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Abstract. We describe the physics and features of the ice-sheet model Yelmo, an open-source project intended for collabora-

tive development. Yelmo is a thermomechanical model, solving for the coupled velocity and temperature solutions of an ice

sheet simultaneously. The ice dynamics are currently treated via a “hybrid” approach combining the shallow-ice and shallow-

shelf/shelfy-stream approximations, which makes Yelmo an apt choice for studying a wide variety of problems. Yelmo’s main

innovations lie in its flexible and user-friendly infrastructure, which promotes portability and facilitates long-term development.5

In particular, all physics subroutines have been designed to be self-contained, so that they can be easily ported from Yelmo to

other models, or easily replaced by improved or alternate methods in the future. Furthermore, hard-coded model choices are

eschewed, replaced instead with convenient parameter options that allow the model to be adapted easily to different contexts.

We show results for different ice-sheet benchmark tests, and we illustrate Yelmo’s performance for the Antarctic ice sheet.

1 Introduction10

The field of continental-scale, ice-sheet modeling started with a handful of pioneering models (e.g., Huybrechts et al., 1988;

Ritz et al., 1997; Greve, 1997a). These models were computationally efficient for the resources available at the time. Typical

grid resolutions were on the order of 20-40 km and generally the shallow ice approximation (SIA) was used to solve the ice

dynamics. These classic models have been most useful for long time-scale paleo simulations in part because they are fast, but

also because they are relatively simple in design, usually relying on low-tech solutions to numerical problems. Most of these15

models were designed before the era of the high-performance computing cluster, which made it challenging to build models

otherwise.

Nowadays, a large number of ice-sheet models exist, supported by a growing and active community of developers. Models

today represent a broad spectrum of approaches that incorporate different levels of physical complexity and computational

ingenuity. These models include hybrid approaches that heuristically combine the SIA with the shallow shelf approximation20

(SSA) (e.g., Bueler and Brown, 2009; Winkelmann et al., 2011; Goldberg, 2011; Pollard and DeConto, 2012; Pattyn, 2017;
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Quiquet et al., 2018) and higher-order approximations including full Stokes solutions (e.g., Larour et al., 2012; Gagliardini

et al., 2013; Hoffman et al., 2018; Lipscomb et al., 2019). Newer models often feature finite-element/finite-volume methods

(e.g., Larour et al., 2012; Gagliardini et al., 2013; Hoffman et al., 2018) or adaptive mesh refinement (Cornford et al., 2013),

which allows simulation of complex terrain and very high resolution where it is needed (e.g., at the grounding line in Antarc-

tica). While more complex models are driving advances in our understanding of the physics and relevant processes of ice sheets5

over a range of time scales, simpler and thus faster methods are still required to understand the evolution of the ice sheets on

multi-milllennial, paleo time scales.

Here we introduce the ice-sheet model Yelmo1, which is intended to provide access to complex and robust model physics

through an intuitive model design. It is a hybrid ice-dynamics model that is easy to use and configure. We expect that Yelmo

will be useful for long time-scale paleo simulations of the continental ice sheets, coupled climate – ice-sheet modeling, en-10

semble simulations and uncertainty studies, as well as for teaching. Below, we first describe the model structure, physics and

application programming interface (API, Section 2). Then, we present results for several benchmark experiments to validate

the model performance (Section 3), and a simulation of the present-day and glacial Antarctic ice sheet (Section 4), followed

by the conclusions (Section 5).

2 Model design15

Yelmo has been inspired and largely derived from classical ice-sheet models that have been used successfully for many years

– with the most in common with GRISLI (Ritz et al., 1997; Quiquet et al., 2018) and SICOPOLIS (Greve, 1997a, 2019).

However, in contrast to many models, Yelmo was designed from scratch to run as a modular library that can be called by other

programs rather than as a stand-alone executable. The strict application of this philosophy drove many design choices and

allowed us to develop a robust ice-sheet model library with a clear API that would be difficult to develop in an ad-hoc way20

later.

Yelmo is written in Fortran90, which provides continuity from previous code bases and supports the fact that clarity and

readability of the code are important features. Like SICOPOLIS and other models, we have opted for “low tech” solutions

whenever possible, meaning that internally coded routines are preferred and, thus, the external dependencies of the model are

kept to a minimum. This ensures that the algorithms used remain accessible and easily changeable. Nonetheless, Yelmo has two25

key dependencies: the NetCDF library for convenient, community-standard input/output capability and the Library of Iterative

Solvers for linear systems2 (Lis, Nishida, 2010), which is used for solving the elliptical SSA equations.

Yelmo has been designed to be user friendly (i.e., straightforward to understand), accessible, portable and adaptable. These

features were facilitated by the design choice to separate what we call the “model accounting” from the model physics itself, and

by following an object-oriented approach. There are no global variables in Yelmo (except for a few global constants related to30

the general physics of the planet being simulated), which means that variables and parameters are saved together in containers

1The name Yelmo refers to a semi-domed, rocky mountain in the Guadarrama Mountains outside of Madrid, Spain.
2https://www.ssisc.org/lis/
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(called derived types in Fortran) specific to each of the main Yelmo components, such as dynamics or thermodynamics, as

described in the sections below. These containers make up the individual components of the overall Yelmo object (itself a

container) that contains all of the variables, parameters and information needed to simulate a given domain of the ice sheet.

Multiple instances of the Yelmo object can therefore be defined in a program (e.g., one Yelmo-object instance for Greenland

and one for Antarctica), and each one will operate fully in isolation from the others. This is the model accounting, which is of5

a specific design built into Yelmo and is thus the only part not easily portable to other models.

The model physics, meanwhile, consists of subroutines that are fully portable and, whenever possible, only rely on native

data types (e.g., scalar, vector, arrays). In other words, the specific, non-portable design structure of the Yelmo object does

not contaminate the physics subroutines, since the necessary variables and parameters are always passed as arguments. In

general, all input and output to subroutines must be defined as arguments. Each argument must further always be given an10

intent characteristic (in Fortran, the intent of an argument can be one of IN, OUT or INOUT), which ensures that only the

variables destined for output from the routine can be modified inside it. This approach not only aides debugging and provides

programmatic safety, but provides a clear blueprint to users of what each subroutine does. Most importantly, the subroutines

are thus fully self-contained and can be used in other programs and contexts, as long as the correct arguments can be provided.

Concerning the model accounting, the Yelmo object contains all parameters and variables needed to run a given domain.15

For clarity and convenience, it has been divided into four components: topography, dynamics, material properties and thermo-

dynamics (Fig. 1). Each component has an associated set of functions to load parameters, allocate and initialize the variables,

update the variables (i.e., the actual physics calculation step), and finally to terminate the instance of the component at the end

of the program. This pattern is followed for all four components and represents the component-level API.

