, N2ON, NTRF, NH3V, and ALOS represent deposition, fertilizer, N2O emission of 1320 

nitrification process, nitrification of NH4+, NH3 volatilization, and abiotic N loss, respectively. 

The budget equation for NNO3 is as follows: 

dNNO3/dt = FNDEPO, NO3 + FNFRTL, NO3 + FNNTRF 

                      � FN UPTK, NO3 � FNN2OD � FNN2 � FNLECH � FNALOS, NO3, (A9),  

where subscripts N2OD and N2 represent N2O and N2 emissions in the denitrification process, respectively and LECH 1325 

presents N leaching.  

In the above two equations, FNDEPO and FNFRTL are forced by external datasets, while FNALOS is the process newly 

introduced in this study, which is described in Sect. A.1.4.  

 

A.1.2. Biological N fixation 1330 

BNF is calculated based on the actual evapotranspiration rate (Cleveland et al., 1999). In the original version of VISIT, 

all nitrogen fixed through BNF (FNBNF) was assumed available for plants. As this assumption makes vegetation in the 

model less dependent on soil nutrient availability, the model is modified in that only a portion of BNF-N is made directly 

available for plant. For this, FNBNF is decomposed into symbiotic BNF (FNSBNF) and nonsymbiotic BNF (FNNBNF): 

FNBNF = FNSBNF + FNNBNF        (A10) 1335 

and  

FNSBNF = "SBNF x FNBNF,  (A11) 

FNNBNF = (1 - "SBNF) x FNBNF,  (A12) 

where "SBNF is the portion of N of symbiotic BNF. Here, "SBNF is assumed as 0.5 as the landscape-level parameter. 

Nitrogen fixed by the symbiotic process is used directly by plants, while N fixed by nonsymbiotic microbes is assumed to 1340 

directly form part of the litter. The BNF in cropland is modeled differently, as shown in Sect. A.2.3. 

 

A.1.3. Mineralization, humification, and immobilization 

The mineralization rate of litter is same as that in the original version, and it is calculated as follows: 
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FNMNRL, LIT = NLIT × (FCMNRL, LIT/CLIT),  (A13) 1345 

where FCMNRL, LIT is the C mineralization rate of litter and CLIT is the amount of C in the litter pool. 

The humus N mineralization rate is similar to that of litter but it is modified to be dependent on the humus CN ratio 

(CNHUM):  

FNMNRL, HUM = NHUM × (FCMNRL, HUM/CHUM) × (1 � fCN(CNHUM))  (A14) 

and 1350 

fCN(CNHUM) = Smin × exp((log Smax � log Smin)/(Rmax � Rmin) × (CNHUM � Rmin)).  (A15) 

Here, Smax and Smin are the maximum and minimum fractions of mineralized N that eventually move to the inorganic N 

pool (NNH4), respectively. Rmax and Rmin are the maximum and minimum CN ratios in the humus pool, respectively. The 

term 1 � fCN(CNHUM) controls the humus CN ratio to be between Rmax and Rmin, by accelerating humus N mineralization 

under a lower CN ratio and decreasing it under a higher CN ratio. Here, the values of Smax = 0.95 and Smin = 0.05 are 1355 

assumed, and Rmax and Rmin are set to the values of 40 and 10, respectively. 

Immobilization rate is simplified in VISIT-e and it is modeled as a function of the mineralization rate of litter N, 

depending on the CN status in the humus: 

FN IMBL = FN MNRL, LIT × fCN(CNHUM).  (A16) 

Thus, N immobilization is accelerated if the humus has a high CN ratio and it decreases under a lower CN condition.  1360 

N flux by humification (N flow from litter to humus, FNHUMF, LIT) is newly introduced in VISIT-e and it is modeled as 

follows: 

FNHUMF, LIT = NLIT × (FC HUMF, LIT/CLIT),  (A17) 

where FCHUMF, LIT is the rate of C flux in the humification process, which is simulated in the C cycle part of the model. 

 1365 

A.1.4. Abiotic N loss 

Abiotic N loss from soil (FNALOSS, NH4 and FNALOSS, NO3) is newly introduced in VISIT-e to prevent infinite N 

accumulation in deserts and arid regions, where much N removal thorough biotic and hydrological processes cannot be 

expected. This new scheme is based on the findings of McCalley and Sparks (2009) and it is modeled as follows: 

FNALOSS, NH4 = SALOSS × exp(KALOSS(Tsfc � 50)) × NNH4,  (A18) 1370 

FNALOSS, NO3 = SALOSS × exp(KALOSS(Tsfc � 50)) × NNO3,  (A19) 

where SALOSS is a specific rate of abiotic loss that is set to the value of 7.26 × 10-3 (ngN m-2 s-1) (Schaeffer et al., (2003)), 

and KALOSS is a constant to normalize the rate at 50°C. Here, the emitted gas is assumed an inert form of N. 

 

A.1.5. N limitation on plant productivity 1375 

To simulate soil nutrient (soil inorganic nitrogen) control on plant growth, VISIT-e is modified from the original model 

as follows. 
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First, the photosynthetic capacity (PCSAT), which used to be given as the fixed parameter, is modified such that it is 

controlled by N concentration in the leaf (NFOL): 

PCSAT = KPSAT1 × NFOL + KPSAT2  (A20) 1380 

and 

NFOL = NCAN/LAI, (A21) 

where KPSAT1 and KPSAT2 are the slope and intercept, respectively, of the empirical relationship between NFOL and PCSAT, 

and LAI is the leaf area index. In this study, the parameters KPSAT1 and KPSAT2 were obtained from a meta-analysis study of 

Kattge et al., (2009). The leaf-level photosynthetic capacity is upscaled using the analytical method of the Monsi–Saeki 1385 

theory, assuming a vertically uniform distribution of canopy N. 

Second, actual N uptake by plants (FNUPTK) is determined by the balance between N demand by plants (FNDMND) and 

the potential supply from the soil (FNSPPL), which allows the model to have a flexible CN ratio in plant organs: 

FNUPTK = min{FNSPPL, FNDMND}. (A22) 

Here, FNSPPL is assumed simply as the total amount of inorganic N in soil (=NNH4 + NNO3). The component FNDMND is 1390 

the sum of the demand from plant organs: 

FNDMND = FNDMND, CAN + FNDMND, ROT + FNDMND, STM (A23) 

and               

FNDMND, CAN = (FCTRNS, CAN � FCGRSP, CAN)/(CCAN/N'CAN),  (A24) 

FNDMND, ROT = (FCTRNS, ROT � FCGRSP, ROT)/(RROT),  (A25) 1395 

FNDMND, STM = (FCTRNS, STM � FCGRSP, STM)/(RSTM).  (A26) 

In the above, FCs represents the carbon flux of translocation of primary production (with subscript TRNS) and the 

carbon lost by growth respiration (GRSP). Subscripts CAN, ROT, and STM represent canopy, root, and stem, respectively. 

RROT and RSTM are fixed parameters used as reference CN ratios in the root and stem, respectively, obtained from White et 

al., (2000). N'CAN is the canopy N that maximizes canopy productivity, which is determined numerically by considering 1400 

the balance between GPP and canopy (foliage) respiration. 

 

A.2. Land use change 

A.2.1. Structure of LUC tiles 

LUC forced by external forcing and its impact on land biogeochemistry are simulated with five main types of tile 1405 

(primary vegetation, secondary vegetation, urban, cropland, and pasture) in each land grid. The same structure of C and N 

compartments is shared among the tiles and each tile has its own areal fraction in a grid (fLUC): 

fLUC, PV + fLUC, SV + fLUC, UR + fLUC, CR + fLUC, PS = 1 (A27) 

The crop tile further holds two subtiles and their areal fractions: nitrogen-fixing crops and others. 

fLUC, CR = fLUC, CRN + fLUC, CRO (A28) 1410 
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where fLUC, CRN is the areal fraction for the N-fixing crop and fLUC, CRO is for the others. This subtile-level fraction is used 

for the estimation of nitrogen fixation by crops (see Sect. A.2.3). 