Each component contains variables and parameters necessary for the calculation of its specific physics, however each com-20

ponent also relies on the variables defined in other components since the ice sheet is a highly-coupled and nonlinear system.

The benefit of the somewhat artificial division of components made here is that the use of INTENT statements ensures that

variables of a given component can only be modified in the corresponding module. For example, when the update subroutine

of the topography module is called, only the object containing topography variables is defined as INTENT=INOUT, while the

objects containing dynamics, material and thermodynamics variables are all defined as INTENT=IN. Analogous to the design25

of the physics subroutines, the use of intent statements here makes the model blueprint clear, but also enforces consistency

with the overall design of the Yelmo structure. The hope is that this will not only make the model more user friendly, but it will

also naturally lead to more disciplined model development in the future.

In addition to the four components that contain prognostic and diagnostic model variables, the Yelmo object includes a

boundary component, which defines all fields that Yelmo requires as input from external sources (Fig. 1). These fields can30

be obtained from other coupled models, or simply by loading data, however Yelmo does not make any assumptions about

their source. The boundary component is defined as INTENT=IN in all modules, so that Yelmo does not have the right to

modify them internally. This conceptual isolation of the ice-sheet model serves to ensure that coupling with other models is as

straightforward as possible.
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Yelmo also makes use of a working precision variable, which allows for the model to be compiled with any real precision.

For most applications, single precision (32 bits) is sufficient. Double precision (64 bits) gives equivalent results for the tests we

have made. This is in part due to the fact that the units of all time variables in Yelmo are cast in years instead of seconds and

thus very small numbers are avoided. Nonetheless, this choice is left open to the user.

In terms of model physics, each component of Yelmo was built to work independently, in the sense that a given component5

is agnostic to the methods used to calculate variables from other components. For example, the temperature and velocity fields,

which are taken as input to calculate the viscosity and rate factor in the material component, are used without any knowledge

about the physics and numerical approximations used to calculate them. This means that sometimes simplifying assumptions

cannot be used, even though they may be valid in some cases (such as assuming that the strain rate is only due to SIA terms

where the ice sheet is frozen to the bed). However, the benefit is that typically the most general solutions possible have been10

implemented for each component. Thus, when the physics of one component is changed or upgraded, it is likely that the other

modules will not require any modification.

Grid information is also stored in the main Yelmo object, and a single grid is defined for use with all components. Like many

ice-sheet models, Yelmo uses the Arakawa-C grid staggering approach (Arakawa and Lamb, 1977) extended to 3D, as shown

in Fig. 2. Scalar variables, such as temperature, are defined at the cell centers, which in Yelmo are designated as “aa-nodes”.15

Velocity components and gradients are calculated on cell edges (“ac-nodes”) and scalar coefficients, like diffusivity in the SIA

approach, are calculated on cell corners (“ab-nodes"). The specific numerical discretization of the finite difference equations

largely follows the approach of Macayeal (1997). The advantage of this approach is that it benefits from the natural staggering

that occurs when calculating gradients (e.g., the surface slope is naturally defined on the ac-nodes), but it also results in greater

numerical stability of the model (Macayeal, 1997).20

Yelmo requires an evenly-spaced, Cartesian grid in the horizontal direction, while the vertical component follows a classic

sigma-coordinate system (Greve and Blatter, 2009). The vertical axis ζ represents the relative height within the ice sheet,

running from ζ = 0 at the ice-sheet base to ζ = 1 at the ice-sheet surface:

ζ(z) =Hz(z)/H (1)

where z is the elevation relative to present-day sea level, Hz(z) is the ice thickness up to the elevation z within the ice sheet25

and H is the total ice thickness. Yelmo can be defined with any specified number of vertical grid points, which can be unevenly

spaced. Typically, we have set nz = 20 and the ζ axis is defined with higher resolution near the base and surface of the ice

sheet, which is important for resolving thermodynamics and ages accurately. Use of the sigma-coordinate system simplifies the

numerics of an evolving domain in the vertical direction and inherently results in higher resolution for grid points with less ice

thickness (Greve and Blatter, 2009). Vertical velocities are calculated on ac-nodes in the vertical and aa-nodes in the horizontal,30

while horizontal velocities are calculated on ac-nodes in the horizontal and aa-nodes in the vertical. Boundary conditions in a

vertical column are applied directly at the ice base and ice surface, which correspond to ac-nodes (see Fig. 2).

Yelmo solves for two prognostic variables using coupled equations of mass and energy conservation: the ice thickness (2D

field) and ice temperature (3D field). Velocity (3D vector field) is diagnosed from approximations of ice flow assuming a

4
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nonlinear flow law. These equations are described in the subsections below, along with additional considerations related to

each component. For more details on the derivation of the equations, thorough explanations can be found in various references

(Greve and Blatter, 2009; Cuffey and Paterson, 2010), and thus are not repeated here.

2.1 Topography

The evolution of the ice thickness in the model is determined from mass conservation:5

∂H

∂t
=−O ·Hū + ȧ+ ḃg + ḃf − ċ (2)

where H is the ice thickness, ū = (ū, v̄) is the depth-averaged horizontal velocity, ȧ is the surface mass balance, ḃg and ḃf

are the basal mass balance for grounded and floating ice, respectively, and ċ is the calving rate at floating ice margins. In

Yelmo, in order to obtain more accurate mass balance accounting, the advection of ice and source contributions are treated

separately as follows. First, a forward Euler explicit method (or optionally an upwind implicit method) is used to solve for the10

ice thickness at each timestep without accounting for ȧ, ḃg , ḃf or ċ. The depth-averaged horizontal velocity is obtained from the

dynamics component from the previous timestep. Note that dynamics is normally updated with the same timestep frequency

as the topography component (see timestepping below). Next the mass balance terms ȧ, ḃg and ḃf are applied. It should be

noted that the basal mass balance of floating ice is a boundary variable for Yelmo (i.e., it is obtained externally and passed to

Yelmo), while the basal mass balance of the grounded ice is calculated internally as part of the thermodynamics solver (see15

Thermodynamics section below).