 

A.2.2. Product pool and decomposition 

The carbon and nitrogen in biomass removed by crop harvesting and by land use conversion (P) are allocated to three 1415 

product pools with different turnover rates (1 year, 10 years, and 100 years): 

dMPROD, 1yr/dt = #1yr × P � FMLUCE, 1yr, (A29) 

dMPROD, 10yr/dt = #10yr × P � FMLUCE, 10yr, (A30) 

dMPROD, 100yr/dt = #100yr × P � FMLUCE, 100yr, (A31) 

where MPROD is the harvested biomass of C or N stored in the three product pools and P is harvested mass of C or N. Here, 1420 

# is the allocation fraction among the product pools (set in this study as #1yr = 0.5, #10yr = 0.45, and #100yr = 0.05). FMLUCE 

represents the volatilization rates of carbon (as CO2) or nitrogen (as an inert form) from the three pools, which are 

calculated as follows:  

FMLUCE, 1yr = KLUCE, 1yr × MPROD, 1yr, (A32) 

FMLUCE, 10yr = KLUCE, 10yr × MPROD, 10yr, (A33) 1425 

FMLUCE, 100yr = KLUCE, 100yr × MPROD, 100yr, (A34) 

where KLUCE is the specific emission rate in each product pool, which is set to reduce the carbon/nitrogen in each pool by 

99.9% within 1 year, 10 years, and 100 years.  

 

A.2.3. LUC status-driven impact on biogeochemistry  1430 

Even if the areal fraction of each land use tile were fixed in a simulation, there could still be impacts of land use on land 

biogeochemistry, referred to here as the status-driven impact. This impact is specific to each tile and it is summarized as 

follows: 

(1) prohibition of plant growth on an urban tile; 

(2) increased mortality of plants by grazing pressure on pasture tiles, assuming a 20% increase of mortality rate for 1435 

foliage; 

(3) annual crop harvesting on crop tiles (assuming 10% of foliage is harvested) and loss of C and N from the product 

pools; 

(4) nitrogen fixation by N-fixing crop on crop tiles. 

For (4), the total BNF rate on crop tiles (FNSBNF) is modeled as follows: 1440 

FNSBNF = FNSBNF, CRO × fLUC, CRO + FNSBNF, CRN × fLUC, CRN, (A35) 
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where FNSBNF, CRO represents the rate of nitrogen fixation on non-N-fixing crop tiles, which is assumed the same as that in 

natural vegetation. FNSBNF, CRN is the rate of nitrogen fixation on N-fixing crop tiles, which is calculated simply to satisfy a 

fixed ratio of BNF-derived N to all N taken up by N-fixing crops (=0.66; from Herridge et al. (2008)). 

 1445 

A.2.4. LUC transition-driven impact on biogeochemistry 

When the areal fractions of tiles are made to change following the forcing dataset, the apparent mass densities of C and 

N on a grid can be changed. For example, when a portion of a grid area is converted from category X to category Y in a 

year, the mass conservation between the “before (t)” and “after (t+1)” on a grid should be as follows: 

MXt × fXt + MYt × fYt = MXt+1 × fXt+1 + MYt+1 × fYt+1 + P,  (A36) 1450 

and  

MXt = MXt+1, (A37) 

where M is the mass density per unit tile area, subscripts X and Y represent categories of land use type, and superscript t 

denotes time. By presenting the areal fraction change as $f and the change in apparent mass density in category Y as $My, 

these equations can be written as follows: 1455 

MXt × fXt + MYt × fYt = MXt × (fXt � $f)+ (MYt + $MY) × (fYt + $f) + P,  (A38) 

and 

P = $f × MXt × KHARV,  (A39) 

where KHARV determines the fraction of mass that enters the product pools instead of the tile of category Y. Here, KHARV is 

always set to zero for litter and soil pools and KHARV = 1 for vegetation pools in specific transition patterns (e.g., KHARV = 1 1460 

if the LUC transition type is urbanization, whereas KHARV = 0 if the LUC conversion is pasture abandonment). By solving 

the equations for $MY, we obtain the following: 

$MY = ($f × (MXt � MYt) � P)/(fYt + $f).  (A40) 

If $MY > 0 (<0), the apparent mass density in tile Y is increased (decreased). The changes in apparent mass density lead 

to mass imbalance of C and N and therefore the storage of both C and N starts to move toward a rebalanced status under 1465 

the given environmental conditions. 
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Appendix B. Ocean ecosystem/biogeochemical component 1470 