Yelmo also includes special treatment of grid points at the margin of the ice sheet, by making a distinction between ice-

covered grid points that are totally and partially filled following Albrecht et al. (2011) and Lipscomb et al. (2019). This is done

in a relatively simple, yet effective way to avoid artificially thin ice thickness at the ice margin. For each ice-covered grid point

that has an ice-free neighbor, the reference ice thickness of the margin point (Href ) is defined as the minimum thickness of the20

ice-covered neighbors, or half of that in the case of grounded ice. This represents the minimum ice thickness for which the

cell can be considered completely ice covered. The fraction of ice cover is then defined as fice = min(H/Href ,1). Whenever

fice < 1, the grid cell is considered dynamically inactive and the ice thickness is stored in a buffer field during dynamic and

thermodynamic calculations (i.e., these modules see the ice thickness as zero at these points). Since the horizontal velocity

components are calculated on ac-nodes, this method ensures zero ice flux through the downstream edge of a partially filled25

margin cell. During mass conservation, however, this buffer is added to the ice thickness field and the steps outlined above

are applied. In this way, the ice cell can be filled with ice from upstream and when the threshold of fice = 1, the ice sheet can

advance.

In the final mass conservation step, calving ċ is treated at the floating ice margins. Currently, a simple threshold method has

been implemented, as well as a threshold+flux method (Peyaud et al., 2007). In both methods, the calving rate applied to the30

ice sheet is defined following Lipscomb et al. (2019):

ċ=
Href −H

τc
(3)
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where τc is the characteristic calving time, usually set to 1-10 years, and Href is the margin ice thickness as defined above.

Setting τc to higher values facilitates ice-shelf growth and thus grounding-line advance in transient, glacial simulations, but

has little impact on the steady-state distribution of ice shelves for present day. This calving rate is applied only when the ice

thickness of totally-filled ice margin points is below a threshold value (simple threshold method), or when the ice thickness is

below a threshold value and the upstream flux is not sufficient to return the ice thickness to above the threshold (threshold+flux5

method). For paleo simulations the latter is our preferred method, as it allows for more robust ice shelf advance (Peyaud et al.,

2007). As mentioned above, calving is only applied to floating margin points with fice = 1. However, a final check is also

applied to both floating and grounded margin buffer points. If no neighbors are fully ice covered with fice = 1, then this buffer

ice will also be calved and ice-margin retreat happens in a natural way.

Once the ice thickness has been completely updated, Yelmo diagnoses whether the ice should be grounded or floating. To10

facilitate this step, the distance from flotation as measured in ice thickness, i.e., how close a grid point is to the Archimedes

flotation criterion, is calculated on each aa-node:

Hg =H − ρsw

ρ
(zsl− zb) (4)

where ρ is the ice density and ρsw the seawater density, and zsl and zb are the boundary fields of sea level and bedrock elevation,

respectively. Hg can thus be positive, zero or negative. When Hg is positive, the ice thickness exceeds the flotation criterion,15

and is considered grounded, while when Hg is zero or negative, the ice is considered floating.

Yelmo also calculates the grounded fraction of each grid point, fg. On aa-nodes, fg is only assigned binary values to maintain

consistency with the overall grid definition: zero whenHg ≤ 0 or one whenHg > 0. However, on cell edges, the values of fg,acx

and fg,acy are determined by linearly interpolating Hg from the two bounding aa-nodes. When both bounding aa-nodes are

positive fg,ac = 1, and when both are negative fg,ac = 0. When one aa-node is positive (Hg,pos) and one aa-node is negative20

(Hg,neg), the grounded fraction on the ac-node is determined from linear interpolation:

fg,ac =
−Hg,pos

(Hg,neg−Hg,pos)
(5)

Alternatively, it is possible to calculate fg via subgrid bilinear interpolation of Hg to intermediate points to determine the

grounded area fraction. However, this operation is more computationally intensive, and we find that in practice, the simple

linear interpolation method is sufficient.25

The surface elevation (zs) is calculated following Pattyn (2017) as

zs = max
[
zb +H,zsl + (1− ρ

ρsw
)H
]
, (6)

This approach ensures that the surface elevation solution is consistent with the Archimedes flotation criterion on aa-nodes.

The remaining tasks of the topography component are to diagnose other useful topographic characteristics, such as surface

and ice thickness gradients (on ac-nodes) and topographic masks.30
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2.2 Material

The material component of Yelmo handles the calculation of the rate factor, the strain rate tensor and effective strain rate, the

effective viscosity and, optionally, the age of the ice. Essentially, the material variables make the link between thermodynamics

and dynamics, since the rate factor depends on temperature and the strain rate depends on velocity. No distinction is made be-

tween the type of approximation used to solve the dynamics here, rather all equations follow from the more general hydrostatic5

approximation (Greve and Blatter, 2009).

The effective viscosity, used to determine strain heating in the thermodynamics component, is calculated as

η =
1
2
(
ε̇2
) 1−n

2n

(
A−1/n

)
, (7)

where ε̇ is the effective strain rate, n is the Glen’s Flow law exponent (Glen, 1955; Greve and Blatter, 2009), and A is the rate

factor. The effective strain rate is given by the second invariant of the strain rate tensor (ε̇ij):10

ε̇=
(

1
2
ε̇ijε̇ij

) 1
2

(8)

and the strain rate tensor itself, following index notation, is

ε̇ij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
, i, j = 1,2,3. (9)

The rate factor, A(x,y,z), can be prescribed to a constant value, or calculated as a function of ice temperature following an

Arrhenius equation:15

A(T ′) = EfA0e
−Qa/RT

′
(10)

Here R is the ideal gas constant, A0 and Qa are the temperature-dependent rate factor coefficient and activation energy,

respectively (see Greve and Blatter, 2009). Ef is a so-called enhancement factor, which is used to approximate the effect of

anisotropic flow. In Yelmo, it is possible to specify different values of the enhancement factor for different flow regimes (shear,

stream and shelf). The shelf value is prescribed anywhere ice is floating, while the inland value of Ef is a weighted average20

between the shear and stream value with the weighting given by a diagnosis of the vertical shearing fraction at any given point:

fshear =

(
ε̇2xz + ε̇2yz

)

ε̇2
. (11)

Typical values of the enhancement factor for the shearing, streaming and shelf regime are Ef = (3.0,1.0,0.7), respectively

(Ma et al., 2010).25

In addition, it is possible to track the deposition time (i.e., age) of the ice using the online Eulerian tracer advection model.