B.1. Governing equations 

The ocean ecosystem component (OECO2) embedded within the ocean circulation model is based on nutrient–

phytoplankton–zooplankton–detritus (NPZD) type with four prognostic variables: nitrate (NO3), “ordinary” 

nondiazotrophic phytoplankton (Phy), zooplankton (Zoo), and particulate detritus (Det). In addition, phosphate (PO4), 

dissolved oxygen (O2), dissolved iron (Fe), nitrous oxide (N2O), and diazotrophic phytoplankton (nitrogen fixers, Diaz) 1475 

are included. Biogeochemical tracers associated with the carbon cycle, i.e., dissolved inorganic carbon (DIC), alkalinity 

(Alk), calcium carbonate (CaCO3), and calcium (Ca) are also included. Constant (~Redfield) stoichiometry relates the C, 

N, P, Fe, and O content of the biological variables and their exchanges with the inorganic variables (NO3, PO4, Fe, O2, 

N2O, Alk, and DIC).  

Each variable changes its concentration C according to the following equation: 1480 

%&

%'
= )* + 	-,			 (B1) 

where Tr represents all transport terms associated with the physical processes, including advection, isopycnal and 

diapycnal diffusion, and convection, and S denotes the source minus sink terms that include the surface and bottom fluxes. 

Using the variables and parameters listed in Tables B1 and B2, the source minus sink terms for each prognostic variable 

can be obtained as follows. 1485 

First, the source minus sink term for NO3 S(NO3) is given by the following:  

-(013) = 4567(1 − 0.8=>:@Γ567*BCD
567) + Dep567 + Riv567,			 (B2) 

where Dep567 (Riv567) represents nitrogen deposition from the atmosphere (riverine input) and  

4567 = (KLDet + KN
∗ Phy+ STZoo − WXPhy− Y@WLDiaz),		 

Γ567 = \
1	if	NO3 > NO3abcd,
0	if	NO3 < NO3abcd,

 1490 

where JO (JD) is the growth rate of “ordinary” nondiazotrophic (diazotrophic) phytoplankton (see Appendix B2). The 

nitrate uptake rate is given by Y@ = NO3/(g@
hcij + NO3) (Schmittner et al., 2005). Denitrification (Denit) can be 

expressed as follows:  

	Denit = 4567(−0.8=>:@	Γ567	*BCD
567) − l5m6, 

where l5m6 is the source term of N2O, which is discussed later. The source minus sink terms for Phy and Diaz, i.e., 1495 

S(Phy) and S(Diaz), respectively, can be expressed as follows:  

-(Phy) =	 WXPhy− KN
∗ Phy −nopqPhy

m − Grazeopq,		  (B3) 

-(Diaz) = 	 WLDiaz −nhcijDiaz − Grazehcij.		  (B4) 

The term S(zoo) is estimated as follows: 

-(Zoo) = tuGrazeopq + Grazehcijv − SwZoo −nxCCZoo
m.		  (B5) 1500 

Then, S(Det) is given by the following: 
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-(Det) = y1 −z uGrazeopq + Grazehcijv + nopqPhy
m +nhcijDiaz +nxCCZoo

m 

																																																																																									−KLDet − Fsedh~d −
%	�cÄÅÇÉÑ	

%w
,		  (B6) 

Sinkh~d = 	 á
àLDet	if	z < 200m

Sinkh~dmãã y
w

mãã
z
ã.åçé

	if	z > 200m
, 

where Fsedh~d represents the net flux of detritus between the ocean and ocean sediment (Kobayashi and Oka, 2018) and 1505 

Sinkh~dmãã is the flux of sinking detritus at the depth of 200 m (Kawamiya et al., 2000).  

Using the molar P:N ratio of organic matter, =N:@	, and the riverine input of phosphate (Rivo6è), the source minus sink 

term for PO4 becomes:  

-(PO4) = 	=N:@4567 + Rivo6è.		 (B7) 

As the land ecosystem model cannot simulate the phosphorus cycle, it is assumed that phosphate is brought to the river 1510 

mouth at a rate to satisfy Riv567:Rivo6è = 16: 1, similar to the Redfield ratio. The term S(O2) can be estimated as 

follows: 

-(O2) = −Γ6m	=>:@4567 + Fsfc6m, (B8) 

Γ6m = \
1	if	O2 > O2abcd,
0	if	O2 < O2abcd,

 

where Fsfc6m is the dissolved oxygen exchange with the atmosphere, according to the OMIP protocol (Orr et al., 2017). 1515 

The term S(Fe) can be expressed as follows: 

	-(Fe) = 	=ìî:@4567 + Scav + Dustin + Sedin + HTin,		  (B9) 

where Scav represents scavenging (Moore et al., 2004; Moore and Braucher, 2008), Dustin is the iron input from dust, 

Sedin is the iron input from sediment following both Moore et al. (2004) and Aumont and Bopp (2006), and HTin is the 

hydrothermal dissolved iron flux following Tagliabue et al. (2010).  1520 

The source minus sink term for N2O is linked to the consumption of oxygen during the remineralization of OM (Ilyina 

et al., 2013): 

-(N2O) = *@m>Γ>m=>:@(µLDet + µN
∗ Phy+ ETZoo) + öõúù@m>,		  (B10) 

where öõúù@m> is the N2O exchange with the atmosphere according to Orr et al. (2017). 

The source minus sink term for DIC can be expressed as follows: 1525 

-(DIC) = =&:@4567(1 − 0.8=>:@*BCD
567) − 4†i†67 + Fsfch°†,	 (B11) 

where Fsfch°† is the DIC exchange with the atmosphere according to the OMIP protocol (Orr et al., 2017) and 4†i†67 =

l*†i†67 − ¢£†i†67. 

Then, S(Alk), S(CaCO3), and S(Ca) can be estimated, respectively, as follows: 

-(Alk) = 	−24†i†67 − 4567,		 (B12) 1530 

	-(CaCO3) = 4†i†67,		  (B13) 

-(Ca) = 	−4†i†67.			  (B14) 
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B.2. Growth rate of nondiazotrophic and diazotrophic phytoplankton 

To simply evaluate the effect of iron limitation on the growth of “ordinary” nondiazotrophic phytoplankton and 1535 

diazotrophic phytoplankton (nitrogen fixers), we modify the equations of phytoplankton growth rate by Keller et al. 

(2012) as follows. First, we estimate the maximum potential growth rate of phytoplankton (JOmax) and diazotrophic 

plankton (JDmax) that depend on temperature (T): 

W>
max = ¶ß(® ®©⁄ ),		 (B15) 

WL
max = ùLmax	(0, ¶(ß

(® ®©⁄ ) − 2.61))			  (B16) 1540 

(Schmittner et al., 2008). 

Once the maximum potential growth rate has been calculated, the realized growth rate of phytoplankton (JO) is then 

determined by irradiance (I) and the concentrations of NO3, Fe and PO4, while the growth rate of diazotrophic plankton 

(JD) is determined by irradiance (I) and the concentrations of Fe and PO4:  

 1545 

W> = min yW>¨, W>
max NO≠

ÆØ∞NO≠
, W>

max Fe
Æ±É∞Fe

, W>
max PO≤

Æ≥∞PO≤
z,		  (B17) 

WL = minyWL¨, WL
max Fe

Æ¥µ∞Fe
, WL

max PO≤
Æ≥∞PO≤

z.		 (B18) 

JOI and JDI in (B17) and (B18) represent the light-limited growth rate of phytoplankton and diazotrophic phytoplankton, 

respectively, given by W>¨ =
∂∑
max∏¨

	π(∂∑
max)∫∞(∏¨)∫

  and WL¨ =
∂ª
max∏¨

	π(∂ª
max)∫∞(∏¨)∫

, where α = 0.1 d-1 and I is shortwave radiation at each 

depth (see eq. (14) of Keller et al. (2012)).  1550 

 

 

Table B1.  

Model parameters. 
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Parameter             Sym
bol 

Value Unit 

Fast recycling term (microbial loop) KN
∗  0.05 d-1 

Excretion of zooplankton ST 0.03 d-1 

Critical NO3 concentration of denitirification NO3abcd 1 µmol L-1 

Critical O2 concentration of remineralization�� O2abcd 4 µmol L-1 

Molar O:N ratio =>:@ 8.625 N.D. 
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Molar P:N ratio =N:@ 0.0625 N.D. 