The general 3D advection equation of a conservative variable X ,

∂X

∂t
=−u∂X

∂x
− v ∂X

∂y
−w∂X

∂z
, (12)

7
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is solved with a second-order, upwind explicit method. When tracing the ice deposition time, the ice surface boundary con-

dition is X(t) = t. At the ice base, an initial deposition time is prescribed to be several thousand years before the start of the

simulation, however this plays little role in the resulting vertical profile of deposition times. When ice is melting at the base(
ḃ < 0

)
, the following flux boundary condition is defined (Rybak and Huybrechts, 2003):

∂X

∂t
=−ḃ ∂X

∂z
. (13)5

Basal freeze-on is assumed to be negligible. It is well known that Eulerian solvers lose accuracy towards the base of the ice

sheet, and therefore this method can only be considered to give a first-order estimate of age (Greve et al., 2002; Rybak and

Huybrechts, 2003). It can nonetheless be useful for diagnosing the age of ice, in order to know the timescale of different

dynamic properties or to, e.g., impose an age-dependent enhancement factor (Greve, 1997b).

2.3 Dynamics10

The Yelmo dynamics component is currently representative of a “hybrid” class of ice-sheet model, treating different modes

of ice deformation via a combination of the simplifying shallow-ice and shallow-shelf approximations (SIA and SSA, respec-

tively). In the following, the description of the dynamics equations follows closely the notation and definitions of Greve and

Blatter (2009) and Pollard and DeConto (2012).

Yelmo treats the horizontal velocity u(x,y,z) and v (x,y,z) as the sum of transport via internal shear (ui, vi) and basal15

sliding (ub, vb):

u= ui +ub

v = vi + vb.
(14)

Here, and analogously for v, ub (x,y) represents a depth-averaged velocity, so it is vertically constant, and ui (x,y,zb) = 0,

where the subindex “b" here represents the basal boundary of the ice sheet. It also holds that in the vertical average (denoted

by a bar), ū= ūi +ub. To calculate ui and vi, Yelmo uses zero-order SIA equations:20

ui(z) =−


2(ρg)n|Ozs|(n−1)

z∫

zb

A(zs− z′)n dz′

 ∂zs
∂x

vi(z) =−


2(ρg)n|Ozs|(n−1)

z∫

zb

A(zs− z′)n dz′

 ∂zs
∂y

,

(15)

where ui(z) and vi(z) are the horizontal components of the SIA velocity as a function of depth at a given location, A is the

material rate factor of the ice, which is obtained from the material component, and n is the Glen’s Flow law exponent (Glen,

1955; Greve and Blatter, 2009). In the horizontal plane, the term in brackets is calculated on the ab-nodes for stability and mass

conservation (Type-I discretization), and then it is staggered onto the ac-nodes where it is multiplied with the surface gradient.25

In the vertical plane, the horizontal velocities are calculated at the vertical center of each grid point (aa-nodes). Following

8

https://doi.org/10.5194/gmd-2019-273
Preprint. Discussion started: 2 October 2019
c© Author(s) 2019. CC BY 4.0 License.



Bueler and Brown (2009), we use the SSA solution to calculate the transport implied by sliding at the base (i.e., in regions of

ice streams and floating ice shelves):

∂

∂x

[
ηd

(
4
∂ub
∂x

+ 2
∂vb
∂y

)]
+

∂

∂y

[
ηd

(
∂ub
∂y

+
∂vb
∂x

)]
= ρgH

∂zs
∂x
− τb,x

∂

∂y

[
ηd

(
4
∂vb
∂y

+ 2
∂ub
∂x

)]
+

∂

∂x

[
ηd

(
∂ub
∂y

+
∂vb
∂x

)]
= ρgH

∂zs
∂y
− τb,y.

(16)

where (τb,x, τb,y) =−β (ub,vb) (or in vector notation τb =−βub) is the basal stress due to friction. The basal friction co-

efficient β is set to zero for floating ice shelves, and can otherwise be set to a constant value or follow another user-defined5

formulation (power law, regularized Coulomb, etc.), depending on the context. See the subsection on basal friction below for

details. The depth-integrated (2D) effective viscosity, which is only used for solving the SSA dynamics, is defined as

ηd =
[

1
2

(
Ā−1/n

)(
ε̇2d + ε̇20

) 1−n
2n

]
H (17)

where Ā is the vertically-averaged rate factor, ε̇d is the 2D effective strain rate and ε̇20 is a small regularization factor for

avoiding a potential singularity when velocity gradients are zero. The 2D effective strain rate is calculated as a reduced form10

of the second invariant of the strain rate tensor (Eq. 9) that does not include vertical shear terms:

ε̇2d =
(
∂ub
∂x

)2

+
(
∂vb
∂y

)2

+
∂ub
∂x

∂vb
∂y

+
1
4

(
∂ub
∂y

+
∂vb
∂x

)2

. (18)

In Yelmo, ε̇d is only used for calculating ηd, while the 3D effective strain rate is calculated from the full strain rate tensor in the

material component (see Material section above). Calculating the full tensor during the iterative SSA solution procedure would

be much more computationally expensive, while the 2D effective strain rate is already sufficient for the vertically integrated15

SSA equations (Pollard and DeConto, 2012).

The stress boundary condition imposed at the floating ice front, following Winkelmann et al. (2011) and Greve and Blatter

(2009), is

ηd

(
4
∂u

∂x
+ 2

∂v

∂y

)
nx + ηd

(
∂u

∂y
+
∂v

∂x

)
ny =

(
1
2
ρgH2− 1

2
ρswgH

2
o

)
nx

ηd

(
4
∂v

∂y
+ 2

∂u

∂x

)
ny + ηd

(
∂v

∂x
+
∂u

∂y

)
nx =

(
1
2
ρgH2− 1

2
ρswgH

2
o

)
ny.

(19)

The depth of the seawater up to the flotation depth, Ho, is defined as: Ho = min
(
zsl− zb, ρ

ρsw
H
)

. This is the depth of the20

ocean directly adjacent to the ice sheet, which acts to reduce the outward pressure at the floating ice margin. In constrast to

Winkelmann et al. (2011), this boundary condition is not currently used in Yelmo for grounded ice, where Eq. 16 applies.

The SSA equations are nonlinear, elliptical, partial differential equations with non-local solutions. Yelmo uses Lis for the

numerical solution using the biconjugate gradient method. The subroutine to discretize the equations and to call Lis was ported

from the latest SICOPOLIS version 5-dev (Greve, 2019; Rückamp et al., 2019) and subsequently modified for model design25

choices in Yelmo. We use a Picard iteration method to account for the nonlinear dependence of the effective viscosity (ηd), and

9
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potentially the basal friction coefficient (β), on velocity. Convergence of the SSA solution is tested using the L2 relative error

norm (Gagliardini et al., 2013):

δu,v =
2
√∑

(u1−u0)2 +
∑

(v1− v0)2
√∑

(u1 +u0)2 +
∑

(v1 + v0)2
, (20)

where (u1,v1) and (u0,v0) are the velocity solutions for the current and previous iterations, respectively, and the sum is made

over all grid points with non-zero velocity. By default, we consider a convergence limit of δu,v = 10−2, which is typically5

achieved within 1-10 iterations, depending on the context. This limit can be specified by the user.

The result of solving the above equations is the hybrid, 3D horizontal velocity field (u, v). The vertical velocityw can then be

diagnosed by applying a kinematic boundary condition at the base, and integrating the continuity equation for incompressible

flow (Greve and Blatter, 2009), from zb to z,

w(z) = ḃ−
(
ub
∂zb
∂x

+ vb
∂zb
∂y

)
−

z∫

zb

(
∂u

∂x
+
∂v

∂y

)
dz′. (21)10

The vertical velocity is naturally defined on the ac-nodes in the vertical plane, analogous to the horizontal velocity in the

horizontal plane. The above dynamics update results in a 3D hybrid velocity field (u, v, w) that is consistent with the current

state of the topography.

2.3.1 Basal friction

Basal frictional stress, as it appears in the SSA elliptical equations, is defined as15

τb =−βub (22)

where β represents the basal friction coefficient, with units of [Pa yr m−1], which can be defined in several ways. β is prescribed

to be zero for floating ice, and otherwise can be set to a constant or a spatially varying field and, depending on the formulation

used, it can depend on velocity itself. For this reason, we also define cb as the bed friction coefficient, which we consider to

only provide information about conditions at the physical bed (e.g., the nature of basal sediments, basal hydrology, effective20

pressure, etc.), independent of velocity. In the model, therefore, β is defined as:

β = cbf (ub) . (23)

Thus in all formulations implemented in Yelmo, the term f (ub) has units of [yr m−1] and the coefficient cb has units of [Pa],

which helps to facilitate its physical interpretation.

Most commonly, β is defined using a linear (e.g. Quiquet et al., 2018), power-law (e.g. Pattyn, 2017), pseudo-plastic power-25

law (e.g. Aschwanden et al., 2013) or regularized-Coulomb (Joughin et al., 2019) formulation. The linear and power-law

formulations are contained within the pseudo-plastic power-law formulation, so only the latter and the regularized-Coulomb

formulation are needed to represent all four cases.

10
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The pseudo-plastic power-law formulation (Schoof, 2010; Aschwanden et al., 2013) is

τb =−cb
( |ub|
u0

)q ub
|ub|

(24)

and thus β = cbu0
−q|ub|q−1, with the pseudo-plastic exponent q ∈ (0,1) and threshold speed u0. This expression results

in purely plastic friction for q = 0, linear friction for q = 1 and power-law friction for 0< q < 1. With q = 1 and u0 = 1,

for example, β = cb and friction scales linearly with velocity. To obtain the power-law formulation used in the original5

MISMIP experiments (Pattyn et al., 2012), the following parameter values can be prescribed: q = 1/3, u0 = 1 m yr−1 and

cb = 3.165176× 104 Pa.

Alternatively, the regularized Coulomb law (Schoof, 2005; Brondex et al., 2019; Joughin et al., 2019) is defined as

τb =−cb
( |ub|
|ub|+u0

)q ub
|ub|

(25)

and thus β = cb(|ub|+u0)−q|ub|q−1. Again q is the non-linear exponent and u0 is an empirical threshold speed that dictates10

the transition from Coulomb friction when cavitation effects dominate at the base (typically for a hard bed) to Coulomb-plastic

friction, when friction saturates (typically for weak till). When u0 = 0 or q = 0, purely plastic friction is recovered.

The merits and physical basis of the different possible friction formulations and non-linear exponents are still part of active

debate (Aschwanden et al., 2013; Stearns and van der Veen, 2018; Brondex et al., 2019; Joughin et al., 2019), and all of

the above formulations are used in ice-sheet modeling today. However, given the large uncertainty in boundary conditions15

provided to an ice-sheet model, which include bedrock topography, sediment composition and distribution, basal hydrology

and its temporal evolution, etc., it is clear that the use of any formulation will rely on empirical tuning. Also, as noted above,

different choices for the friction exponents or threshold values can reduce a given formulation to another. Although modeling

studies have shown that all four cases above can produce realistic velocity fields of the present-day ice sheets (e.g. Goelzer

et al., 2018; Joughin et al., 2019), it remains to be seen how the choice of friction formulation may impact transient changes in20

the ice sheet.

For these reasons, we have chosen to implement the friction formulations in the most general way possible in the code, with

essentially two free parameters: q as a non-linear exponent and u0 as a threshold speed. Meanwhile, cb is a 2D field that can

be set to a constant value, or a spatially and/or temporally varying field based on e.g., whether the ice is frozen to the bed or

temperate, on till strength (Bueler and van Pelt, 2015), effective pressure, or other user-defined criteria.25

β and cb are initially defined on aa-nodes. cb is naturally defined on the grid center, but when β = f (ub), the velocity

components that are defined on ac-nodes must be staggered to the grid center. Once β has been calculated using one of the

above formulations, it must be staggered to the ac-nodes for use in the elliptical solver. For purely floating points (i.e., fg = 0

at both bounding aa-nodes) βac = 0, and for purely grounded points, βac is the average of the two neighbors. At the grounding

line, Yelmo allows several options to handle staggering. These include simple averaging, taking the upstream value of β, taking30

the downstream value of β or taking the weighted average based on the grounded fraction of the ac-node.

11
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2.4 Thermodynamics

Thermodynamics in Yelmo is treated in the classical way by solving the following energy conservation equation:

∂T

∂t
=

k

ρc

∂2T

∂z2
−u∂T

∂x
− v ∂T

∂y
−w∂T

∂z
+

Φ
ρc

(26)

where k and c are the ice thermal conductivity and specific heat capacity, respectively. The ice temperature T evolution is

driven by vertical diffusion, horizontal and vertical advection, and internal strain heating due to ice shearing, Φ, where5

Φ = 4ηε̇2. (27)

Horizontal diffusion is considered negligible (Greve and Blatter, 2009). At the air-ice interface (i.e., the ice surface), the ice

temperature is prescribed via the input boundary temperature field Ts, limited to a maximum value of T0 = 273.15K. At the

base of floating ice, the ice temperature is prescribed to the expected freezing temperature of seawater as a function of depth

(Jenkins, 1991). At the base of grounded ice, when the ice temperature is below the pressure melting point, the vertical gradient10

of temperature is prescribed as ∂T/∂z =−Qgeo/k, where the geothermal heat flux (Qgeo) is provided as a boundary field to

Yelmo. If the temperature at the ice base reaches the pressure melting point, then the temperature is prescribed to the pressure

melting point, and the basal mass balance is diagnosed as (Cuffey and Paterson, 2010):