Molar Fe:N ratio =ìî:@ 4.4167 × 
10-5 

N.D. 

Molar C:N ratio =&:@ 6.625 N.D. 

Half-saturation constant for N uptake g@
hcij 0.05 µmol L-1 

Phytoplankton mortality rate nopq 0.05 d�1 (µmol L-

1)-1 

Diazotroph mortality rate nhcij 0.025 d-1 

Zooplankton mortality rate nxCC 0.2 d�1 (µmol L-

1)-1 

Assimilation efficiency coefficient t  0.75 N.D. 

Sinking speed at the depth of 0–200 m àL  5 m d-1 

Maximum potential growth rate of nondiazotrophic phytoplankton at 0°C ¶  0.8 d-1 

Diazotroph handicap�� ùL 0.5 N.D. 

E-folding temperature of biological rates )º 15.65 °C 

Half-saturation constants for NO3 uptake g@ 0.5 µmol L-1 

Half-saturation constant for PO4 uptake gN 0.5 µmol L-1 

Half-saturation constant for iron uptake gΩ~ 10-3 nmol L-1 

 

Table B2.  

Definitions of parameters and variables not mentioned specifically in the text.  

 

Parameter or 
variable 

Definition Reference 

*BCD
567 Oxygen-equivalent oxidation of nitrate in suboxic waters 

(i.e., denitrification) 
Equation (A18) in Schmittner et 

al. (2008) 

KL Temperature and O2 dependent rate of detritus 
remineralization 

Equation (A16) in Schmittner et 
al. (2008) 

æ  Initial slope of P–I curve Table A1 in Schmittner et al. 
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  (2008) 

Grazeopq Grazing rate of zooplankton on nondiazotrophic 
phytoplankton 

Schmitter et al. (2005) 

Grazehcij Grazing rate of zooplankton on diazotrophic phytoplankton Schmitter et al. (2005) 

l*†i†67  Production of calcium carbonate Schmittner et al. (2008) 

¢£†i†67  Dissolution of calcium carbonate Schmittner et al. (2008) 

ø  Shortwave radiation at each depth Equation (14) in Keller et al. 
(2012) 

*@m> N2O production rate Broecker and Peng (1982) 
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Appendix C. Forcing data 

External forcing used for HIST experiment is summarized in Table C1. 

 

Table C1.  1565 

List of forcing datasets for HIST simulation: categories, variables, and references for the data creation and description 

of how the datasets are applied in the HIST simulation in MIROC-ES2L.  

 

Category Variables Reference Treatment in MIROC-ES2L 

GHG concentration 

CO2, CH4, N2O, CFC11, CFC12, CFC113, 

CFC114, CFC115, HCFC22, HCFC123, 

HCFC141b, HCFC142b, HFC32, HFC125, 

HFC134a, HFC143a, SF6, CCl4, C2F6 

Meinshausen et al. (2017) 

 

Same as Tatebe et al. (2019): given as globally averaged 

annual concentration 

Anthropogenic SLCF 

emission BC, OC, SO2 

Hoesly et al. (2018) Same as Tatebe et al. (2019): given as monthly emissions 

Open biomass burning 

emission BC, OC, SO2 

van Marle et al. (2017) Same as Tatebe et al. (2019): given as monthly emissions 

Atmospheric chemical 

composition for aerosol 

scheme H2O2, OH radical, NO3 

Precalculated from atmospheric chemistry 

model CHASER: Sudo et al. (2002) 

Same as Tatebe et al. (2019): given as three-dimensional 

concentration with monthly interval 

Anthropogenic dissolved 

iron emission 

Dissolved Fe 

Biomass burning emission diagnosed from 

BC emission (van Marle et al., 2017; Ito, 

2011); fossil fuel and biofuel emission 

(Hoesly et al., 2018; Ito et al., 2018) 

Given as monthly emission of biomass burning emission and 

fossil fuel/biofuel emissions 

Nitrogen deposition NOy (wet and dry), 

NHy (wet and dry) 