ḃg =− 1
ρL

(
Qb + k

∂T

∂z

∣∣∣∣
b

+Qgeo

)
(28)

where ḃg is the basal mass balance of grounded ice (negative for melting), L is the latent heat of fusion for ice, Qb is the15

basal heat production to due sliding and ∂T
∂z

∣∣∣∣
b

is the ice temperature gradient at the base. Yelmo provides ḃg as a model

output, and does not update the basal water layer thickness Hw internally, which can be achieved via external coupling with

a basal hydrology model. Once the ice base is temperate (i.e., at the pressure melting point), it will remain so as long as

Hw −
(
ρw

ρ ḃg

)
dt > 0, where ḃg is used from the previous timestep. In other words, if it is expected that an energy deficit will

result in freeze-on of the total available liquid water at the ice base, then the point is treated as a non-temperate ice point.20

Eq. 26 is solved with an implicit method in the vertical direction, while the horizontal advection is solved separately applying

an explicit, second-order upwind forward Euler method. This separation allows the energy conservation in the vertical to be

solved as a 1D column model. The discretization of vertical diffusion follows the form presented by Hoffman et al. (2018),

while the discretization of vertical advection follows a second-order central difference scheme. A given column of grid points

consists of temperatures defined on the grid-centers (aa-nodes) and boundary values defined directly at the surface and base of25

the ice sheet.

2.5 Model interface

The Yelmo model interface is designed to be clear and simple, but also flexible. In its essence, there are three main model

functions: yelmo_init to initialize the model variables, yelmo_update to perform the ice-sheet model calculations for a

given timestep and yelmo_end to terminate the Yelmo object (free it from memory).30
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The first subroutine, yelmo_init, is used to load parameters initialize variables in memory (i.e., allocate arrays) and,

optionally, to initialize the topographic state variables (ice thickness, masks, etc.). No other variables are initialized here

in the sense of being populated with data values, which is left to the user. An additional, optional helper function can be

used, yelmo_init_state, which populates the remaining model variables in the material, thermodynamics and dynamics

components. This initialization step is separated from that of topography because in practice, sometimes boundary variables5

(e.g., surface temperature) need the surface elevation as input in order to be determined. In contrast, the remaining variables,

namely dynamics and thermodynamics, often rely on boundary variables to be initialized. Thus, a typical initialization sequence

for a stand-alone ice-sheet model simulation could first call yelmo_init, then load or calculate boundary variables and then

call yelmo_init_state to finalize the initialization of all Yelmo variables. After this sequence, the Yelmo state should

be consistent with running the model for one timestep with the prescribed boundary conditions and a fixed topography. If the10

model will be initialized from a restart file, then these data are loaded in each case based on parameter choices.

The next subroutine, yelmo_update, is used to advance the model state to a new timestep. Any modifications to boundary

variables are left to the user externally, and Yelmo expects that the boundary conditions are valid for this timestep. The sub-

routine does not take any arguments to modify the model behavior – rather, all model configuration choices are specified in the

parameters of the Yelmo object itself. These are initially loaded from a parameter file in the call to yelmo_init, however,15

it is possible to modify any parameter values during simulations, allowing for changing model configuration depending on the

experimental setup. An additional optional subroutine, yelmo_update_equil, is available to facilitate equilibration. This

routine effectively calls yelmo_update for a specified time window with unchanging boundary conditions, and allowing for

the temporary modification of some key model parameters (such as the maximum allowed adaptive time step and the maximum

allowed SSA velocity).20

The last subroutine, yelmo_end, simply removes the Yelmo object from memory (i.e., all domain variables are deallo-

cated). After calling yelmo_end, it is possible to reinitialize the Yelmo object via yelmo_init, for example, in order to

test a different grid resolution or other configuration.

There are several input/output routines defined for Yelmo. yelmo_write_init can be used to initialize a NetCDF model

output file with the axes of model dimensions defined from the Yelmo object and writing of static fields like domain masks. The25

writing of model output for inidividual timesteps is left to the user to maintain flexibility, as most programs require specific

fields to be written (examples can be found in the test programs included with the code - see further below). In addition,

yelmo_restart_write will create a NetCDF file and write all Yelmo fields as a snapshot, which can be used to restart

the model (loading of a restart file can be activated with parameter choices).

As mentioned above, given the object-oriented approach, it is possible to run multiple Yelmo domains in one program. Each30

domain must be initialized separately via yelmo_init, and the variable fields populated with initial values, then separate

calls to yelmo_update are needed during timestepping, and finally each object should be terminated at the end of the

program via yelmo_end. With this structure, minimum modification of another model, like a global climate model is needed,

to incorporate online ice-sheet evolution, or to simulate an ensemble of ice sheets in one program. Furthermore, all fields

are directly accessible within the main program to facilitate coupling. For example, the 2D array of surface elevation of the35
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topography component of the Yelmo Antarctica domain could be referenced as yelmo_ant%tpo%now%z_srf. While it is

clear that the nesting of several containers (derived types) results in a rather long variable reference, it is unambiguous and

straightforward to use.

3 Model validation and benchmarks

Yelmo has been tested against several ice-sheet model validation tests and benchmarks in wide use today. These include the5

EISMINT1 (Huybrechts et al., 1996) and EISMINT2 (Payne et al., 2000) model intercomparison experiments that test uncou-

pled and coupled dynamics-thermodynamics, respectively, and MISMIP (Pattyn et al., 2012) for ice-shelf dynamics, among

others. By design, many of these experiments allow isolation of specific model features for testing. When the model passes more

complex benchmark tests, the simpler experiments are somewhat redundant (if the model passes a coupled thermodynamics-

dynamics benchmark, the model should necessarily also be able to pass a dynamics-only benchmark). However, it should be10

noted that in the process of model development, all tests prove to be extremely useful. The results of all tests will not be

reported here, but several are highlighted below to demonstrate that Yelmo performs well.

The EISMINT1 moving margin experiment tests the ice-sheet model dynamics with an imposed constant rate factor and

diagnosed thermodynamics (i.e., thermodynamics do not impact the ice-sheet configuration). Radial steady-state surface mass

balance and background surface temperature fields are imposed as boundary conditions. Starting from ice-free conditions, the15

ice sheet simulated by Yelmo grows to dynamic and thermodynamic equilibrium within 25 kyr and 100 kyr, respectively. The

steady-state summit elevation of Yelmo is 2992.4 m compared to the reported range of 2997.5±7.4 m for “Type-I” discretization

models like Yelmo (where diffusivity is staggered to the ab-nodes). The basal temperature relative to the pressure melting point

(i.e., homologous temperature) at the summit simulated by Yelmo is -12.85 ◦C, which lies within the EISMINT1 range of

-13.40±0.56 ◦C. Other relevant statistics are given in Table 1.20

The EISMINT2 benchmark experiments A and F are useful for testing the thermodynamically coupled ice-sheet model.

The experiments are identical to the EISMINT1 moving margin experiment, except the resolution is doubled (25 km) and

the surface temperature is prescribed to be independent of ice thickness. Experiment A prescribes a summit temperature of

238.15 K, while experiment F is 15 K colder, which promotes an increase in the region of ice frozen to the bedrock. The

statistics for these experiments are listed in Table 1 as well. Figure 3 shows the basal homologous temperature distribution25

for experiments A and F. Yelmo produces symmetrical temperature patterns in both experiments, which are consistent with

both the benchmark results (Payne et al., 2000) and other more recent models (e.g., Bueler et al., 2007; Hoffman et al., 2018).

Yelmo also produces the so-called “cold spokes”, which have been shown to be related to internal strain heating in regions of

steep gradients in ice thickness, and largely numerical in nature (Bueler et al., 2007). Yelmo includes an option for smoothing

the strain heating field as suggested by Bueler et al. (2007), however its effectiveness has not been tested yet in detail.30

We also test the capability of the SSA solver and grounding-line treatment by running the MISMIP protocol experiments

(Pattyn et al., 2012). Particularly, MISMIP EXP 1 (advance) and EXP 2 (retreat) are useful for testing the reversibility of

grounding line advance, given the bedrock is defined as a linear downward sloping bed. The rate factor is prescribed according
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to steps that first decrease, allowing grounding line advance, then increase back to the original value. According to theory

(Weertman, 1974; Schoof, 2007), only one steady-state grounding line position should exist for each step – i.e., the ice sheet

should advance and retreat symmetrically without showing hysteresis. It is now well known, however, that ice-sheet models at

coarse resolutions (1 km and greater) are unable to capture proper grounding-line migration, even when subgrid parameteriza-

tions to mimic higher resolution are applied (Seroussi et al., 2014; Gladstone et al., 2017).5

In the MISMIP experiment performed here, the linear, downward sloping bedrock is defined in the x-direction as zb = 720−
778.5(x/750) km. The bedrock elevation does not change in the y-direction, which extends to ±50 km to allow the simulation

of a symmetric ice stream flowing in the positive x-direction. The power-law formulation of Eq. 24 is used with the parameter

values q = 1/3, u0 = 1 m yr−1 and cb = 3.165176× 104 Pa. The rate factor is initially prescribed to A= 1× 10−16 Pa−3 yr−1

and the simulation is run for 25 kyr to equilibrate. Next, the rate factor is stepped evenly in log-space every 10 kyr until reaching10

A= 1× 10−19 Pa−3 yr−1, and then the rate factor is increased in the same way until returning to the original value.

Figure 4 shows results for this MISMIP experiment with Yelmo at different grid resolutions, ranging from 20 km down to

2.5 km, and with different treatments of basal friction near the grounding line. When the default model setup is used, with

no special treatment at the grounding line, the grounding line advance is consistent for all resolutions. However, none of the

lowest resolution simulations show grounding line retreat as the rate factor increases again. At a resolution of 5.0 km, some15

minor grounding line retreat can be seen, and for 2.5 km, the model is more successful at retreating though it remains 400 km

from the target. In contrast, when the basal friction β is scaled at the grounding line by the grounded fraction of the ac-node

(fg,ac), the hysteresis is greatly reduced. The 5 km simulation retreats to within 200 km of the original position and the 2.5 km

simulation retreats to within 100 km of the original position, thus showing convergence to the correct solution with resolution.

With this setup, even the 10 km and 20 km simulations retreat significantly. In a third case, the basal friction is also linearly20

scaled to zero as the ice sheet approaches flotation (Leguy et al., 2014; Gladstone et al., 2017). In this case, the hysteresis and

differences between different resolution simulations are further reduced, however, the system also tends to advance much less

given all other conditions are the same.

Yelmo’s Eulerian ice-age model is validated against the analytical solution at the summit presented by Rybak and Huybrechts

(2003). In this case, horizontal advection is neglected, and the vertical velocity is assumed to decrease linearly with depth. Fig.25

5 shows the solution with Yelmo as compared to the analytical result. For a nominal vertical resolution of nz = 30 points

and single or double precision, the age tracer gives errors of around 0.2% over the entire depth of the ice sheet. Increasing

the vertical resolution to nz = 50 points decreases the error by an order of magnitude and reducing the vertical resolution to

nz = 10 points increases the error to about 1%. For Eemian-age ice in such simplified conditions, this gives an uncertainty of

about 1 kyr. It is expected that the error would increase for more realistic domains (Rybak and Huybrechts, 2003), however the30

Eulerian age solver can be used for a first-order estimate of the age-depth profile in the ice sheet.
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4 Antarctica

As further validation of the model’s performance, we ran steady-state simulations of the present-day and glacial Antarctic

ice sheet. These simulations, run at 32 km resolution, have been deliberately simplified to include the minimum complexity

necessary to simulate the ice sheet without additional external components. There was no active isostasy model and geothermal

heat flux was set to 50 mW m−2 everywhere. The bedrock topography and initial ice thickness were prescribed from the5

RTOPO2.1 dataset (Schaffer et al., 2016). Basal friction followed a linear law, where β = cfλb (ρgH). We prescribed cf =

2× 10−3 for most of the domain, except for ad hoc adjustments in specific regions to improve the match with observations.

This was additionally scaled by an exponential function of bedrock elevation: λb = min[1.0,exp((zb− z1)/(z1− z0))], where

z0 =−200 m and z1 = 0 m, which ensures that the basal friction decays to low values for marine-based sectors of the ice sheet

(Martin et al., 2011). Friction was scaled by the grounded fraction at the grounding line, but no additional scaling is applied.10

For the simulation of the present-day state, surface mass balance (SMB) and surface temperature boundary fields were

prescribed from a RACMO2.3 simulation driven by ERA-INTERIM data and averaged over 1981-2010 (van Wessem et al.,

2018). The ice-shelf basal mass balance was set to a spatially constant value of -0.1 m a−1. Figure 7 shows a comparison of

the simulations with the observed topography (RTOPO2.1) and the present-day observed velocity (Rignot et al., 2011). With

this relatively simple model setup, it is nonetheless possible to obtain reasonable agreement with observations. The root mean15

square errors (RMSEs) in ice thickness, velocity and log(velocity) are 290 m, 230 m yr−1 and 1.8 log[m yr−1], respectively,

which fall in the range of other models in the initMIP-Antarctica intercomparison project (Seroussi et al., 2019). The dome

configuration, slow deformational speeds and even most ice streams as they penetrate inland are well represented by the model.