IGAC/SPARC CCMI: 

http://blogs.reading.ac.uk/ccmi/forcing-

databases-in-support-of-cmip6/ 

Given as wet plus dry monthly deposition for both NOy and 

NHy 

Land use Status, transition, fertilizer Ma et al. (2019) Given as two types of land use status (non-agriculture and 
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agriculture) for energy/hydrology processes; given as 

transition matrix among five land use types (primary, 

secondary, urban, crop, and pasture) for biogeochemistry; 

given as cropland fertilizer 

Stratospheric aerosol 
Extinction coefficient 

Thomason et al. (https://www.wcrp-

climate.org/) 

Same as Tatebe et al. (2019): monthly vertically integrated 

extinction coefficients for each radiation band 

Ozone concentration 
O3 

Hegglin et al. (in prep.) Same as Tatebe et al. (2019): given as three-dimensional 

concentration with monthly interval 

Solar 
Solar spectral irradiance 

Matthes et al. (2017) Same as Tatebe et al. (2019): given as monthly solar 

irradiance spectra 
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Appendix D. Diagnosis of cumulative fossil fuel emission and atmospheric CO2 concentration 

The global carbon budget can be written as follows: 

CE = CA + CL + CO, 

where CE is the cumulative emission derived from fossil fuel and industry. CA, CL, and CO represent the changes in 1575 

carbon amount in the atmosphere, land, and ocean, respectively. When models are forced with prescribed CO2 

concentration (CA), both CL and CO are diagnosed in the simulations. By expressing the prescribed CA as CAP, the 

budget equation can be described as: 

CED = CAP + CL + CO,  (C1) 

where CED is a diagnosed fossil fuel/industrial carbon emission, as analyzed in Jones et al. (2013).  1580 

If we can obtain the prescribed emission (CEP) that is consistent with historical atmospheric CO2 concentration change, 

we can diagnose CO2 concentration (CAD) as follows:  

CAD = CEP − CL − CO.  (C2) 

For CMIP6, CEP during 1850–2014 was approximately 403 PgC, and the values of CL and CO in this study were 44 

and 163 PgC, respectively. Thus, CAD in this study was 193 PgC. This is equivalent to the CO2 concentration change of 1585 

91 ppmv determined using a conversion factor of 2.12 (PgC ppmv-1). Consequently, we can obtain the diagnosed CO2 

concentration at the end of the simulation (2014), i.e., 376 ppmv. We note the estimate of anthropogenic CO2 emission of 

fossil fuel and industry has its uncertainty range, e.g., Le Quéré et al. (2018) estimate the cumulative emission as 400 ± 20 

PgC for 1850–2014; however, it was not considered in this study. Additionally, there is a budget imbalance of 25 PgC in 

Le Quéré et al. (2018), which was also ignored in this study. 1590 

 

Appendix E. Feedback parameters of carbon cycle with same unit 

As in Appendix D, the global carbon budget can be written as follows: 

CE = CA + CL + CO.  (E1) 
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Following Gregory et al. (2009), this carbon budget equation can relate the feedback parameters of land and ocean to 1595 

AF. First, following the definition, CL and CO can be expressed by the feedback parameters of CO2–carbon and climate–

carbon feedbacks (β and γ, respectively) as follows:  

CL = βL CA + γL T,  (E2) 

CO = βO CA + γO T,  (E3) 

where CA is the carbon increase in the atmosphere and T is global temperature change (T). Using Eqs. E1–E3, the global 1600 

carbon budget equation can be written as follows: 

CE = CA + CA (βL + βO) + T (γL + γO).  (E4) 

Dividing both sides of the equation by CA leads to the following: 

CE/CA = 1 + (βL + βO) + T (γL + γO)/CA.  (E5) 

Then, we define T/CA = α, as used by Friedlingstein et al. (2006) or Arora et al. (2013), and we replace CE/CA by 1605 

1/AF (because AF = CA/CE):  

1/AF = 1 + (βL + βO) + α (γL + γO).  (E6) 

The “u” quantity proposed by Gregory et al. (2009) is uβL = βL; uβO = βO; uγL = α γL; and uγO = α γO. Through 

replacement with the u terms, Eq. E6 can be expressed as follows: 

1/AF = 1 + uβL+ uβO+ uγL+ uγO,  (E7) 1610 

and thus we obtain the following: 

AF = 1/(1 + uβL+ uβO+ uγL+ uγO).  (E8) 

As AF has the unit of PgC PgC-1, the unit of the u parameters is also dimensionless.  
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