The margins of the ice sheet are the most difficult to match and, in particular, the large ice shelves. This is likely due in large

part to the use of a spatially constant value for ice-shelf basal mass balance, but also reflects the simple approach used to20

represent β. Nonetheless, the results are quite consistent with other models (e.g., Martin et al., 2011; Quiquet et al., 2018;

Seroussi et al., 2019).

We use the same setup with modified boundary conditions to simulate a configuration resembling that of a deep glacial period

like the Last Glacial Maximum. The surface temperature was set to 10◦ C colder and the present-day SMB was maintained,

except for points with a low or negative SMB were prescribed with a minimum value of 0.1 m a−1. The ice shelf basal mass25

balance was set to a spatially constant value of 0.0 m a−1 and sea level was lowered by 120 m. In this case, the grounded ice

sheet advances until the continental shelf break and thickens inland (Fig. 7). A similar structure of ice streams can be seen,

due to the topographic dependence of β, but their speed is greatly reduced. We do not expect this configuration to be realistic,

given that isostasy plays no role and a present-day-like SMB has been imposed. However, this test demonstrates that Yelmo is

capable of resolving continental-scale changes in the ice sheet configuration in a plausible way.30

5 Conclusions and future work

We have described the features and physics of the hybrid ice-sheet–shelf model Yelmo. Yelmo includes the physics to simulate

continental-scale ice sheets and floating ice shelves using “shallow” approximations of the ice dynamics. The fully coupled
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thermomechanical ice-sheet model has been validated against several benchmark tests, and has been shown to simulate the

dynamic configuration of the Antarctic ice sheet well.

Yelmo is expected to be useful for long-time scale simulations and/or ensembles. It is particularly suited for easy coupling

with other models. For example, the simulation of multiple ice-sheet domains with independent parameter configurations

coupled to a global climate model can be achieved in a simple and straightforward way. Also, given that the subroutines5

representing the physics of the model have been isolated from the “model accounting”, it is possible to test individual model

components in different contexts easily. This should facilitate future model development and comparison of different methods.

The model framework has been designed to facilitate the incorporation of new and different physics. Thus, this initial release

of Yelmo lays the foundation for several future developments. These may include more advanced calving and basal friction

schemes, as well as improved treatment of the grounding line. We also plan to transition to an enthalpy-based thermodynamics10

solver, and to implement a variationally-derived “depth-integrated-viscosity approximation" solver (following e.g., Goldberg,

2011; Pollard and DeConto, 2012; Lipscomb et al., 2019) in the near future.

Code availability. Yelmo is maintained as a git repository hosted at https://github.com/palma-ice/yelmo under the licence GPL-3.0. Model

documentation can be found at https://palma-ice.github.io/yelmo-docs/. The exact version of the model, along with the necessary input data,

used to produce the results used in this paper is archived on Zenodo (https://www.doi.org/10.5281/zenodo.3443654).15
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Figure 1. Overview of the Yelmo model structure highlighting state variables in the four components: topography, dynamics, material and

thermodynamics, as well as the boundary conditions required to run the model. The thick black border for boundary variables indicates that

these fields are never modified internally by Yelmo, while the components with a thin black border or dashed line are allowed to be modified

depending on the context. When, for example, the topography is updated (dashed line), no other components are allowed to be modified

(solid lines).
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Figure 2. Yelmo staggered grid definition and nomenclature. The horizontal grid (left) assumes constant resolution in the x- and y-directions,

while in the vertical (right) variable resolution is allowed. With any given cell defined as a 3D box, scalar variables are calculated on cell

centers (aa-nodes), velocities are calculated on cell faces (ac-nodes, edges in 2D), and scalar coefficients are calculated on cell edges (ab-

nodes, corners in 2D).
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Figure 3. Steady-state, basal homologous temperature (◦ C) distribution after 100 kyr obtained by Yelmo in EISMINT2 test A (left) and test

F (right). Areas that have reached the pressure-melting point have been shaded grey.
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Figure 4. Yelmo performance in the MISMIP bedrock advance and retreat simulations on a linear sloping bed. The top panel shows the

imposed rate factor A, with 10 kyr steps of decreasing and then increasing values. The three lower panels show the grounding line position

evolution for each of three model configurations, respectively: “Default" is the standard model setup, with no special treatment of friction at

or near the grounding line, “Subgrid” uses the grounded fraction at the grounding line to scale the basal friction, “Scaling” applies both the

grounded fraction, and imposes a linear reduction in basal friction as the ice sheet approaches flotation. Separate simulations were run for

resolutions ranging from 20 km down to 2.5 km.
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Figure 5. Age-depth profile for idealized summit (left) with an analytical solution (thick grey line) and Yelmo (black line) with a vertical

resolution of nz = 30 and double precision, and the associated error (right, %). The error for additional resolutions of nz = 10 and nz = 50

are also shown for comparison (thin dark grey lines, smaller points) and for the same resolution, but single precision (thin, light grey line,

smaller points).
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Figure 6. Antarctica present-day ice sheet configuration and surface velocities from observations (left), compared to a steady-state simulation

with Yelmo (middle). In contrast, Antarctica glacial configuration and surface velocities simulated by Yelmo (right). Simulations were

performed at 32 km resolution. The colors show surface velocity in m yr−1 and the dark grey contours show surface elevation in 500 m

intervals (thick lines correspond to 0, 1000, 2000 and 3000 m above sea level). The black line shows the grounding line position.
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Table 1. Yelmo performance in the EISMINT1 moving margin experiment (“Moving”), as well as in the EISMINT2 experiments A and F.

Where available, metrics with the ensemble mean and standard deviation from the original benchmark experiments are also provided for

comparison.

Experiment Model Volume

[106 km3]

Area

[106 km2]

Melt fraction Divide thick-

ness [m]

Divide basal

temperature [K]

Divide homologous

basal temperature [C]

Moving EISMINT1 – – – 2997.5± 7.4 – -13.40± 0.56

Yelmo 1.939 1.003 0.58 2992.6 256.9 -13.61

A EISMINT2 2.128± 0.073 1.034± 0.043 0.72± 0.15 3688± 48 255.6± 1.4 –

Yelmo 2.205 1.031 0.71 3736 254.9 -15.03

F EISMINT2 – – – – – –

Yelmo 2.458 1.040 0.36 4374 240.9 -28.50
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